MCP2021T-500E/MD-AE3VAO [MICROCHIP]

Interface Circuit, PDSO8;
MCP2021T-500E/MD-AE3VAO
型号: MCP2021T-500E/MD-AE3VAO
厂家: MICROCHIP    MICROCHIP
描述:

Interface Circuit, PDSO8

电信 光电二极管 电信集成电路
文件: 总54页 (文件大小:2019K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2021/2/1P/2P  
LIN Transceiver with Voltage Regulator  
Features:  
Description:  
• The MCP2021/2/1P/2P are Compliant with LIN  
Bus Specifications 1.3, 2.1 and are Compliant to  
SAE J2602-2  
The MCP2021/2/1P/2P provides a bidirectional, half-  
duplex communication physical interface to automotive  
and industrial LIN systems that meets the LIN bus  
specification Revision 2.1 and SAE J2602-2. The  
devices incorporate a voltage regulator with 5V at  
50 mA or 3.3V at 50 mA regulated power-supply  
outputs.  
• Support Baud Rates up to 20 kBaudwith  
LIN-compatible Output Driver  
• 43V Load Dump Protected  
• Very Low EMI Meets Stringent OEM Requirements  
• Wide Supply Voltage, 6.0V-18.0V Continuous:  
- Maximum input voltage of 30V  
The regulator is short-circuit protected, and is protected  
by an internal thermal shutdown circuit. The device has  
been specifically designed to operate in the automotive  
operating environment and will survive all specified  
transient conditions while meeting all of the stringent  
quiescent current requirements.  
• Extended Temperature Range: -40 to +125°C  
• Interface to PIC® EUSART and Standard USARTs  
• Local Interconnect Network (LIN) Bus Pin:  
- Internal pull-up resistor and diode  
- Protected against ground shorts  
The MCP2021/2/1P/2P family of devices includes the  
following packages.  
- Protected against loss of ground  
- High-current drive  
8-pin PDIP, DFN and SOIC packages:  
• MCP2021-330, LIN-compatible driver, 8-pin, 3.3V  
regulator, wake up on dominant level of LBUS  
• Automatic Thermal Shutdown  
• On-Chip Voltage Regulator:  
• MCP2021-500, LIN-compatible driver, 8-pin, 5.0V  
regulator, wake up on dominant level of LBUS  
- Output voltage of 5.0V with tolerances of  
±3% overtemperature range  
• MCP2021P-330, LIN-compatible driver, 8-pin,  
3.3V regulator, wake up at falling edge of LBUS  
voltage  
- Available with alternate output voltage of  
3.3V with tolerances of ±3% overtemperature  
range  
• MCP2021P-500, LIN-compatible driver, 8-pin,  
5.0V regulator, wake up at falling edge of LBUS  
voltage  
- Maximum continuous input voltage of 30V  
- Internal thermal overload protection  
- Internal short circuit current limit  
14-pin PDIP, TSSOP and SOIC packages with RESET  
output:  
- External components limited to filter capacitor  
and load capacitor  
• MCP2022-330, LIN-compatible driver, 14-pin,  
3.3V regulator, RESET output, wake up on  
dominant level of LBUS  
• Two Low-Power modes:  
- Receiver On, Transmitter Off, Voltage  
• MCP2022-500, LIN-compatible driver, 14-pin,  
5.0V regulator, RESET output, wake up on  
dominant level of LBUS  
Regulator On (85 µA)  
- Receiver Monitoring Bus, Transmitter Off,  
Voltage Regulator Off (16 µA)  
• MCP2022P-330, LIN-compatible driver, 14-pin,  
3.3V regulator, RESET output, wake up at falling  
edge of LBUS voltage  
• MCP2022P-500, LIN-compatible driver, 14-pin,  
5.0V regulator, RESET output, wake up at falling  
edge of LBUS voltage  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 1  
MCP2021/2/1P/2P  
Package Types  
MCP2021,  
6x5 DFN-S*  
MCP2021, MCP2021P  
4x4 DFN*  
FAULT/TXE  
RXD  
8
7
1
FAULT/TXE  
RXD  
1
2
8
7
CS/LWAKE  
VBB  
LBUS  
VSS  
2
EP  
9
CS/LWAKE  
VBB  
LBUS  
VSS  
EP  
9
VREG  
TXD  
6
5
3
4
VREG  
TXD  
3
4
6
5
MCP2022, MCP2022P  
PDIP, SOIC, TSSOP  
MCP2021, MCP2021P  
PDIP, SOIC  
1
2
3
14  
13  
12  
FAULT/TXE  
VBB  
RXD  
CS/LWAKE  
VREG  
RXD  
1
2
3
4
8
7
6
FAULT/TXE  
VBB  
LBUS  
VSS  
CS/LWAKE  
VREG  
TXD  
4
5
11  
10  
9
LBUS  
VSS  
TXD  
RESET  
NC  
NC  
NC  
NC  
5
6
7
NC  
8
* Includes Exposed Thermal Pad (EP); see Table 1-2.  
MCP2021/2 Block Diagram  
Thermal  
Protection  
Short Circuit  
Protection  
RESET  
(MCP2022 ONLY)  
Voltage  
Regulator  
VBB  
Ratiometric  
Reference  
Internal Circuits  
VREG  
Wake-Up  
Logic and  
Power Control  
RXD  
+
~30 k  
CS/LWAKE  
TXD  
LBUS  
VSS  
OC  
FAULT/TXE  
Short Circuit  
Protection  
Thermal  
Protection  
DS20002018H-page 2  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
MCP2021P/2P Block Diagram  
RESET  
(MCP2022P ONLY)  
Thermal  
Protection  
Short-Circuit  
Protection  
Voltage  
Regulator  
VBB  
Ratiometric  
Reference  
Internal Circuits  
VREG  
Wake-Up  
Logic and  
Power Control  
RXD  
+
~30  
kΩ  
CS/LWAKE  
TXD  
LBUS  
VSS  
OC  
FAULT/TXE  
Thermal  
and  
Short-Circuit  
Protection  
Short-Circuit  
Protection  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 3  
MCP2021/2/1P/2P  
NOTES:  
DS20002018H-page 4  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
EQUATION 1-1:  
1.0  
DEVICE OVERVIEW  
The MCP2021/2/1P/2P provides a physical interface  
between a microcontroller and a LIN half-duplex bus. It  
is intended for automotive and industrial applications  
with serial bus speeds up to 20 Kbaud.  
RTP (VBBmin - 5.5) / 250 mA.  
5.5V = VUVLO + 1.0V,  
250 mA is the peak current at Power-On when  
VBB = 5.5V  
The MCP2021/2/1P/2P provides  
a
half-duplex,  
bidirectional communications interface between a  
microcontroller and the serial network bus. This device  
will translate the CMOS/TTL logic levels to LIN-level  
logic, and vice versa.  
1.2  
Internal Protection  
1.2.1  
ESD PROTECTION  
For component-level ESD ratings, please refer to the  
The LIN specification 2.0 requires that the  
transceiver(s) of all nodes in the system be connected  
via the LIN pin, referenced to ground, and with a  
maximum external termination resistance load of 510Ω  
from LIN bus to battery supply. The 510corresponds  
to one Master and sixteen Slave nodes.  
Section 2.1 “Absolute Maximum Ratings†”.  
1.2.2  
GROUND LOSS PROTECTION  
The LIN Bus specification states that the LIN pin must  
transition to the recessive state when ground is  
disconnected. Therefore, a loss of ground effectively  
forces the LIN line to a high-impedance level.  
The MCP2021/2/1P/2P-500 provides a +5V, 50 mA,  
regulated power output. The regulator uses an LDO  
design, is short-circuit protected, and will turn the  
regulator output off if it falls below 3.5V.  
1.2.3  
THERMAL PROTECTION  
The thermal protection circuit monitors the die tem-  
perature and is able to shut down the LIN transmitter  
and voltage regulator if it detects a thermal overload.  
The  
MCP2021/2/1P/2P  
also  
includes  
thermal-shutdown protection.  
There are three causes for a thermal overload. A  
thermal shut down can be triggered by any one, or a  
combination of, the following thermal overload  
conditions:  
The regulator is specifically designed to operate in the  
automotive environment and will survive +43V load  
dump transients, double-battery jumps, and reverse  
battery connections when a reverse blocking diode is  
used.  
The  
other  
members  
of  
the  
• Voltage regulator overload  
• LIN bus output overload  
MCP2021/2/1P/2P-330 family output +3.3V at 50 mA  
