MCP1804T-1802I/DB [MICROCHIP]

1.8 V FIXED POSITIVE LDO REGULATOR, 2.7 V DROPOUT, PDSO3, PLASTIC, SOT-223, 4 PIN;
MCP1804T-1802I/DB
型号: MCP1804T-1802I/DB
厂家: MICROCHIP    MICROCHIP
描述:

1.8 V FIXED POSITIVE LDO REGULATOR, 2.7 V DROPOUT, PDSO3, PLASTIC, SOT-223, 4 PIN

光电二极管 输出元件 调节器
文件: 总36页 (文件大小:2122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1804  
150 mA, 28V LDO Regulator With Shutdown  
Features:  
Description:  
• 150 mA Output Current  
The MCP1804 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 150 mA of  
current while consuming only 50 µA of quiescent  
current (typical, 1.8V VOUT 5.0V). The input  
operating range is specified from 2.0V to 28.0V.  
• Low Dropout Voltage, 260 mV Typical @ 20 mA,  
VR = 3.3V  
• 50 µA Typical Quiescent Current  
• 0.01 µA Typical Shutdown Current  
• Input Operating Voltage Range: 2.0V to 28.0V  
The MCP1804 is capable of delivering 100 mA with  
only 1300 mV (typical) of input to output voltage  
differential (VOUT = 3.3V). The output voltage tolerance  
of the MCP1804 at +25°C is a maximum of ±2%. Line  
regulation is ±0.15% typical at +25°C.  
• Standard Output Voltage Options  
(1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 10.0V, 12.0V)  
• Output Voltage Accuracy: ±2%  
• Output Voltages from 1.8V to 18.0V in 0.1V  
Increments are Available upon Request  
The LDO input and output are stable with 0.1 µF of  
input and output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit with current foldback  
to 40 mA (typical) provides short circuit protection.  
A shutdown (SHDN) function allows the output to be  
enabled or disabled. When disabled, the MCP1804  
draws only 0.01 µA of current (typical).  
• Stable with Ceramic Output Capacitors  
• Current Limit Protection with Current Foldback  
• Shutdown Pin  
• High PSRR: 50 dB Typical @ 1 kHz  
Applications:  
Package options include the 3-lead SOT-89, 3-lead  
SOT-223, 5-lead SOT-23 and 5-lead SOT-89.  
• Cordless Phones, Wireless Communications  
• PDAs, Notebook and Netbook Computers  
• Digital Cameras  
Package Types  
• Microcontroller Power  
SOT-89-3  
SOT-223-3  
• Car Audio and Navigation Systems  
• Home Appliances  
Related Literature:  
(Top View)  
2
(Top View)  
2
• AN765, “Using Microchip’s Micropower LDOs”  
(DS00765), Microchip Technology Inc., ©2002  
1
3
1
3
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs” (DS00766), Microchip Technology  
Inc., ©2002  
VIN  
VOUT  
VIN  
GND  
VOUT  
GND  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”  
(DS00792), Microchip Technology Inc., ©2001  
SOT-89-5  
SOT-23-5  
VIN  
5
VOUT  
5
SHDN  
4
NC  
4
(Top View)  
2
1
3
1
2
3
VIN GND NC  
VOUT  
GND SHDN  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 1  
MCP1804  
Functional Block Diagram  
VOUT  
VIN  
*
Thermal  
Protection  
SHDN  
Shutdown  
Control  
Voltage  
Reference  
-
+
Current Limiter  
Error Amplifier  
GND  
*5-Pin Versions Only  
Typical Application Circuit  
MCP1804  
VIN  
VOUT  
5.0V @ 30 mA  
VIN VOUT  
5
4
1
SOT-23  
GND  
COUT  
1 µF Ceramic  
2
3
+
12V  
Battery  
SHDN  
NC  
CIN  
1 µF  
Ceramic  
DS20002200D-page 2  
2009-2013 Microchip Technology Inc.  
MCP1804  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ........................................................................................................................................................... +30V  
Output Current (Continuous)............................................................................................................. PD/(VIN - VOUT) mA  
Output Current (Peak).......................................................................................................................................... 300 mA  
Output Voltage ...................................................................................................................... (VSS - 0.3V) to (VIN + 0.3V)  
SHDN Voltage.................................................................................................................................. (VSS - 0.3V) to +30V  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input / Output Characteristics  
Input Operating  
Voltage  
VIN  
2.0  
28.0  
V
Note 1  
Input Quiescent  
Current  
IQ  
IL = 0 mA  
50  
60  
105  
115  
125  
0.10  
µA  
µA  
µA  
µA  
1.8V VOUT 5.0V  
5.1V VOUT 12.0V  
12.1V VOUT 18.0V  
SHDN = 0V  
65  
Shutdown Current  
ISHDN  
IOUT  
0.01  
Maximum Output  
Current  
VIN = VR + 3.0V  
VOUT < 3.0V  
100  
150  
mA  
mA  
mA  
mA  
VOUT 3.0V  
Current Limiter  
ILIMIT  
200  
40  
Output Short Circuit  
Current  
IOUT_SC  
Output Voltage  
Regulation  
VOUT  
VR - 2.0%  
VR  
VR + 2.0%  
V
IOUT = 10 mA, Note 2  
V
OUT Temperature  
Coefficient  
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).  
TCVOUT  
±100  
ppm/°C IOUT = 20 mA,  
-40°C TA  85°C, Note 3  
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.  
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) * 106 / (VR * Temperature), VOUT-HIGH = highest voltage measured  
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
Changes in output voltage due to heating effects are determined using thermal regulation specification  
TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
measured value with an applied input voltage of VR + 2.0V.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 3  
 
 
 
 
 
