MCP2004AT-E/SN [MICROCHIP]

LIN J2602 Transceiver;
MCP2004AT-E/SN
型号: MCP2004AT-E/SN
厂家: MICROCHIP    MICROCHIP
描述:

LIN J2602 Transceiver

文件: 总34页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2003/4/3A/4A  
LIN J2602 Transceiver  
Description:  
Features:  
• The MCP2003/2003A and MCP2004/2004A are  
compliant with Local Interconnect Network (LIN)  
Bus Specifications 1.3, 2.0 and 2.1 and are  
compliant to SAE J2602  
This device provides a bidirectional, half-duplex  
communication, physical interface to automotive and  
industrial LIN systems to meet the LIN Bus  
Specification Revision 2.1 and SAE J2602. The device  
is short-circuit and over-temperature protected by  
internal circuitry. The device has been specifically  
designed to operate in the automotive operating  
environment and will survive all specified transient  
conditions while meeting all of the stringent quiescent  
current requirements.  
• Support Baud Rates up to 20 kbaudwith  
LIN-Compatible Output Driver  
• 43V Load Dump Protected  
• Very Low High Electromagnetic Immunity (EMI)  
meets Stringent Original Equipment Manufactur-  
ers (OEM) Requirements  
MCP200X family members:  
• Very High Electrostatic Discharge (ESD)  
Immunity:  
• 8-pin PDIP, DFN and SOIC packages:  
- >20 kV on VBB (IEC 61000-4-2)  
- >14 kV on LBUS (IEC 61000-4-2)  
- MCP2003, LIN-compatible driver, with WAKE  
pins, wake-up on falling edge of LBUS  
- MCP2003A, LIN-compatible driver, with  
WAKE pins, wake-up on rising edge of LBUS  
• Very High Immunity to RF Disturbances meets  
Stringent OEM Requirements  
- MCP2004, LIN-compatible driver, with  
FAULT/TXE pins, wake-up on falling edge of  
LBUS  
• Wide Supply Voltage, 6.0V-27.0V Continuous  
• Extended Temperature Range: -40 to +125°C  
• Interface to PIC® MCU EUSART and Standard  
USARTs  
- MCP2004A, LIN-compatible driver, with  
FAULT/TXE pins, wake-up on rising edge of  
LBUS  
• LIN Bus Pin:  
- Internal pull-up resistor and diode  
- Protected against battery shorts  
- Protected against loss of ground  
- High current drive  
Package Types  
MCP2003/2003A  
MCP2004/2004A  
PDIP, SOIC  
PDIP, SOIC  
• Automatic Thermal Shutdown  
• Low-Power mode:  
RXD  
CS  
VREN  
VBB  
1
2
8
7
RXD  
VREN  
VBB  
1
2
8
7
- Receiver monitoring bus and transmitter off,  
(5 µA)  
CS/WAKE  
WAKE  
TXD  
3
4
6
5
LBUS  
VSS  
FAULT/TXE  
TXD  
3
4
6
5
LBUS  
VSS  
MCP2003/2003A  
MCP2004/2004A  
4x4 DFN*  
4x4 DFN*  
RXD  
VREN  
VBB  
1
2
8
7
RXD  
CS  
VREN  
VBB  
1
2
8
7
CS/WAKE  
EP  
9
EP  
9
FAULT/TXE  
TXD  
LBUS  
VSS  
3
4
6
5
WAKE  
TXD  
LBUS  
VSS  
3
4
6
5
* Includes Exposed Thermal Pad (EP); see Table 1-2.  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 1  
MCP2003/4/3A/4A  
MCP2003/2003A Block Diagram  
VBB  
VREN  
Ratiometric  
Reference  
Wake-Up  
Logic and  
4.3V  
WAKE  
Power Control  
RXD  
CS  
~30 k  
LBUS  
VSS  
TXD  
OC  
Thermal  
Protection  
Short Circuit  
Protection  
MCP2004/2004A Block Diagram  
VBB  
VREN  
Ratiometric  
Reference  
4.3V 4.3V  
Wake-Up  
Logic and  
Power Control  
RXD  
CS/WAKE  
TXD  
~30 k  
OC  
LBUS  
VSS  
FAULT/TXE  
Thermal  
Protection  
Short Circuit  
Protection  
DS20002230F-page 2  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
1.2.3  
THERMAL PROTECTION  
1.0  
DEVICE OVERVIEW  
The thermal protection circuit monitors the die  
temperature and is able to shut down the LIN  
transmitter.  
The MCP2003/4/3A/4A devices provide a physical  
interface between a microcontroller and a LIN bus.  
These devices will translate the CMOS/TTL logic levels  
to LIN logic level, and vice versa. It is intended for  
automotive and industrial applications with serial bus  
speeds up to 20 kbaud.  
There are two causes for a thermal overload. A thermal  
shutdown can be triggered by either, or both, of the  
following thermal overload conditions.  
LIN Bus Specification Revision 2.1 requires that the  
transceiver of all nodes in the system is connected via  
the LIN pin, referenced to ground and with a maximum  
external termination resistance load of 510from LIN  
bus to battery supply. The 510 corresponds to  
1 master and 15 slave nodes.  
• LIN bus output overload  
• Increase in die temperature due to increase in  
environment temperature  
Driving the TXD and checking the RXD pin makes it  
possible to determine whether there is a bus contention  
(Rx = low, Tx = high) or a thermal overload condition  
(Rx = high, Tx = low). After a thermal overload event,  
the device will automatically recover once the die  
temperature has fallen below the recovery temperature  
threshold (see Figure 1-1).  
The VREN pin can be used to drive the logic input of an  
external voltage regulator. This pin is high in all modes  
except for Power-Down mode.  
1.1  
External Protection  
FIGURE 1-1:  
THERMAL SHUTDOWN  
STATE DIAGRAM  
1.1.1  
REVERSE BATTERY PROTECTION  
An external reverse-battery-blocking diode should be  
used to provide polarity protection (see Example 1-1).  
LIN bus  
Shorted  
to VBB  
1.1.2  
TRANSIENT VOLTAGE  
PROTECTION (LOAD DUMP)  
Operation  
Mode  
Transmitter  
Shutdown  
An external 43V transient suppressor (TVS) diode,  
between VBB and ground, with a 50transient  
protection resistor (RTP) in series with the battery  