with a turn-off voltage of 2.5V. (See Section 1.6  
“Internal Voltage Regulator”).  
• Increase in die temperature due to increase in  
environmental temperature  
MCP2021/2 wakes from Power-Down mode on a  
dominant level on LBUS. MCP2021P/2P wakes at a  
transition from recessive level to dominant level on  
LBUS.  
Driving the TXD and checking the RXD pin makes it pos-  
sible to determine whether there is a bus contention  
(i.e., RXD = low, TXD = high) or a thermal overload con-  
dition (i.e., RXD = high, TXD = low).  
1.1  
Optional External Protection  
1.1.1  
REVERSE BATTERY PROTECTION  
An external reverse-battery-blocking diode should be  
used to provide polarity protection (see Figure 1-6).  
1.1.2  
TRANSIENT VOLTAGE  
PROTECTION (LOAD DUMP)  
An external 43V transient suppressor (TVS) diode,  
between VBB and ground, with a 50transient protec-  
tion resistor (RTP) in series with the battery supply and  
the VBB pin, protect the device from power transients  
(see Figure 1-6) and ESD events. While this protection  
is optional, it is considered good engineering practice.  
The resistor value is chosen according to Equation 1-1.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 5  
MCP2021/2/1P/2P  
FIGURE 1-1:  
THERMAL SHUTDOWN STATE DIAGRAMS  
LBUS  
Output  
Overload  
Overload  
to VBB  
Voltage  
Regulator  
Shutdown  
Transmitter  
Shutdown  
Operation  
Mode  
Temperature <SHUTDOWNTEMP  
Temperature <SHUTDOWNTEMP  
LIN bus activity will also change the device from  
Power-Down mode to Ready mode. MCP2021/2  
wakes up on the dominant level of the LIN bus, and  
MCP2021P/2P on a falling edge that follows a domi-  
nant level lasting 20 µs of time.  
1.3  
Modes of Operation  
For an overview of all operational modes, please refer  
to Table 1-1.  
1.3.1  
POWER-ON RESET MODE  
The Power-Down mode can be reached through either  
Operation mode or Transmitter-Off mode.  
Upon application of VBB, the device enters Power-On  
Reset mode (POR). During this mode, the part main-  
tains the digital section in a Reset mode and waits until  
the voltage on pin VBB rises above the “ON” threshold  
(typically 5.75V) to enter to the Ready mode. If during  
the operation, the voltage on pin VBB falls below the  
“OFF” threshold (typically 4.25V), the part comes back  
to the POR mode.  
1.3.3  
READY MODE  
Upon entering Ready mode, the voltage regulator and  
receiver-threshold-detect circuit are powered up. The  
transmitter remains in an OFF state. The device is  
ready to receive data as soon as the regulator is stabi-  
lized, but not to transmit. If a microcontroller is being  
driven by the voltage regulator output, it will go through  
a POR and initialization sequence. The LIN pin is in the  
recessive state for MCP2021/2 and in floating state for  
MCP2021P/2P.  
1.3.2  
POWER-DOWN MODE  
In Power-Down mode, the transmitter and the voltage  
regulator are off. Only the receiver wake-up from the  
LIN bus section, and the CS/LWAKE pin wake-up  
circuits, are in operation. This is the lowest power  
mode.  
The device will stay in Ready mode until the output of  
the voltage regulator has stabilized and the CS/LWAKE  
pin is true (‘1’). After VREG is stable and CS/LWAKE is  
high, MCP2021/2 will enter Operation mode; and  
MCP2021P/2P will enter either Operation mode or  
Transmitter-Off mode, depending on the level of the  
FAULT/TXE pin (refer to Figure 1-4).  
If pin CS/LWAKE goes to a high level during  
Power-Down mode, the device immediately enters  
Ready mode and enables the voltage regulator; and  
after the output has stabilized (approximately 0.3 ms to  
1.2 ms), the device goes to Operation mode or Trans-  
mitter-Off mode (see Figure 1-2 for MCP2021/2 and  
Figure 1-4 for MCP2021P/2P).  
1.3.4  
OPERATION MODE  
In this mode, all internal modules are operational.  
The device will go into the Power-Down mode on the  
falling edge of CS/LWAKE.  
Note:  
The above time interval <1.2 ms assumes  
12V VBB input and no thermal shutdown  
event.  
For the MCP2021P/2P devices, the pull-up resistor is  
switched on only in this mode.  
DS20002018H-page 6  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Because of this, if the LIN bus becomes perma-  
nently shorted, it becomes impossible to place  
the MCP202X in a low-power state.  
1.3.5  
TRANSMITTER-OFF MODE  
Whenever the FAULT/TXE signal is low, or permanent  
dominant on TXD/LBUS is detected, the LBUS  
transmitter is off.  
3. State Machine Options:  
The MCP202XP device is able to enter  
Transmitter Off mode from Ready mode without  
transitioning through Operation mode. The  
MCP202X device must enter Operation mode  
from Ready mode. (see State Machine  
Diagrams, Figure 1-2 and Figure 1-3 for  
details). This capability allows the system  
designer to monitor the bus in Ready mode to  
determine if the system should transition to  
normal operation and connect the internal  
pull-up, or if Ready mode was reached due to an  
invalid condition. In the case of an invalid  
condition, the MCP202XP device can be placed  
into Power-Down mode without connecting the  
internal pull-up and waking other nodes on the  
LIN Bus network.  
The transmitter may be re-enabled whenever the  
FAULT/TXE signal returns high, either by removing the  
internal Fault condition or when the CPU returns the  
FAULT/TXE high. The transmitter will not be enabled if  
the FAULT/TXE pin is brought high when the internal  
fault is still present.  
If TX-OFF mode is caused by TXD/LBUS permanent  
dominant level, the transmitter can recover when the  
permanent dominant status disappears.  
The transmitter is also turned off whenever the voltage  
regulator is unstable or recovering from a fault. This  
prevents unwanted disruption of the bus during times of  
uncertain operation.  
1.3.6  
REMOTE WAKE-UP  
The Remote Wake-Up sub-module observes the LBUS  
in order to detect bus activity. Bus activity is detected  
when the voltage on the LBUS stays below a threshold  
of approximately 0.4 VBB for a typical duration of at  
least 20 µs. The MCP2021/2 device is level sensitive to  
LBUS. Dominant level longer than 20 µs will cause the  
device to leave the Power-Down mode. The  
MCP2021P/2P device is falling-edge sensitive to LBUS.  
Only the LBUS transition from recessive to dominant,  
followed by at least 20 µs dominant level, can wake up  
the device. Putting CS/LWAKE to high level also wakes  
up the device. Refer to Figure 1-2 and Figure 1-3.  
Note:  
To enter Transmitter Off, the system must  
set TXE ‘low’ before pulling CS high (see  
Figure 1-5). Otherwise, if CS is pulled high  
first, the MCP202XP will enter Operation  
mode due to the internal pull-up on TXE.  
To properly take advantage of the device differences,  
the system designer is required to implement some  
microcontroller code to the power-up routine. This code  
will monitor the status of the LIN bus to determine how  
to respond to the dominant signal. It will also determine  
if the local LIN node needs to respond or can ‘Listen  
Only’. If the local LIN node does not need to respond, it  
can enter Transmitter Off mode, disconnecting the  
