MCP1825-2502E/AT [MICROCHIP]

500 mA, Low Voltage, Low Quiescent Current LDO Regulator; 500毫安,低电压,低静态电流LDO稳压器
MCP1825-2502E/AT
型号: MCP1825-2502E/AT
厂家: MICROCHIP    MICROCHIP
描述:

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
500毫安,低电压,低静态电流LDO稳压器

稳压器
文件: 总38页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1825/MCP1825S  
500 mA, Low Voltage, Low Quiescent Current LDO Regulator  
Features  
Description  
• 500 mA Output Current Capability  
The MCP1825/MCP1825S is a 500 mA Low Dropout  
(LDO) linear regulator that provides high current and  
low output voltages. The MCP1825 comes in a fixed or  
adjustable output voltage version, with an output  
voltage range of 0.8V to 5.0V. The 500 mA output  
current capability, combined with the low output voltage  
capability, make the MCP1825 a good choice for new  
sub-1.8V output voltage LDO applications that have  
high current demands. The MCP1825S is a 3-pin fixed  
voltage version.  
• Input Operating Voltage Range: 2.1V to 6.0V  
• Adjustable Output Voltage Range: 0.8V to 5.0V  
(MCP1825 only)  
• Standard Fixed Output Voltages:  
- 0.8V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V  
• Other Fixed Output Voltage Options Available  
Upon Request  
• Low Dropout Voltage: 210 mV Typical at 500 mA  
• Typical Output Voltage Tolerance: 0.5%  
• Stable with 1.0 µF Ceramic Output Capacitor  
• Fast response to Load Transients  
The MCP1825/MCP1825S is stable using ceramic  
output capacitors that inherently provide lower output  
noise and reduce the size and cost of the entire  
regulator solution. Only 1 µF of output capacitance is  
needed to stabilize the LDO.  
• Low Supply Current: 120 µA (typical)  
• Low Shutdown Supply Current: 0.1 µA (typical)  
(MCP1825 only)  
Using CMOS construction, the quiescent current  
consumed by the MCP1825/MCP1825S is typically  
less than 120 µA over the entire input voltage range,  
making it attractive for portable computing applications  
that demand high output current. The MCP1825  
versions have a Shutdown (SHDN) pin. When shut  
down, the quiescent current is reduced to less than  
0.1 µA.  
• Fixed Delay on Power Good Output  
(MCP1825 only)  
• Short Circuit Current Limiting and  
Overtemperature Protection  
• TO-263-5 (DDPAK-5), TO-220-5, SOT-223-5  
Package Options (MCP1825).  
• TO-263-3 (DDPAK-3), TO-220-3, SOT-223-3  
Package Options (MCP1825S).  
On the MCP1825 fixed output versions, the scaled-  
down output voltage is internally monitored and a  
power good (PWRGD) output is provided when the  
output is within 92% of regulation (typical). The  
PWRGD delay is internally fixed at 110 µs (typical).  
Applications  
• High-Speed Driver Chipset Power  
• Networking Backplane Cards  
• Notebook Computers  
The overtemperature and short circuit current-limiting  
provide additional protection for the LDO during system  
fault conditions.  
• Network Interface Cards  
• Palmtop Computers  
• 2.5V to 1.XV Regulators  
© 2008 Microchip Technology Inc.  
DS22056B-page 1  
MCP1825/MCP1825S  
Package Types  
MCP1825  
MCP1825S  
DDPAK-5  
TO-220-5  
Fixed/Adjustable  
DDPAK-3  
TO-220-3  
1
2
3
1
2
3
1
2 3 4 5  
1 2 3 4 5  
SOT-223-5  
SOT-223-3  
6
4
2
1
3
1
2
4
3
5
Pin  
Pin  
Fixed  
Adjustable  
1
2
3
4
VIN  
1
2
3
4
5
6
SHDN  
VIN  
SHDN  
VIN  
GND (TAB)  
VOUT  
GND (TAB)  
VOUT  
GND (TAB)  
VOUT  
GND (TAB)  
PWRGD  
GND (TAB)  
ADJ  
GND (TAB)  
DS22056B-page 2  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
Typical Applications  
MCP1825 Fixed Output Voltage  
PWRGD  
R1  
100 kΩ  
On  
SHDN  
VIN  
Off  
1
VOUT = 1.8V @ 500 mA  
VOUT  
VIN = 2.3V to 2.8V  
GND  
C1  
C2  
1 µF  
4.7 µF  
MCP1825 Adjustable Output Voltage  
VADJ  
R2  
20 kΩ  
R1  
40 kΩ  
On  
SHDN  
VIN  
Off  
1
VOUT = 1.2V @ 500 mA  
VOUT  
VIN = 2.1V to 2.8V  
C1  
4.7 µF  
C2  
1 µF  
GND  
© 2008 Microchip Technology Inc.  
DS22056B-page 3  
MCP1825/MCP1825S  
Functional Block Diagram - Adjustable Output  
PMOS  
VIN  
VOUT  
Undervoltage  
Lock Out  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
ADJ/SENSE  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
Comp  
TDELAY  
GND  
92% of VREF  
DS22056B-page 4  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
Functional Block Diagram - Fixed Output (3-Pin)  
PMOS  
VIN  
VOUT  
Undervoltage  
Lock Out  
Sense  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
Comp  
TDELAY  
GND  
92% of VREF  
© 2008 Microchip Technology Inc.  
DS22056B-page 5  
MCP1825/MCP1825S  
Functional Block Diagram - Fixed Output (5-Pin)  
PMOS  
VIN  
VOUT  
Undervoltage  
Lock Out  
Sense  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
PWRGD  
Comp  
TDELAY  
GND  
92% of VREF  
DS22056B-page 6  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VIN....................................................................................6.5V  
Maximum Voltage on Any Pin .. (GND – 0.3V) to (VDD + 0.3)V  
Maximum Power Dissipation......... Internally-Limited (Note 6)  
Output Short Circuit Duration................................Continuous  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature, TJ ...........................+150°C  
ESD protection on all pins (HBM/MM) ........... ≥ 4 kV; 300V  
AC/DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1, VR = 1.8V for Adjustable Output,  
OUT = 1 mA, CIN = COUT = 4.7 µF (X7R Ceramic), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C  
I
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
Input Quiescent Current  
VIN  
Iq  
2.1  
6.0  
V
Note 1  
120  
0.1  
220  
µA  
IL = 0 mA, VOUT = 0.8V to  
5.0V  
Input Quiescent Current for  
SHDN Mode  
ISHDN  
IOUT  
500  
3
µA  
mA  
%/V  
%
SHDN = GND  
Maximum Output Current  
VIN = 2.1V to 6.0V  
V
R = 0.8V to 5.0V, Note 1  
Line Regulation  
ΔVOUT  
(VOUT x ΔVIN  
/
±0.05  
±0.5  
1.2  
±0.16  
1.0  
(Note 1) VIN 6V  
)
Load Regulation  
ΔVOUT/VOUT  
-1.0  
IOUT = 1 mA to 500 mA,  
(Note 4)  
Output Short Circuit Current  
IOUT_SC  
A
RLOAD < 0.1Ω, Peak Current  
Adjust Pin Characteristics (Adjustable Output Only)  
