MCP1802-1802I/OT [MICROCHIP]

IC,VOLT REGULATOR,FIXED,+1.8V,CMOS,TSOP,5PIN,PLASTIC;
MCP1802-1802I/OT
型号: MCP1802-1802I/OT
厂家: MICROCHIP    MICROCHIP
描述:

IC,VOLT REGULATOR,FIXED,+1.8V,CMOS,TSOP,5PIN,PLASTIC

光电二极管 输出元件 调节器
文件: 总26页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1802  
300 mA, High PSRR, Low Quiescent Current LDO  
Features  
Description  
• 300 mA Maximum Output Current  
• Low Drop Out Voltage, 200 mV typical @ 100 mA  
• 25 µA Typical Quiescent Current  
• 0.01 µA Typical Shutdown Current  
• Input Operating Voltage Range: 2.0V to10.0V  
• Standard Output Voltage Options:  
- (0.9V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 6.0V)  
• Output voltage accuracy:  
The MCP1802 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 300 mA of  
current while consuming only 25 µA of quiescent  
current (typical). The input operating range is specified  
from 2.0V to 10.0V, making it an ideal choice for two to  
six primary cell battery-powered applications, 9V alka-  
line and one or two cell Li-Ion-powered applications.  
The MCP1802 is capable of delivering 100 mA with  
only 200 mV (typical) of input to output voltage differen-  
tial (VOUT = 3.0V). The output voltage tolerance of the  
MCP1802 at +25°C is typically ±0.4% with a maximum  
of ±2%. Line regulation is ±0.01% typical at +25°C.  
- ±2% (VR > 1.5V), ±30 mV (VR 1.5V)  
• Stable with Ceramic output capacitors  
• Current Limit Protection  
The LDO output is stable with a minimum of 1 µF of  
output capacitance. Ceramic, tantalum or aluminum  
electrolytic capacitors can all be used for input and  
output. Overcurrent limit with current foldback provides  
short-circuit protection. A shutdown (SHDN) function  
allows the output to be enabled or disabled. When  
disabled, the MCP1802 draws only 0.01 µA of current  
(typical).  
• Shutdown pin  
• High PSRR: 70 dB typical @ 10 kHz  
Applications  
• Battery-powered Devices  
• Battery-powered Alarm Circuits  
• Smoke Detectors  
The MCP1802 is available in a SOT-23-5 package.  
• CO2 Detectors  
• Pagers and Cellular Phones  
• Wireless Communications Equipment  
• Smart Battery Packs  
Package Types  
SOT-23-5  
• Low Quiescent Current Voltage Reference  
• PDAs  
VOUT  
5
NC  
4
• Digital Cameras  
• Microcontroller Power  
• Solar-Powered Instruments  
• Consumer Products  
• Battery Powered Data Loggers  
1
2
3
VIN VSS SHDN  
Related Literature  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766,  
Microchip Technology Inc., 2002  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
© 2009 Microchip Technology Inc.  
DS22053B-page 1  
MCP1802  
Functional Block Diagram  
MCP1802  
+VIN  
VOUT  
VIN  
+VIN  
SHDN  
Shutdown  
Control  
Voltage  
Reference  
-
+
Current Limiter  
Error Amplifier  
GND  
Typical Application Circuit  
MCP1802  
VIN  
VOUT  
5
1
VIN VOUT  
SOT-23-5  
3.3V @ 40 mA  
mA  
COUT  
1 µF Ceramic  
2
3
GND  
+
9V  
Battery  
4
SHDN NC  
CIN  
1 µF  
Ceramic  
DS22053B-page 2  
© 2009 Microchip Technology Inc.  
MCP1802  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ................................................................. +12V  
Output Current (Continuous) ..................... PD/(VIN-VOUT)mA  
Output Current (Peak) ............................................... 500 mA  
Output Voltage ............................... (VSS-0.3V) to (VIN+0.3V)  
SHDN Voltage..................................(VSS-0.3V) to (VIN+0.3V)  
Continuous Power Dissipation:  
5-Pin SOT-23-5 .................................................... 250 mW  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 1.0V, Note 1, COUT = 1 µF (X7R),  
IN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
C
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
Input Quiescent Current  