30 kpull-up, reducing module current while still  
maintaining the ability to properly receive all valid LIN  
messages.  
1.3.7  
DIFFERENCE DETAILS BETWEEN  
MCP2021/2 AND MCP2021P/2P  
The MCP202XP is a minor variation of the MCP202X  
device that adds improved state machine control, as  
well as the ability to disconnect the internal 30kΩ  
pull-up between LIN and VBB in all modes except nor-  
mal operation. These changes allow the system  
designer to better handle Fault conditions and reduce  
the overall system current consumption. The differ-  
ences between the two device versions are as follows:  
1. Switchable LIN-VBB Pull-Up Resistor:  
On the MCP202XP device, the internal 30kΩ  
pull-up resistor is disconnected in all modes  
except Operation mode. On the MCP202X  
device, this pull-up resistor is always connected.  
(See the MCP2021/2 Block Diagram and the  
MCP2021P/2P Block Diagram for details.)  
2. Power-Down Wake-up on LIN Traffic:  
The MCP202XP device requires a LIN falling  
edge to generate a valid Wake condition, due to  
bus traffic. The MCP202X device will generate a  
Wake anytime LIN is at a valid dominant level.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 7  
MCP2021/2/1P/2P  
FIGURE 1-2:  
MCP2021/2 OPERATIONAL MODES STATE DIAGRAM  
Power-Down  
TX: OFF  
RX: OFF  
VREG: OFF  
CS/LWAKE = 0  
CS/LWAKE = 0  
Operation  
TX: ON  
CS/LWAKE = 1  
or dominant level on LBUS  
RX: ON  
VREG: ON  
FAULT/TXE = 0  
Or Faults*  
CS/LWAKE = 1&  
VREG_OK = 1  
FAULT/TXE = 1  
&No Faults*  
Ready  
TX: OFF  
RX: ON  
POR  
TX: OFF  
RX: OFF  
VREG: OFF  
Transmitter Off  
TX: OFF  
VREG: ON  
RX: ON  
VREG: ON  
Start  
*Fault: thermal shutdown and TXD/LBUS permanent dominant  
Note:  
While the device is in shutdown, TXD should not be actively driven high or it may power internal logic  
through the ESD diodes and may damage the device.  
FIGURE 1-3:  
MCP2021P/2P OPERATIONAL MODES DIAGRAMS  
Power-Down  
TX: OFF  
RX: OFF  
VREG: OFF  
CS/LWAKE = 0  
CS/LWAKE = 0  
Operation  
TX: ON  
CS/LWAKE = 1  
or Falling edge on LBUS  
RX: ON  
VREG: ON  
FAULT/TXE = 0  
Or Faults*  
CS/LWAKE = 1&  
VREG_OK = 1&  
FAULT/TXE = 1  
FAULT/TXE = 1  
&No Faults*  
Ready  
TX: OFF  
RX: ON  
POR  
TX: OFF  
RX: OFF  
VREG: OFF  
Transmitter Off  
TX: OFF  
VREG: ON  
RX: ON  
VREG: ON  
CS = 1& VREG_OK = 1  
&FAULT/TXE = 0  
Start  
*Fault: thermal shutdown and TXD/LBUS permanent dominant  
DS20002018H-page 8  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
FIGURE 1-4:  
MCP2021P/2P WAKE-UP DUE TO BUS DISCONNECTING  
CSLWAKE  
0
VREG  
FAULTTXE  
0
LBUS  
State  
Ready  
Sleep  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 9  
MCP2021/2/1P/2P  
FIGURE 1-5:  
FORCED POWER-DOWN MODE SEQUENCE FOR MCP2021P/2P  
tCSactive> = 2V  
CS/LWAKE  
VREG  
FAULT/TXE = 1  
Forced internally  
FAULT/TXE = 0  
FAULT/TXE  
Forced externally  
LBUS disconnected;  
e.g., Master pull-up &  
internal resistor off;  
LBUS floating.  
LBUS  
Transmitter-Off  
Mode  
Power-Down  
Mode  
STATE  
Operation Mode  
Forced Power-Down Mode after BUS-OFF  
instruction or a longer LIN-Bus inactivity  
( > = 4 sec according to LIN specification)  
DS20002018H-page 10  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
TABLE 1-1:  
State  
OVERVIEW OF OPERATIONAL MODES  
Voltage  
Transmitter Receiver  
Regulator  
Operation  
Comments  
POR  
OFF  
OFF  
OFF  
Read VBB; if VBB > 5.75V,  
proceed to Ready mode  
Ready  
OFF  
ON  
ON  
MCP2021/2:  
Bus OFF  
state  
If CS/LWAKE is high level, then proceed to  
Operation mode.  
MCP2021P/2P:  
If CS/LWAKE is high level and FAULT/TXE  
is high level, then proceed to Operation  
mode.  
If CS/LWAKE is high level and FAULT/TXE  
is low level, then proceed to TXOFF mode.  
Operation  
ON  
ON  
ON  
If CS/LWAKE is low level, then proceed to Normal  
Power-Down mode.  
Operation  
mode  
If FAULT/TXE is low level or TXD/LBUS  
permanent dominant is detected, then  
proceed to Transmitter-Off mode.  
Power-Down  
OFF  
OFF  
Activity  
Detect  
OFF  
ON  
On LIN bus falling, go to Ready mode. On Low-Power  
CS/LWAKE high level, go through Ready  
mode; then, to either operation or  
Transmitter-Off mode (refer to Figure 1-2  
and Figure 1-3).  
mode  
Transmitter-Off  
ON  
If CS/LWAKE is low level, then proceed to  
Power-Down mode.  
If FAULT/TXE is high, then proceed to  
Operation mode.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 11  
MCP2021/2/1P/2P  
1.4  
Pin Descriptions  
TABLE 1-2:  
PINOUT DESCRIPTIONS  
Devices  
Function  
14-Pin  
PDIP,  
SOIC,  
Pin  
Name  
Pin  
Type  
8-Pin  
4x4 DFN  
PDIP,  
Normal Operation  
6x5 DFN-S  
SOIC  
TSSOP  
RXD  
1
2
1
2
1
2
O
TTL  
O
Receive Data Output (CMOS)  
Chip Select (TTL)  
CS/LWAKE  
VREG  
TXD  
3
3
3
Power Output  
4
4
4
I
Transmit Data Input (TTL)  
Ground  
VSS  
5
5
11  
12  
6 – 10  
13  
14  
5
P
LBUS  
6
6
I/O  
P
LIN bus (Bidirectional)  
No Connection  
NC  
7
7
VBB  
Battery Supply  
FAULT/TXE  
RESET  
EP  
8
8
OD  
OD  
Fault Detect Output, Transmitter Enable (OD)  
RESET Signal Output (OD)  
Exposed Thermal Pad  
9
Legend: O = Output, P = Power, I = Input, TTL = TTL input buffer, OD = Open-Drain Output  
1.4.1 RECEIVE DATA OUTPUT (RXD) 1.4.3 POWER OUTPUT (VREG)  
Positive Supply Voltage Regulator Output pin.  
1.4.4 TRANSMIT DATA INPUT (TXD)  
The Receive Data Output pin is a standard CMOS  
output and follows the state of the LIN pin.  
The Transmit Data Input pin has an internal pull-up to  
VREG. The LIN pin is low (dominant) when TXD is low,  
and high (recessive) when TXD is high.  
1.4.2  
CHIP SELECT PIN (CS/LWAKE)  
An internal pull-down resistor will keep the CS/LWAKE  
pin low. This is done to ensure that no disruptive data  
will be present on the bus while the microcontroller is  
executing a POR and I/O initialization sequence. The  
pin must see a high level to activate the transmitter.  
For extra bus security, TXD is internally forced to ‘1’  
when VREG is less than 1.8V (typical).  
If the thermal protection detects an overtemperature  
condition while the signal TXD is low, the transmitter is  
shut down. The recovery from the thermal shutdown is  
equal to adequate cooling time.  
If CS/LWAKE = 0 when the VBB supply is turned on, the  
device stays in Ready mode (Low-Power mode). In  
Ready mode, both the receiver and the voltage  
regulator are on and the LIN transmitter driver is off.  
1.4.5  
GROUND PIN (VSS)  
If CS/LWAKE = 1 when the VBB supply is turned on, the  
device will proceed to either Operation or Transmit-  
ter-Off mode (refer to Figure 1-2 and Figure 1-3) after  
the VREG output has stabilized.  
Ground pin.  
1.4.6  
LIN BUS PIN (LBUS)  
The bidirectional LIN bus Interface pin is the driver unit  
for the LIN pin and is controlled by the signal TXD. LIN  
has an open collector output with a current limitation.  
To reduce EMI, the edges during the signal changes  
are slope-controlled. To further reduce radiated emis-  
sions, the LBUS pin has corner-rounding control for both  
falling and rising edges.  
This pin may also be used as a local wake-up input  
(see Figure 1-6). In this implementation, the microcon-  