MCP1804  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Line Regulation  
Load Regulation  
VOUT/(VOUT-  
XVIN)  
(VR + 2V) VIN 28V, Note 1  
0.05  
0.15  
0.10  
0.30  
%/V  
%/V  
IOUT = 5 mA  
IOUT = 13 mA  
VOUT/VOUT  
IL = 1.0 mA to 50 mA, Note 4  
1.8V VOUT 5.0V  
5.1V VOUT 12.0V  
12.1V VOUT 18.0V  
IL = 20 mA  
50  
90  
mV  
mV  
mV  
110  
180  
175  
275  
Dropout Voltage  
VDROPOUT  
Note 1, Note 5  
550  
450  
390  
310  
260  
220  
190  
170  
130  
120  
710  
600  
520  
450  
360  
320  
280  
230  
190  
170  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
1.8V VR 1.9V  
2.0V VR 2.1V  
2.2V VR 2.4V  
2.5V VR 2.9V  
3.0V VR 3.9V  
4.0V VR 4.9V  
5.0V VR 6.4V  
6.5V VR 8.0V  
8.1V VR 10.0V  
10.1V VR 18.0V  
IL = 100 mA  
1.1  
2200  
1900  
1700  
1500  
1300  
1100  
1000  
800  
2700  
2600  
2200  
1900  
1700  
1500  
1300  
1150  
950  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
1.8V VR 1.9V  
2.0V VR 2.1V  
2.2V VR 2.4V  
2.5V VR 2.9V  
3.0V VR 3.9V  
4.0V VR 4.9V  
5.0V VR 6.4V  
6.5V VR 8.0V  
8.1V VR 10.0V  
10.1V VR 18.0V  
VIN = 28V  
700  
650  
850  
SHDN “H” Voltage  
SHDN “L” Voltage  
SHDN Current  
VSHDN_H  
VSHDN_L  
ISHDN  
VIN  
0
0.35  
0.1  
V
VIN = 28V  
-0.1  
µA  
VIN = 28V, VSHDN = GND or  
VIN  
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).  
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.  
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) * 106 / (VR * Temperature), VOUT-HIGH = highest voltage measured  
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
Changes in output voltage due to heating effects are determined using thermal regulation specification  
TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
measured value with an applied input voltage of VR + 2.0V.  
DS20002200D-page 4  
2009-2013 Microchip Technology Inc.  
MCP1804  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,  
OUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
C
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Ripple  
Rejection Ratio  
PSRR  
50  
dB  
f = 1 kHz, IL = 20 mA,  
VIN_AC = 0.5V pk-pk,  
CIN = 0 µF  
Thermal Shutdown  
Protection  
TSD  
150  
25  
°C  
°C  
TJ = 150°C  
Thermal Shutdown  
Hysteresis  
TSD  
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).  
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.  
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) * 106 / (VR * Temperature), VOUT-HIGH = highest voltage measured  
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
Changes in output voltage due to heating effects are determined using thermal regulation specification  
TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
measured value with an applied input voltage of VR + 2.0V.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
TA  
TJ  
TA  
-40  
-40  
-55  
+85  
+125  
+125  
°C  
°C  
°C  
Operating Junction Temperature  
Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, 3LD SOT-89  
EIA/JEDEC® JESD51-7  
FR-4 0.063 4-Layer Board  
JA  
JC  
JA  
JC  
JA  
JC  
JA  
JC  
180  
52  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 3LD SOT-223  
Thermal Resistance, 5LD SOT-23  
Thermal Resistance, 5LD SOT-89  
62  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
15  
256  
81  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
180  
52  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 5  
 
MCP1804  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
VIN = 2.8V  
IN = 3.8V  
VIN = 4.8V  
V
TA = -40°C  
TA = 25°C  
A = 85°C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T
VR = 1.8V  
VIN = SHDN = 4.8V  
VR = 2.8V  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-1:  
Output Voltage vs. Output  
FIGURE 2-4:  
Output Voltage vs. Output  
Current.  
Current.  
6.0  
5.0  
4.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
TA = -40°C  
A = 25°C  
TA = 85°C  
VIN = 6V  
VIN = 7V  
VIN = 8V  
T
3.0  
2.0  
1.0  
0.0  
VR = 5.0V  
VIN = SHDN = 8.0V  
VR = 5V  
0.0  
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-2:  
Output Voltage vs. Output  
FIGURE 2-5:  
Output Voltage vs. Output  
Current.  
Current.  
14.0  
12.0  
10.0  
8.0  
14.0  
12.0  
10.0  
8.0  
TA = -40°C  
TA = 25°C  
VIN = 13V  
VIN = 14V  
T
A = 85°C  
VIN = 15V  
6.0  
6.0  
4.0  
4.0  
VIN = SHDN = 15V  
2.0  
2.0  
V
R = 12 V  
VR = 12V  
0.0  
0
0.0  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-3:  
Output Voltage vs. Output  
FIGURE 2-6:  
Output Voltage vs. Output  
Current.  
Current.  
DS20002200D-page 6  
2009-2013 Microchip Technology Inc.  
 