Adjust Pin Reference Voltage  
VADJ  
0.402  
0.410  
0.418  
V
VIN = 2.1V to VIN = 6.0V,  
I
OUT = 1 mA  
Adjust Pin Leakage Current  
IADJ  
-10  
±0.01  
40  
+10  
nA  
VIN = 6.0V, VADJ = 0V to 6V  
Adjust Temperature Coefficient  
TCVOUT  
ppm/°C Note 3  
Fixed-Output Characteristics (Fixed Output Only)  
Voltage Regulation VOUT  
VR - 2.5% VR ±0.5% VR + 2.5%  
V
Note 2  
Note 1: The minimum VIN must meet two conditions: VIN 2.1V and VIN VOUT(MAX) + VDROPOUT(MAX).  
2: VR is the nominal regulator output voltage for the fixed cases. VR = 1.2V, 1.8V, etc. VR is the desired set point output  
voltage for the adjustable cases. VR = VADJ * ((R1/R2)+1). Figure 4-1.  
3: TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * ΔTemperature). VOUT-HIGH is the highest voltage measured over the  
temperature range. VOUT-LOW is the lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is  
tested over a load range from 1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value that was measured with an input voltage of VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained  
junction temperatures above 150°C can impact device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
© 2008 Microchip Technology Inc.  
DS22056B-page 7  
MCP1825/MCP1825S  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1, VR = 1.8V for Adjustable Output,  
I
OUT = 1 mA, CIN = COUT = 4.7 µF (X7R Ceramic), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C  
Parameters  
Sym  
Min  
Typ  
Max  
350  
Units  
Conditions  
Dropout Characteristics  
Dropout Voltage  
VDROPOUT  
210  
mV  
Note 5, IOUT = 500 mA,  
V
IN(MIN) = 2.1V  
Power Good Characteristics  
PWRGD Input Voltage Operat-  
ing Range  
VPWRGD_VIN  
1.0  
6.0  
V
TA = +25°C  
1.2  
6.0  
TA = -40°C to +125°C  
For VIN < 2.1V, ISINK = 100 µA  
PWRGD Threshold Voltage  
VPWRGD_TH  
%VOUT Falling Edge  
VOUT < 2.5V Fixed,  
OUT = Adj.  
(Referenced to VOUT  
)
89  
92  
95  
V
90  
1.0  
92  
2.0  
0.2  
94  
3.0  
0.4  
VOUT >= 2.5V Fixed  
PWRGD Threshold Hysteresis  
PWRGD Output Voltage Low  
VPWRGD_HYS  
VPWRGD_L  
%VOUT  
V
IPWRGD SINK = 1.2 mA,  
ADJ = 0V  
PWRGD Leakage  
PWRGD  
_
1
nA  
µs  
VPWRGD = VIN = 6.0V  
Rising Edge  
LK  
PWRGD Time Delay  
TPG  
110  
RPULLUP = 10 kΩ  
Detect Threshold to PWRGD  
Active Time Delay  
TVDET-PWRGD  
200  
µs  
VOUT = VPWRGD_TH + 20 mV  
to VPWRGD_TH - 20 mV  
Shutdown Input  
Logic High Input  
VSHDN-HIGH  
VSHDN-LOW  
SHDNILK  
45  
15  
%VIN  
%VIN  
µA  
VIN = 2.1V to 6.0V  
VIN = 2.1V to 6.0V  
Logic Low Input  
SHDN Input Leakage Current  
-0.1  
±0.001  
+0.1  
VIN = 6V, SHDN =VIN  
SHDN = GND  
,
AC Performance  
Output Delay From SHDN  
TOR  
eN  
100  
2.0  
µs  
SHDN = GND to VIN  
,
V
OUT = GND to 95% VR  
Output Noise  
µV/Hz IOUT = 200 mA, f = 1 kHz,  
OUT = 10 µF (X7R Ceramic),  
OUT = 2.5V  
C
V
Note 1: The minimum VIN must meet two conditions: VIN 2.1V and VIN VOUT(MAX) + VDROPOUT(MAX).  
2: VR is the nominal regulator output voltage for the fixed cases. VR = 1.2V, 1.8V, etc. VR is the desired set point output  
voltage for the adjustable cases. VR = VADJ * ((R1/R2)+1). Figure 4-1.  
3: TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * ΔTemperature). VOUT-HIGH is the highest voltage measured over the  
temperature range. VOUT-LOW is the lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is  
tested over a load range from 1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value that was measured with an input voltage of VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained  
junction temperatures above 150°C can impact device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
DS22056B-page 8  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = VOUT(MAX) + VDROPOUT(MAX), Note 1, VR = 1.8V for Adjustable Output,  
OUT = 1 mA, CIN = COUT = 4.7 µF (X7R Ceramic), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C  
I
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply Ripple Rejection  
Ratio  
PSRR  
60  
dB  
f = 100 Hz, COUT = 4.7 µF,  
I
OUT = 100 µA,  
INAC = 100 mV pk-pk,  
IN = 0 µF  
V
C
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
TSD  
150  
10  
°C  
°C  
IOUT = 100 µA, VOUT = 1.8V,  
IN = 2.8V  
V
ΔTSD  
IOUT = 100 µA, VOUT = 1.8V,  
IN = 2.8V  
V
Note 1: The minimum VIN must meet two conditions: VIN 2.1V and VIN VOUT(MAX) + VDROPOUT(MAX).  
2: VR is the nominal regulator output voltage for the fixed cases. VR = 1.2V, 1.8V, etc. VR is the desired set point output  
voltage for the adjustable cases. VR = VADJ * ((R1/R2)+1). Figure 4-1.  
3: TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * ΔTemperature). VOUT-HIGH is the highest voltage measured over the  
temperature range. VOUT-LOW is the lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is  
tested over a load range from 1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value that was measured with an input voltage of VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained  
junction temperatures above 150°C can impact device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
© 2008 Microchip Technology Inc.  
DS22056B-page 9  
MCP1825/MCP1825S  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Junction Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
TJ  
TJ  
TA  
-40  
+125  
+150  
+150  
°C  
°C  
°C  
Steady State  
Transient  
-65  
Thermal Package Resistances  
Thermal Resistance, 3LD DDPAK  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
31.4  
3.0  
°C/W 4-Layer JC51 Standard  
Board  
Thermal Resistance, 3LD TO-220  
Thermal Resistance, 3LD SOT-223  
Thermal Resistance, 5LD DDPAK  
Thermal Resistance, 5LD TO-220  
Thermal Resistance, 5LD SOT-223  
29.4  
2.0  
°C/W 4-Layer JC51 Standard  
Board  
62  
°C/W EIA/JEDEC JESD51-751-7  
4 Layer Board  
15.0  
31.2  
3.0  
°C/W 4-Layer JC51 Standard  
Board  
29.3  
2.0  
°C/W 4-Layer JC51 Standard  
Board  
62  
°C/W EIA/JEDEC JESD51-751-7  
4 Layer Board  
15.0  
DS22056B-page 10  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output.  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