troller will set the I/O pin that controls the CS/LWAKE  
as an high-impedance input. The internal pull-down  
resistor will keep the input low. An external switch, or  
other source, can then wake up the transceiver and the  
microcontroller.  
The internal LIN receiver observes the activities on the  
LIN bus, and generates output signal RXD that follows  
the state of the LBUS. A 1st degree with 1 µs time  
constant (160 kHz), low-pass input filter is placed to  
maintain EMI immunity.  
Note:  
CS/LWAKE should not be tied directly to  
VREG as this could force the MCP202X  
into Operation mode before the  
microcontroller is initialized.  
1.4.7  
NO CONNECTION (NC)  
No internal connection.  
DS20002018H-page 12  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
This pin has an internal pull-up resistor of  
approximately 750 k. The internal pull-up resistor  
may be too weak for some applications. We recom-  
mend adding a 10 kOhm external pull-up resistor to  
ensure a logic high level.  
1.4.8  
BATTERY POSITIVE SUPPLY  
VOLTAGE (VBB)  
Battery Positive Supply Voltage pin. This pin is also the  
input for the internal voltage regulator.  
1.4.9  
FAULT/TXE  
Note 1: The FAULT/TXE pin is true (0) whenever  
the internal circuits have detected a short  
or thermal excursion and have disabled  
the LBUS output driver.  
Fault Detect Output and Transmitter Enable Input  
bidirectional pin.  
This pin is an open-drain output. Its state is defined as  
shown in Table 1-3. The transmitter driver is disabled  
whenever this pin is low (‘0’), either from an internal  
Fault condition or by external drive. This allows the  
transmitter to be placed in an OFF state and still allow  
the voltage regulator to operate. Refer to Table 1-1.  
2: FAULT/TXE is true (0) when VREG not OK  
and has disabled the LBUS output driver.  
The FAULT/TXE pin sampled at a rate faster than every  
10 µs.  
The FAULT/TXE also signals a mismatch between the  
TXD input and the LBUS level. This can be used to  
detect a bus contention. Since the bus exhibits a  
propagation delay, the sampling of the internal  
compare is debounced to eliminate false faults.  
TABLE 1-3:  
FAULT/TXE TRUTH TABLE  
FAULT/TXE  
TXD  
In  
RXD  
Out  
LINBUS  
I/O  
Thermal  
Override  
Definition  
External  
Input  
Driven  
Output  
L
H
VBB  
OFF  
H
L
FAULT, TXD driven low, LBUS shorted to VBB  
(Note 1)  
H
L
H
x
H
L
L
x
VBB  
GND  
GND  
VBB  
OFF  
OFF  
OFF  
ON  
x
H
H
H
H
L
H
H
H
L
OK  
OK  
OK, data is being received from the LBUS  
FAULT, transceiver in thermal shutdown  
x
x
VBB  
x
NO FAULT, the CPU is commanding the  
transceiver to turn off the transmitter driver  
Legend: x = don’t care  
Note 1: The FAULT/TXE is valid after approximately 25 µs after TXD falling edge. This is to eliminate false fault  
reporting during bus propagation delays.  
1.4.10  
RESET  
1.4.11  
EXPOSED THERMAL PAD (EP)  
RESET is an open-drain output pin. This pin reflects an  
internal signal that tracks the internal system voltage  
has reached a valid, stable level.  
It is recommended to connect this pad to VSS to  
enhance electromagnetic immunity and thermal  
resistance.  
As long as the internal voltage is valid, this pin will keep  
high-impedance. When the system voltage drops  
below the minimum required, the voltage regulator will  
shut down and immediately convert the RESET output  
to short to GND. A pull-up resistor is needed to change  
the output to high/low voltage. When connected to a  
microcontroller input, this can provide a warning that  
the voltage regulator is shutting down (see Figure 1-2).  
Alternately, it can act as an external brown-out by  
connecting the RESET output to MCLR (see  
Figure 1-2). In addition to monitoring the internal  
voltage, RESET is asserted immediately upon entering  
the Power-Down mode.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 13  
MCP2021/2/1P/2P  
1.5  
Typical Applications  
FIGURE 1-6:  
TYPICAL MCP2021/MCP2021P APPLICATION  
+12  
+12  
(5)  
RTP  
WAKE-UP  
(5)  
Master Node Only  
+12  
43V  
CBAT  
CREG  
220 k  
VREG  
TXD  
VDD  
VBB  
TXD  
1 kΩ  
(6)  
LBUS  
LIN Bus  
RXD  
I/O  
RXD  
CS/LWAKE  
FAULT/TXE  
(3)  
(4)  
MMBZ27V  
I/O  
220 pF  
VSS  
VSS  
100 nF  
Note 1: Note CREG, the load capacitor, should be ceramic or tantalum rated for extended temperatures,  
1.0 – 22 µF. See Figure 2-1 to select the correct ESR.  
2: CBAT is the filter capacitor for the external voltage supply.  
3: This diode is only needed if CS/LWAKE is connected to the VBAT supply.  
4: Transient suppressor diode.  
5: These components are required for additional load dump protection above 43V.  
6: An external 10 kresistor is recommended for some applications.  
DS20002018H-page 14  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
FIGURE 1-7:  
TYPICAL MCP2022/MCP2022P APPLICATION  
+12  
+12  
(5)  
TP  
R
WAKE-UP  
(5)  
43V  
Master Node Only  
+12  
CBAT  
CREG  
220 k  
VDD  
VREG  
VBB  
TXD  
TXD  
1 kΩ  
LBUS  
LIN Bus  
RXD  
I/O  
RXD  
CS/LWAKE  
(3)  
(4)  
MMBZ27V  
I/O  
FAULT/  
RESET  
TXE  
220 pF  
INT or MCLR  
VSS  
VSS  
100 nF  
(6)  
DD  
V
Note 1: Note CREG, the load capacitor, should be ceramic or tantalum rated for extended temperatures,  
1.0 – 22 µF. See Figure 2-1 to select the correct ESR.  
2: CF is the filter capacitor for the external voltage supply.  
3: This diode is only needed if is connected to the VBAT supply.  
4: Transient suppressor diode.  
5: These components are required for additional load dump protection above 43V.  
6: Required if CPU does not have internal pull-up.  
FIGURE 1-8:  
TYPICAL LIN NETWORK CONFIGURATION  
40m  
+ Return  
LIN bus  
1 kΩ  
VBB  
LIN bus  
MCP202X  
LIN bus  
MCP202X  
LIN bus  
MCP202X  
LIN bus  
MCP202X  
Slave 1  
(MCU)  
Slave 2  
(MCU)  
Slave n <16  
(MCU)  
Master  
(MCU)  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 15  
MCP2021/2/1P/2P  
In the start phase, the device must detect at least 5.75V  
to initiate operation during power-up. In the  
Power-Down mode, the VBB monitor will be turned off.  
1.6  
Internal Voltage Regulator  
1.6.1  
5.0V REGULATOR  
The MCP2021 has a low-drop-out voltage, positive  
regulator capable of supplying 5.00 VDC ±3% at up to  
50 mA of load current, over the entire operating  
temperature range of -40°C to +125°C. With a load  
current of 50 mA, the minimum input to output voltage  
differential required for the output to remain in  
regulation is typically +0.5V (+1V maximum over the  
full operating temperature range). Quiescent current is  
less than 100 µA with a full 50 mA load current when  
the input to output voltage differential is greater than  
+3.00V.  
Note:  
The regulator has an overload current  
limiting of approximately 100 mA. During  
a short circuit, the VREG is monitored. If  
VREG is lower than 3.5V, the VREG will turn  
off. After a recovery time of about three  
milliseconds, the VREG will be checked  
again. If there is no short circuit  
(VREG >3.5V), the VREG will be switched  
back on.  
The regulator has a thermal shutdown. If the thermal  
protection circuit detects an overtemperature condition,  