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VR = 1.8V  
VR = 1.8V  
IOUT = 1 mA  
OUT = 10 mA  
IOUT = 30 mA  
I
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 30 mA  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
3.8  
4
8
12  
16  
20  
24  
28  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
6.0  
5.8  
5.6  
VR = 5V  
VR = 5V  
IOUT = 1 mA  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
IOUT = 10 mA  
IOUT = 30 mA  
IOUT = 1 mA  
OUT = 10 mA  
IOUT = 30 mA  
I
4.0  
8
4.0  
4.5  
5.0  
Input Voltage (V)  
5.5  
6.0  
12  
16  
20  
24  
28  
Input Voltage (V)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
VR = 12V  
VR = 12V  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 30 mA  
IOUT = 1 mA  
OUT = 10 mA  
IOUT = 30 mA  
I
9.0  
10  
14  
16  
18  
20  
22  
24  
26  
28  
11  
12  
13  
14  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 7  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
70  
60  
50  
40  
30  
20  
10  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VR = 1.8V  
VR = 1.8V  
TA = 85°C  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
24  
28  
Input Voltage (V)  
Output Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Supply Current vs. Input  
Current.  
Voltage.  
4.0  
3.5  
3.0  
70  
60  
50  
40  
30  
20  
10  
0
VR = 5V  
VR = 5V  
TA = 85°C  
TA = 25°C  
TA = -40°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = 85°C  
T
A = 25°C  
TA = -40°C  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
24  
28  
Input Voltage (V)  
Output Current (mA)  
FIGURE 2-14:  
Dropout Voltage vs. Load  
FIGURE 2-17:  
Supply Current vs. Input  
Current.  
Voltage.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
70  
60  
50  
40  
30  
20  
10  
0
VR = 12V  
VR = 12V  
TA = 85°C  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
T
A = -40°C  
0
4
8
12  
16  
20  
24  
28  
0
25  
50  
75  
100  
125  
150  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-15:  
Dropout Voltage vs. Load  
FIGURE 2-18:  
Supply Current vs. Input  
Current.  
Voltage.  
DS20002200D-page 8  
2009-2013 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
70  
60  
50  
40  
30  
20  
10  
0
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
VR = 1.8V  
VR = 1.8V  
IOUT = 1 mA  
IOUT = 10 mA  
OUT = 20 mA  
I
-40  
-20  
0
20  
40  
60  
80  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C  
FIGURE 2-19:  
Supply Current vs. Input  
FIGURE 2-22:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
70  
60  
50  
40  
30  
20  
10  
0
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
VR = 5V  
VR = 5V  
IOUT = 1 mA  
I
OUT = 10 mA  
IOUT = 20 mA  
4.80  
-50  
-25  
0
25  
50  
75  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (°C㸧  
Ambient Temperature (°C)  
FIGURE 2-20:  
Supply Current vs. Input  
FIGURE 2-23:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
70  
60  
50  
40  
30  
20  
10  
0
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
VR = 12V  
VR = 12V  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 20 mA  
11.5  
-50  
-40  
-20  
0
20  
40  
60  
80  
100  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C㸧  
FIGURE 2-21:  
Supply Current vs. Input  
FIGURE 2-24:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 9  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
7.3  
6.3  
5.3  
4.3  
3.3  
2.3  
1.3  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
7.3  
6.3  
5.3  
4.3  
3.3  
2.3  
1.3  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
VR = 3.3V  
IOUT = 30 mA  
VIN  
VR = 3.3V  
IOUT = 1 mA  
VIN  
VOUT  
VOUT  
Time (1 ms/div)  
FIGURE 2-25:  
Dynamic Line Response.  
FIGURE 2-28:  
Dynamic Line Response.  
9
8
7
6
5
4
3
5.08  
9
8
7
6
5
4
3
5.08  
VR = 5V  
IOUT = 30 mA  
VR = 5V  
IOUT = 1 mA  
VIN  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
5.06  
VIN  
5.04  
5.02  
5.00  
4.98  
4.96  
VOUT  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-26:  
Dynamic Line Response.  
FIGURE 2-29:  
Dynamic Line Response.  
16  
15  
14  
13  
12  
11  
10  
12.08  
16  
15  
14  
13  
12  
11  
10  
12.08  
VR = 12V  
IOUT = 30 mA  
VR = 12V  
IOUT = 1 mA  
VIN  
VIN  
12.06  
12.04  
12.02  
12.00  
11.98  
11.96  
12.06  
12.04  
12.02  
12.00  
11.98  