Shutdown Current  
VIN  
Iq  
2.0  
25  
10.0  
50  
V
Note 1  
µA  
µA  
mA  
IL = 0 mA  
SHDN = 0V  
ISHDN  
IOUT_mA  
0.01  
0.10  
Maximum Output Current  
300  
300  
260  
260  
VR 2V, VIN = VR +1.0V  
1.5V VR < 2.0V, VIN=3.0V  
1.0V VR < 1.5V, VIN = VR +1.5V  
0.9V VR < 1.0V, VIN=2.5V  
Current Limiter  
ILIMIT  
IOUT_SC  
VOUT  
380  
50  
mA  
mA  
V
if VR 1.75V, then VIN = VR + 2.0V  
if VR 1.75V, then VIN = VR + 2.0V  
VR 1.45V, IOUT = 30 mA, Note 2  
VR < 1.45V, IOUT = 30 mA  
Output Short Circuit Current  
Output Voltage Regulation  
VR-2.0%  
VR-30 mV  
VR  
VR+2.0%  
VR+30 mV  
VR  
VOUT Temperature  
Coefficient  
TCVOUT  
100  
ppm/°C  
%/V  
IOUT = 30 mA, -40°C TA +85°C,  
Note 3  
Line Regulation  
ΔVOUT  
/
-0.2  
±0.01  
+0.2  
(VR + 1V) VIN 10V, Note 1  
VR > 1.75V, IOUT = 30 mA  
VR 1.75V, IOUT = 10 mA  
(VOUTXΔVIN  
)
Load Regulation  
ΔVOUT/VOUT  
15  
50  
100  
mV  
mV  
IL = 1.0 mA to 100 mA, Note 4  
IL = 1.0 mA to 300 mA,  
Dropout Voltage  
Note 1, Note 5  
VDROPOUT  
60  
200  
80  
90  
IL = 30 mA, 3.1V VR 6.0V  
IL = 100 mA, 3.1V VR 6.0V  
IL = 30 mA, 2.0V VR < 3.1V  
IL = 100 mA, 2.0V VR < 3.1V  
IL = 30 mA, VR < 2.0V  
250  
120  
350  
240  
2.07 - VR 2.10 - VR  
2.23 - VR 2.33 - VR  
V
IL = 100 mA, VR < 2.0V  
Power Supply Ripple  
Rejection Ratio  
PSRR  
eN  
70  
dB  
f = 10 kHz, IL = 50 mA, VINAC = 1V  
pk-pk, CIN = 0 µF,  
if VR < 1.5V, then VIN = 2.5V  
Output Noise  
0.46  
μV/Hz  
IOUT = 100 mA, f = 1 kHz, COUT  
=
1 μF (X7R Ceramic), VOUT = 2.5V  
Note 1: The minimum VIN must meet two conditions: VIN 2.0V and VIN (VR + 1.0V).  
2: VR is the nominal regulator output voltage. For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, or 5.0V.  
The input voltage VIN = VR + 1.0V or ViIN = 2.0V (whichever is greater); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the temper-  
ature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VR + 1.0V or 2.0V, whichever is greater.  
© 2009 Microchip Technology Inc.  
DS22053B-page 3  
MCP1802  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 1.0V, Note 1, COUT = 1 µF (X7R),  
CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Shutdown Input  
Logic High Input  
Logic Low Input  
VSHDN-HIGH  
VSHDN-LOW  
1.6  
V
V
0.25  
Note 1: The minimum VIN must meet two conditions: VIN 2.0V and VIN (VR + 1.0V).  
2: R is the nominal regulator output voltage. For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, or 5.0V.  
The input voltage VIN = VR + 1.0V or ViIN = 2.0V (whichever is greater); IOUT = 100 µA.  
V
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the temper-  
ature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VR + 1.0V or 2.0V, whichever is greater.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, SOT-23-5  
TA  
-40  
-55  
+85  
°C  
°C  
Tstg  
+125  
θJA  
θJC  
256  
81  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
°C/W  
DS22053B-page 4  
© 2009 Microchip Technology Inc.  
MCP1802  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 3.3V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1.0V, SOT-23-5.  
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction temperature.  
J
The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
26.00  
25.00  
24.00  
23.00  
22.00  
21.00  
20.00  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 0.9V  
OUT = 0 µA  
VOUT = 0.9V  
IN = 2.0V  
I
V
+25°C  
+90°C  
0°C  
-45°C  
2
4
6
8
10  
0
30  
60  
90  
120  
150  
150  
90  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-1: Quiescent Current vs. Input  
FIGURE 2-4: Ground Current vs Load  
Current.  
Voltage.  
29.00  
90  
80  
70  
VOUT = 3.3V  
IOUT = 0 µA  
28.00  
27.00  
26.00  
25.00  
24.00  
+90°C  
VOUT = 3.3V  
IN = 4.3V  
60  
V
VOUT = 6.0V  
IN = 7.0V  
50  
40  
30  
20  