140  
130  
120  
110  
100  
90  
VOUT = 1.2V adj  
IN = 2.1V to 6.0V  
VOUT = 1.2V Adj  
OUT = 0 mA  
IOUT = 1 mA  
V
I
130°C  
90°C  
IOUT = 50 mA  
25°C  
0°C  
IOUT=100 mA IOUT=500 mA  
-45°C  
IOUT=250 mA  
2
3
4
Input Voltage (V)  
5
6
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Line Regulation vs.  
Voltage (Adjustable Version).  
Temperature (Adjustable Version).  
0.20  
200  
190  
180  
170  
IOUT = 1.0 mA to 500 mA  
VOUT = 1.2V Adj  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
VOUT = 3.3V  
VOUT = 1.8V  
VIN=5.0V  
160  
150  
VIN=3.3V  
140  
130  
120  
VOUT = 0.8V  
VOUT = 5.0V  
110  
100  
VIN=2.5V  
0
100  
200  
300  
400  
500  
600  
-45  
-20  
5
30  
55  
80  
105 130  
Load Current (mA)  
Temperature (°C)  
FIGURE 2-2:  
Ground Current vs. Load  
FIGURE 2-5:  
Load Regulation vs.  
Current (Adjustable Version).  
Temperature (Adjustable Version).  
170  
0.4110  
VOUT = 1.2V Adj  
OUT = 0 mA  
VOUT = 1.8V  
OUT = 1.0 mA  
160  
0.4105  
0.4100  
0.4095  
0.4090  
0.4085  
0.4080  
0.4075  
0.4070  
I
I
150  
VIN = 6.0V  
140  
VIN=6.0V  
130 VIN=5.0V  
120  
110  
100  
90  
VIN = 4.0V  
VIN=4.0V  
VIN=3.0V  
VIN = 2.3V  
VIN=2.1V  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Adjust Pin Voltage vs.  
Junction Temperature (Adjustable Version).  
Temperature (Adjustable Version).  
© 2008 Microchip Technology Inc.  
DS22056B-page 11  
MCP1825/MCP1825S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output.  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
160  
150  
140  
130  
120  
110  
100  
90  
VOUT = 0.8V  
OUT = 0 mA  
I
VOUT = 5.0V Adj  
+130°C  
+90°C  
+25°C  
VOUT = 2.5V Adj  
0°C  
-45°C  
0
50 100 150 200 250 300 350 400 450 500  
Load Current (mA)  
2
3
4
5
6
Input Voltage (V)  
FIGURE 2-7:  
Dropout Voltage vs. Load  
FIGURE 2-10:  
Quiescent Current vs. Input  
Current (Adjustable Version).  
Voltage.  
0.30  
0.28  
150  
140  
130  
120  
110  
100  
90  
IOUT = 500 mA  
VOUT = 2.5V  
I
OUT = 0 mA  
VOUT = 5.0V Adj  
+130°C  
+90°C  
0.26  
0.24  
0.22  
0.20  
VOUT = 3.3V Adj  
+25°C  
+0°C  
VOUT = 2.5V Adj  
-45°C  
-45  
-20  
5
30  
55  
80  
105  
130  
3
3.5  
4
4.5  
5
5.5  
6
Temperature (°C)  
Input Voltage (V)  
FIGURE 2-8:  
Dropout Voltage vs.  
FIGURE 2-11:  
Quiescent Current vs. Input  
Temperature (Adjustable Version).  
Voltage.  
170  
250  
200  
VIN = 2.3V for VR=0.8V  
VIN = 3.0V for VR=2.5V  
VOUT = 2.5V Fixed  
160  
150  
140  
130  
120  
110  
100  
VIN = 6.0V  
VOUT=2.5V  
150  
100  
50  
VIN = 5.0V  
VOUT=0.8V  
VIN = 3.0V  
VIN = 4.0V  
0
-45  
-20  
5
30  
55  
80  
105 130  
0
100  
200  
300  
400  
500  
600  
Temperature (°C)  
Load Current (mA)  
FIGURE 2-9:  
Power Good (PWRGD)  
FIGURE 2-12:  
Ground Current vs. Load  
Time Delay vs. Temperature.  
Current.  
DS22056B-page 12  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output.  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
IOUT = 0 mA  
VR = 2.5V  
VIN = 3.1V to 6.0V  
IOUT = 1 mA  
VOUT = 5V  
IOUT = 50 mA  
IOUT = 100 mA  
VOUT = 2.5V  
VOUT = 0.8V  
IOUT = 250 mA  
IOUT = 500 mA  
-45  
-20  
5
30  
55  
80  
105  
130  
130  
130  
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-13:  
Temperature.  
Quiescent Current vs.  
FIGURE 2-16:  
Temperature.  
Line Regulation vs.  
0.30  
0.25  
0.20  
VR = 0.8V  
0.25  
0.15  
VOUT = 0.8V  
IOUT = 1 mA to 500 mA  
VIN = 4.0V  
VIN = 5.0V  
VIN = 2.1V  
VIN = 6.0V  
0.05  
-0.05  
-0.15  
-0.25  
0.15  
0.10  
0.05  
0.00  
VIN = 5.0V  
VIN = 4.0V  
VIN = 2.3V  
VIN = 6.0V  
-45  
-20  
5
30  
55  
80  
105  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
I
vs. Temperature.  
FIGURE 2-17:  
Temperature (V  
Load Regulation vs.  
< 2.5V Fixed).  
SHDN  
OUT  
0.09  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
IOUT = 1 mA to 500 mA  
VOUT = 0.8V  
IN = 2.1V to 6.0V  
IOUT = 1 mA  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
V
VOUT = 2.5V  
IOUT = 50 mA  
IOUT = 250 mA  
IOUT = 100 mA  
VOUT = 5.0V  
-0.25  
-0.30  
-0.35  
IOUT = 500 mA  
-45  
-20  
5
30  
55  
80  
105  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-15:  
Temperature.  
Line Regulation vs.  
FIGURE 2-18:  
Temperature (V  
Load Regulation vs.  
2.5V Fixed).  
OUT  
© 2008 Microchip Technology Inc.  
DS22056B-page 13  
MCP1825/MCP1825S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output.  
0.30  
10  
VR=2.5V, VIN=3.3V  
VR=0.8V, VIN=2.3V  
COUT=1 μF cer  
CIN=10 μF cer  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VOUT = 5.0V  
1
0.1  
IOUT=200 mA  
VOUT = 2.5V  
0.01  
0
100  
200  
300  
400  
500  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Load Current (mA)  
FIGURE 2-19:  
Dropout Voltage vs. Load  
FIGURE 2-22:  
Output Noise Voltage  
Current.  
Density vs. Frequency.  
0.30  
0.28  
0.26  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
IOUT = 500 mA  
VOUT = 5.0V  
0.24  
0.22  
0.20  
0.18  
VR=1.2V Adj  
COUT=10 μF ceramic X7R  
VIN=2.5V  
-60.0  
-70.0  
-80.0  
CIN=0 μF  
I
OUT=10 mA  
VOUT = 2.5V  
-45  
-20  
5
30  
55  
80  
105  
130  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Temperature (°C)  
FIGURE 2-20:  
Dropout Voltage vs.  
FIGURE 2-23:  
Power Supply Ripple  
Temperature.  
Rejection (PSRR) vs. Frequency (Adj.).  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
VOUT = 2.5V  
VR=2.5V (Fixed)  
-50.0  
C
OUT=22 μF ceramic X7R  
-60.0  
-70.0  
-80.0  
-90.0  
VIN=3.3V  
C
IN=0 μF  
I
OUT=10 mA  
0.00 1.00 2.00 3.00 4.00 5.00 6.00  
Input Voltage (V)  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-21:  
Short Circuit Current vs.  
FIGURE 2-24:  
Power Supply Ripple  
Input Voltage.  
Rejection (PSRR) vs. Frequency.  
DS22056B-page 14  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output.  
FIGURE 2-25:  
2.5V (Adj.) Startup from V .  
FIGURE 2-28:  
Dynamic Line Response.  
IN  
FIGURE 2-26:  
2.5V (Adj.) Startup from  
FIGURE 2-29:  
Dynamic Load Response  
Shutdown.  
(1 mA to 500 mA).  
FIGURE 2-27:  
Power Good (PWRGD)  
FIGURE 2-30:  
Dynamic Load Response  