11.96  
VOUT  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-27:  
Dynamic Line Response.  
FIGURE 2-30:  
Dynamic Line Response.  
DS20002200D-page 10  
2009-2013 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
150  
120  
90  
60  
30  
0
8
6
8
7
6
5
4
3
2
1
0
VR = 3.3V  
VIN  
VOUT  
4
2
0
VOUT  
-2  
-4  
-6  
-8  
IOUT  
VR = 3.3V  
IOUT = 1 mA  
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-31:  
Dynamic Load Response.  
FIGURE 2-34:  
Start-up Response.  
8
6
8
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
150  
VR = 5V  
VIN  
7
6
5
4
3
2
1
0
120  
4
VOUT  
2
90  
VOUT  
0
60  
-2  
-4  
-6  
-8  
IOUT  
VR = 3.3V  
IOUT = 30 mA  
30  
0
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-32:  
Dynamic Load Response.  
FIGURE 2-35:  
Start-up Response.  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
150  
8
6
8
7
6
5
4
3
2
1
0
VR = 12V  
VIN  
120  
VOUT  
4
2
90  
60  
VOUT  
0
-2  
-4  
-6  
-8  
IOUT  
VR = 5.0V  
IOUT = 1 mA  
30  
0
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-33:  
Dynamic Load Response.  
FIGURE 2-36:  
Start-up Response.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 11  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
8
6
8
7
6
5
4
3
2
1
0
8
6
8
7
6
5
4
3
2
1
0
VIN  
SHDN  
4
4
2
2
VOUT  
0
VOUT  
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
VR = 5.0V  
IOUT = 30 mA  
VR = 3.3V  
IOUT = 1 mA  
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-37:  
Start-up Response.  
FIGURE 2-40:  
SHDN Response.  
15  
10  
5
18  
15  
12  
9
8
6
8
7
6
5
4
3
2
1
0
VIN  
SHDN  
VOUT  
4
2
VOUT  
0
0
-2  
-4  
-6  
-8  
-5  
6
VR = 12V  
IOUT = 1 mA  
VR = 5V  
IOUT = 1 mA  
-10  
-15  
3
0
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-38:  
Start-up Response.  
FIGURE 2-41:  
SHDN Response.  
15  
10  
5
18  
15  
10  
5
18  
15  
12  
9
VIN  
SHDN  
VOUT  
15  
12  
9
VOUT  
0
0
-5  
6
-5  
6
VR = 12V  
IOUT = 30 mA  
VR = 12V  
IOUT = 1 mA  
-10  
-15  
3
-10  
-15  
3
0
0
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-39:  
Start-up Response.  
FIGURE 2-42:  
SHDN Response.  
DS20002200D-page 12  
2009-2013 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
8
7
6
5
4
3
2
1
0
VOUT = 3.3V  
CIN = 0  
SHDN  
IOUT = 1 mA  
VIN_AC = 0.5Vpk-pk  
4
2
VOUT  
0
-2  
-4  
-6  
-8  
VR = 3.3V  
IOUT = 30 mA  
0.01  
0.1  
1
10  
100  
Time (1 ms/div)  
Frequency (kHz)  
FIGURE 2-43:  
SHDN Response.  
FIGURE 2-46:  
PSRR 3.3V @ 1 mA.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
8
6
8
7
6
5
4
3
2
1
0
VOUT = 5V  
CIN = 0  
SHDN  
VOUT  
IOUT = 1 mA  
VIN_AC = 0.5Vpk-pk  
4
2
0
-2  
-4  
-6  
-8  
VR = 5V  
IOUT = 30 mA  
0
0.01  
0.1  
1
10  
100  
Frequency (kHz)  
Time (1 ms/div)  
FIGURE 2-44:  
SHDN Response.  
FIGURE 2-47:  
PSRR 5.0V @ 1 mA.  
15  
10  
5
18  
15  
12  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT = 12V  
SHDN  
VOUT  
C
IN = 0  
IOUT = 1 mA  
IN_AC = 0.5Vpk-pk  
V
0
-5  
6
VR = 12V  
IOUT = 30 mA  
-10  
-15  
3
0
0.01  
0
0.1  
1
10  
100  
Time (1 ms/div)  
Frequency (kHz)  
FIGURE 2-45:  
SHDN Response.  
FIGURE 2-48:  
PSRR 12.0V @ 1 mA.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 13  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
80  
90  
VOUT = 5V  
VIN = 8V  
VOUT = 3.3V  
CIN = 0  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
IOUT = 30 mA  
VIN_AC = 0.5Vpk-pk  
0
25  
50  
75  
100  
125  
150  
0.01  
0.1  
1
10  
100  
Output Current (mA)  
Frequency (kHz)  
FIGURE 2-49:  
PSRR 3.3V @ 30 mA.  
FIGURE 2-52:  
Ground Current vs. Output  
Current.  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT = 5V  
CIN = 0  
VOUT = 12V  
VIN = 15V  
IOUT = 30 mA  
VIN_AC = 0.5Vpk-pk  
0
0.01  
0
25  
50  
75  
100  
125  
150  
0.1  
1
10  
100  
Output Current (mA)  
Frequency (kHz)  
FIGURE 2-53:  
Ground Current vs. Output  
FIGURE 2-50:  
PSRR 5.0V @ 30 mA.  
Current.  
100  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT = 12V  
VOUT = 15V  
VIN = 18V  
C
IN = 0  
IOUT = 30 mA  
IN_AC = 0.5Vp-p  
V
0
0.01  
0
25  
50  
75  
100  
125  
150  
0.1  
1
10  
100  
Output Current (mA)  
Frequency (kHz)  
FIGURE 2-54:  
Ground Current vs. Output  
FIGURE 2-51:  
PSRR 12V @ 30 mA.  
Current.  
DS20002200D-page 14  
2009-2013 Microchip Technology Inc.  
 