supply and the VBB pin serve to protect the device from  
power transients (see Example 1-1) and ESD events.  
While this protection is optional, it is considered good  
engineering practice.  
Temp < ShutdownTEMP  
1.2  
Internal Protection  
1.2.1  
ESD PROTECTION  
For component-level ESD ratings, please refer to the  
maximum operation specifications.  
1.2.2  
GROUND LOSS PROTECTION  
The LIN Bus specification states that the LIN pin must  
transition to the recessive state when ground is  
disconnected. Therefore, a loss of ground effectively  
forces the LIN line to a high-impedance level.  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 3  
MCP2003/4/3A/4A  
Upon VBB supply pin power-on, the device will remain  
in Ready mode as long as CS is low. When CS  
transitions high, the device will either enter Operation  
mode, if TXD pin is held high, or the device will enter  
Transmitter Off mode, if TXD pin is held low.  
1.3  
Modes of Operation  
For an overview of all operational modes, refer to  
Table 1-1.  
1.3.1  
POWER-DOWN MODE  
In Power-Down mode, everything is off except the  
wake-up section. This is the lowest power mode. The  
receiver is off, thus its output is open-drain.  
1.3.3  
OPERATION MODE  
In this mode, all internal modules are operational.  
On CS going to a high level or a falling edge on WAKE  
(MCP2003/MCP2003A only), the device will enter  
Ready mode as soon as internal voltage stabilizes.  
Refer to Section 2.4 “AC Specifications” for further  
information. In addition, LIN bus activity will change  
the device from Power-down mode to Ready mode;  
MCP2003/4 wakes-up on a falling edge on LBUS,  
followed by a low level lasting at least 20 µs.  
MCP2003A/4A wakes-up on a rising edge on LBUS,  
followed by a high level lasting 70 µs typically. See  
Figures 1-2 to 1-5 about remote wake-up. If CS is held  
high as the device transitions from Power-Down to  
Ready mode, the device will transition to either  
Operation or Transmitter Off mode, depending on TXD  
input, as soon as internal voltages stabilize.  
The device will go into Power-Down mode on the falling  
edge of CS. For the MCP2003/4 device, a specific  
process should be followed to put all nodes into Power-  
Down mode. Refer to Section 1.6 “MCP2003/4 and  
MCP2003A/4A Difference Details” and Figure 1-6.  
The device will enter Transmitter Off mode in the event  
of a Fault condition, such as: thermal overload, bus  
contention and TXD timer expiration.  
The MCP2004/2004A device can also enter  
Transmitter Off mode if the FAULT/TXE pin is pulled  
low. The VBB to LBUS pull-up resistor is connected only  
in Operation mode.  
1.3.4  
TRANSMITTER OFF MODE  
Transmitter Off mode is reached whenever the  
transmitter is disabled either due to a Fault condition or  
pulling the FAULT/TXE pin low on the MCP2004/2004A.  
The Fault conditions include: thermal overload, bus  
contention, RXD monitoring or TXD timer expiration.  
1.3.2  
READY MODE  
Upon entering the Ready mode, VREN is enabled and  
the receiver detect circuit is powered up. The transmit-  
ter remains disabled and the device is ready to receive  
data but not to transmit.  
The device will go into Power-Down mode on the falling  
edge of CS, or return to Operation mode if all faults are  
resolved and the FAULT/TXE pin on the  
MCP2004/2004A is high.  
FIGURE 1-2:  
OPERATIONAL MODES STATE DIAGRAM – MCP2003  
Ready  
VREN ON  
RX ON  
POR  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
TX OFF  
CS = 1 & TXD = 1  
CS = 1 & TXD = 0  
CS = 1 & TXD = 1 & No Fault  
TOFF  
Mode  
VREN ON  
RX ON  
TX OFF  
Operation  
Mode  
Falling edge on LIN  
or CS = 1  
VREN ON  
RX ON  
or falling edge on WAKE pin  
Fault (thermal or timer)  
TX ON  
CS = 0  
CS = 0  
POWER  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
DS20002230F-page 4  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
FIGURE 1-3:  
OPERATIONAL MODES STATE DIAGRAM – MCP2003A  
Ready  
VREN ON  
RX OFF  
TX OFF  
POR  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
CS = 1 & TXD = 1  
CS = 1 & TXD =  
0
CS = 1 & TXD = 1 & No Fault  
TOFF  
Mode  
VREN ON  
RX ON  
TX OFF  
Operation  
Mode  
Rising edge on LIN  
or CS = 1  
VREN ON  
RX ON  
Or falling edge on WAKE pin  
Fault (thermal or timer)  
TX ON  
CS =  
0
CS =  
0
POWER  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
FIGURE 1-4:  
OPERATIONAL MODES STATE DIAGRAM – MCP2004  
Ready  
POR  
VREN ON  
VBAT > 5.5V  
V
REN OFF  
RX ON  
TX OFF  
RX OFF  
TX OFF  
CS = 1 & TXD = 1 & TXE = 1  
CS = 1 & (TXE = 0 or TXD = 0)  
CS = 1 & TXD = 1 & TXE = 1  
& No Fault  
TOFF  
Mode  
Operation  
Mode  
Falling edge on LIN or  
CS = 1  
V
REN ON  
Fault (thermal or timeout) or  
FAULT/TXE = 0  
VREN ON  
R
X
ON  
OFF  
RX ON  
TX ON  
T
X
CS = 0  
CS = 0  
POWER  
DOWN  
V
REN OFF  
RX OFF  
TX OFF  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 5  
MCP2003/4/3A/4A  
FIGURE 1-5:  
OPERATIONAL MODES STATE DIAGRAM – MCP2004A  
Ready  
VREN ON  
RX ON  
POR  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
TX OFF  
CS = 1 & TXD = 1 & TXE = 1  
CS = 1 & (TXE = 0 or TXD = 0)  
CS = 1 & TXD =  
1 &  
TXE = 1 & No Fault  
TOFF  
Mode  
VREN ON  
RX ON  
TX OFF  
Operation  
Mode  