Timing.  
(10 mA to 500 mA).  
© 2008 Microchip Technology Inc.  
DS22056B-page 15  
MCP1825/MCP1825S  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
3-Pin Fixed  
Output  
5-Pin Fixed  
Output  
Adjustable  
Output  
Name  
Description  
1
2
1
2
SHDN  
VIN  
Shutdown Control Input (active-low)  
Input Voltage Supply  
1
2
3
3
GND  
VOUT  
PWRGD  
ADJ  
Ground  
3
4
4
Regulated Output Voltage  
Power Good Output  
5
5
Voltage Adjust/Sense Input  
Exposed Pad of the Package (ground potential)  
Exposed Pad Exposed Pad Exposed Pad  
EP  
3.1  
Shutdown Control Input (SHDN)  
3.5  
Power Good Output (PWRGD)  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled. When the SHDN input is  
pulled low, the PWRGD output also goes low and the  
LDO enters a low quiescent current shutdown state  
where the typical quiescent current is 0.1 µA.  
The PWRGD output is an open-drain output used to  
indicate when the LDO output voltage is within 92%  
(typically) of its nominal regulation value. The PWRGD  
threshold has a typical hysteresis value of 2%. The  
PWRGD output is delayed by 110 µs (typical) from the  
time the LDO output is within 92% + 3% (maximum  
hysteresis) of the regulated output value on power-up.  
This delay time is internally fixed.  
3.2  
Input Voltage Supply (VIN)  
3.6  
Output Voltage Adjust Input (ADJ)  
Connect the unregulated or regulated input voltage  
source to VIN. If the input voltage source is located  
several inches away from the LDO, or the input source  
is a battery, it is recommended that an input capacitor  
be used. A typical input capacitance value of 1 µF to  
10 µF should be sufficient for most applications.  
For adjustable applications, the output voltage is  
connected to the ADJ input through a resistor divider  
that sets the output voltage regulation value. This  
provides the user the capability to set the output  
voltage to any value they desire within the 0.8V to 5.0V  
range of the device.  
3.7  
Exposed Pad (EP)  
3.3  
Ground (GND)  
The DDPAK and TO-220 package have an exposed  
tab on the package. A heat sink may may be mount to  
the tab to aid in the removal of heat from the package  
during operation. The exposed tab is at the ground  
potential of the LDO.  
Connect the GND pin of the LDO to a quiet circuit  
ground. This will help the LDO power supply rejection  
ratio and noise performance. The ground pin of the  
LDO only conducts the quiescent current of the LDO  
(typically 120 µA), so a heavy trace is not required.  
For applications that have switching or noisy inputs, tie  
the GND pin to the return of the output capacitor.  
Ground planes help lower inductance and voltage  
spikes caused by fast transient load currents and are  
recommended for applications that are subjected to  
fast load transients.  
3.4  
Regulated Output Voltage (VOUT)  
The VOUT pin is the regulated output voltage of the  
LDO. A minimum output capacitance of 1.0 µF is  
required for LDO stability. The MCP1825/MCP1825S  
is stable with ceramic, tantalum and aluminum-electro-  
lytic capacitors. See Section 4.3 “Output Capacitor”  
for output capacitor selection guidance.  
DS22056B-page 16  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
EQUATION 4-2:  
4.0  
DEVICE OVERVIEW  
VOUT VADJ  
The MCP1825/MCP1825S is a high output current,  
Low Dropout (LDO) voltage regulator. The low dropout  
voltage of 210 mV typical at 500 mA of current makes  
it ideal for battery-powered applications. Unlike other  
high output current LDOs, the MCP1825/MCP1825S  
only draws a maximum of 220 µA of quiescent current.  
The MCP1825 has a shutdown control input and a  
power good output.  
--------------------------------  
R1 = R2  
VADJ  
Where:  
VOUT  
VADJ  
=
=
LDO Output Voltage  
ADJ Pin Voltage  
(typically 0.41V)  
4.2  
Output Current and Current  
Limiting  
4.1  
LDO Output Voltage  
The 5-pin MCP1825 LDO is available with either a fixed  
output voltage or an adjustable output voltage. The  
output voltage range is 0.8V to 5.0V for both versions.  
The 3-pin MCP1825S LDO is available as a fixed  
voltage device.  
The MCP1825/MCP1825S LDO is tested and ensured  
to supply a minimum of 500 mA of output current. The  
MCP1825/MCP1825S has no minimum output load, so  
the output load current can go to 0 mA and the LDO will  
continue to regulate the output voltage to within  
tolerance.  
4.1.1  
ADJUST INPUT  
The MCP1825/MCP1825S also incorporates an output  
current limit. If the output voltage falls below 0.7V due  
to an overload condition (usually represents a shorted  
load condition), the output current is limited to 1.2A  
(typical). If the overload condition is a soft overload, the  
MCP1825/MCP1825S will supply higher load currents  
of up to 1.5A. The MCP1825/MCP1825S should not be  
operated in this condition continuously as it may result  
in failure of the device. However, this does allow for  
device usage in applications that have higher pulsed  
load currents having an average output current value of  
500 mA or less.  
The adjustable version of the MCP1825 uses the ADJ  
pin (pin 5) to get the output voltage feedback for output  
voltage regulation. This allows the user to set the  
output voltage of the device with two external resistors.  
The nominal voltage for ADJ is 0.41V.  
Figure 4-1 shows the adjustable version of the  
MCP1825. Resistors R1 and R2 form the resistor  
divider network necessary to set the output voltage.  
With this configuration, the equation for setting VOUT is:  
EQUATION 4-1:  
Output overload conditions may also result in an over-  
temperature shutdown of the device. If the junction  
temperature rises above 150°C, the LDO will shut  
down the output voltage. See Section 4.8 “Overtem-  
perature Protection” for more information on  
overtemperature shutdown.  
R1 + R2  
------------------  
VOUT = VADJ  
R2  
Where:  
VOUT  
VADJ  
=
=
LDO Output Voltage  
ADJ Pin Voltage  
(typically 0.41V)  
4.3  
Output Capacitor  
The MCP1825/MCP1825S requires a minimum output  