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C,  
VIN = VR + 2.0V.  
10.00  
V
V
= 3.3V  
= 5.0V  
R
IN  
I
= 50 mA  
OUT  
1.00  
0.10  
0.01  
0.1  
10  
0.01  
1
100  
Frequency (kHz)  
FIGURE 2-55:  
Output Noise vs. Frequency.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 15  
 
MCP1804  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
.
TABLE 3-1:  
MCP1804 PIN FUNCTION TABLE  
MCP1804  
Symbol  
Description  
SOT-23-5  
SOT-89-5  
SOT-89-3  
SOT-223-3  
1
2
3
4
5
5
3
2, TAB  
3
2, TAB  
VIN  
GND  
NC  
Unregulated Supply Voltage  
Ground Terminal  
2, TAB  
4
3
1
No connection  
SHDN  
VOUT  
Shutdown  
1
1
Regulated Voltage Output  
3.1  
Unregulated Input Voltage (V )  
3.4  
Regulated Output Voltage (V  
)
IN  
OUT  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 0.1 µF to 1.0 µF of capacitance will  
ensure stable operation of the LDO circuit. The type of  
capacitor used can be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at high  
frequency.  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current. For most applications, 0.1 µF to 1.0 µF of  
capacitance will ensure stable operation of the LDO  
circuit. Larger values may be used to improve dynamic  
load response. The type of capacitor used can be  
ceramic, tantalum or aluminum electrolytic. The low  
ESR characteristics of the ceramic will yield better  
noise and PSRR performance at high frequency.  
3.2  
Ground Terminal (GND)  
3.5  
No Connect (NC)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (50 to 60 µA typical) flows  
out of this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
No internal connection. The pins marked NC are true  
“No Connect” pins.  
3.3  
Shutdown Input (SHDN)  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled and the LDO enters a low  
quiescent current shutdown state where the typical  
quiescent current is 0.01 µA. The SHDN pin does not  
have an internal pull-up or pull-down resistor. The  
SHDN pin must be connected to either VIN or GND to  
prevent the device from becoming unstable.  
DS20002200D-page 16  
2009-2013 Microchip Technology Inc.  
 