and the signals TXD and RXD are Low, or TXD is High,  
the regulator will shut down. The recovery from the  
thermal shutdown is equal to adequate cooling time.  
Designed for automotive applications, the regulator will  
protect itself from double-battery jumps and up to +43V  
load dump transients. The voltage regulator has both  
short-circuit and thermal-shut-down protection built in.  
The regulator requires an external output bypass  
capacitor for stability. See Figure 2-1 for correct  
capacity and ESR for stable operation.  
Regarding the correlation between VBB, VREG and IDD,  
please refer to Figure 1-10 and Figure 1-11. When the  
input voltage (VBB) drops below the differential needed  
to provide stable regulation, the output VREG will track  
the input down to approximately 3.5V, at which point  
the regulator will turn off. This will allow microcontrol-  
lers with internal POR circuits to generate a clean arm-  
ing of the POR trip point. The MCP2021 will then  
monitor VBB and turn on the regulator when VBB rises  
above 5.75, again.  
Note:  
A ceramic capacitor of at least 10 µF or a  
tantalum capacitor of at least 2.2 µF is  
recommended for stability.  
In worst-case scenarios, the ceramic capacitor may  
derate by 50%, based on tolerance, voltage and tem-  
perature. Therefore, in order to ensure stability,  
ceramic capacitors smaller than 10 µF may require a  
small series resistance to meet the ESR requirements,  
as shown in Table 1-4.  
When the input voltage (VBB) drops below the differen-  
tial needed to provide stable regulation, the output  
VREG) will track the input down to approximately  
+4.25V. The regulator will turn off the output at this  
point. This will allow PIC microcontrollers with internal  
POR circuits to generate a clean arming of the POR trip  
point. The regulator output will stay off until VBB is  
TABLE 1-4:  
RECOMMENDED SERIES  
RESISTANCE FOR CERAMIC  
CAPACITORS  
above +5.75 VDC  
.
Resistance  
Capacitor  
1 µF  
0.47Ω  
0.22Ω  
0.1Ω  
2.2 µF  
4.7 µF  
6.9 µF  
DS20002018H-page 16  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
FIGURE 1-9:  
VOLTAGE REGULATOR BLOCK DIAGRAM  
Pass  
Element  
VBB  
VREG  
Sampling  
Network  
Fast  
Transient  
Loop  
Buffer  
VSS  
VREF  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 17  
MCP2021/2/1P/2P  
1.6.2  
3.3V REGULATOR  
A metal option provides for a alternate 3.30 VDC ±3%  
at up to 50 mA of load current over the entire operating  
temperature range of -40°C to +125°C. All  
specifications given above for the 5.0V operation apply  
except for any difference noted here.  
The same input tracking of 4.25V applies the 3.3V  
regulator.  
Note:  
The regulator has an overload current  
limiting of approximately 100 mA. If VREG  
is lower than 2.5V, the VREG will turn off.  
FIGURE 1-10:  
VOLTAGE REGULATOR OUTPUT ON POR  
VBB  
Minimum VBB to maintain regulation  
V
8
6
4
2
0
VON  
VOFF  
t
VREG  
V
VREG-NOM  
5
4
3
2
1
0
t
(4)  
(1)  
(2)  
(3)  
Note 1: Start-up, VBB < VON, regulator off.  
2: VBB > VON, regulator on.  
3: VBB  Minimum VBB to maintain regulation.  
4: VBB < VOFF, regulator will turn off.  
DS20002018H-page 18  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
FIGURE 1-11:  
VOLTAGE REGULATOR OUTPUT ON OVERCURRENT SITUATION  
IREG  
mA  
lLIM  
0
t
VREG  
V
6
5
VREG-NOM  
4
VSD  
3
2
1
0
t
(1)  
Note 1: IREG less than lLIM, regulator on.  
(2)  
2: After IREG exceeds lLIM, the voltage regulator output will be reduced until VSD is reached.  
1.7  
ICSP™ Considerations  
The following should be considered when the  
MCP2021/2/1P/2P is connected to pins supporting  
in-circuit programming:  
• Power used for programming the microcontroller  
can be supplied from the programmer or from the  
MCP2021/2/1P/2P.  
• The voltage on VREG should not exceed the  
maximum output voltage of VREG.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 19  
MCP2021/2/1P/2P  
NOTES:  
DS20002018H-page 20  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.0  
2.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VIN DC Voltage on RXD and TXD..........................................................................................................-0.3 to VREG+0.3V  
VIN DC Voltage on FAULT and RESET.........................................................................................................-0.3 to +5.5V  
VIN DC Voltage on CS/LWAKE.......................................................................................................................-0.3 to +43V  
VBB Battery Voltage, non-operating (LIN bus recessive, no regulator load, t < 60s) .....................................-0.3 to +43V  
VBB Battery Voltage, transient ISO 7637 Test 1 ......................................................................................................-200V  
VBB Battery Voltage, transient ISO 7637 Test 2a ...................................................................................................+150V  
VBB Battery Voltage, transient ISO 7637 Test 3a ....................................................................................................-300V  
VBB Battery Voltage, transient ISO 7637 Test 3b ...................................................................................................+200V  
VBB Battery Voltage, continuous....................................................................................................................-0.3 to +30V  
VLBUS Bus Voltage, continuous.......................................................................................................................-18 to +30V  
VLBUS Bus Voltage, transient (Note 1)............................................................................................................-27 to +43V  
ILBUS Bus Short Circuit Current Limit....................................................................................................................200 mA  
ESD protection on LIN, VBB (IEC 61000-4-2, 330 Ohm, 150 pF) (Note 3).............................................. minimum ±9 kV  
ESD protection on LIN, VBB (Charge Device Model) (Note 2)..............................................................................±1500V  
ESD protection on LIN, VBB (Human Body Model, 1 kOhm, 100 pF) (Note 4)....................................................... ±8 kV  
ESD protection on LIN, VBB (Machine Model) (Note 2)..........................................................................................±800V  
ESD protection on all other pins (Human Body Model) (Note 2) ............................................................................> 4 kV  
Maximum Junction Temperature............................................................................................................................. 150C  
Storage Temperature ..................................................................................................................................-55 to +150C  
Note 1: ISO 7637/1 load dump compliant (t < 500 ms).  
2: According to JESD22-A114-B.  
3: According to IBEE, without bus filter.  
4: Limited by Test Equipment.  
† NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 21  
MCP2021/2/1P/2P  
2.2  
DC Specifications  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CREG = 10 µF  
Parameter  
Power  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VBB Quiescent Operating  
Current  
IBBQ  
115  
210  
µA  
IOUT = 0 mA,  
LBUS recessive  
120  
90  
215  
190  
µA  
µA  
VOUT = 3.3V  
VBB Transmitter-Off  
Current  
IBBTO  
IBBPD  
With VREG on, transmitter  
off, receiver on,  
FAULT/TXE = VIL, CS = VIH  
95  
16  
210  
26  
µA  
µA  
VOUT = 3.3V  
VBB Power-Down Current  
With VREG powered-off,  
receiver on and transmitter  
off, FAULT/TXE = VIH,  
TXD = VIH, CS = VIL)  
VBB Current with VSS  
Floating  
IBBNOGND  
VIH  
-1  
1
mA VBB = 12V, GND to VBB,  
VLIN = 0-18V  
Microcontroller Interface  
High-Level Input Voltage  
(TXD, FAULT/TXE)  
2.0 or  
(0.25VREG  
+ 0.8)  
VREG  
+0.3  
V
V
Low-Level Input Voltage  
(TXD, FAULT/TXE)  
VIL  
IIH  
-0.3  
-2.5  
-10  
0.15 VREG  
High-Level Input Current  
(TXD, FAULT/TXE)  
µA  
µA  
µA  
V
Input voltage = 0.8*VREG  
Input voltage = 0.2*VREG  
Low-Level Input Current  
(TXD, FAULT/TXE)  
IIL  
Pull-up Current on Input  
(TXD)  
IPUTXD  
VIH  
-3.0  
0.7 VREG  
-0.3  
~800 kinternal pull-up to  
VREG @ VIH = 0.7*VREG  
High-Level Input Voltage  
(CS/LWAKE)  
VBB  
0.3VREG  
7.0  
Through a current-limiting  
resistor  
Low-Level Input Voltage  
(CS/LWAKE)  
VIL  
V
High-Level Input Current  
(CS/LWAKE)  
IIH  
µA  
µA  
µA  
Input voltage = 0.8*VREG  
Input voltage = 0.2*VREG  
Low-Level Input Current  
(CS/LWAKE)  
IIL  
3.0  
Pull-down Current on  
Input (CS/LWAKE)  
IPDCS  
6.0  
~1.3 Minternal pull-down  
to VSS @ VIH = 3.5V  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Characterized, not 100% tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
DS20002018H-page 22  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.2  
DC Specifications (Continued)  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CREG = 10 µF  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Bus Interface  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Hysteresis  
VIH(LBUS)  
VIL(LBUS)  
VHYS  
0.6 VBB  
18  
V
V
V
Recessive state  
-8  
0.4 VBB  
0.175 VBB  
200  
Dominant state  
VIH (LBUS) - VIL(LBUS)  
Low-Level Output  
Current  
IOL(LBUS)  
40  
mA Output voltage = 0.1 VBB,  
VBB = 12V  
Pull-up Current on Input  
IPU(LBUS)  
ISC  
5
180  
200  
µA  
~30 kinternal pull-up  
@ VIH (LBUS) = 0.7 VBB  
Short Circuit Current  
Limit  
50  
mA (Note 1)  
High-Level Output  
Voltage  
VOH(LBUS)  
0.8 VBB  
VBB  
V
V
VOH (LBUS) must be at least  
0.8 VBB  
Low-Level Output  
Voltage  
VOLLO  
(LBUS)  
0.2 VBB  
Input Leakage Current (at IBUS_PAS_DOM  
the receiver during  
dominant bus level)  
-1  
-1  
mA Driver off,  
VBUS = 0V,  
VBAT = 12V  
Leakage Current  
(disconnected from  
ground)  
IBUS_NO_GND  
IBUS  
+1  
10  
mA  
µA  
GNDDEVICE = VBAT,  
0V < VBUS < 18V,  
VBAT = 12V  
Leakage Current  
(disconnected from VBAT)  
VBAT = GND,  
0 < VBUS < 18V,  
TA = -40°C to +85°C  
(Note 3)  
50  
µA  
V
TA = +85°C to +125°C  
Receiver Center Voltage  
VBUS_CNT  
Rslave  
0.475 VBB  
20  
0.5  
VBB  
0.525 VBB  
VBUS_CNT = (VIL (LBUS) +  
VIH (LBUS))/2  
30  
Slave Termination  
Voltage Regulator – 5.0V  
Output Voltage  
47  
k  
VOUT  
4.85  
5.00  
10  
5.15  
50  
V
0 mA < IOUT < 50 mA,  
Load Regulation  
VOUT2  
mV 5 mA < IOUT < 50 mA  
refer to Section 1.6  
“Internal Voltage  
Regulator”  
Quiescent Current  
IVRQ  
25  
50  
µA  
dB  
IOUT = 0 mA, (Note 2)  
Power Supply Ripple  
Reject  
PSRR  
1 VPP @10-20 kHz  
CLOAD = 10 µf,  
ILOAD = 50 mA  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Characterized, not 100% tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 23  
MCP2021/2/1P/2P  
2.2  
DC Specifications (Continued)  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CREG = 10 µF  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Output Noise Voltage  
eN  
100  
µVRMS 10 Hz – 40 MHz  
CFILTER = 10 µf,  
CBP = 0.1 µf, CLOAD 10 µf,  
ILOAD = 50 mA  
Shutdown Voltage  
VSD  
VBB  
3.5  
6.0  
4.0  
V
V
See Figure 1-11 (Note 2)  
Input Voltage to Maintain  
Regulation  
18.0  
Input Voltage to Turn Off  
Output  
VOFF  
VON  
4.0  
5.5  
4.5  
6.0  
V
V
Input Voltage to Turn On  
Output  
Voltage Regulator – 3.3V  
Output Voltage  
VOUT  
3.20  
3.30  
10  
3.40  
50  
V
0 mA < IOUT < 50 mA  
Line Regulation  
VOUT1  
mV IOUT = 1 mA,  
6.0V < VBB < 18V  
Load Regulation  
VOUT2  
10  
50  
mV 5 mA < IOUT < 50 mA  
Refer to Section 1.6  
“Internal Voltage  
Regulator”  
Quiescent Current  
IVRQ  
25  
50  
µA  
dB  
IOUT = 0 mA, (Note 2)  
Power Supply Ripple  
Reject  
PSRR  
1 VPP @10-20 kHz  
CLOAD = 10 µf,  
ILOAD = 50 mA  
Output Noise Voltage  
eN  
100  
µVRMS 10 Hz – 40 MHz  
/Hz CFILTER = 10 µf, CBP =  
0.1 µf CLOAD = 10 µf,  
ILOAD = 50 mA  
Shutdown Voltage  
VSD  
VBB  
2.5  
6.0  
2.7  
V
V
See Figure 1-11 (Note 2)  
Input Voltage to Maintain  
Regulation  
18.0  
Input Voltage to Turn Off  
Output  
VOFF  
VON  
4.0  
5.5  
4.5  
6.0  
V
V
Input Voltage to Turn On  
Output  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Characterized, not 100% tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
DS20002018H-page 24  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
FIGURE 2-1:  
ESR CURVES FOR LOAD CAPACITOR SELECTION  
ESR Curves  
10  
1
Unstable  
Stable only  
with Tantalum or  
Electrolytic cap.  
Stable with  
Tantalum,  
Electrolytic and  
Ceramic cap.  
Unstable  
0.1  
0.01  
0.001  
Unstable  
1000  
0.1  
1
100  
10  
Load Capacitance [µF]  
Note:  
The graph shows the minimum required capacitance after derating due to tolerance, temperature  
and voltage.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 25  
MCP2021/2/1P/2P  
2.3  
AC Specification  
VBB = 6.0V to 18.0V; TA = -40°C to +125°C  
AC CHARACTERISTICS  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Bus Interface – Constant Slope Time Parameters  
Slope rising and falling  
edges  
tSLOPE  
tTRANSPD  
tRECPD  
3.5  
22.5  
4.0  
µs  
µs  
µs  
µs  
7.3V <= VBB <= 18V  
Propagation Delay of  
Transmitter  
tTRANSPD = max (tTRANSPDR or  
tTRANSPDF)  
Propagation Delay of  
Receiver  
6.0  
tRECPD = max (tRECPDR or  
tRECPDF)  
Symmetry of Propagation  
Delay of Receiver rising  
edge w.r.t. falling edge  
tRECSYM  
-2.0  
2.0  
tRECSYM = max (tRECPDF -  
tRECPDR)  
Symmetry of Propagation  
Delay of Transmitter rising  
edge w.r.t. falling edge  
tTRANSSYM  
tFAULT  
-2.0  
2.0  
µs  
µs  
tTRANSSYM = max (tTRANSPDF -  
tTRANSPDR)  
Time to sample of FAULT/  
TXE for bus conflict reporting  
32.5  
tFAULT = max (tTRANSPD +  
tSLOPE + tRECPD)  
Duty Cycle 1 @20.0 kbit/sec  
Duty Cycle 2 @20.0 kbit/sec  
Duty Cycle 3 @10.4 kbit/sec  
39.6  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660|10 nF; 500Ω  
THREC(MAX) = 0.744 x VBB,  
THDOM(MAX) = 0.581 x VBB,  
VBB =7.0V - 18V; tBIT = 50 µs.  
D1 = tBUS_REC(MIN) / 2 x tBIT)  
58.1  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660|10 nF; 500Ω  
THREC(MAX) = 0.284 x VBB,  
THDOM(MAX) = 0.422 x VBB,  
VBB =7.6V - 18V; tBIT = 50 µs.  