capacitance of 1 µF for output voltage stability.  
Ceramic capacitors are recommended because of their  
size, cost and environmental robustness qualities.  
MCP1825-ADJ  
V
OUT  
On  
R
1
C2  
1 µF  
1
3
2 4  
5
Off  
SHDN  
Aluminum-electrolytic and tantalum capacitors can be  
used on the LDO output as well. The Equivalent Series  
Resistance (ESR) of the electrolytic output capacitor  
must be no greater than 1 ohm. The output capacitor  
should be located as close to the LDO output as is  
practical. Ceramic materials X7R and X5R have low  
temperature coefficients and are well within the  
acceptable ESR range required. A typical 1 µF X7R  
0805 capacitor has an ESR of 50 milli-ohms.  
ADJ  
V
IN  
C
R
1
2
GND  
4.7 µF  
FIGURE 4-1:  
Typical adjustable output  
voltage application circuit.  
The allowable resistance value range for resistor R2 is  
from 10 kΩ to 200 kΩ. Solving the equation for R1  
yields the following equation:  
Larger LDO output capacitors can be used with the  
MCP1825/MCP1825S  
to  
improve  
dynamic  
performance and power supply ripple rejection  
performance. A maximum of 22 µF is recommended.  
Aluminum-electrolytic capacitors are not recom-  
mended for low temperature applications of < -25°C.  
© 2008 Microchip Technology Inc.  
DS22056B-page 17  
MCP1825/MCP1825S  
The power good output is an open-drain output that can  
be pulled up to any voltage that is equal to or less than  
the LDO input voltage. This output is capable of sinking  
1.2 mA (VPWRGD < 0.4V maximum).  
4.4  
Input Capacitor  
Low input source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries, or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 1.0 µF to 4.7 µF is recommended for most  
applications.  
VPWRGD_TH  
VOUT  
TPG  
For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient currents from in order to respond quickly to  
the output load step. For good step response  
performance, the input capacitor should be of  
equivalent (or higher) value than the output capacitor.  
The capacitor should be placed as close to the input of  
the LDO as is practical. Larger input capacitors will also  
help reduce any high-frequency noise on the input and  
output of the LDO and reduce the effects of any  
inductance that exists between the input source  
voltage and the input capacitance of the LDO.  
VOH  
TVDET_PWRG  
PWRGD  
VOL  
FIGURE 4-2:  
Power Good Timing.  
4.5  
Power Good Output (PWRGD)  
VIN  
TOR  
70 µs  
The PWRGD output is used to indicate when the output  
voltage of the LDO is within 92% (typical value, see  
Section 1.0 “Electrical Characteristics” for Minimum  
and Maximum specifications) of its nominal regulation  
value.  
30 µs  
SHDN  
TPG  
As the output voltage of the LDO rises, the PWRGD  
output will be held low until the output voltage has  
exceeded the power good threshold plus the hysteresis  
value. Once this threshold has been exceeded, the  
power good time delay is started (shown as TPG in the  
Electrical Characteristics table). The power good time  
delay is fixed at 110 µs (typical). After the time delay  
period, the PWRGD output will go high, indicating that  
the output voltage is stable and within regulation limits.  
VOUT  
PWRGD  
If the output voltage of the LDO falls below the power  
good threshold, the power good output will transition  
low. The power good circuitry has a 170 µs delay when  
detecting a falling output voltage, which helps to  
increase noise immunity of the power good output and  
avoid false triggering of the power good output during  
fast output transients. See Figure 4-2 for power good  
timing characteristics.  
FIGURE 4-3:  
Shutdown.  
Power Good Timing from  
4.6  
Shutdown Input (SHDN)  
The SHDN input is an active-low input signal that turns  
the LDO on and off. The SHDN threshold is a  
percentage of the input voltage. The typical value of  
this shutdown threshold is 30% of VIN, with minimum  
and maximum limits over the entire operating  
temperature range of 45% and 15%, respectively.  
When the LDO is put into Shutdown mode using the  
SHDN input, the power good output is pulled low  
immediately, indicating that the output voltage will be  
out of regulation. The timing diagram for the power  
good output when using the shutdown input is shown in  
Figure 4-3.  
The SHDN input will ignore low-going pulses (pulses  
meant to shut down the LDO) that are up to 400 ns in  
pulse width. If the shutdown input is pulled low for more  
than 400 ns, the LDO will enter Shutdown mode. This  
small bit of filtering helps to reject any system noise  
spikes on the shutdown input signal.  
DS22056B-page 18  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
On the rising edge of the SHDN input, the shutdown  
circuitry has a 30 µs delay before allowing the LDO  
output to turn on. This delay helps to reject any false  
turn-on signals or noise on the SHDN input signal. After  
the 30 µs delay, the LDO output enters its soft-start  
period as it rises from 0V to its final regulation value. If  
the SHDN input signal is pulled low during the 30 µs  
delay period, the timer will be reset and the delay time  
will start over again on the next rising edge of the  
SHDN input. The total time from the SHDN input going  
high (turn-on) to the LDO output being in regulation is  
typically 100 µs. See Figure 4-4 for a timing diagram of  
the SHDN input.  
4.7  
Dropout Voltage and  
Undervoltage Lockout  
Dropout voltage is defined as the input-to-output  
voltage differential at which the output voltage drops  
2% below the nominal value that was measured with a  
VR  
+ 0.5V differential applied. The MCP1825/  
MCP1825S LDO has a very low dropout voltage  
specification of 210 mV (typical) at 500 mA of output  
current. See Section 1.0 “Electrical Characteristics”  
for maximum dropout voltage specifications.  
The MCP1825/MCP1825S LDO operates across an  
input voltage range of 2.1V to 6.0V and incorporates  
input Undervoltage Lockout (UVLO) circuitry that  
keeps the LDO output voltage off until the input voltage  
reaches a minimum of 2.00V (typical) on the rising  
edge of the input voltage. As the input voltage falls, the  
LDO output will remain on until the input voltage level  
reaches 1.82V (typical).  
TOR  
400 ns (typ)  
70 µs  
30 µs  
SHDN  
Since the MCP1825/MCP1825S LDO undervoltage  
lockout activates at 1.82V as the input voltage is falling,  
the dropout voltage specification does not apply for  
output voltages that are less than 1.8V.  
VOUT  
For high-current applications, voltage drops across the  
PCB traces must be taken into account. The trace  
resistances can cause significant voltage drops  
between the input voltage source and the LDO. For  
applications with input voltages near 2.1V, these PCB  
trace voltage drops can sometimes lower the input  
FIGURE 4-4:  
Diagram.  
Shutdown Input Timing  
voltage enough to trigger  
undervoltage lockout.  
a shutdown due to  
4.8  
Overtemperature Protection  
The MCP1825/MCP1825S LDO has temperature-  
sensing circuitry to prevent the junction temperature  
from exceeding approximately 150°C. If the LDO  
junction temperature does reach 150°C, the LDO  
output will be turned off until the junction temperature  
cools to approximately 140°C, at which point the LDO  
output will automatically resume normal operation. If  
the internal power dissipation continues to be  
excessive, the device will again shut off. The junction  
temperature of the die is a function of power  
dissipation, ambient temperature and package thermal  
resistance. See Section 5.0 “Application Circuits/  
Issues” for more information on LDO power  
dissipation and junction temperature.  
© 2008 Microchip Technology Inc.  
DS22056B-page 19  
MCP1825/MCP1825S  
In addition to the LDO pass element power dissipation,  
there is power dissipation within the MCP1825/  
MCP1825S as a result of quiescent or ground current.  
The power dissipation as a result of the ground current  
can be calculated using the following equation:  
5.0  
APPLICATION CIRCUITS/  
ISSUES  
5.1  
Typical Application  
The MCP1825/MCP1825S is used for applications that  
require high LDO output current and a power good  
output.  
EQUATION 5-2:  
PI(GND) = VIN(MAX) × IVIN  
Where:  
V
= 2.5V @ 500 mA  
OUT  
R
PI(GND  
=
Power dissipation due to the  
quiescent current of the LDO  
MCP1825-2.5  
On  
1
C
1
3
2 4  
5
2
VIN(MAX)  
IVIN  
=
=
Maximum input voltage  
10 kΩ  
Off  
SHDN  
10 µF  
Current flowing in the VIN pin  
with no LDO output current  
(LDO quiescent current)  
V
IN  
3.3V  
C
1
4.7 µF  
PWRGD  
GND  
The total power dissipated within the MCP1825/  
MCP1825S is the sum of the power dissipated in the  
LDO pass device and the P(IGND) term. Because of the  
CMOS construction, the typical IGND for the MCP1825/  
MCP1825S is 120 µA. Operating at a maximum VIN of  
3.465V results in a power dissipation of 0.12 milli-Watts  
for a 2.5V output. For most applications, this is small  
compared to the LDO pass device power dissipation  
and can be neglected.  
FIGURE 5-1:  
Typical Application Circuit.  
5.1.1 APPLICATION CONDITIONS  
Package Type  
Input Voltage Range  
IN maximum  
IN minimum  
=
=
=
=
=
=
=
=
=
TO-220-5  
3.3V ± 5%  
3.465V  
V
V
3.135V  
The maximum continuous operating junction  
temperature specified for the MCP1825/MCP1825S is  
+125°C. To estimate the internal junction temperature  
of the MCP1825/MCP1825S, the total internal power  
dissipation is multiplied by the thermal resistance from  
junction to ambient (RθJA) of the device. The thermal  
resistance from junction to ambient for the TO-220-5  
package is estimated at 29.3°C/W.  
VDROPOUT (max)  
VOUT (typical)  
IOUT  
0.350V  
2.5V  
500 mA maximum  
0.483W  
PDISS (typical)  
Temperature Rise  
14.2°C  
5.2  
Power Calculations  
EQUATION 5-3:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
5.2.1  
POWER DISSIPATION  
The internal power dissipation within the MCP1825/  
MCP1825S is a function of input voltage, output  
voltage, output current and quiescent current.  
Equation 5-1 can be used to calculate the internal  
power dissipation for the LDO.  
TJ(MAX) = Maximum continuous junction  
temperature  
PTOTAL = Total device power dissipation  
RθJA = Thermal resistance from junction to  
ambient  
EQUATION 5-1:  
TAMAX = Maximum ambient temperature  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
Where:  
PLDO  
=
LDO Pass device internal  
power dissipation  
VIN(MAX)  
=
=
Maximum input voltage  
VOUT(MIN)  
LDO minimum output voltage  
DS22056B-page 20  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. Equation 5-4 can be  
used to determine the package maximum internal  
power dissipation.  
5.3  
Typical Application  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
is calculated in the following example. The power  
dissipation as a result of ground current is small  
enough to be neglected.  
EQUATION 5-4:  
5.3.1  
POWER DISSIPATION EXAMPLE  
(TJ(MAX) TA(MAX)  
)
PD(MAX) = ---------------------------------------------------  
RθJA  
Package  
Package Type = TO-220-5  
PD(MAX) = Maximum device power dissipation  
Input Voltage  
TJ(MAX) = maximum continuous junction  
temperature  
V
IN = 3.3V ± 5%  
LDO Output Voltage and Current  
TA(MAX) = maximum ambient temperature  
V
OUT = 2.5V  
RθJA = Thermal resistance from junction-to-  
I
OUT = 500 mA  
ambient  
Maximum Ambient Temperature  
A(MAX) = 60°C  
Internal Power Dissipation  
T
EQUATION 5-5:  
TJ(RISE) = PD(MAX) × RθJA  
PLDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX)  
PLDO = ((3.3V x 1.05) – (2.5V x 0.975))  
x 500 mA  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature  
PLDO = 0.514 Watts  
PD(MAX) = Maximum device power dissipation  
RθJA = Thermal resistance from junction-to-  
5.3.1.1  
Device Junction Temperature Rise  
ambient  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction-to-ambient for the application. The  
thermal resistance from junction-to-ambient (RθJA) is  
derived from EIA/JEDEC standards for measuring  