Rising edge on LIN  
or CS = 1  
Fault (thermal or timeout) or  
FAULT/TXE = 0  
VREN ON  
RX ON  
TX ON  
CS = 0  
CS = 0  
POWER  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
TABLE 1-1:  
State  
OVERVIEW OF OPERATIONAL MODES  
Transmitter Receiver VREN  
Operation  
Comments  
POR  
OFF  
OFF  
OFF Check CS, if low then proceed to Ready  
mode;  
VBB > VBB(MIN)  
and Internal  
If high, transitions to either TOFF or Operation Supply stable  
mode, depending on TXD (2003/A), or TXD  
and FAULT/TXE (2004/A).  
Ready  
OFF  
ON  
ON  
ON  
ON If CS is high level, then proceed to Operation Bus Off state  
or TXOFF mode.  
Operation  
ON If CS is low level, then proceed to Power-  
Down;  
Normal Operation  
mode  
If FAULT/TXE low level, then proceed to  
Transmitter Off mode.  
Power-Down  
OFF  
Activity  
Detect  
OFF On CS high level, proceed to Ready mode  
then proceed to either Operation mode or  
TXOFF.  
Low-Power mode  
MCP2003/2003A: Falling edge on WAKE will  
put the device into Ready mode.  
MCP2003/MCP2004: falling edge on LIN bus  
will put the device into Ready mode.  
MCP2003A/MCP2004A: rising edge on LIN  
bus will put the device into Ready mode.  
Transmitter Off  
OFF  
ON  
ON If CS is low level, then proceed to Power-  
Down mode;  
FAULT/TXE only  
available on  
If FAULT/TXE and TXD high, then proceed to MCP2004/2004A  
Operation mode  
DS20002230F-page 6  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
1.4  
Typical Applications  
EXAMPLE 1-1:  
TYPICAL MCP2003/2003A APPLICATION  
+12  
optional resistor and transient suppressor  
+12  
50  
43V  
Master Node Only  
+12  
1.0 µF  
(1)  
3.9 k  
Voltage Reg  
VREN  
VBB  
VDD  
4.7 k  
1 k  
TXD  
RXD  
TXD  
RXD  
LIN Bus  
LBUS  
I/O  
CS  
(2)  
33 k  
MMBZ27V  
WAKE  
220pF  
Wake-up  
VSS  
Note 1: For applications with current requirements of less than 20 mA, the connection to +12V can be  
deleted, and voltage to the regulator supplied directly from the VREN pin.  
2: ESD protection diode.  
EXAMPLE 1-2:  
TYPICAL MCP2004/2004A APPLICATION  
+12  
+12  
optional resistor and transient suppressor  
50  
Wake-up  
Master Node Only  
+12  
1.0 µF  
43V  
(1)  
220 k  
4.7 k  
Voltage Reg  
VREN  
VDD  
VBB  
1 k  
TXD  
RXD  
TXD  
RXD  
LIN Bus  
LBUS  
I/O  
I/O  
CS/WAKE  
FAULT/TXE  
(2)  
MMBZ27V  
220pF  
VSS  
100 nF  
Note 1: For applications with current requirements of less than 20 mA, the connection to +12V can be  
deleted, and voltage to the regulator supplied directly from the VREN pin.  
2: ESD protection diode.  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 7  
MCP2003/4/3A/4A  
EXAMPLE 1-3:  
TYPICAL LIN NETWORK CONFIGURATION  
40m  
+ Return  
LIN bus  
1 k  
VBB  
LIN bus  
LIN bus  
LIN bus  
LIN bus  
MCP200X  
MCP200X  
MCP200X  
MCP200X  
Slave 1  
(MCU)  
Slave 2  
(MCU)  
Slave n <23  
(MCU)  
Master  
(MCU)  
DS20002230F-page 8  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
1.5  
Pin Descriptions  
TABLE 1-2:  
PINOUT DESCRIPTIONS  
8-Lead  
4x4  
MCP2003/2003A  
MCP2004/2004A  
Pin Name  
PDIP,  
SOIC  
DFN  
Normal Operation  
Normal Operation  
RXD  
CS  
1
2
3
1
Receive Data Output (OD), HV  
tolerant  
Receive Data Output (OD),  
HV tolerant  
2
3
Chip Select (TTL), HV tolerant  
Chip Select/Local WAKE (TTL),  
HV tolerant  
WAKE  
(MCP2003/2003A only)  
Wake-up, HV tolerant  
Fault Detect Output (OD)  
Transmitter Enable (TTL)  
HV tolerant  
FAULT/TXE  
(MCP2004/2004A only)  
TXD  
4
4
Transmit Data Input (TTL), HV  
tolerant  
Transmit Data Input (TTL), HV  
tolerant  
VSS  
LBUS  
VBB  
VREN  
EP  
5
6
5
6
7
8
9
Ground  
Ground  
LIN Bus (bidirectional)  
Battery Positive  
LIN Bus (bidirectional)  
Battery Positive  
7
8
Voltage Regulator Enable Output Voltage Regulator Enable Output  
Exposed Thermal Pad. Do not Exposed Thermal Pad. Do not  
electrically connect or connect to electrically connect or connect to  
Vss  
Vss  
Legend: TTL = TTL Input Buffer; OD = Open-Drain Output  
If CS = 1 when the VBB supply is turned on, the device  
will proceed to Operation mode, or TXOFF (refer to  
Figures 1-2 to 1-5), as soon as internal voltages  
stabilize.  
1.5.1  
RECEIVE DATA OUTPUT (RXD)  
The Receive Data Output pin is an open drain (OD)  
output and follows the state of the LIN pin, except in  
Power Down mode.  
This pin may also be used as a local wake-up input  
(refer to Example 1-1). In this implementation, the  
microcontroller I/O controlling the CS should be  
converted to a high-impedance input allowing the  
internal pull-down resistor to keep CS low. An external  
switch, or other source, can then wake-up both the  
transceiver and the microcontroller (if powered). Refer  
to Section 1.3 “Modes of Operation”, for detailed  
operation of CS.  
1.5.1.1  
RXD Monitoring  
The RXD pin is internally monitored. It has to be at a  
high level (> 2.5V typical) while LBUS is recessive.  
Otherwise, an internal fault will be created and the  
device will transition to Transmitter Off mode. On the  
MCP2004/2004A, the FAULT/TXE pin will be driven low  
to indicate the Transmitter Off state.  
1.5.2  
CHIP SELECT (CS)  
This is the Chip Select Input pin. An internal pull-down  
resistor will keep the CS pin low. This is done to ensure  