 
MCP1804  
4.4  
Output Capacitor  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
The MCP1804 requires a minimum output capacitance  
of 0.1 µF to 1.0 µF for output voltage stability. Ceramic  
capacitors are recommended because of their size,  
cost and environmental robustness qualities.  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
Aluminum-electrolytic and tantalum capacitors can be  
used on the LDO output as well. The output capacitor  
should be located as close to the LDO output as is  
practical. Ceramic materials X7R and X5R have low  
temperature coefficients.  
Larger LDO output capacitors can be used with the  
MCP1804 to improve dynamic performance and power  
supply ripple rejection performance. Aluminum-  
electrolytic capacitors are not recommended for low  
temperature applications of < -25°C.  
4.2  
Overcurrent  
The MCP1804 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event that the load current reaches the current  
limiter level of 200 mA (typical), the current limiter  
circuit will operate and the output voltage will drop. As  
the output voltage drops, the internal current foldback  
circuit will further reduce the output voltage causing the  
output current to decrease. When the output is shorted,  
a typical output current of 50 mA flows.  
4.5  
Input Capacitor  
Low input source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 0.1 µF to 1.0 µF is recommended for most  
applications.  
4.3  
Shutdown  
For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient currents from in order to respond quickly to  
the output load step. For good step response  
performance, the input capacitor should be of  
equivalent or higher value than the output capacitor.  
The capacitor should be placed as close to the input of  
the LDO as is practical. Larger input capacitors will also  
help reduce any high-frequency noise on the input and  
output of the LDO and reduce the effects of any  
inductance that exists between the input source  
voltage and the input capacitance of the LDO.  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled and the LDO enters a low  
quiescent current shutdown state where the typical  
quiescent current is 0.01 µA. The SHDN pin does not  
have an internal pull-up or pull-down resistor. Therefore  
the SHDN pin must be pulled either high or low to  
prevent the device from becoming unstable. The  
internal device current will increase when the device is  
operational and current flows through the pull-up or  
pull-down resistor to the SHDN pin internal logic. The  
SHDN pin internal logic is equivalent to an inverter  
input.  
4.6  
Thermal Shutdown  
The MCP1804 thermal shutdown circuitry protects the  
device when the internal junction temperature reaches  
the typical thermal limit value of +150°C. The thermal  
limit shuts off the output drive transistor. Device output  
will resume when the internal junction temperature falls  
below the thermal limit value by an amount equal to the  
thermal limit hysteresis value of +25°C.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 17  
MCP1804  
VOUT  
VIN  
*
Thermal  
Protection  
SHDN  
Shutdown  
Control  
Voltage  
Reference  
-
+
Current Limiter  
Error Amplifier  
GND  
*5-Pin Versions Only  
FIGURE 4-1: Block Diagram.  
DS20002200D-page 18  
2009-2013 Microchip Technology Inc.  
MCP1804  
5.0  
FUNCTIONAL DESCRIPTION  
The MCP1804 CMOS linear regulator is intended for  
applications that need low current consumption while  
maintaining output voltage regulation. The operating  
continuous load of the MCP1804 ranges from 0 mA to  
150 mA. The input operating voltage ranges from 2.0V  
to 28.0V, making it capable of operating from a single  
12V battery or single and multiple Li-Ion cell batteries.  
5.1  
Input  
The input of the MCP1804 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance  
(< 10) is needed to prevent the input impedance from  
causing the LDO to become unstable. The size and  
type of the capacitor needed depend heavily on the  
input source type (battery, power supply) and the  
output current range of the application. For most  
applications, a 0.1 µF ceramic capacitor will be  
sufficient to ensure circuit stability. Larger values can  
be used to improve circuit AC performance.  
5.2  
Output  
The maximum rated continuous output current for the  
MCP1804 is 150 mA.  
A minimum output capacitance of 0.1 µF to 1.0 µF is  
required for small signal stability in applications that  
have up to 150 mA output current capability. The  
capacitor type can be ceramic, tantalum or aluminum  
electrolytic.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 19  
MCP1804  
NOTES:  
DS20002200D-page 20  
2009-2013 Microchip Technology Inc.  
MCP1804  
EQUATION 6-2:  
TJMAX= PTOTAL RJA + TAMAX  
6.0  
6.1  
APPLICATION CIRCUITS AND  
ISSUES  
Where:  
Typical Application  
T
=
Maximum continuous junction  
J(MAX)  
The MCP1804 is most commonly used as a voltage  
regulator. Its low quiescent current and wide input  
voltage make it ideal for Li-Ion and 12V battery-  
powered applications.  
temperature  
P
=
=
Total power dissipation of the device  
TOTAL  
R  
Thermal resistance from junction to  
ambient  
JA  
T
=
Maximum ambient temperature  
A(MAX)  
NC  
SHDN  
The maximum power dissipation capability for a  
package can be calculated given the junction-  
to-ambient thermal resistance and the maximum  
ambient temperature for the application. The following  
equation can be used to determine the package  
maximum internal power dissipation.  
GND  
VOUT  
1.8V  
VIN  
4.2V  
V
V
OUT  
IN  
IOUT  
50 mA  
CIN  
1 µF  
Ceramic  
COUT  
1 µF Ceramic  
EQUATION 6-3:  
TJMAXTAMAX  
FIGURE 6-1:  
Typical Application Circuit.  
PDMAX= ---------------------------------------------------  
RJA  
6.1.1  
Package Type  
Input Voltage Range = 3.8V to 4.2V  
APPLICATION INPUT CONDITIONS  
Where:  
= SOT-23  
P
=
=
Maximum power dissipation of the  
device  
D(MAX)  
T
Maximum continuous junction  
temperature  
VIN maximum  
VOUT typical  
IOUT  
= 4.6V  
J(MAX)  
= 1.8V  
T
=
=
Maximum ambient temperature  
A(MAX)  
= 50 mA maximum  
R  
Thermal resistance from junction to  
ambient  
JA  
6.2  
6.2.1  
Power Calculations  
POWER DISSIPATION  
EQUATION 6-4:  
TJRISE= PDMAXRJA  
The internal power dissipation of the MCP1804 is a  
function of input voltage, output voltage and output  
current. The power dissipation resulting from the  
quiescent current draw is so low it is insignificant  
(50.0 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
Where:  
T
=
Rise in the device’s junction  
temperature over the ambient  
temperature  
J(RISE)  
D(MAX)  
P
=
=
Maximum power dissipation of the  
device  
EQUATION 6-1:  
R  
Thermal resistance from junction to  
ambient  
JA  
PLDO = VINMAXVOUTMINIOUT  
Where:  
EQUATION 6-5:  
TJ = TJRISE+ TA  
P
=
Internal power dissipation of the LDO  
Pass device  
LDO  
Where:  
V
=
=
Maximum input voltage  
IN(MAX)  
T
=
=
Junction Temperature  
V
Minimum output voltage of the LDO  
J
OUT(MIN)  
T
Rise in the device’s junction  
temperature over the ambient  
temperature  
J(RISE)  
The maximum continuous operating temperature  
specified for the MCP1804 is +85°C. To estimate the  
internal junction temperature of the MCP1804, the total  
internal power dissipation is multiplied by the thermal  
resistance from junction to ambient (RJA). The thermal  
resistance from junction to ambient for the SOT-23 pin  
package is estimated at 256°C/W.  
T
=
Ambient temperature  
A
2009-2013 Microchip Technology Inc.  
DS20002200D-page 21  
MCP1804  
6.3  
Voltage Regulator  
TJ = TJ(RISE) + TA(MAX)  
TJ = 76.3°C  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation resulting from ground current is small  
enough to be neglected.  
Maximum Package Power Dissipation at +25°C  
Ambient Temperature (minimum PCB footprint)  
SOT-23 (256°C/Watt = RJA):  
6.3.1  
POWER DISSIPATION EXAMPLE  
PD(MAX) = (125°C - 25°C) / 256°C/W  
Package:  
PD(MAX) = 390 milli-Watts  
Package Type = SOT-23  
Input Voltage:  
SOT-89 (180°C/Watt = RJA):  
PD(MAX) = (125°C - 25°C) / 180°C/W  
VIN = 3.8V to 4.6V  
PD(MAX) = 555 milli-Watts  
LDO Output Voltages and Currents:  
VOUT = 1.8V  
6.4  
Voltage Reference  
IOUT = 50 mA  
The MCP1804 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1804 LDO. The low-cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1804 as a voltage  
reference.  
Maximum Ambient Temperature:  
TA(MAX) = +40°C  
Internal Power Dissipation:  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO(MAX) = (4.6V - (0.98 x 1.8V)) x 50 mA  
PLDO(MAX) = 141.8 milli-Watts  
6.3.1.1  
Device Junction Temperature Rise  
Ratio Metric Reference  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RJA) is derived  
from an EIA/JEDEC standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application” (DS00792), for more information regarding  
this subject.  
®
MCP1804  
PICmicro  
Microcontroller  
50 µA Bias  
V
IN  
C
1 µF  
IN  
V
REF  
V
OUT  
C
1 µF  
OUT  
GND  
AD0  
AD1  
Bridge Sensor  
FIGURE 6-2:  
Voltage Reference.  
Using the MCP1804 as a  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 150 mA  
maximum specification of the MCP1804. The internal  
current limit of the MCP1804 will prevent high peak  
load demands from causing non-recoverable damage.  
The 150 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
150 mA or the maximum power dissipation of the  
packaged device, pulsed higher load currents can be  
applied to the MCP1804. The typical current limit for  
the MCP1804 is 200 mA (TA = +25°C).  
TJ(RISE) = PTOTAL x RJA  
TJ(RISE) = 141.8 milli-Watts x 256.0°C/Watt  
TJ(RISE) = 36.3°C  
6.3.1.2  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
DS20002200D-page 22  
2009-2013 Microchip Technology Inc.  
 