thermal resistance. The EIA/JEDEC specification is  
JESD51. The standard describes the test method and  
board specifications for measuring the thermal  
resistance from junction to ambient. The actual thermal  
EQUATION 5-6:  
TJ = TJ(RISE) + TA  
TJ = Junction temperature  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature  
TA = Ambient temperature  
resistance for a particular application can vary  
depending on many factors such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application” (DS00792), for more information regarding  
this subject.  
TJ(RISE) = PTOTAL x RθJA  
TJRISE = 0.514 W x 29.3° C/W  
TJRISE = 15.06°C  
© 2008 Microchip Technology Inc.  
DS22056B-page 21  
MCP1825/MCP1825S  
5.3.1.2  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below:  
TJ = TJRISE + TA(MAX)  
TJ = 15.06°C + 60.0°C  
TJ = 75.06°C  
5.3.1.3  
Maximum Package Power  
Dissipation at 60°C Ambient  
Temperature  
TO-220-5 (29.3°C/W RθJA):  
P
D(MAX) = (125°C – 60°C) / 29.3°C/W  
D(MAX) = 2.218W  
P
DDPAK-5 (31.2°C/Watt RθJA):  
P
D(MAX) = (125°C – 60°C)/ 31.2°C/W  
D(MAX) = 2.083W  
P
From this table, you can see the difference in maximum  
allowable power dissipation between the TO-220-5  
package and the DDPAK-5 package.  
DS22056B-page 22  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead DDPAK (MCP1825S)  
Example:  
XXXXXXXXX  
XXXXXXXXX  
YYWWNNN  
MCP1825S  
08EEB  
0710256  
e
3
1
2
3
1
2
3
3-Lead SOT-223 (MCP1825S)  
Example:  
XXXXXXX  
XXXYYWW  
1825S08  
EDB0710  
NNN  
256  
3-Lead TO-220 (MCP1825S)  
Example:  
MCP1825S  
12EAB  
0710256  
XXXXXXXXX  
XXXXXXXXX  
YYWWNNN  
e
3
1
2
3
1
2
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS22056B-page 23  
MCP1825/MCP1825S  
Package Marking Information (Continued)  
5-Lead DDPAK (MCP1825)  
Example:  
MCP1825  
XXXXXXXXX  
XXXXXXXXX  
YYWWNNN  
e
3
12EET  
0710256  
1 2 3 4 5  
1 2 3 4 5  
5-Lead SOT-223 (MCP1825)  
Example:  
XXXXXXX  
1825-08  
XXXYYWW  
EDC0710  
NNN  
256  
5-Lead TO-220 (MCP1825)  
Example:  
MCP1825  
XXXXXXXXX  
XXXXXXXXX  
YYWWNNN  
e
3
08EAT^
0710256  
1 2 3 4 5  
1 2 3 4 5  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22056B-page 24  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
3-Lead Plastic (EB) [DDPAK]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
L1  
D
D1  
H
1
N
b
e
BOTTOM VIEW  
TOP VIEW  
b1  
CHAMFER  
OPTIONAL  
C2  
A
φ
c
L
A1  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
3
.100 BSC  
Overall Height  
Standoff §  
A
.160  
.000  
.380  
.245  
.330  
.549  
.270  
.014  
.045  
.020  
.045  
.068  
.190  
.010  
.420  
A1  
E
Overall Width  
Exposed Pad Width  
E1  
D
Molded Package Length  
Overall Length  
.380  
.625  
H
Exposed Pad Length  
Lead Thickness  
Pad Thickness  
Lower Lead Width  
Upper Lead Width  
Foot Length  
D1  
c
.029  
.065  
.039  
.070  
.110  
.067  
8°  
C2  
b
b1  
L
Pad Length  
L1  
φ
Foot Angle  
0°  
Notes:  
1. § Significant Characteristic.  
2. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-011B  
© 2008 Microchip Technology Inc.  
DS22056B-page 25  
MCP1825/MCP1825S  
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Leads  
Lead Pitch  
N
e
3
2.30 BSC  
4.60 BSC  
Outside Lead Pitch  
Overall Height  
Standoff  
e1  
A
1.80  
0.10  
1.70  
7.30  
3.70  
6.70  
0.35  
0.84  
3.10  
A1  
A2  
E
0.02  
1.50  
6.70  
3.30  
6.30  
0.23  
0.60  
2.90  
0.75  
0°  
Molded Package Height  
Overall Width  
1.60  
7.00  
3.50  
6.50  
0.30  
0.76  
3.00  
Molded Package Width  
Overall Length  
Lead Thickness  
Lead Width  
E1  
D
c
b
Tab Lead Width  
Foot Length  
b2  
L
Lead Angle  
φ
10°  
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-032B  
DS22056B-page 26  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
© 2008 Microchip Technology Inc.  
DS22056B-page 27  
MCP1825/MCP1825S  
3-Lead Plastic Transistor Outline (AB) [TO-220]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
CHAMFER  
E
A
OPTIONAL  
P
A1  
φ
Q
H1  
D
D1  
L1  
L
b2  
2
N
1
b
c
e
A2  
e1  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
3
.100 BSC  
Overall Pin Pitch  
Overall Height  
Tab Thickness  
Base to Lead  
Overall Width  
e1  
A
.200 BSC  
.140  
.020  
.080  
.357  
.100  
.560  
.330  
.230  
.139  
.500  
.190  
.055  
.115  
.420  
.120  
.650  
.355  
.270  
.156  
.580  
.250  
.024  
.040  
.070  
A1  
A2  
E
Mounting Hole Center  
Overall Length  
Q
D
Molded Package Length  
Tab Length  
D1  
H1  
φP  
L
Mounting Hole Diameter  
Lead Length  
Lead Shoulder  
L1  
c
Lead Thickness  
Lead Width  
.012  
.015  
.045  
b
.027  
.057  
Shoulder Width  
b2  
Notes:  
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-034B  
DS22056B-page 28  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
5-Lead Plastic (ET) [DDPAK]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
L1  
D
D1  
H
1
N
b
BOTTOM VIEW  
e
TOP VIEW  
CHAMFER  
OPTIONAL  
C2  
A
φ
c
L
A1  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
5
.067 BSC  
Overall Height  
Standoff §  
A
.160  
.000  
.380  
.245  
.330  
.549  
.270  
.014  
.045  
.020  
.068  
.190  
.010  
.420  
A1  
E
Overall Width  
Exposed Pad Width  
E1  
D
Molded Package Length  
Overall Length  
Exposed Pad Length  
Lead Thickness  
Pad Thickness  
Lead Width  
.380  
.625  
H
D1  
c
.029  
.065  
.039  
.110  
.067  
8°  
C2  
b
Foot Length  
L
Pad Length  
L1  
φ
Foot Angle  
0°  
Notes:  
1. § Significant Characteristic.  
2. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-012B  
© 2008 Microchip Technology Inc.  
DS22056B-page 29  
MCP1825/MCP1825S  
 ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖ!ꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
D
b2  
E
E1  
3
4
2
N
1
e
e1  
A2  
c
A
φ
L
b
A1  
.ꢋꢒꢄꢈ  
ꢕ/00/ꢕ + 1ꢗ  
ꢝꢒꢇꢆꢋꢈꢒꢁꢋꢃ0ꢒꢇꢒꢄꢈ  
ꢕ/2  
23ꢕ  
(
ꢜꢛ#$ꢃ)ꢗ*  
(ꢛ"6ꢃ)ꢗ*  
M
"ꢛ"9  
ꢜꢛ9"  
$ꢛ""  
;ꢛ("  
9ꢛ("  
"ꢛ#6  
"ꢛ'($  
;ꢛ""  
M
ꢕ%4  
2ꢊꢇ5ꢆꢂꢃꢁꢘꢃ0ꢆꢍꢐꢈ  
0ꢆꢍꢐꢃꢖꢒꢄꢉꢅ  
3ꢊꢄꢈꢒꢐꢆꢃ0ꢆꢍꢐꢃꢖꢒꢄꢉꢅ  
3-ꢆꢂꢍꢔꢔꢃ7ꢆꢒꢏꢅꢄ  
ꢗꢄꢍꢋꢐꢁꢘꢘ  
ꢕꢁꢔꢐꢆꢐꢃꢖꢍꢉꢎꢍꢏꢆꢃ7ꢆꢒꢏꢅꢄ  
3-ꢆꢂꢍꢔꢔꢃ:ꢒꢐꢄꢅ  
ꢕꢁꢔꢐꢆꢐꢃꢖꢍꢉꢎꢍꢏꢆꢃ:ꢒꢐꢄꢅ  
3-ꢆꢂꢍꢔꢔꢃ0ꢆꢋꢏꢄꢅ  
0ꢆꢍꢐꢃ+ꢅꢒꢉꢎꢋꢆꢈꢈ  
0ꢆꢍꢐꢃ:ꢒꢐꢄꢅ  
2
ꢆꢜ  
%
%ꢜ  
%#  
 