that no disruptive data will be present on the bus while  
the microcontroller is executing a Power-on Reset and  
an I/O initialization sequence. The pin must detect a  
high level to activate the transmitter. An internal Low-  
Pass filter, with a typical time constant of 10 µs,  
prevents unwanted wake-up (or transition to Power  
Down mode) on glitches.  
Note:  
It is not recommended to tie CS high as  
this can result in the device entering  
Operation  
mode  
before  
the  
microcontroller is initialized and may  
result in unintentional LIN traffic.  
1.5.3  
WAKE-UP INPUT (WAKE)  
This pin is only available on the MCP2003/2003A.  
The WAKE pin has an internal 800 kpull-up to VBB.  
A falling edge on the WAKE pin causes the device to  
wake from Power-Down mode. Upon waking, the  
MCP2003/3A will enter Ready mode.  
If CS = 0 when the VBB supply is turned on, the device  
goes to Ready mode as soon as internal voltages sta-  
bilize, and stays there as long as the CS pin is held low  
(0). In Ready mode, the receiver is on, and the LIN  
transmitter driver is off.  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 9  
MCP2003/4/3A/4A  
drive. While the transmitter is disabled, the internal  
30 kpull-up resistor on the LBUS pin is also  
disconnected to reduce current.  
1.5.4  
FAULT/TXE  
This pin is only available on the MCP2004/2004A. This  
pin is bidirectional and allows disabling of the  
transmitter, as well as fault reporting related to  
disabling the transmitter. This pin is an open-drain  
output, with states as defined in Table 1-3. The  
transmitter is disabled whenever this pin is low (‘0’),  
either from an internal Fault condition or by an external  
Note:  
The FAULT/TXE pin is true (‘0’) whenever  
the internal circuits have detected a short  
or thermal excursion and have disabled  
the LBUS output driver.  
TABLE 1-3:  
FAULT/TXE TRUTH TABLE  
FAULT/TXE  
TXD  
In  
RXD  
Out  
LINBUS  
I/O  
Thermal  
Override  
Definition  
External Driven  
Input  
Output  
L
H
VBB  
OFF  
H
L
FAULT, TXD driven low, LBUS shorted to VBB  
(Note 1)  
H
L
H
x
H
L
L
x
VBB  
GND  
GND  
VBB  
OFF  
OFF  
OFF  
ON  
x
H
H
H
H
L
H
H
H
L
OK  
OK  
OK, data is being received from LBUS  
FAULT, Transceiver in thermal shutdown  
x
x
VBB  
x
NO FAULT, the CPU is commanding the  
transceiver to turn off the transmitter driver  
Legend: x = don’t care.  
Note 1: The FAULT/TXE is valid after approximately 25 µs after TXD falling edge. This is to eliminate false fault  
reporting during bus propagation delays.  
1.5.5  
TRANSMIT DATA INPUT (TXD)  
1.5.7.1  
Bus Dominant Timer  
The Transmit Data Input pin has an internal pull-up.  
The LIN pin is low (dominant) when TXD is low, and high  
(recessive) when TXD is high.  
The Bus Dominant Timer is an internal timer that  
deactivates the LBUS transmitter after approximately  
25 ms of dominant state on the LBUS pin. The timer is  
reset on any recessive LBUS state.  
For extra bus security, TXD is internally forced to ‘1’  
whenever the transmitter is disabled regardless of  
external TXD voltage.  
The LIN bus transmitter will be reenabled after a  
recessive state on the LBUS pin as long as CS is high.  
Disabling can be caused by the LIN bus being  
externally held dominant, or by TXD being driven low.  
Additionally, on the MCP2004/2004A, the FAULT pin  
will be driven low to indicate the Transmitter Off state.  
1.5.5.1  
TXD Dominant Timeout  
If TXD is driven low for longer than approximately  
25 ms, the LBUS pin is switched to Recessive mode and  
the part enters TOFF Mode. This is to prevent the LIN  
node from permanently driving the LIN Bus dominant.  
The transmitter is reenabled on TXD rising edge.  
1.5.8  
BATTERY (VBB)  
This is the Battery Positive Supply Voltage pin.  
1.5.6  
GROUND (VSS)  
1.5.9  
VOLTAGE REGULATOR ENABLE  
OUTPUT (VREN)  
This is the Ground pin.  
This is the External Voltage Regulator Enable pin.  
Open source output is pulled high to VBB in all modes,  
except Power-Down.  
1.5.7  
LIN BUS (LBUS)  
The bidirectional LIN Bus pin (LBUS) is controlled by the  
TXD input. LBUS has a current limited open collector  
output. To reduce EMI, the edges during the signal  
changes are slope controlled and include corner  
rounding control for both falling and rising edges.  
1.5.10  
EXPOSED THERMAL PAD (EP)  
Do not electrically connect, or connect to Vss.  
The internal LIN receiver observes the activities on the  
LIN bus, and matches the output signal RXD to follow  
the state of the LBUS pin.  
DS20002230F-page 10  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
If the MCP2003/4 is placed into Operational mode, VBB  
to LBUS pull-up resistor is automatically connected,  
which will raise the LIN bus to a recessive level; then  
putting the device to Power-Down mode may cause  
LBUS to be floating, and thus wake-up all bus nodes. To  
1.6  
MCP2003/4 and MCP2003A/4A  
Difference Details  
The differences between the MCP2003/4 and the  
MCP2003/4A devices are isolated to the wake-up func-  
tionality. The changes were implemented to make the  
device more robust to LIN bus conditions, outside of  
the normal operating conditions. The MCP2003/4 will  
wake-up from Power-Down mode during any LIN falling  
edge held low longer than 20 µs.  