V
-45°C  
+25°C  
0°C  
4
5
6
7
8
9
10  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2: Quiescent Current vs. Input  
FIGURE 2-5: Ground Current vs Load  
Current.  
Voltage.  
31.00  
30.00  
VOUT = 6.0V  
OUT = 0 µA  
VOUT = 6.0V  
IN = 7.0V  
IOUT = 0mA  
I
V
30.00  
29.00  
28.00  
27.00  
26.00  
25.00  
28.00  
26.00  
24.00  
22.00  
20.00  
+90°C  
+25°C  
-45°C  
VOUT = 0.9V  
IN = 2.0V  
V
VOUT = 3.3V  
IN = 4.3V  
0°C  
V
7
7.5  
8
8.5  
9
9.5  
10  
-45  
-22.5  
0
22.5  
45  
67.5  
Input Voltage (V)  
Junction Temperature (°C)  
FIGURE 2-3: Quiescent Current vs. Input  
FIGURE 2-6: Quiescent Current vs. Junction  
Voltage.  
Temperature.  
© 2009 Microchip Technology Inc.  
DS22053B-page 5  
MCP1802  
Note: Unless otherwise indicated: VR = 3.3V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1.0V, SOT-23-5.  
0.925  
0.920  
0.915  
0.910  
0.905  
0.900  
0.895  
0.920  
0.915  
0.910  
0.905  
0.900  
0.895  
0.890  
0.885  
0.880  
VOUT = 0.9V  
ILOAD = 1 mA  
0°C  
VIN = 2.0V  
OUT = 0.9V  
V
+25  
-45°C  
0°C  
+25°C  
-45°C  
+90°C  
+90°C  
2
3
4
5
6
7
8
9
10  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7: Output Voltage vs. Input  
FIGURE 2-10: Output Voltage vs. Load  
Voltage.  
Current.  
3.34  
3.34  
VOUT = 3.3V  
ILOAD = 1 mA  
VIN = 4.3V  
VOUT = 3.3V  
0°C  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
-45°C  
+25°C  
0°C  
+25°C  
-45°C  
+90°C  
+90°C  
4
5
6
7
8
9
10  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8: Output Voltage vs. Input  
FIGURE 2-11: Output Voltage vs. Load  
Voltage.  
Current.  
6.06  
6.06  
VIN = 7.0V  
VOUT = 6.0V  
VOUT = 6.0V  
ILOAD = 1 mA  
6.04  
6.02  
6.00  
5.98  
5.96  
5.94  
5.92  
6.04  
6.02  
6.00  
5.98  
5.96  
5.94  
+25°C  
0°C  
0°C  
-45°C  
+25°C  
+90°C  
-45°C  
+90°C  
7
7.5  
8
8.5  
9
9.5  
10  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-9: Output Voltage vs. Input  
FIGURE 2-12: Output Voltage vs. Load  
Voltage.  
Current.  
DS22053B-page 6  
© 2009 Microchip Technology Inc.  
MCP1802  
Note: Unless otherwise indicated: VR = 3.3V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1.0V, SOT-23-5.  
0.30  
VOUT = 3.3V  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
+90°C  
+25°C  
-45°C  
+0°C  
0
25  
50  
75  
100  
125  
150  
Load Current (mA)  
FIGURE 2-13: Dropout Voltage vs. Load  
FIGURE 2-16: Dynamic Line Response.  
Current.  
160  
0.30  
VOUT = 3.3V  
OUT < 0.1  
VOUT = 6.0V  
140  
120  
100  
80  
R
0.25  
+90°C  
-45°C  
0.20  
0.15  
0.10  
0.05  
0.00  
+25°C  
60  
+0°C  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-17: Short Circuit Current vs. Input  
FIGURE 2-14: Dropout Voltage vs. Load  
Voltage.  
Current.  
-1.40  
VOUT = 0.9V  
I
OUT = 0.1 mA to 150 mA  
-1.50  
-1.60  
-1.70  
-1.80  
-1.90  
VIN = 10V  
VIN = 8V  
VIN = 6V  
VIN = 4V  
VIN = 2V  
-45  
-22.5  
0
22.5  
45  
67.5  
90  
Temperature (°C)  
FIGURE 2-18: Load Regulation vs.  
FIGURE 2-15: Dynamic Line Response.  
Temperature.  
© 2009 Microchip Technology Inc.  
DS22053B-page 7  
MCP1802  
Note: Unless otherwise indicated: VR = 3.3V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1.0V, SOT-23-5.  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
0.020  
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
VOUT = 3.3V  
VIN = 4.3V to 10V  
VOUT = 3.3V  
OUT = 0.1 mA to 150 mA  
150 mA  
I
100 mA  
50 mA  
VIN = 8V  
10 mA  
VIN = 6V  
VIN = 10V  
VIN = 4.3V  
1 mA  
-45  
-22.5  
0
22.5  
45  
67.5  
90  
-45  
-22.5  
0
22.5  
45  
67.5  
90  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19: Load Regulation vs.  
FIGURE 2-22: Line Regulation vs.  
Temperature.  
Temperature.  
0.10  
0.020  
150 mA  
0.015  
VOUT = 6.0V  
IOUT = 0.1 mA to 150 mA  
VOUT = 6.0V  
VIN = 7.0V to 10.0V  