D2 = tBUS_REC(MAX) / 2 x tBIT)  
41.7  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660|10 nF;  
500THREC(MAX) = 0.778 x  
VBB,  
THDOM(MAX) = 0.616 x VBB,  
VBB =7.0V - 18V; tBIT = 96 µs.  
D3 = tBUS_REC(MIN) / 2 x tBIT)  
Duty Cycle 4 @10.4 kbit/sec  
59.0  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660|10 nF; 500Ω  
THREC(MAX) = 0.251 x VBB,  
THDOM(MAX) = 0.389 x VBB,  
VBB =7.6V - 18V; tBIT = 96 µs.  
D4 = tBUS_REC(MAX) / 2 x tBIT)  
Note 1: Time depends on external capacitance and load. Test condition: CREG=4.7 µF, no resistive load.  
2: Characterized, not 100% tested.  
DS20002018H-page 26  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.3  
AC Specification (Continued)  
VBB = 6.0V to 18.0V; TA = -40°C to +125°C  
AC CHARACTERISTICS  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Voltage Regulator  
Bus Activity Debounce Time  
tBDB  
5
10  
20  
µs  
µs  
Bus debounce time  
Bus Activity to Voltage  
Regulator Enabled  
tBACTVE  
100  
250  
500  
After bus debounce time  
Voltage Regulator Enabled  
to Ready  
tVEVR  
tCSR  
(Note 1)  
1200  
500  
µs  
µs  
Chip Select to Operation  
Ready  
Chip Select to Power-Down  
Short-Circuit to Shut-Down  
RESET Timing  
tCSPD  
80  
µs  
µs  
(Note 2)  
tSHUTDOWN  
20  
100  
VREG OK Detect to RESET  
Inactive  
tRPU  
tRPD  
10.0  
10.0  
µs  
µs  
VREG OK Detect to RESET  
Active  
Note 1: Time depends on external capacitance and load. Test condition: CREG=4.7 µF, no resistive load.  
2: Characterized, not 100% tested.  
2.4  
Thermal Specifications (Note 1)  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Typ.  
Max.  
Units  
Test Conditions  
Recovery Temperature  
RECOVERY  
SHUTDOWN  
tTHERM  
+140  
+150  
1.5  
C  
C  
ms  
Shutdown Temperature  
Short Circuit Recovery Time  
Thermal Package Resistances  
Thermal Resistance, 4x4 8L-DFN  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
5.0  
JA  
JA  
JA  
JA  
JA  
JA  
48  
89.3  
149.5  
70  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
90.8  
100  
Note 1: The maximum power dissipation is a function of TJMAX, JA and ambient temperature TA. The maximum  
allowable power dissipation at an ambient temperature is PD = (TJMAX - TA)JA. If this dissipation is  
exceeded, the die temperature will rise above 150C and the MCP2021 will go into thermal shutdown.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 27  
MCP2021/2/1P/2P  
2.5  
Typical Performance Curves  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VBB = 6.0V to 18.0V; TA = -40°C to +125°C.  
0.2  
60  
12V DFN  
18V DFN  
50  
0.15  
12V SOIC  
40  
18V SOIC  
30  
0.1  
20  
10  
0
VBB = 6V  
VBB = 7.3V  
VBB = 12V  
VBB = 14.4V  
VBB = 18V  
0.05  
0
-40C  
25C  
85C  
125C  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-2:  
Typical IBBQ vs.  
FIGURE 2-5:  
MCP2021-500 Safe  
Temperature.  
Operating Range.  
0.18  
0.16  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
60  
50  
40  
30  
20  
10  
0
12V DFN  
18V DFN  
12V SOIC  
18V SOIC  
VBB = 6V  
VBB = 7.3V  
VBB = 12V  
VBB = 14.4V  
VBB = 18V  
0
-40C  
25C  
85C  
125C  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-3:  
Typical IBBTO vs  
FIGURE 2-6:  
MCP2021-330 Safe  
Temperature.  
Operating Range.  
0.025  
0.02  
0.015  
0.01  
VBB = 6V  
VBB = 7.3V  
VBB = 12V  
VBB = 14.4V  
VBB = 18V  
0.005  
0
-40C  
25C  
85C  
125C  
Temperature (°C)  
FIGURE 2-4:  
Typical IBBPD vs.  
Temperature.  
DS20002018H-page 28  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.6  
Timing Diagrams and Specifications  
FIGURE 2-7:  
BUS TIMING DIAGRAM  
TXD  
50%  
50%  
LBUS  
0.95VLBUS  
0.50VBB  
0.4VBB  
0.0V  
tTRANSPDR  
tTRANSPDF  
tRECPDF  
tRECPDR  
50%  
RXD  
50%  
Internal TXD/RXD  
Compare  
Match  
Match  
Match  
Match  
Match  
FAULT Sampling  
tFAULT  
tFAULT  
Hold  
Hold  
Value  
FAULT/TXE Output  
Stable  
Stable  
Value  
Stable  
FIGURE 2-8:  
REGULATOR BUS WAKE TIMING DIAGRAM  
tVEVR  
LBUS  
0.4VBB  
tBDB + tBACTVE  
VREG  
VOUT  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 29  
MCP2021/2/1P/2P  
FIGURE 2-9:  
RESET TIMING DIAGRAM  
6.0V  
5.0V  
VBB  
5.0V  
4.0V  
3.5V  
VREG  
tRPD  
tRPD  
RESET  
tRPU  
tRPU  
FIGURE 2-10:  
CS/LWAKE TO RESET TIMING DIAGRAM  
CS/LWAKE  
tCSR  
tVEVR  
VREG-NOM  
VREG  
tRPD  
tCSPD  
tRPU  
RESET  
DS20002018H-page 30  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (4x4x0.9 mm) (MCP2021, MCP2021P)  
Example  
XXXXXX  
XXXXXX  
YYWW  
NNN  
202150  
E/MD  
e
3
1426  
256  
PIN 1  
PIN 1  
OR  
2021P3  
e
3
E/MD
1426  
256  
Example  
8-Lead DFN-S (6x5x0.9 mm) (MCP2021)  
2021330  
E/MF
e
3
1426  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 31  
MCP2021/2/1P/2P  
Example  
8-Lead PDIP (150 mil) (MCP2021)  
XXXXXXXX  
XXXXXNNN  
2021330  
e
3
E/P ^256  
1426  
YYWW  
8-Lead SOIC (150 mil) (MCP2021, MCP2021P)  
Example  
2021500E  
SN 1426  
e
3
256  
NNN  
OR  
2021P33E  
SN 1426  
e
3
256  
14-Lead PDIP (300 mil) (MCP2022)  
Example  
MCP2022-500  
e
3
E/P
1426256  
DS20002018H-page 32  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
14-Lead SOIC (150 mil) (MCP2022, MCP2022P)  
Example  
MCP2022-500  
e
3
E/SL
1426256  
OR  
2022P-330  
e
3
E/SL
1426256  
14-Lead TSSOP (4.4 mm) (MCP2022, MCP2022P)  
Example  
XXXXXXXX  
YYWW  
2022500E  
1426  
256  
NNN  
OR  
2022P33E  
1426  
256  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 33  
MCP2021/2/1P/2P  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 1 of 2  
DS20002018H-page 34  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 2 of 2  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 35  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002018H-page 36  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
L
b
N
N
K
E
E2  
EXPOSED PAD  
NOTE 1  
NOTE 1  
1
2
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
NOTE 2  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
1.27 BSC  
0.85  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Length  
Overall Width  
N
e
A
A1  
A3  
D
0.80  
0.00  
1.00  
0.05  
0.01  
0.20 REF  
5.00 BSC  
6.00 BSC  
4.00  
2.30  
0.40  
E
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
D2  
E2  
b
L
K
3.90  
2.20  
0.35  
0.50  
0.20  
4.10  
2.40  
0.48  
0.75  
0.60  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-122B  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 37  
MCP2021/2/1P/2P  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
DS20002018H-page 38  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 39  
MCP2021/2/1P/2P  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
DS20002018H-page 40  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 41  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002018H-page 42  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
ꢅꢆꢇꢃꢈꢉꢊꢋꢌꢈꢍꢂꢎꢏꢊꢐꢑꢈꢌꢌꢊꢒꢓꢂꢌꢎꢔꢃꢊꢕꢐꢀꢖꢊꢗꢊꢀꢈꢘꢘꢁꢙꢚꢊꢛꢜꢝꢞꢊꢑꢑꢊꢟꢁꢉꢠꢊꢡꢐꢒꢢꢣꢤ  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 43  
MCP2021/2/1P/2P  
14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
Units  
Dimension Limits  
INCHES  
NOM  
14  
.100 BSC  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.735  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.750  
.130  