prevent  
this,  
the  
designer  
should  
ensure  
TXD (MCP2003) or TXE (MCP2004) is held low until  
valid bus activity is verified (see Figure 1-6). This will  
ensure the transceiver transitions from Ready mode to  
Transmitter Off mode, until bus activity can be verified.  
In the case where a LIN system is designed to minimize  
stand-by current by disconnecting all bus pull-ups  
resistors (including the external master pull-up resistor  
to VBB), the original MCP2003/4 could wake-up, if the  
In the case of valid bus activity, the transceiver can shift  
to Operation mode, while if there is no bus activity, the  
device can be again placed into Power Down. The  
design practices needed to accomplish this are fully  
detailed in Tech Brief TB3067 – “MCP2003 Power-  
Down Mode and Wake-Up Handling in Case of LIN Bus  
Loss” (DS93067).  
floating bus drifted to  
a valid low level. The  
MCP2003/4A revisions were modified to require a ris-  
ing edge after a valid low level. This will prevent an  
undesired system wake-up in this scenario, while main-  
taining functional capability with the original version.  
The revised MCP2003/4A devices now eliminate the  
need for firmware to prevent system wide wake-up.  
The revised devices now require a longer valid bus low  
(see updated tBDB value in Section 2.3 “DC Specifi-  
cations” and Figure 2-7), which enables a rising edge  
detect circuit. The device will now only wake-up after a  
rising edge, following a low longer than tBDB. While the  
module designer can still hold TXD (MCP2003) or  
TXE (MCP2004) low during wake-up, to enter Transmit-  
ter Off mode from Ready mode, it is not required to  
prevent an advertent system wake-up.  
It should be noted that the original MCP2003/4 meets  
all LIN transceiver specification requirements and mod-  
ules can be designed to pass all LIN system require-  
ments. However, when all bus pull-up resistors are  
disconnected, the MCP2003/4 requires the module  
designer to write firmware to monitor the LIN Bus after  
any wake-up event to prevent the transceiver from  
automatically transitioning from Ready mode to  
Operational mode.  
In addition to the longer tBDB value, the time from wake-  
up detect to VREN enable is shortened as documented  
in Section 2.3 “DC Specifications”.  
FIGURE 1-6:  
MCP2003/2004 SWITCHING TIMING DIAGRAM FOR THE FORCED POWER-  
DOWN MODE SEQUENCE  
t
Tx2CS • 100nsꢀꢀꢀꢀꢀꢀꢀꢀ  
t
CSactive • 100µs  
CS  
T
XD state depending  
on how the Slave  
Microcontroller is  
powered  
VREN  
T
XD to  
forced  
externally  
TXD  
LIN bus  
disconnected  
LBUS  
Power Down  
Mode after Master  
Sleep instruction  
Ready  
Mode  
Transmitter OFF  
Mode  
Power Down  
Mode  
State  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 11  
MCP2003/4/3A/4A  
2.0  
2.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VIN DC Voltage on RXD, TXD, FAULT/TXE, CS .............................................................................................. -0.3 to +43V  
VIN DC Voltage on WAKE and VREN ............................................................................................................. -0.3 to +VBB  
VBB Battery Voltage, continuous, non-operating (Note 1)............................................................................. -0.3 to +40V  
VBB Battery Voltage, non-operating (LIN bus recessive) (Note 2) ................................................................ -0.3 to +43V  
VBB Battery Voltage, transient ISO 7637 Test 1 ..................................................................................................... -200V  
VBB Battery Voltage, transient ISO 7637 Test 2a ...................................................................................................+150V  
VBB Battery Voltage, transient ISO 7637 Test 3a ................................................................................................... -300V  
VBB Battery Voltage, transient ISO 7637 Test 3b ...................................................................................................+200V  
VLBUS Bus Voltage, continuous...................................................................................................................... -18 to +40V  
VLBUS Bus Voltage, transient (Note 3)........................................................................................................... -27 to +43V  
ILBUS Bus Short Circuit Current Limit ....................................................................................................................200 mA  
ESD protection on LIN, VBB, WAKE (IEC 61000-4-2) (Note 4)............................................................................... ±8 KV  
ESD protection on LIN, VBB (Human Body Model) (Note 5)................................................................................... ±8 KV  
ESD protection on all other pins (Human Body Model) (Note 5) ............................................................................ ±4 KV  
ESD protection on all pins (Charge Device Model) (Note 6)................................................................................... ±2 KV  
ESD protection on all pins (Machine Model) (Note 7).............................................................................................±200V  