100 mA 50 mA  
0.00  
-0.10  
-0.20  
-0.30  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
VIN = 8V  
VIN = 9V  
VIN = 10V  
VIN = 7V  
1 mA  
10 mA  
-45  
-22.5  
0
22.5  
45  
67.5  
90  
-45  
-22.5  
0
22.5  
45  
67.5  
90  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20: Load Regulation vs.  
FIGURE 2-23: Line Regulation vs.  
Temperature.  
Temperature.  
0.020  
0
VIN = 2.0 to 10.0V  
VOUT = 0.9V  
VR=3.3V  
-10  
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
V
V
IN=4.3V  
INAC = 100 mV p-p  
150 mA  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
100 mA  
C
IN=0 μF  
50 mA  
10 mA  
I
OUT=100 µA  
1 mA  
-45  
-22.5  
0
22.5  
45  
67.5  
90  
0.01  
0.1  
1
10  
100  
1000  
Temperature (°C)  
Frequency (KHz)  
FIGURE 2-21: Line Regulation vs.  
FIGURE 2-24: PSRR vs. Frequency.  
Temperature.  
DS22053B-page 8  
© 2009 Microchip Technology Inc.  
MCP1802  
Note: Unless otherwise indicated: VR = 3.3V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + 1.0V, SOT-23-5.  
0
VR= 6.0V  
-10  
VIN= 7.0V  
V
C
INAC = 100 mV p-p  
IN= 0 μF  
IOUT= 100 µA  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-25: PSRR vs Frequency.  
FIGURE 2-28: Dynamic Load Response.  
FIGURE 2-26: Power Up Timing.  
FIGURE 2-29: Power Up Timing From SHDN.  
10  
5.0V  
IOUT = 100 mA  
1
0.1  
0.01  
2.5V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-27: Dynamic Load Response.  
FIGURE 2-30: Noise Graph.  
© 2009 Microchip Technology Inc.  
DS22053B-page 9  
MCP1802  
NOTES:  
DS22053B-page 10  
© 2009 Microchip Technology Inc.  
MCP1802  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Name  
Pin No.  
SOT-23-5  
Function  
1
2
3
4
5
VIN  
GND  
SHDN  
NC  
Unregulated Supply Voltage  
Ground Terminal  
Shutdown  
No connection  
VOUT  
Regulated Voltage Output  
3.1  
Unregulated Input Voltage (VIN)  
3.3  
Shutdown Input (SHDN)  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 0.1 µF of capacitance will ensure stable  
operation of the LDO circuit. The type of capacitor  
used can be ceramic, tantalum or aluminum electro-  
lytic. The low ESR characteristics of the ceramic will  
yield better noise and PSRR performance at high-  
frequency.  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled and the LDO enters a low  
quiescent current shutdown state where the typical qui-  
escent current is 0.01 µA. The SHDN pin does not  
have an internal pullup or pulldown resistor. The the  
SHDN pin must be connected to either VIN or GND to  
prevent the device from becoming unstable.  
3.4  
Regulated Output Voltage (VOUT)  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
3.2  
Ground Terminal (GND)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (25 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
© 2009 Microchip Technology Inc.  
DS22053B-page 11  
MCP1802  
NOTES:  
DS22053B-page 12  
© 2009 Microchip Technology Inc.  
MCP1802  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.4  
Output Capacitor  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The MCP1802 requires a minimum output capacitance  
of 1 µF for output voltage stability. Ceramic capacitors  
are recommended because of their size, cost and  
environmental robustness qualities.  
Aluminum-electrolytic and tantalum capacitors can be  
used on the LDO output as well. The output capacitor  
should be located as close to the LDO output as is  
practical. Ceramic materials X7R and X5R have low  
temperature coefficients and are well within the  
acceptable ESR range required. A typical 1 µF X7R  
0805 capacitor has an ESR of 50 milli-ohms.  
4.2  
Overcurrent  
Larger LDO output capacitors can be used with the  
MCP1802 to improve dynamic performance and power  
supply ripple rejection performance. Aluminum-elec-  
trolytic capacitors are not recommended for low  
temperature applications of 25°C.  
The MCP1802 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event that the load current reaches the current  
limiter level of 380 mA (typical), the current limiter  
circuit will operate and the output voltage will drop. As  
the output voltage drops, the internal current foldback  
circuit will further reduce the output voltage causing the  
output current to decrease. When the output is  
shorted, a typical output current of 50 mA flows.  
4.5  
Input Capacitor  
Low input source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries, or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 0.1 µF to 4.7 µF is recommended for most  
applications.  
4.3  
Shutdown  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled and the LDO enters a low  
quiescent current shutdown state where the typical  
quiescent current is 0.01 µA. The SHDN pin does not  
have an internal pullup or pulldown resistor. Therefore  
the SHDN pin must be pulled either high or low to  
prevent the device from becoming unstable. The  
internal device current will increase when the device is  
operational and current flows through the pullup or pull-  
down resistor to the SHDN pin internal logic. The  
SHDN pin internal logic is equivalent to an inverter  
input.  
For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient currents from in order to respond quickly to  
the output load step. For good step response  
performance, the input capacitor should be of  
equivalent (or higher) value than the output capacitor.  
The capacitor should be placed as close to the input of  
the LDO as is practical. Larger input capacitors will also  
help reduce any high-frequency noise on the input and  
output of the LDO and reduce the effects of any  
inductance that exists between the input source  
voltage and the input capacitance of the LDO.  
© 2009 Microchip Technology Inc.  
DS22053B-page 13  
MCP1802  
MCP1802  
+VIN  
VOUT  
VIN  
+VIN  
SHDN  
Shutdown  
Control  
Voltage  
Reference  
-
+
Current Limiter  
Error Amplifier  
GND  
FIGURE 4-1: Block Diagram.  
DS22053B-page 14  
© 2009 Microchip Technology Inc.  
MCP1802  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
MCP1802 is 300 mA.  
The MCP1802 CMOS low dropout linear regulator is  
intended for applications that need the low current  
consumption while maintaining output voltage  
regulation. The operating continuous load range of the  
MCP1802 is from 0 mA to 300 mA. The input operating  
voltage range is from 2.0V to 10.0V, making it capable  
of operating from three or more alkaline cells or single  
and multiple Li-Ion cell batteries.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
300 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic.  
5.1  
Input  
The input of the MCP1802 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10Ω)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
capacitor needed depends heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications a 0.1 µF  
ceramic capacitor will be sufficient to ensure circuit  
stability. Larger values can be used to improve circuit  
AC performance.  
© 2009 Microchip Technology Inc.  
DS22053B-page 15  
MCP1802  
NOTES:  
DS22053B-page 16  
© 2009 Microchip Technology Inc.  
MCP1802  
EQUATION 6-2:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
6.0  
6.1  
APPLICATION CIRCUITS &  
ISSUES  
Where:  
TJ(MAX)  
Typical Application  
=
Maximum continuous junction  
temperature  
The MCP1802 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
PTOTAL  
=
=
Total device power dissipation  
RθJA  
Thermal resistance from  
junction to ambient  
TAMAX  
=
Maximum ambient temperature  
MCP1802  
SHDN  
GND  
VIN  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
NC  
VOUT  
1.8V  
VIN  
2.4V to 5.0V  
V
OUT  
IOUT  
50 mA  
CIN  
1 µF  
Ceramic  
COUT  
1 µF Ceramic  
EQUATION 6-3:  
(TJ(MAX) TA(MAX)  
PD(MAX) = ---------------------------------------------------  
RθJA  
)
FIGURE 6-1: Typical Application Circuit.  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23-5  
Where:  
PD(MAX)  
=
=
Maximum device power  
dissipation  
Input Voltage Range = 2.4V to 5.0V  
IN maximum = 5.0V  
OUT typical = 1.8V  
IOUT 50 mA maximum  
TJ(MAX)  
Maximum continuous junction  
temperature  
V
V
TA(MAX)  
=
=
Maximum ambient temperature  
=
RθJA  
Thermal resistance from  
junction to ambient  
6.2  
Power Calculations  
6.2.1  
POWER DISSIPATION  
EQUATION 6-4:  
TJ(RISE) = PD(MAX) × RθJA  
The internal power dissipation of the MCP1802 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
(25.0 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
Where:  
TJ(RISE)  
=
Rise in device junction  
temperature over the ambient  
temperature  
EQUATION 6-1:  
PTOTAL  
=
=
Maximum device power  
dissipation  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
RθJA  
Thermal resistance from  
junction to ambient  
Where:  
PLDO  
=
LDO Pass device internal power  
dissipation  
EQUATION 6-5:  
VIN(MAX)  
=
=
Maximum input voltage  
TJ = TJ(RISE) + TA  
VOUT(MIN)  
LDO minimum output voltage  
Where:  
The maximum continuous operating temperature  
specified for the MCP1802 is +85°C. To estimate the  
internal junction temperature of the MCP1802, the total  
internal power dissipation is multiplied by the thermal  
resistance from junction to ambient (RθJA). The thermal  
resistance from junction to ambient for the SOT-23-5  
package is estimated at 256°C/W.  
TJ  
=
=
Junction Temperature  
TJ(RISE)  
Rise in device junction  
temperature over the ambient  
temperature  
TA  
=
Ambient temperature  
© 2009 Microchip Technology Inc.  
DS22053B-page 17  
MCP1802  
6.3  
Voltage Regulator  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated in the following table.  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
TJ = TJRISE + TA(MAX)  
TJ = 81.42°C  
6.3.1  
POWER DISSIPATION EXAMPLE  
Maximum Package Power Dissipation at +25°C  
Ambient Temperature  
Package  
Package Type = SOT-23-5  
Input Voltage  
SOT-23-5 (256°C/Watt = RθJA  
)
PD(MAX) = (85°C - 25°C) / 256°C/W  
VIN = 2.4V to 5.0V  
PD(MAX) = 234 milli-Watts  
LDO Output Voltages and Currents  
VOUT = 1.8V  
6.4  
Voltage Reference  
I
OUT = 50 mA  
Maximum Ambient Temperature  
A(MAX) = +40°C  
The MCP1802 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1802 LDO. The low cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1802 as a voltage  
reference.  
T
Internal Power Dissipation  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (5.0V - (0.98 x 1.8V)) x 50 mA  
PLDO = 161.8 milli-Watts  
Device Junction Temperature Rise  
Ratio Metric Reference  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The  
thermal resistance from junction to ambient (RθJA) is  
derived from an EIA/JEDEC standard for measuring  
thermal resistance for small surface mount packages.  
The EIA/JEDEC specification is JESD51-7, “High  
Effective Thermal Conductivity Test Board for Leaded  
Surface Mount Packages”. The standard describes the  
test method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application”, (DS00792), for more information  
regarding this subject.  
PIC®  
MCP1802  
Microcontroller  
25 µA Bias  
VIN  
VOUT  
GND  
CIN  
1 µF  
VREF  
COUT  
1 µF  
ADO  
AD1  
Bridge Sensor  
FIGURE 6-2: Using the MCP1802 as a  
Voltage Reference.  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 300 mA  
maximum specification of the MCP1802. The internal  
current limit of the MCP1802 will prevent high peak  
load demands from causing non-recoverable damage.  
The 300 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
300 mA nor the max power dissipation of the packaged  
device, pulsed higher load currents can be applied to  
the MCP1802. The typical current limit for the  
MCP1802 is 380 mA (TA +25°C).  
TJ(RISE) = PTOTAL x RqJA  
TJRISE = 161.8 milli-Watts x 256.0°C/Watt  
T
JRISE = 41.42°C  
DS22053B-page 18  
© 2009 Microchip Technology Inc.  
MCP1802  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23  
Standard Options for SOT-23  
9XNN  
XXNN  
Symbol  
Voltage *  
Symbol  
Voltage *  
9X8#  
9XB#  
9XK#  
9XT#  
0.9  
1.2  
1.8  
2.5  
9XZ#  
9B2#  
9BM#  
9BZ#  
3.0  
3.3  
5.0  
6.0  
1
1
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22053B-page 19  
MCP1802  
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Lead Pitch  
N
e
5
0.95 BSC  
Outside Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
L1  
φ
c
0.08  
0.20  
0.26  
0.51  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-091B  
DS22053B-page 20  
© 2009 Microchip Technology Inc.  
MCP1802  
APPENDIX A: REVISION HISTORY  
Revision B (January 2009)  
The following is the list of modifications:  
1. Added Shutdown Input information to the  
“Electrical characteristics” table.  
2. Added Figure 2-30.  
Revision A (June 2007)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22053B-page 19  
MCP1802  
NOTES:  
DS22053B-page 20  
© 2009 Microchip Technology Inc.  
MCP1802  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
XX  
X
X
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1802T-0902I/OT: Tape and Reel, 0.9V  
Tape  
and Reel Voltage  
Output Feature Tolerance Temp. Package  
Code  
MCP1802T-1202I/OT: Tape and Reel, 1.2V  
MCP1802T-1802I/OT: Tape and Reel, 1.8V  
MCP1802T-2502I/OT: Tape and Reel, 2.5V  
MCP1802T-3002I/OT: Tape and Reel, 3.0V  
MCP1802T-3302I/OT: Tape and Reel, 3.3V  
MCP1802T-5002I/OT: Tape and Reel, 5.0V  
MCP1802T-6002I/OT: Tape and Reel, 6.0V  
Device:  
MCP1802: 150 mA, Low Quiescent Current LDO  
Tape and Reel:  
Output Voltage *:  
T
=
Tape and Reel  
09  
12  
18  
25  
30  
33  
50  
60  
=
=
=
=
=
=
=
=
0.9V “Standard”  
1.2V “Standard”  
1.8V “Standard”  
2.5V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
5.0V “Standard”  
6.0V “Standard”  
g)  
h)  
*Contact factory for other output voltage options.  
Extra Feature Code:  
Tolerance:  
0
=
=
=
=
Fixed  
2
2.0% (Standard)  
Temperature:  
I
-40°C to +85°C  
Package Type:  
OT  
Plastic Small Outline Transistor (SOT-23) 5-lead,  
© 2009 Microchip Technology Inc.  
DS22053B-page 21  
MCP1802  
NOTES:  
DS22053B-page 22  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NSO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22053B-page 23  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/04/09  
DS22053B-page 24  
© 2009 Microchip Technology Inc.  

相关型号:

MCP1802-2502I/OT

IC,VOLT REGULATOR,FIXED,+2.5V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

MCP1802-3002I/OT

IC,VOLT REGULATOR,FIXED,+3V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

MCP1802-5002I/OT

IC,VOLT REGULATOR,FIXED,+5V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

MCP1802T-0902I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-1202I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-1802I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-2502I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-3002I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-3302I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-5002I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802T-6002I/OT

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP

MCP1802_09

300 mA, High PSRR, Low Quiescent Current LDO
MICROCHIP