.010  
.060  
.018  
.325  
.280  
.775  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-005B  
DS20002018H-page 44  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 45  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002018H-page 46  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 47  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002018H-page 48  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 49  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002018H-page 50  
2005-2014 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Revision C (April 2008)  
APPENDIX A: REVISION HISTORY  
Revision H (July 2014)  
The following is the list of modifications:  
1. Added LIN2.1 and J2602 compliance statement  
to Features section.  
The following is the list of modifications:  
2. Added recommended RC network for CS/  
LWAKE in Example 1-1.  
1. Updated Table 1-1.  
2. Updated Section 1.4, Pin Descriptions and  
Section 1.6.1 “5.0V Regulator”.  
3. Updated 2.1 “Absolute Maximum Ratings†”  
to reflect current test results.  
3. Updated Figures 1-6 and 1-7.  
4. Updated Figures 1-10 and 1-11.  
4. Updated 2.2 “DC Specifications” and 2.3 “AC  
Specification” 2.3 AC Specifications to reflect  
current production device.  
5. Added Section 2.5, Typical Performance  
Curves.  
5. Added 8-Lead SOIC Landing Pattern Outline  
drawing.  
6. Updated Section 3.0, Packaging Information.  
7. Updated the Product Identification System  
section.  
Revision B (August 2007)  
8. Minor typographical changes.  
The following is the list of modifications:  
1. Modified Block Diagram on page 2.  
Revision G (July 2013)  
2. Section 1.3.5  
“Transmitter-OFF  
Mode”:  
The following has been modified:  
Deleted text in 1st paragraph.  
1. Added Note 2 in Section 2.3 “AC Specifica-  
tion”.  
3. Example 1-6: Removed +5V notation.  
4. Section 1.4 “Pin Descriptions”: Removed 10-  
2. Added pull up to nFAULT/TXE pin in Section 1.4  
“Pin Descriptions” and Section 1.5 “Typical  
Applications”.  
pin DFN, MSOP column from table.  
5. Section 1.4.9 “Fault/Txe”: Deleted text from  
2nd paragraph.  
6. Section 3.0 “Packaging Information”: Added  
8-lead 4x4 and 6x5 DFN and 14-lead TSSOP  
packages. Updated package outline drawings  
and added drawings for 8-lead DFN and 14-lead  
TSSOP drawings.  
Revision F (January 2012)  
The following has been modified:  
1. Added the MCP2021P and MCP2022P options  
and related information throughout the  
document.  
Revision A (November 2005)  
Revision E (February 2009)  
Original Release of this Document.  
The following is the list of modifications:  
1. Added Example 1-7 and Example 1-8.  
2. Updated Section 1.4.10 “RESET”.  
3. Updated Section 1.7 “ICSP™ Consider-  
ations”.  
4. Updated Section 2.1 “Absolute Maximum  
Ratings†”.  
5. Updated Section 2.2 “DC Specifications” and  
Section 2.3 “AC Specification”.  
6. Added Figure 2-1 in Section 2.0 “Electrical  
Characteristics”  
7. Updated the Product Identification System  
section.  
Revision D (July 2008)  
The following is the list of modifications:  
1. Updated ESD specs under ‘Absolute DC’.  
2. Updated notes in Example 1-1.  
3. Updated Package Outline Drawings.  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 51  
MCP2021/2/1P/2P  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
X
/XX  
PART NO.  
Device  
–XXX  
a)  
b)  
MCP2021-500E/MD: 5.0V, Extended Temperature,  
Temperature  
Range  
Package  
Voltage  
8L-DFN package.  
MCP2021T-500E/MD: Tape and Reel,  
5.0V, Extended Temperature,  
8L-DFN package.  
MCP2021-500E/MF: 5.0V, Extended Temperature,  
8L-DFN-S package.  
c)  
d)  
e)  
f)  
Device:  
MCP2021: LIN Transceiver with Voltage Regulator; wakes up on  
dominant level of LIN bus.  
MCP2021-330E/P:  
3.3V, Extended Temperature,  
8L-PDIP package.  
MCP2021T: LIN Transceiver with Voltage Regulator; wakes up on  
dominant level of LIN bus.  
MCP2021-500E/P:  
5.0V, Extended Temperature,  
8L-PDIP package.  
(Tape and Reel) (SOIC only)  
MCP2021-330E/SN: 3.3V, Extended Temperature,  
8L-SOIC package  
MCP2022: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up on dominant level of LIN bus.  
g)  
MCP2021T-330E/SN: Tape and Reel,  
3.3V, Extended Temperature,  
8L-SOIC package.  
MCP2021-500E/SN: 5.0V, Extended Temperature,  
8L-SOIC package.  
MCP2021T-500E/SN: Tape and Reel,  
5.0V, Extended Temperature,  
8L-SOIC package.  
MCP2022T: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up on dominant level of LIN bus.  
(Tape and Reel) (SOIC only)  
h)  
i)  
MCP2021P: LIN Transceiver with Voltage Regulator; wakes up at  
a falling edge of LIN bus level.  
MCP2021PT: LIN Transceiver with Voltage Regulator; wakes up at  
a falling edge of LIN bus level  
(Tape and Reel) (SOIC only)  
MCP2022P: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up at a falling edge of LIN bus level.  
a)  
b)  
c)  
d)  
MCP2022-330E/P:  
MCP2022-500E/P:  
3.3V, Extended Temperature,  
14L-PDIP package.  
5.0V, Extended Temperature,  
14L-PDIP package.  
MCP2022PT: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up at a falling edge of LIN bus level.  
(Tape and Reel) (SOIC only)  
MCP2022-330E/SL: 3.3V, Extended Temperature,  
14L-SOIC package.  
MCP2022T-330E/SL: Tape and Reel,  
3.3V, Extended Temperature,  
14L-SOIC package.  
Voltage:  
330  
500  
=
=
3.3V  
5.0V  
e)  
f)  
MCP2022-500E/SL: 5.0V, Extended Temperature,  
14L-SOIC package.  
MCP2022T-500E/SL: Tape and Reel, 5.0V, Extended  
Temperature,  
Temperature  
Range:  
E
=
-40°C to +125°C (Extended)  
14L-SOIC package.  
g)  
MCP2022T-500E/ST: Tape and Reel, 5.0V, Extended  
Temperature,  
Package:  
MD  
MF  
=
=
8-Lead Plastic Dual Flat, No Lead – 4x4x0.9 mm Body  
(DFN)  
8-Lead Plastic Dual Flat, No Lead – 6x5 mm Body  
(DFN-S)  
14L-TSSOP package.  
P
SN  
=
=
14-Lead Plastic Dual In Line – 300 mil Body (PDIP)  
8-Lead Plastic Small Outline – Narrow, 3.90 mm Body  
(SOIC)  
SL = 14-Lead Plastic Small Outline – Narrow, 3.90 mm Body  
(SOIC)  
ST  
=
14-Lead Plastic Thin Shrink Small Outline – Narrow,  
4.4 mm (TSSOP)  
DS20002018H-page 52  
2005-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-401-0  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2005-2014 Microchip Technology Inc.  
DS20002018H-page 53  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002018H-page 54  
2005-2014 Microchip Technology Inc.  

相关型号:

MCP2021T-500E/MF

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2021T-500E/P

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2021T-500E/SL

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2021T-500E/SN

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2021T-500E/SN-AE3VAO

Interface Circuit, PDSO8
MICROCHIP

MCP2021T-500E/SNVAO

Interface Circuit, PDSO8
MICROCHIP

MCP2021T-500E/ST

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2021_12

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2021_14

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2022

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2022-330E-P

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2022-330E-SL

LIN Transceiver with Voltage Regulator
MICROCHIP