Maximum Junction Temperature.............................................................................................................................150C  
Storage Temperature...................................................................................................................................-65 to +150C  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device, at those or any other conditions above those  
indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: LIN 2.x compliant specification.  
2: SAE J2602 compliant specification.  
3: ISO 7637/1 load dump compliant (t < 500 ms).  
4: According to IEC 61000-4-2, 330 ohm, 150 pF and Transceiver EMC Test Specifications [2] to [4]. For WAKE  
pin to meet the specification, series resistor must be in place (refer to Example 1-2).  
5: According to AEC-Q100-002/JESD22-A114.  
6: According to AEC-Q100-011B.  
7: According to AEC-Q100-003/JESD22-A115.  
2.2  
Nomenclature Used in This Document  
Some terms and names used in this data sheet deviate from those referred to in the LIN specifications. Equivalent  
values are shown below.  
LIN 2.1 Name  
VBAT  
Term used in the following tables  
Definition  
ECU operating voltage  
not used  
VBB  
VSUP  
Supply voltage at device pin  
Current Limit of driver  
Recessive state  
IBUS_LIM  
VBUSREC  
VBUSDOM  
ISC  
VIH(LBUS)  
VIL(LBUS)  
Dominant state  
DS20002230F-page 12  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
2.3  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 30.0V, TA = -40°C to +125°C  
DC Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power  
VBB Quiescent Operating  
Current  
IBBQ  
90  
75  
150  
120  
µA  
µA  
µA  
Operating Mode,  
bus recessive (Note 1)  
VBB Transmitter-off Current  
IBBTO  
Transmitter off,  
bus recessive (Note 1)  
VBB Power-Down Current  
IBBPD  
-1  
5
15  
1
VBB Current  
with VSS Floating  
IBBNOGND  
mA VBB = 12V, GND to VBB,  
VLIN = 0-27V  
Microcontroller Interface  
High-Level Input Voltage  
(TXD, FAULT/TXE)  
VIH  
VIL  
IIH  
2.0  
-0.3  
-2.5  
-10  
30  
0.8  
V
V
Low-Level Input Voltage  
(TXD, FAULT/TXE)  
High-Level Input Current  
(TXD, FAULT/TXE)  
µA  
µA  
V
Input voltage = 4.0V  
Input voltage = 0.5V  
Low-Level Input Current  
(TXD, FAULT/TXE)  
IIL  
High-Level Voltage (VREN)  
VHVREN  
IHVREN  
-0.3  
-40  
VBB+0.3  
-10  
High-Level Output Current  
(VREN)  
mA Output voltage = VBB-  
0.5V  
-125  
-35  
30  
Output voltage = VBB-  
2.0V  
High-Level Input Voltage  
(CS)  
VIH  
VIL  
IIH  
2.0  
V
V
Through a current limiting  
resistor  
Low-Level Input Voltage  
(CS)  
-0.3  
0.8  
10.0  
5.0  
High-Level Input Current  
(CS)  
µA  
µA  
V
Input voltage = 4.0V  
Input voltage = 0.5V  
Low-Level Input Current  
(CS)  
IIL  
Low-Level Input Voltage  
(WAKE)  
VIL  
VOL  
IOH  
VBB – 4.0V  
Low-Level Output Voltage  
(RXD)  
-1  
0.4  
-1  
V
IIN = 2 mA  
High-Level Output Current  
(RXD)  
µA  
VLIN = VBB, VRXD = 5.5V  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 13  
MCP2003/4/3A/4A  
2.3  
DC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 30.0V, TA = -40°C to +125°C  
DC Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Bus Interface  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Hysteresis  
VIH(LBUS)  
VIL(LBUS)  
VHYS  
0.6 VBB  
V
V
V
Recessive state  
-8  
40  
0.4 VBB  
0.175 VBB  
200  
Dominant state  
VIH(LBUS) – VIL(LBUS)  
Low-Level Output Current  
IOL(LBUS)  
mA Output voltage = 0.1 VBB,  
VBB = 12V  
High-Level Output Current  
Pull-up Current on Input  
IOH(LBUS)  
IPU(LBUS)  
5
20  
µA  
180  
µA  
~30 kinternal pull-up  
@ VIH (LBUS) = 0.7 VBB  
Short Circuit Current Limit  
High-Level Output Voltage  
Driver Dominant Voltage  
Driver Dominant Voltage  
Driver Dominant Voltage  
Driver Dominant Voltage  
ISC  
50  
0.9 VBB  
200  
VBB  
1.2  
2.0  
mA (Note 1)  
VOH(LBUS)  
V_LOSUP  
V
V
V
V
V
VBB = 7V, RLOAD = 500  
V_HISUP  
VBB = 18V, RLOAD = 500  
VBB = 7V, RLOAD = 1 k  
VBB = 18V, RLOAD = 1 k  
V_LOSUP - 1K  
V_HISUP - 1K  
IBUS_PAS_DOM  
0.6  
0.8  
Input Leakage Current  
(at the receiver during  
dominant bus level)  
-1  
-0.4  
mA Driver off,  
VBUS = 0V,  
VBB = 12V  
Input Leakage Current  
(at the receiver during  
recessive bus level)  
IBUS_PAS_REC  
12  
20  
µA  
Driver off,  
8V < VBB < 18V  
8V < VBUs < 18V  
VBUS VBB  
Leakage Current  
(disconnected from ground)  
IBUS_NO_GND  
IBUS_NO_VBB  
VBUS_CNT  
-10  
1.0  
+10  
10  
µA  
µA  
V
GNDDEVICE = VBB,  
0V < VBUS < 18V,  
VBB = 12V  
Leakage Current  
(disconnected from VBB)  
VBB = GND,  
0 < VBUS < 18V,  
(Note 2)  
Receiver Center Voltage  
0.475 VBB 0.5 VBB 0.525 VBB  
VBUS_CNT = (VIL (LBUS) +  
VIH (LBUS))/2  
Slave Termination  
RSLAVE  
CSLAVE  
20  
30  
47  
50  
k  
Capacitance of Slave Node  
pF  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
DS20002230F-page 14  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
2.4  
AC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 27.0V; TA = -40°C to +125°C  
AC Characteristics  
Parameter  
Sym.  
Min. Typ. Max. Units  
Test Conditions  
Bus Interface – Constant Slope Time Parameters  
Slope Rising and Falling Edges  
tSLOPE  
3.5  
22.5  
4.0  
µs 7.3V <= VBB <= 18V  