 ꢜ  
5
5#  
0
M
ꢜꢛ6"  
"ꢛꢜ"  
ꢜꢛ9(  
$ꢛ#9  
;ꢛ((  
9ꢛ((  
"ꢛ;#  
"ꢛ(ꢜ  
;ꢛ"(  
ꢜꢛꢜ'  
6ꢞ  
"ꢛ"#  
ꢜꢛ((  
9ꢛ69  
;ꢛ'(  
9ꢛ'(  
"ꢛ#'  
"ꢛ'ꢜ  
#ꢛ<(  
"ꢛ<ꢜ  
"ꢞ  
+5ꢃ0ꢆꢍꢐꢃ:ꢒꢐꢄꢅ  
ꢀꢁꢁꢄꢃ0ꢆꢋꢏꢄꢅ  
0ꢆꢍꢐꢃ%ꢋꢏꢔꢆ  
'ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢜꢛ ꢝꢒꢇꢆꢋꢈꢒꢁꢋꢈꢃꢝꢃꢍꢋꢐꢃ ꢜꢃꢐꢁꢃꢋꢁꢄꢃꢒꢋꢉꢔꢊꢐꢆꢃꢇꢁꢔꢐꢃꢘꢔꢍꢈꢅꢃꢁꢂꢃꢌꢂꢁꢄꢂꢊꢈꢒꢁꢋꢈꢛꢃꢕꢁꢔꢐꢃꢘꢔꢍꢈꢅꢃꢁꢂꢃꢌꢂꢁꢄꢂꢊꢈꢒꢁꢋꢈꢃꢈꢅꢍꢔꢔꢃꢋꢁꢄꢃꢆ!ꢉꢆꢆꢐꢃ"ꢛꢜ#$ꢃꢇꢇꢃꢌꢆꢂꢃꢈꢒꢐꢆꢛ  
#ꢛ ꢝꢒꢇꢆꢋꢈꢒꢁꢋꢒꢋꢏꢃꢍꢋꢐꢃꢄꢁꢔꢆꢂꢍꢋꢉꢒꢋꢏꢃꢌꢆꢂꢃ%ꢗꢕ ꢃ&ꢜ'ꢛ(ꢕꢛ  
)ꢗ*ꢙ )ꢍꢈꢒꢉꢃꢝꢒꢇꢆꢋꢈꢒꢁꢋꢛꢃ+ꢅꢆꢁꢂꢆꢄꢒꢉꢍꢔꢔ,ꢃꢆ!ꢍꢉꢄꢃ-ꢍꢔꢊꢆꢃꢈꢅꢁꢑꢋꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢈꢛ  
ꢕꢒꢉꢂꢁꢉꢅꢒꢌ +ꢉꢅꢋꢁꢔꢁꢏ, ꢝꢂꢍꢑꢒꢋꢏ *"'>ꢜ;$)  
DS22056B-page 30  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
 ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖ!ꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
© 2008 Microchip Technology Inc.  
DS22056B-page 31  
MCP1825/MCP1825S  
5-Lead Plastic Transistor Outline (AT) [TO-220]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
A
E
φP  
CHAMFER  
OPTIONAL  
A1  
Q
H1  
D
D1  
L
N
1
2
3
e
c
b
e1  
A2  
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
5
.067 BSC  
Overall Pin Pitch  
Overall Height  
Overall Width  
Overall Length  
e1  
A
.268 BSC  
.140  
.380  
.560  
.330  
.204  
.020  
.100  
.139  
.482  
.080  
.012  
.015  
.190  
.420  
.650  
.355  
.293  
.055  
.120  
.156  
.590  
.115  
.025  
.040  
E
D
Molded Package Length  
Tab Length  
D1  
H1  
A1  
Q
Tab Thickness  
Mounting Hole Center  
Mounting Hole Diameter  
Lead Length  
φP  
L
Base to Bottom of Lead  
Lead Thickness  
A2  
c
Lead Width  
b
.027  
Notes:  
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-036B  
DS22056B-page 32  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
APPENDIX A: REVISION HISTORY  
Revision B (February 2008)  
The following is the list of modifications  
1. Updated Figure 2-4, Figure 2-5, Figure 2-16,  
Figure 2-29, and Figure 2-30.  
2. Updated package outline drawings and landing  
pattern drawings to Section 6.0 “Packaging  
Information”.  
3. Updated Appendix A: “Revision History”.  
Revision A (August 2007)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS22056B-page 33  
MCP1825/MCP1825S  
NOTES:  
DS22056B-page 34  
© 2008 Microchip Technology Inc.  
MCP1825/MCP1825S  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XX  
X
X
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1825-0802E/XX: 0.8V LDO Regulator  
Output Feature Tolerance Temp. Package  
Voltage  
MCP1825-1202E/XX: 1.2V LDO Regulator  
MCP1825-1802E/XX: 1.8V LDO Regulator  
MCP1825-2502E/XX: 2.5V LDO Regulator  
MCP1825-3002E/XX: 3.0V LDO Regulator  
MCP1825-3302E/XX: 3.3V LDO Regulator  
MCP1825-5002E/XX: 5.0V LDO Regulator  
MCP1825-ADJE/XX: ADJ LDO Regulator  
Code  
Device:  
MCP1825: 500 mA Low Dropout Regulator  
MCP1825T: 500 mA Low Dropout Regulator  
Tape and Reel  
MCP1825S: 500 mA Low Dropout Regulator  
MCP1825ST: 500 mA Low Dropout Regulator  
Tape and Reel  
g)  
h)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1825S-0802E/YY:0.8V LDO Regulator  
MCP1825S-1202E/YY:1.2V LDO Regulator  
MCP1825S-1802E/YY:1.8V LDO Regulator  
MCP1825S-2502E/YY:2.5V LDO Regulator  
MCP1825S-2502E/YY:3.0V LDO Regulator  
MCP1825S-3302E/YY:3.3V LDO Regulator  
MCP1825S-5002E/YY:5.0V LDO Regulator  
Output Voltage *:  
08  
12  
18  
25  
30  
33  
50  
=
=
=
=
=
=
=
0.8V “Standard”  
1.2V “Standard”  
1.8V “Standard”  
2.5V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
5.0V “Standard”  
g)  
ADJ = Adjustable Output Voltage ** (MCP1825 Only)  
*Contact factory for other output voltage options  
** When ADJ is used, the “extra feature code” and  
“tolerance” columns do not apply. Refer to examples.  
XX  
YY  
=
=
=
AT for 5LD TO-220 package  
DC for 5LD SOT-223 package  
ET for 5LD DDPAK package  
Extra Feature Code:  
Tolerance:  
0
2
E
=
=
=
Fixed  
2.5% (Standard)  
-40°C to +125°C  
=
=
=
AB for 3LD TO-220 package  
DB for 3LD SOT-223 package  
EB for 3LD DDPAK package  
Temperature:  
Package Type:  
AB  
AT  
EB  
ET  
DB  
DC  
=
=
=
=
=
=
Plastic Transistor Outline, TO-220, 3-lead  
Plastic Transistor Outline, TO-220, 5-lead  
Plastic, DDPAK, 3-lead  
Plastic, DDPAK, 5-lead  
Plastic Small Transistor Outline, SOT-223, 3-lead  
Plastic Small Transistor Outline, SOT-223, 5-lead  
Note: ADJ (Adjustable) only available in 5-lead version.  
© 2008 Microchip Technology Inc.  
DS22056B-page 35  
MCP1825/MCP1825S  
NOTES:  
DS22056B-page 36  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, rfPIC and SmartShunt are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS22056B-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS22056B-page 38  
© 2008 Microchip Technology Inc.  

相关型号:

MCP1825-2502E/DB

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-2502E/DC

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-2502E/EB

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-2502E/ET

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3002E/AB

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3002E/AT

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3002E/DB

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3002E/DC

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3002E/EB

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3002E/ET

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3302E/AB

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP

MCP1825-3302E/AT

500 mA, Low Voltage, Low Quiescent Current LDO Regulator
MICROCHIP