MCP1804  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead SOT-223  
Example  
84K25  
Part Number  
Code  
MCP1804T-1802I/DB  
MCP1804T-2502I/DB  
MCP1804T-3002I/DB  
MCP1804T-3302I/DB  
MCP1804T-5002I/DB  
MCP1804T-A002I/DB  
MCP1804T-C002I/DB  
84KXX  
84TXX  
84ZXX  
852XX  
85MXX  
879XX  
87ZXX  
3-Lead SOT-89  
Example  
Part Number  
Code  
84K  
25  
MCP1804T-1802I/MB  
MCP1804T-2502I/MB  
MCP1804T-3002I/MB  
MCP1804T-3302I/MB  
MCP1804T-5002I/MB  
MCP1804T-A002I/MB  
MCP1804T-C002I/MB  
84KXX  
84TXX  
84ZXX  
852XX  
85MXX  
879XX  
87ZXX  
5-Lead SOT-23  
Example  
80K25  
Part Number  
Code  
MCP1804T-1802I/OT  
MCP1804T-2502I/OT  
MCP1804T-3002I/OT  
MCP1804T-3302I/OT  
MCP1804T-5002I/OT  
MCP1804T-A002I/OT  
MCP1804T-C002I/OT  
80KXX  
80TXX  
80ZXX  
812XX  
81MXX  
839XX  
83ZXX  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 23  
MCP1804  
5-Lead SOT-89  
Example  
Part Number  
Code  
MCP1804T-1802I/MT  
MCP1804T-2502I/MT  
MCP1804T-3002I/MT  
MCP1804T-3302I/MT  
MCP1804T-5002I/MT  
MCP1804T-A002I/MT  
MCP1804T-C002I/MT  
80KXX  
80TXX  
80ZXX  
812XX  
81MXX  
839XX  
83ZXX  
80K  
25  
DS20002200D-page 24  
2009-2013 Microchip Technology Inc.  
MCP1804  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢮꢅꢊꢋꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢶꢅꢃꢚꢒꢍ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢶꢅꢃꢚꢒꢍ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢀ  
ꢛꢘ  
ꢌꢀ  
ꢳꢘ  
ꢘꢁꢴꢗꢉꢠꢜꢡ  
ꢞꢁꢵꢗꢉꢠꢜꢡ  
ꢀꢁꢸꢗ  
ꢗꢁꢀꢗ  
ꢀꢁꢙꢗ  
ꢙꢁꢴꢗ  
ꢴꢁꢙꢗ  
ꢵꢁꢙꢗ  
ꢗꢁꢴꢟ  
ꢗꢁꢸꢞ  
ꢴꢁꢀꢗ  
ꢗꢁꢗꢘ  
ꢀꢁꢟꢗ  
ꢵꢁꢙꢗ  
ꢴꢁꢴꢗ  
ꢵꢁꢴꢗ  
ꢗꢁꢘꢴ  
ꢗꢁꢵꢗ  
ꢘꢁꢺꢗ  
ꢗꢁꢙꢟ  
ꢗꢻ  
ꢀꢁꢵꢗ  
ꢙꢁꢗꢗ  
ꢴꢁꢟꢗ  
ꢵꢁꢟꢗ  
ꢗꢁꢴꢗ  
ꢗꢁꢙꢵ  
ꢴꢁꢗꢗ  
ꢳꢉꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢛꢆꢚꢏꢅ  
ꢀꢗꢻ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢘꢠ  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 25  
MCP1804  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS20002200D-page 26  
2009-2013 Microchip Technology Inc.  
MCP1804  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢞꢃꢄꢅꢃꢓꢆꢕꢟꢗꢘꢆꢙꢍꢏꢒꢁꢠꢡꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢮꢅꢊꢋꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢶꢅꢃꢚꢒꢍ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒꢉꢊꢍꢉꢠꢊꢇꢅ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒꢉꢊꢍꢉꢔ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢳꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢘꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢌꢀ  
ꢂꢀ  
ꢀꢁꢟꢗꢉꢠꢜꢡ  
ꢴꢁꢗꢗꢉꢠꢜꢡ  
ꢀꢁꢞꢗ  
ꢴꢁꢺꢞ  
ꢘꢁꢘꢺ  
ꢘꢁꢀꢴ  
ꢞꢁꢴꢺ  
ꢀꢁꢞꢗ  
ꢗꢁꢙꢺ  
ꢗꢁꢴꢟ  
ꢗꢁꢞꢀ  
ꢗꢁꢴꢵ  
ꢀꢁꢵꢗ  
ꢞꢁꢘꢟ  
ꢘꢁꢵꢗ  
ꢘꢁꢘꢺ  
ꢞꢁꢵꢗ  
ꢀꢁꢸꢴ  
ꢀꢁꢘꢗ  
ꢗꢁꢞꢞ  
ꢗꢁꢟꢵ  
ꢗꢁꢞꢸ  
ꢳꢀ  
ꢮꢅꢊꢋꢇꢉꢀꢉꢽꢉꢴꢉꢹꢃꢋꢍꢒ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢘꢺꢠ  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 27  
MCP1804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002200D-page 28  
2009-2013 Microchip Technology Inc.  
MCP1804  
ꢢꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢘꢆꢙꢍꢏꢒꢁꢚꢀꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢺꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢶꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢺꢗꢉꢠꢜꢡ  
ꢗꢁꢺꢗ  
ꢗꢁꢸꢺ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢴꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢴꢟ  
ꢗꢻ  
ꢀꢁꢞꢟ  
ꢀꢁꢴꢗ  
ꢗꢁꢀꢟ  
ꢴꢁꢘꢗ  
ꢀꢁꢸꢗ  
ꢴꢁꢀꢗ  
ꢗꢁꢵꢗ  
ꢗꢁꢸꢗ  
ꢴꢗꢻ  
ꢮꢀ  
ꢗꢁꢗꢸ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢵ  
ꢗꢁꢟꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢺꢀꢠ  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 29  
MCP1804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002200D-page 30  
2009-2013 Microchip Technology Inc.  
MCP1804  
ꢢꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢞꢃꢄꢅꢃꢓꢆꢕꢟꢒꢘꢆꢙꢍꢏꢒꢁꢠꢡꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D1  
b2  
b1  
b1  
N
L
L
1
2
b
b1  
b1  
e
e1  
H
E
D
A
C
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢮꢅꢊꢋꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢶꢅꢃꢚꢒꢍ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢳꢉꢹꢃꢋꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢘꢉꢹꢃꢋꢍꢒ  
ꢮꢅꢊꢋꢇꢉꢀꢩꢉꢴꢩꢉꢞꢉꢽꢉꢟꢉꢹꢃꢋꢍꢒ  
ꢳꢉꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢂꢀ  
ꢳꢀ  
ꢳꢘ  
ꢀꢁꢟꢗꢉꢠꢜꢡ  
ꢴꢁꢗꢗꢉꢠꢜꢡ  
ꢀꢁꢞꢗ  
ꢴꢁꢺꢞ  
ꢘꢁꢘꢺ  
ꢞꢁꢞꢗ  
ꢀꢁꢞꢗ  
ꢗꢁꢸꢗ  
ꢗꢁꢴꢟ  
ꢗꢁꢞꢀ  
ꢗꢁꢴꢵ  
ꢗꢁꢴꢘ  
ꢀꢁꢵꢗ  
ꢞꢁꢟꢗ  
ꢘꢁꢵꢗ  
ꢞꢁꢵꢗ  
ꢀꢁꢸꢴ  
ꢀꢁꢘꢗ  
ꢗꢁꢞꢞ  
ꢗꢁꢟꢵ  
ꢗꢁꢞꢸ  
ꢗꢁꢞꢸ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢗꢠ  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 31  