Propagation Delay of  
Transmitter  
tTRANSPD  
µs  
tTRANSPD = max (tTRANSPDR or  
tTRANSPDF)  
Propagation Delay of Receiver  
tRECPD  
6.0  
2.0  
µs  
µs  
tRECPD = max (tRECPDR or tRECPDF)  
Symmetry of Propagation  
Delay of Receiver Rising Edge  
w.r.t. Falling Edge  
tRECSYM  
-2.0  
tRECSYM = max (tRECPDF – tRECPDR)  
RRXD 2.4to VCC, CRXD 20 pF  
Symmetry of Propagation  
Delay of Transmitter Rising  
Edge w.r.t. Falling Edge  
tTRANSSYM -2.0  
2.0  
µs  
tTRANSSYM = max (tTRANSPDF -  
tTRANSPDR)  
Time to Sample of FAULT/TXE  
for Bus Conflict Reporting  
tFAULT  
32.5  
µs  
tFAULT = max (tTRANSPD + tSLOPE +  
tRECPD)  
Duty Cycle 1 @20.0 kbit/sec  
Duty Cycle 2 @20.0 kbit/sec  
Duty Cycle 3 @10.4 kbit/sec  
Duty Cycle 4 @10.4 kbit/sec  
0.396  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(MAX) = 0.744 x VBB,  
THDOM(MAX) = 0.581 x VBB,  
VBB =7.0V – 18V; tBIT = 50 µs  
D1 = tBUS_REC(MIN)/2 x tBIT)  
0.417  
0.581  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(MAX) = 0.284 x VBB,  
THDOM(MAX) = 0.422 x VBB,  
VBB =7.6V – 18V; tBIT = 50 µs  
D2 = tBUS_REC(MAX)/2 x tBIT)  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(MAX) = 0.778 x VBB,  
THDOM(MAX) = 0.616 x VBB,  
VBB =7.0V – 18V; tBIT = 96 µs  
D3 = tBUS_REC(MIN)/2 x tBIT)  
0.590  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(max) = 0.251 x VBB,  
THDOM(MAX) = 0.389 x VBB,  
VBB =7.6V – 18V; tBIT = 96 µs  
D4 = tBUS_REC(MAX)/2 x tBIT)  
Wake-up Timing  
Bus Activity Debounce time  
tBDB  
tBACTVE  
tWAKE  
5
70  
30  
20  
125  
150  
90  
µs MCP2003/2004  
µs MCP2003A/2004A  
µs MCP2003/2004  
µs MCP2003A/2004A  
30  
35  
10  
Bus Activity to VREN on  
WAKE to VREN on  
150  
µs  
Chip Select to VREN on  
Chip Select to VREN off  
VREN floating  
tCSOR  
tCSPD  
150  
80  
µs  
µs VREN floating  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 15  
MCP2003/4/3A/4A  
2.5  
Thermal Specifications  
Parameter  
Symbol  
Typ.  
Max.  
Units  
Test Conditions  
Recovery Temperature  
RECOVERY  
SHUTDOWN  
tTHERM  
+140  
+150  
1.5  
C  
C  
ms  
Shutdown Temperature  
Short Circuit Recovery Time  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
5.0  
JA  
JA  
JA  
35.7  
89.3  
C/W  
C/W  
C/W  
149.5  
Note 1: The maximum power dissipation is a function of TJMAX, JA and ambient temperature TA. The maximum  
allowable power dissipation at an ambient temperature is PD = (TJMAX - TA)JA. If this dissipation is  
exceeded, the die temperature will rise above 150C and the device will go into thermal shutdown.  
DS20002230F-page 16  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
2.6  
Typical Performance Curves  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VBB = 6.0V to 18.0V, TA = -40°C to +125°C.  
FIGURE 2-1:  
TYPICAL IBBQ  
FIGURE 2-3:  
TYPICAL IBBTO  
0.14  
0.12  
0.1  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
-40C  
-40C  
0.08  
0.06  
0.04  
0.02  
25C  
85C  
125C  
25C  
85C  
125C  
0
0
6
7.3  
12  
14.4  
18  
6V  
7.3V  
12V  
14.4V  
18V  
VBB (V)  
VBB (V)  
FIGURE 2-2:  
TYPICAL IBBPD  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
-40C  
25C  
85C  
125C  
0
6
7.3  
12  
14.4  
18  
VBB (V)  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 17  
MCP2003/4/3A/4A  
2.7  
Timing Diagrams and Specifications  
FIGURE 2-4:  
BUS TIMING DIAGRAM  
TXD  
50%  
50%  
LBUS  
.95VLBUS  
.50VBB  
0.05VLBUS  
TTRANSPDR  
0.0V  
TTRANSPDF  
TRECPDF  
TRECPDR  
RXD  
50%  
50%  
Internal TXD/RXD  
Compare  
Match  
Match  
Stable  
Match  
Match  
Match  
FAULT Sampling  
TFAULT  
TFAULT  
Hold  
Value  
Hold  
Value  
Stable  
Stable  
FAULT/TXE Output  
FIGURE 2-5:  
CS TO VREN TIMING DIAGRAM  
CS  
TCSOR  
VBB  
VREN  
OFF  
TCSPD  
DS20002230F-page 18  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
FIGURE 2-6:  
MCP2003/4 REMOTE WAKE-UP  
LBUS  
0.4VBB  
tBDB  
tBACTIVE  
VBB  
VREN  
FIGURE 2-7:  
MCP2003A/4A REMOTE WAKE-UP  
LBUS  
0.4VBB  
tBDB  
tBACTIVE  
VBB  
VREN  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 19  
MCP2003/4/3A/4A  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
Examples:  
8-Lead DFN (4x4)  
2004A  
E/MD^^  
e
3
1406  
256  
8-Lead PDIP (300 mil)  
Examples:  
MCP2003A  
e
3
E/P^256  
1406  
Examples:  
8-Lead SOIC (150 mil)  
MCP2003E  
SN^^1406  
256  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20002230F-page 20  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 1 of 2  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 21  
MCP2003/4/3A/4A  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 2 of 2  
DS20002230F-page 22  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 23  
MCP2003/4/3A/4A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆꢓꢆꢔꢕꢕꢆꢖꢋꢈꢆꢗꢘꢅꢙꢆꢚꢇꢍꢏꢇꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
ꢯꢄꢃꢏꢇ  
ꢰꢱꢝꢲꢠꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢁꢀꢣꢣꢅꢩꢛꢝ  
ꢁꢀꢞꢣ  
ꢁꢞꢀꢣ  
ꢁꢙꢨꢣ  
ꢁꢞꢺꢨ  
ꢁꢀꢞꢣ  
ꢁꢣꢀꢣ  
ꢁꢣꢺꢣ  
ꢁꢣꢀꢶ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢩꢉꢇꢌꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢛꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢛꢘꢕꢈꢊꢋꢌꢐꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢔꢀ  
ꢌꢩ  
ꢁꢙꢀꢣ  
ꢁꢀꢸꢨ  
ꢁꢀꢀꢨ  
ꢁꢣꢀꢨ  
ꢁꢙꢸꢣ  
ꢁꢙꢥꢣ  
ꢁꢞꢥꢶ  
ꢁꢀꢀꢨ  
ꢁꢣꢣꢶ  
ꢁꢣꢥꢣ  
ꢁꢣꢀꢥ  
ꢁꢞꢙꢨ  
ꢁꢙꢶꢣ  
ꢁꢥꢣꢣ  
ꢁꢀꢨꢣ  
ꢁꢣꢀꢨ  
ꢁꢣꢻꢣ  
ꢁꢣꢙꢙ  
ꢁꢥꢞꢣ  
ꢫꢃꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢯꢡꢡꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢳꢕꢗꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢼꢕꢗꢅꢛꢡꢉꢖꢃꢄꢜꢅꢅꢚ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢚꢅꢛꢃꢜꢄꢃꢎꢃꢖꢉꢄꢏꢅꢝꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁꢣꢀꢣꢤꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢥꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪꢅꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢀꢶꢩ  
DS20002230F-page 24  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 25  
MCP2003/4/3A/4A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002230F-page 26  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢜꢒꢆꢓꢆꢜꢄꢠꢠꢘꢡꢢꢆꢔꢣꢤꢕꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢞꢟꢏꢥꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 27  
MCP2003/4/3A/4A  
NOTES:  
DS20002230F-page 28  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
APPENDIX A: REVISION HISTORY  
Revision F (November 2014)  
The following is the list of modifications:  
1. Updated typical application circuits with values  
used during ESD tests.  
Revision E (October 2013)  
The following is the list of modifications:  
2. Added additional specification for IHVREN in  
Section 2.3 “DC Specifications”.  
3. Clarified wake-up on LBUS functionality.  
4. Added RXD monitoring description.  
Revision D (December 2011)  
The following is the list of modifications:  
5. Added the MCP2003A and MCP2004A devices  
and related information throughout the  
document.  
6. Updated Figures 1.2, 1.3, 1.4, 1.5, 2.6, 2.7.  
Revision C (August 2010)  
The following is the list of modifications:  
1. Updated all references of Sleep mode to Power-  
Down mode, and updated the Max. parameter  
for Duty Cycle 2 in Section 2.4 “AC Specifica-  
tions”.  
Revision B (July 2010)  
The following is the list of modifications:  
1. Added Section 2.2 “Nomenclature Used in  
This Document”, and added the “Capacitance  
of Slave Node” parameter to Section 2.3 “DC  
Specifications”.  
Revision A (March 2010)  
• Original Release of this Document.  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 29  
MCP2003/4/3A/4A  
NOTES:  
DS20002230F-page 30  
2010-2014 Microchip Technology Inc.  
MCP2003/4/3A/4A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
Temperature  
Range  
Package  
a)  
b)  
c)  
d)  
MCP2003A-E/MD: Extended Temperature,  
8L-DFN package  
MCP2003A-E/P:  
Extended Temperature,  
8L-PDIP package  
Device:  
MCP2003: LIN Transceiver, with WAKE pins, wake-up on  
falling edge of LBUS  
MCP2003A-E/SN: Extended Temperature,  
8L-SOIC package  
MCP2003T: LIN Transceiver, with WAKE pins, wake-up on  
falling edge of LBUS (Tape and Reel) (DFN and  
SOIC only)  
MCP2003AT-E/MD: Tape and Reel,  
Extended Temperature,  
8L-DFN package  
MCP2003A: LIN Transceiver, with WAKE pins, wake-up on  
rising edge of LBUS  
e)  
MCP2003AT-E/SN: Tape and Reel,  
Extended Temperature,  
MCP2003AT: LIN Transceiver, with WAKE pins, wake-up on  
rising edge of LBUS (Tape and Reel) (DFN and  
SOIC only)  
8L-SOIC package  
a)  
b)  
c)  
d)  
MCP2004-E/MD: Extended Temperature,  
8L-DFN package  
MCP2004: LIN Transceiver with FAULT/TXE pins, wake-up  
on falling edge of LBUS  
MCP2004-E/P:  
Extended Temperature,  
8L-PDIP package  
MCP2004T: LIN Transceiver with FAULT/TXE pins, wake-up  
on falling edge of LBUS (Tape and Reel) (DFN  
and SOIC only)  
MCP2004A-E/SN: Extended Temperature,  
8L-SOIC package  
MCP2004A: LIN Transceiver with FAULT/TXE pins, wake-up  
on rising edge of LBUS  
MCP2004AT-E/MD: Tape and Reel,  
Extended Temperature,  
MCP2004AT: LIN Transceiver with FAULT/TXE pins, wake-up  
on rising edge of LBUS (Tape and Reel) (DFN  
and SOIC only)  
8L-DFN package  
e)  
MCP2004AT-E/SN: Tape and Reel,  
Extended Temperature,  
8L-SOIC package  
Temperature Range:  
Package:  
E
=
=
-40°C to +125°C  
MD  
Plastic Dual Flat, No Lead Package - 4x4x0.9mm  
Body, 8-lead  
P
SN  
=
=
Plastic Dual In-Line - 300 mil Body, 8-lead  
Plastic Small Outline - Narrow 3.90mm Body, 8-lead  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 31  
MCP2003/4/3A/4A  
NOTES:  
DS20002230F-page 32  
2010-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-803-2  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2010-2014 Microchip Technology Inc.  
DS20002230F-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002230F-page 34  
2010-2014 Microchip Technology Inc.  

相关型号:

MCP2004T-E/MD

LIN J2602 Transceiver
MICROCHIP

MCP2004T-E/P

LIN J2602 Transceiver
MICROCHIP

MCP2004T-E/SN

LIN J2602 Transceiver
MICROCHIP

MCP201

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP201-E

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP201-E/MF

DATACOM, INTERFACE CIRCUIT, PDSO8, 6 X 5 MM, PLASTIC, DFN-8
MICROCHIP

MCP201-E/P

DATACOM, INTERFACE CIRCUIT, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MICROCHIP

MCP201-E/SN

DATACOM, INTERFACE CIRCUIT, PDSO8, 0.150 INCH, PLASTIC, SOIC-8
MICROCHIP

MCP201-EMF

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP201-EP

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP201-ESN

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP201-I

LIN Transceiver with Voltage Regulator
MICROCHIP