MCP1804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002200D-page 32  
2009-2013 Microchip Technology Inc.  
MCP1804  
APPENDIX A: REVISION HISTORY  
Revision D (October 2013)  
The following is the list of modifications:  
1. Added operating junction temperature range in  
Temperature Specifications.  
2. Updated the maximum package power  
dissipation values in Section 6.3.1.2, Junction  
Temperature Estimate.  
3. Updated package specification drawings to  
reflect all view.  
4. Minor typographical changes.  
Revision C (June 2011)  
The following is the list of modifications:  
5. Added seven new characterization graphs to  
Section 2.0, Typical Performance Curves  
(Figures 2-49 - 2-55).  
6. Changed layout of Table 3-1. Added separate  
column for SOT-223-3.  
7. Updated Package Marking drawings and  
examples in the Packaging Information section.  
8. Added new voltage option to Product  
Identification System table.  
Revision B (November 2009)  
The following is the list of modifications:  
• Electrical characteristics, SHDN “H” Voltage item:  
Changed to SHDN “L” Voltage.  
Revision A (September 2009)  
• Original Release of this Document.  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 33  
MCP1804  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XX  
T
-XX  
Examples:  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/OT:  
1.8V, 5-LD SOT-23  
2.5V, 5-LD SOT-23  
3.0V, 5-LD SOT-23  
3.3V, 5-LD SOT-23  
5.0V, 5-LD SOT-23  
10V, 5-LD SOT-23  
12V, 5-LD SOT-23  
Temperature  
Range  
Package  
Output  
Voltage  
Tolerance  
Tape  
and  
Reel  
Voltage  
MCP1804T-2502I/OT:  
MCP1804T-3002I/OT:  
MCP1804T-3302I/OT:  
MCP1804T-5002I/OT:  
MCP1804T-A002I/OT:  
MCP1804T-C002I/OT:  
Device:  
MCP1804T:  
LDO Voltage Regulator (Tape and Reel)  
g)  
Voltage Options:  
18  
25  
30  
33  
50  
A0  
C0  
J0  
=
=
=
=
=
=
=
=
1.8V  
2.5V  
3.0V  
3.3V  
5.0V  
10V  
12V  
18V  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/MB:  
MCP1804T-2502I/MB:  
MCP1804T-3002I/MB:  
MCP1804T-3302I/MB:  
MCP1804T-5002I/MB:  
MCP1804T-A002I/MB:  
MCP1804T-C002I/MB:  
1.8V, 3-LD SOT-89  
2.5V, 3-LD SOT-89  
3.0V, 3-LD SOT-89  
3.3V, 3-LD SOT-89  
5.0V, 3-LD SOT-89  
10V, 3-LD SOT-89  
12V, 3-LD SOT-89  
g)  
Output Voltage  
Tolerance:  
02  
I
=
±2%  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/MT:  
MCP1804T-2502I/MT:  
MCP1804T-3002I/MT:  
MCP1804T-3302I/MT:  
MCP1804T-5002I/MT:  
MCP1804T-A002I/MT:  
MCP1804T-C002I/MT:  
1.8V, 5-LD SOT-89  
2.5V, 5-LD SOT-89  
3.0V, 5-LD SOT-89  
3.3V, 5-LD SOT-89  
5.0V, 5-LD SOT-89  
10V, 5-LD SOT-89  
12V, 5-LD SOT-89  
Temperature  
Range:  
= -40C to +85C (Industrial)  
g)  
Package:  
DB  
MB  
MT  
OT  
=
=
=
=
3-lead Plastic Small Outline Transistor (SOT-223)  
3-lead Plastic Small Outline Transistor (SOT-89)  
5-lead Plastic Small Outline Transistor (SOT-89)  
5-lead Plastic Small Outline Transistor (SOT-23)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/DB:  
MCP1804T-2502I/DB:  
MCP1804T-3002I/DB:  
MCP1804T-3302I/DB:  
MCP1804T-5002I/DB:  
MCP1804T-A002I/DB:  
MCP1804T-C002I/DB:  
1.8V, 3-LD SOT-223  
2.5V, 3-LD SOT-223  
3.0V, 3-LD SOT-223  
3.3V, 3-LD SOT-223  
5.0V, 3-LD SOT-223  
10V, 3-LD SOT-223  
12V, 3-LD SOT-223  
g)  
DS20002200D-page 34  
2009-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-590-5  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2013 Microchip Technology Inc.  
DS20002200D-page 35  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Seoul  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Taiwan - Taipei  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/20/13  
DS20002200D-page 36  
2009-2013 Microchip Technology Inc.  

相关型号:

MCP1804T-1802I/DM

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802I/MB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802I/MT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802I/OT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802IDB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802IMB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802IMT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-1802IOT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502I/DB

2.5 V FIXED POSITIVE LDO REGULATOR, 1.9 V DROPOUT, PDSO3, PLASTIC, SOT-223, 4 PIN
MICROCHIP

MCP1804T-2502I/DM

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502I/MB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502I/MT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP