MCP2022-E-P [MICROCHIP]

DATACOM, INTERFACE CIRCUIT, PDIP14, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8;
MCP2022-E-P
型号: MCP2022-E-P
厂家: MICROCHIP    MICROCHIP
描述:

DATACOM, INTERFACE CIRCUIT, PDIP14, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8

光电二极管
文件: 总58页 (文件大小:2029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2021/2/1P/2P  
LIN Transceiver with Voltage Regulator  
Features:  
Description:  
• The MCP2021/2/1P/2P are Compliant with LIN  
Bus Specifications 1.3, 2.0, and 2.1 and are  
Compliant to SAE J2602  
The MCP2021/2/1P/2P provides a bidirectional, half-  
duplex communication physical interface to automotive  
and industrial LIN systems that meets the LIN bus  
specification Revision 2.0. The devices incorporate a  
voltage regulator with 5V at 50 mA or 3.3V at 50 mA  
regulated power-supply outputs.  
• Support Baud Rates up to 20 kBaudwith  
LIN-compatible Output Driver  
• 43V Load Dump Protected  
The regulator is short-circuit protected, and is protected  
by an internal thermal shutdown circuit. The device has  
been specifically designed to operate in the automotive  
operating environment and will survive all specified  
transient conditions while meeting all of the stringent  
quiescent current requirements.  
• Very Low EMI Meets Stringent OEM Requirements  
• Wide Supply Voltage, 6.0V - 18.0V Continuous:  
- Maximum Input Voltage of 30V  
• Extended Temperature Range: -40 to +125°C  
• Interface to PIC® EUSART and Standard USARTs  
• Local Interconnect Network (LIN) Bus Pin:  
- Internal Pull-up Resistor and Diode  
- Protected Against Ground Shorts  
- Protected Against Loss of Ground  
- High-Current Drive  
The MCP2021/2/1P/2P family of devices includes the  
following packages.  
8-pin PDIP, DFN and SOIC packages:  
• MCP2021-330, LIN-compatible driver, 8-pin, 3.3V  
regulator, wake up on dominant level of LBUS  
• Automatic Thermal Shutdown  
• MCP2021-500, LIN-compatible driver, 8-pin, 5.0V  
regulator, wake up on dominant level of LBUS  
• On-Chip Voltage Regulator:  
- Output Voltage of 5.0V with Tolerances of  
±3% Overtemperature Range  
• MCP2021P-330, LIN-compatible driver, 8-pin,  
3.3V regulator, wake up at falling edge of LBUS  
voltage  
- Available with Alternate Output Voltage of  
3.3V with Tolerances of ±3%  
Overtemperature Range  
• MCP2021P-500, LIN-compatible driver, 8-pin,  
5.0V regulator, wake up at falling edge of LBUS  
voltage  
- Maximum Continuous Input Voltage of 30V  
- Internal Thermal Overload Protection  
- Internal Short Circuit Current Limit  
14-pin PDIP, TSSOP and SOIC packages with RESET  
output:  
- External Components Limited to Filter  
Capacitor Only and Load Capacitor  
• MCP2022-330, LIN-compatible driver, 14-pin,  
3.3V regulator, RESET output, wake up on domi-  
nant level of LBUS  
• Two Low-Power Modes:  
• MCP2022-500, LIN-compatible driver, 14-pin,  
5.0V regulator, RESET output, wake up on domi-  
nant level of LBUS  
- Receiver On, Transmitter Off, Voltage  
Regulator On (85 µA)  
- Receiver Monitoring Bus, Transmitter Off,  
• MCP2022P-330, LIN-compatible driver, 14-pin,  
3.3V regulator, RESET output, wake up at falling  
edge of LBUS voltage  
Voltage Regulator Off (16 µA)  
• MCP2022P-500, LIN-compatible driver, 14-pin,  
5.0V regulator, RESET output, wake up at falling  
edge of LBUS voltage  
2005-2013 Microchip Technology Inc.  
DS22018G-page 1  
MCP2021/2/1P/2P  
Package Types  
DFN-8, PDIP-8, SOIC-8  
RXD  
1
2
3
4
8
7
6
FAULT/TXE  
VBB  
CS/LWAKE  
VREG  
LBUS  
VSS  
TXD  
5
PDIP-14, SOIC-14, TSSOP-14  
1
2
3
14  
13  
12  
FAULT/TXE  
VBB  
RXD  
CS/LWAKE  
VREG  
TXD  
LBUS  
VSS  
4
5
11  
10  
9
RESET  
NC  
NC  
NC  
NC  
6
7
NC  
8
MCP2021/2 Block Diagram  
Thermal  
Protection  
Short Circuit  
Protection  
RESET  
(MCP2022 ONLY)  
Voltage  
Regulator  
VBB  
Ratiometric  
Reference  
Internal Circuits  
VREG  
Wake-Up  
Logic and  
Power Control  
RXD  
+
~30 k  
CS/LWAKE  
TXD  
LBUS  
VSS  
OC  
FAULT/TXE  
Short Circuit  
Protection  
Thermal  
Protection  
DS22018G-page 2  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
MCP2021P/2P Block Diagram  
RESET  
(MCP2022P ONLY)  
Thermal  
Protection  
Short-Circuit  
Protection  
Voltage  
Regulator  
VBB  
Ratiometric  
Reference  
Internal Circuits  
VREG  
Wake-Up  
Logic and  
Power Control  
RXD  
+
~30  
k  
CS/LWAKE  
TXD  
LBUS  
VSS  
OC  
FAULT/TXE  
Thermal  
and  
Short-Circuit  
Protection  
Short-Circuit  
Protection  
2005-2013 Microchip Technology Inc.  
DS22018G-page 3  
MCP2021/2/1P/2P  
NOTES:  
DS22018G-page 4  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
EQUATION 1-1:  
1.0  
DEVICE OVERVIEW  
The MCP2021/2/1P/2P provides a physical interface  
between a microcontroller and a LIN half-duplex bus. It  
is intended for automotive and industrial applications  
with serial bus speeds up to 20 Kbaud.  
RTP <= (VBBmin - 5.5) / 250 mA.  
5.5V = VUVLO + 1.0V,  
250 mA is the peak current at Power-On when  
VBB = 5.5V  
The MCP2021/2/1P/2P provides  
a
half-duplex,  
1.2  
Internal Protection  
bidirectional communications interface between a  
microcontroller and the serial network bus. This device  
will translate the CMOS/TTL logic levels to LIN-level  
logic, and vice versa.  
1.2.1  
ESD PROTECTION  
For component-level ESD ratings, please refer to the  
Section 2.1 “Absolute Maximum Ratings†”.  
The LIN specification 2.0 requires that the  
transceiver(s) of all nodes in the system be connected  
via the LIN pin, referenced to ground, and with a  
maximum external termination resistance load of 510  
from LIN bus to battery supply. The 510corresponds  
to one Master and sixteen Slave nodes.  
1.2.2  
GROUND LOSS PROTECTION  
The LIN Bus specification states that the LIN pin must  
transition to the recessive state when ground is  
disconnected. Therefore, a loss of ground effectively  
forces the LIN line to a hi-impedance level.  
The MCP2021/2/1P/2P-500 provides a +5V, 50 mA,  
regulated power output. The regulator uses an LDO  
design, is short-circuit protected, and will turn the  
regulator output off if it falls below 3.5V.  
1.2.3  
THERMAL PROTECTION  
The thermal protection circuit monitors the die tem-  
perature and is able to shut down the LIN transmitter  
and voltage regulator if it detects a thermal overload.  
The MCP2021/2/1P/2P also includes thermal-  
shutdown protection.  
There are three causes for a thermal overload. A  
thermal shut down can be triggered by any one, or a  
combination of, the following thermal overload  
conditions:  
The regulator is specifically designed to operate in the  
automotive environment and will survive +43V load  
dump transients, double-battery jumps, and reverse  
battery connections when a reverse blocking diode is  
used. The other members of the MCP2021/2/1P/2P-  
330 family output +3.3V at 50 mA with a turn-off voltage  
of 2.5V. (See Section 1.6 “Internal Voltage  
Regulator”).  
• Voltage regulator overload  
• LIN bus output overload  
• Increase in die temperature due to increase in  
environmental temperature  
MCP2021/2 wakes from Power-Down mode on a  
dominant level on LBUS. MCP2021P/2P wakes at a  
transition from recessive level to dominant level on  
LBUS.  
Driving the TXD and checking the RXD pin makes it  
possible to determine whether there is a bus contention  
(i.e., Rx = low, Tx = high) or a thermal overload condi-  
tion (i.e., Rx = high, Tx = low).  
1.1  
Optional External Protection  
1.1.1  
REVERSE BATTERY PROTECTION  
An external reverse-battery-blocking diode should be  
used to provide polarity protection (see Figure 1-6).  
1.1.2  
TRANSIENT VOLTAGE  
PROTECTION (LOAD DUMP)  
An external 43V transient suppressor (TVS) diode,  
between VBB and ground, with a 50transient protec-  
tion resistor (RTP) in series with the battery supply and  
the VBB pin, protect the device from power transients  
(see Figure 1-6) and ESD events. While this protection  
is optional, it is considered good engineering practice.  
The resistor value is chosen according to Equation 1-1.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 5  
MCP2021/2/1P/2P  
LIN Bus  
Overload  
to VBB  
Output  
Overload  
Voltage  
Regulator  
Shutdown  
Transmitter  
Shutdown  
Operation  
Mode  
Temperature <SHUTDOWNTEMP  
Temperature <SHUTDOWNTEMP  
FIGURE 1-1:  
Thermal Shutdown State Diagrams.  
LIN bus activity will also change the device from  
Power-Down mode to Ready mode. MCP2021/2  
wakes up on the dominant level of the LIN bus, and  
MCP2021P/2P on a falling edge that follows a domi-  
nant level lasting 20 µs of time.  
1.3 Modes of Operation  
For an overview of all operational modes, please refer  
to Table 1-1.  
1.3.1  
POWER-ON RESET MODE  
The Power-Down mode can be reached through either  
Operation mode or Transmitter-Off mode.  
Upon application of VBB, the device enters Power-On  
Reset mode (POR). During this mode, the part main-  
tains the digital section in a Reset mode and waits until  
the voltage on pin VBB rises above the “ON” threshold  
(typically 5.75V) to enter to the Ready mode. If during  
the operation, the voltage on pin VBB falls below the  
“OFF” threshold (typically 4.25V), the part comes back  
to the POR mode.  
1.3.3  
READY MODE  
Upon entering Ready mode, the voltage regulator and  
receiver-threshold-detect circuit are powered up. The  
transmitter remains in an off state. The device is ready  
to receive data as soon as the regulator is stabilized,  
but not to transmit. If a microcontroller is being driven  
by the voltage regulator output, it will go through a POR  
and initialization sequence. The LIN pin is in the reces-  
sive state for MCP2021/2 and in floating state for  
MCP2021P/2P.  
1.3.2  
POWER-DOWN MODE  
In Power-Down mode, the transmitter and the voltage  
regulator are off. Only the receiver wake-up from the  
LIN bus section, and the CS/LWAKE pin wake-up  
circuits, are in operation. This is the lowest power  
mode.  
The device will stay in Ready mode until the output of  
the voltage regulator has stabilized and the CS/LWAKE  
pin is true (‘1’). After VREG is stable and CS/LWAKE is  
high, MCP2021/2 will enter Operation mode; and  
MCP2021P/2P will enter either Operation mode or  
Transmitter-Off mode, depending on the level of the  
FAULT/TXE pin (refer to Figure 1-3).  
If pin CS/LWAKE goes to a high level during Power-  
Down mode, the device immediately enters Ready  
mode and enables the voltage regulator; and after the  
output has stabilized (approximately 0.3 ms to 1.2 ms),  
the device goes to Operation mode or Transmitter-Off  
mode (see Figure 1-2 for MCP2021/2 and Figure 1-3  
for MCP2021P/2P).  
1.3.4  
OPERATION MODE  
In this mode, all internal modules are operational.  
The device will go into the Power-Down mode on the  
falling edge of CS/LWAKE.  
Note:  
The above time interval <1.2 ms assumes  
12V VBB input and no thermal shutdown  
event.  
For the MCP2021P/2P devices, the pull-up resistor is  
switched on only in this mode.  
DS22018G-page 6  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Because of this, if the LIN bus becomes perma-  
nently shorted, it becomes impossible to place  
the MCP202X in a low-power state.  
1.3.5  
TRANSMITTER-OFF MODE  
Whenever the FAULT/TXE signal is low, or permanent  
dominant on TXD/LBUS is detected, the LBUS  
transmitter is off.  
3. State Machine Options:  
The MCP202XP device is able to enter  
Transmitter Off mode from Ready mode without  
transitioning through Operation mode. The  
MCP202X device must enter Operation mode  
from Ready mode. (see State Machine  
Diagrams, Figure 1-2 and Figure 1-3 for  
details). This capability allows the system  
designer to monitor the bus in Ready mode to  
determine if the system should transition to  
normal operation and connect the internal pull-  
up, or if Ready mode was reached due to an  
invalid condition. In the case of an invalid  
condition, the MCP202XP device can be placed  
into Power-Down mode without connecting the  
internal pull-up and waking other nodes on the  
LIN Bus network.  
The transmitter may be re-enabled whenever the  
FAULT/TXE signal returns high, either by removing the  
internal fault condition or when the CPU returns the  
FAULT/TXE high. The transmitter will not be enabled if  
the FAULT/TXE pin is brought high when the internal  
fault is still present.  
If TX-OFF mode is caused by TXD/LBUS permanent  
dominant level, the transmitter can recover when the  
permanent dominant status disappears.  
The transmitter is also turned off whenever the voltage  
regulator is unstable or recovering from a fault. This  
prevents unwanted disruption of the bus during times of  
uncertain operation.  
1.3.6  
WAKE-UP  
The Wake-Up sub-module observes the LBUS in order  
to detect bus activity. Bus activity is detected when the  
voltage on the LBUS stays below a threshold of approx-  
imately 0.4 VBB for a typical duration of at least 20 µs.  
The MCP2021/2 device is level sensitive to LBUS. Dom-  
inant level longer than 20 µs will cause the device to  
leave the Power-Down mode. The MCP2021P/2P  
device is falling-edge sensitive to LBUS. Only the LBUS  
transition from recessive to dominant, followed by at  
least 20 µs dominant level, can wake up the device.  
Putting CS/LWAKE to high level also wakes up the  
device. Refer to Figure 1-2 and Figure 1-3.  
Note:  
To enter Transmitter Off, the system must  
set TXE ‘low’ before pulling CS high (see  
Figure 1-5). Otherwise, if CS is pulled high  
first, the MCP202XP will enter Operation  
mode due to the internal pull-up on TXE.  
To properly take advantage of the device differences,  
the system designer is required to implement some  
microcontroller code to the power-up routine. This code  
will monitor the status of the LIN bus to determine how  
to respond to the dominant signal. It will also determine  
if the local LIN node needs to respond or can ‘Listen  
Only’. If the local LIN node does not need to respond, it  
can enter Transmitter Off mode, disconnecting the  
30kpull-up, reducing module current while still  
maintaining the ability to properly receive all valid LIN  
messages.  
1.3.7  
DIFFERENCE DETAILS BETWEEN  
MCP2021/2 AND MCP2021P/2P  
The MCP202XP is a minor variation of the MCP202X  
device that adds improved state machine control, as  
well as the ability to disconnect the internal 30kpull-  
up between LIN and VBB in all modes except normal  
operation. These changes allow the system designer  
to better handle fault conditions and reduce the overall  
system current consumption. The differences between  
the two device versions are as follows:  
1. Switchable LIN-VBB Pull-Up Resistor:  
On the MCP202XP device, the internal 30k  
pull-up resistor is disconnected in all modes  
except Operation mode. On the MCP202X  
device, this pull-up resistor is always connected.  
(See the MCP2021/2 Block Diagram and the  
MCP2021P/2P Block Diagram for details.)  
2. Power Down Wake-up on LIN Traffic:  
The MCP202XP device requires a LIN falling  
edge to generate a valid Wake condition, due to  
bus traffic. The MCP202X device will generate a  
Wake anytime LIN is at a valid dominant level.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 7  
MCP2021/2/1P/2P  
Power-Down  
TX: OFF  
RX: OFF  
VREG: OFF  
CS/LWAKE=0  
CS/LWAKE=0  
Operation  
TX: ON  
RX: ON  
CS/LWAKE=1  
or dominant level on LBUS  
VREG: ON  
FAULT/TXE=0  
Or Faults*  
CS/LWAKE=1&  
VREG_OK=1  
FAULT/TXE=1  
&No Faults*  
Ready  
TX: OFF  
RX: ON  
POR  
TX: OFF  
RX: OFF  
Transmitter Off  
TX: OFF  
VREG: ON  
VREG: OFF  
RX: ON  
VREG: ON  
Start  
bus contention  
*Fault: thermal shutdown and TXD/LBUS
FIGURE 1-2:  
MCP2021/2 Operational Modes State Diagrams.  
Note:  
While the device is in shutdown, TXD should not be actively driven high or it may power internal logic  
through the ESD diodes and may damage the device.  
Power-Down  
TX: OFF  
RX: OFF  
VREG: OFF  
CS/LWAKE=0  
CS/LWAKE=0  
Operation  
TX: ON  
RX: ON  
CS/LWAKE=1  
or Falling edge on LBUS  
VREG: ON  
FAULT/TXE=0  
Or Faults*  
CS/LWAKE=1&  
VREG_OK=1&  
FAULT/TXE=1  
FAULT/TXE=1  
&No Faults*  
Ready  
TX: OFF  
RX: ON  
POR  
TX: OFF  
RX: OFF  
Transmitter Off  
TX: OFF  
VREG: ON  
VREG: OFF  
RX: ON  
VREG: ON  
CS=1&VREG_OK=1  
&FAULT/TXE=0  
Start  
bus contention  
*Fault: thermal shutdown and TXD/LBUS
FIGURE 1-3:  
MCP2021P/2P Operational Modes State Diagrams.  
DS22018G-page 8  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
CS_LWAKE  
VREG  
0
nFAULT_TXE  
0
LBUS  
State  
Ready  
Sleep  
FIGURE 1-4:  
MCP2021P/2P Wake-Up Due to Bus Disconnecting.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 9  
MCP2021/2/1P/2P  
tCSactive> = 2S  
CS/LWAKE  
VREG  
FAULT/TXE = 1  
Forced internally  
FAULT/TXE = 0  
FAULT/TXE  
Forced externally  
LBUS disconnected;  
e.g., Master pull-up &  
internal resistor off;  
LBUS floating.  
LBUS  
Transmitter-Off  
Mode  
Power-Down  
Mode  
STATE  
Operation Mode  
Forced Power-Down Mode after BUS-OFF  
instruction or a longer LIN-Bus inactivity  
( > = 4 sec according to LIN specification)  
FIGURE 1-5:  
Forced Power-Down Mode Sequence for MCP2021P/2P.  
DS22018G-page 10  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
TABLE 1-1:  
State  
OVERVIEW OF OPERATIONAL MODES  
Voltage  
Transmitter Receiver  
Regulator  
Operation  
Comments  
POR  
OFF  
OFF  
OFF  
Read VBB; if VBB>5.75V, enter Ready  
mode  
Ready  
OFF  
ON  
ON  
MCP2021/2:  
Bus-Off state  
If CS/LWAKE is high level, then Operation  
mode.  
MCP2021P/2P:  
If CS/LWAKE is high level and FAULT/TXE  
is high level, then Operation mode.  
If CS/LWAKE is high level and FAULT/TXE  
is low level, then TXOFF mode.  
Operation  
ON  
ON  
ON  
If CS/LWAKE is low level, then Power-  
Down mode.  
Normal  
Operation  
mode  
If FAULT/TXE is low level or TXD/LBUS  
permanent dominant is detected, then  
Transmitter-Off mode.  
Power-Down  
OFF  
OFF  
Activity  
Detect  
OFF  
ON  
On LIN bus falling, go to Ready mode. On Low-Power  
CS/LWAKE high level, go through Ready  
mode; then, to either operation or  
Transmitter-Off mode (refer to Figure 1-2  
and Figure 1-3).  
mode  
Transmitter-Off  
ON  
If CS/LWAKE is low level, then Power-  
Down mode.  
If FAULT/TXE is high, then Operation  
mode.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 11  
MCP2021/2/1P/2P  
1.4  
Pin Descriptions  
TABLE 1-1:  
PINOUT DESCRIPTIONS  
Devices  
Function  
8-Pin  
DFN,  
PDIP,  
SOIC  
14-Pin  
PDIP,  
SOIC,  
TSSOP  
Pin  
Name  
Pin  
Type  
Normal Operation  
VREG  
VSS  
3
5
3
11  
13  
4
O
P
Power Output  
Ground  
VBB  
7
P
Battery Supply  
TXD  
4
I
Transmit Data Input (TTL)  
Receive Data Output (CMOS)  
LIN bus (Bidirectional)  
RXD  
1
1
O
LBUS  
6
12  
2
I/O  
TTL  
OD  
OD  
CS/LWAKE  
FAULT/TXE  
RESET  
2
Chip Select (TTL)  
8
14  
5
Fault Detect Output, Transmitter Enable (OD)  
RESET signal Output (OD)  
Legend: O = Output, P = Power, I = Input, TTL = TTL input buffer, OD = Open-Drain output  
The internal LIN receiver observes the activities on the  
LIN bus, and generates output signal RXD that follows  
the state of the LBUS. A 1st degree with 1 µS time con-  
stant (160KhZ), low-pass input filter is placed to  
maintain EMI immunity.  
1.4.1  
POWER OUTPUT (VREG)  
Positive Supply Voltage Regulator Output pin.  
1.4.2  
GROUND (VSS)  
BATTERY (VBB)  
Ground pin.  
1.4.3  
1.4.7  
CS/LWAKE  
Battery Positive Supply Voltage pin. This pin is also the  
input for the internal voltage regulator.  
Chip Select Input pin. A internal pull-down resistor will  
keep the CS/LWAKE pin low. This is done to ensure  
that no disruptive data will be present on the bus while  
the microcontroller is executing a POR and I/O initial-  
ization sequence. The pin must see a high level to  
activate the transmitter.  
1.4.4  
TRANSMIT DATA INPUT (TXD)  
The Transmit Data Input pin has an internal pull-up to  
VREG. The LIN pin is low (dominant) when TXD is low,  
and high (recessive) when TXD is high.  
If CS/LWAKE= ‘0’ when the VBB supply is turned on,  
the device stays in Ready mode (Low-Power mode). In  
Ready mode, both the receiver and the voltage  
regulator are on and the LIN transmitter driver is off.  
For extra bus security, TXD is internally forced to ‘1’  
when VREG is less than 1.8V (typical).  
If the thermal protection detects an overtemperature  
condition while the signal TXD is low, the transmitter is  
shut down. The recovery from the thermal shutdown is  
equal to adequate cooling time.  
If CS/LWAKE = ‘1’ when the VBB supply is turned on,  
the device will proceed to either Operation or Transmit-  
ter-Off mode (refer to Figure 1-2 and Figure 1-3) after  
the VREG output has stabilized.  
1.4.5  
RECEIVE DATA OUTPUT (RXD)  
This pin may also be used as a local wake-up input  
(see Figure 1-6). In this implementation, the microcon-  
troller will set the I/O pin that controls the CS/LWAKE  
as an high-impedance input. The internal pull-down  
resistor will keep the input low. An external switch, or  
other source, can then wake up the transceiver and the  
microcontroller.  
The Receive Data Output pin is a standard CMOS  
output and follows the state of the LIN pin.  
1.4.6  
LIN BUS  
The bidirectional LIN bus Interface pin is the driver unit  
for the LIN pin and is controlled by the signal TXD. LIN  
has an open collector output with a current limitation.  
To reduce EMI, the edges during the signal changes  
are slope-controlled. To further reduce radiated emis-  
sions, the LBUS pin has corner-rounding control for both  
falling and rising edges.  
Note:  
CS/LWAKE should not be tied directly to  
VREG as this could force the MCP202X  
into Operation mode before the  
microcontroller is initialized.  
DS22018G-page 12  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
This pin has an internal pull-up resistor of  
approximately 750 k. The internal pull-up resistor is  
too weak. We recommend adding a 10 kOhm external  
pull-up resistor to ensure a logic high level.  
1.4.8  
FAULT/TXE  
Fault Detect Output and Transmitter Enable Input  
bidirectional pin.  
This pin is an open-drain output. Its state is defined as  
shown in Table 1-2. The transmitter driver is disabled  
whenever this pin is low (‘0’), either from an internal  
fault condition or by external drive. This allows the  
transmitter to be placed in an off state and still allow the  
voltage regulator to operate. Refer to Table 1-1.  
Note 1: The FAULT/TXE pin is true (0) whenever  
the internal circuits have detected a short  
or thermal excursion and have disabled  
the LBUS output driver.  
2: FAULT/TXE is true (0) when VREG not OK  
The FAULT/TXE also signals a mismatch between the  
TXD input and the LBUS level. This can be used to  
detect a bus contention. Since the bus exhibits a  
propagation delay, the sampling of the internal  
compare is debounced to eliminate false faults.  
and has disabled the LBUS output driver.  
The FAULT/TXE pin sampled at a rate faster than every  
10 µs.  
TABLE 1-2:  
FAULT/TXE TRUTH TABLE  
FAULT/TXE  
TXD  
In  
RXD  
Out  
LINBUS  
I/O  
Thermal  
Override  
Definition  
External  
Input  
Driven  
Output  
L
H
VBB  
OFF  
H
L
FAULT, TXD driven low, LINBUS shorted to  
VBB (Note 1)  
H
L
H
x
H
L
L
x
VBB  
GND  
GND  
VBB  
OFF  
OFF  
OFF  
ON  
x
H
H
H
H
L
H
H
H
L
OK  
OK  
OK, data is being received from the LINBUS  
FAULT, transceiver in thermal shutdown  
x
x
VBB  
x
NO FAULT, the CPU is commanding the  
transceiver to turn off the transmitter driver  
Legend: x = don’t care  
Note 1: The FAULT/TXE is valid after approximately 25 µs after TXD falling edge. This is to eliminate false fault  
reporting during bus propagation delays.  
1.4.9  
RESET  
RESET is an open-drain output pin. This pin reflects an  
internal signal that tracks the internal system voltage  
has reached a valid, stable level.  
As long as the internal voltage is valid, this pin will keep  
high impedance. When the system voltage drops below  
the minimum required, the voltage regulator will shut  
down and immediately convert the RESET output to  
short to GND. A pull-up resistor is needed to change  
the output to high/low voltage. When connected to a  
microcontroller input, this can provide a warning that  
the voltage regulator is shutting down (see Figure 1-2).  
Alternately, it can act as an external brown-out by  
connecting the RESET output to MCLR (see Figure 1-  
2). In addition to monitoring the internal voltage,  
RESET is asserted immediately upon entering the  
Power-Down mode.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 13  
MCP2021/2/1P/2P  
1.5  
Typical Applications  
+12  
+12  
(5)  
RTP  
WAKE-UP  
(5)  
Master Node Only  
+12  
43V  
CF  
CG  
220 k  
VREG  
TXD  
VDD  
VBB  
TXD  
1 k  
(6)  
LBUS  
LIN Bus  
RXD  
I/O  
RXD  
(4)  
27V  
CS/LWAKE  
FAULT/TXE  
(3)  
I/O  
VSS  
100 pF  
Note 1: See Figure 2-3 for correct capacity and ESR for stable operation.  
2: CF is the filter capacitor for the external voltage supply.  
3: This diode is only needed if CS/LWAKE is connected to a 12V supply.  
4: Transient suppressor diode. Vclamp L = 43V.  
5: These components are required for additional load dump protection above 43V.  
6: We recommend adding an external 10k pull-up resistor.  
FIGURE 1-6:  
Typical MCP2021/MCP2021P Application.  
DS22018G-page 14  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
+12  
+12  
(5)  
RTP  
WAKE-UP  
(5)  
Master Node Only  
+12  
43V  
CF  
CG  
220 k  
VDD  
TXD  
VREG  
TXD  
VBB  
1 k  
LBUS  
LIN Bus  
RXD  
I/O  
RXD  
(4)  
27V  
CS/LWAKE  
FAULT/TXE  
(3)  
I/O  
INT or MCLR  
RESET  
VSS  
100 pF  
(6)  
VDD  
Note 1: See Figure 2-3 for correct capacity and ESR for stable operation.  
2: CF is the filter capacitor for the external voltage supply.  
3: This diode is only needed if CS/LWAKE is connected to a 12V supply.  
4: Transient suppressor diode. Vclamp L = 43V.  
5: These components are required for additional load dump protection above 43V.  
6: Required if CPU does not have internal pull-up.  
FIGURE 1-7:  
Typical MCP2022/MCP2022P Application.  
40m  
+ Return  
LIN bus  
1 k  
VBB  
LIN bus  
MCP202X  
LIN bus  
MCP202X  
LIN bus  
MCP202X  
LIN bus  
MCP202X  
Slave 1  
µC  
Slave 2  
µC  
Slave n <16  
µC  
Master  
µC  
FIGURE 1-8:  
Typical LIN Network Configuration.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 15  
MCP2021/2/1P/2P  
ing of the POR trip point. The MCP2021 will then  
monitor VBB and turn on the regulator when VBB rises  
above 5.75, again.  
1.6  
Internal Voltage Regulator  
1.6.1  
5.0V REGULATOR  
When the input voltage (VBB) drops below the differen-  
tial needed to provide stable regulation, the output  
VREG) will track the input down to approximately  
+4.25V. The regulator will turn off the output at this  
point. This will allow PIC microcontrollers with internal  
POR circuits to generate a clean arming of the POR trip  
point. The regulator output will stay off until VBB is  
The MCP2021 has a low-drop-out voltage, positive  
regulator capable of supplying 5.00 VDC ±3% at up to  
50 mA of load current, over the entire operating  
temperature range of -40°C to +125°C. With a load  
current of 50 mA, the minimum input to output voltage  
differential required for the output to remain in  
regulation is typically +0.5V (+1V maximum over the  
full operating temperature range). Quiescent current is  
less than 100 µA with a full 50 mA load current when  
the input to output voltage differential is greater than  
+3.00V.  
above +5.75 VDC  
.
In the start phase, the device must detect at least 5.75V  
to initiate operation during power up. In the Power-  
Down mode, the VBB monitor will be turned off.  
The regulator requires an external output bypass  
capacitor for stability. See Figure 2-3 for correct  
capacity and ESR for stable operation.  
Note:  
The regulator has an overload current  
limiting of approximately 100 mA. During a  
short circuit, the VREG is monitored. If  
VREG is lower than 3.5V, the VREG will turn  
off. After a recovery time of about three  
milliseconds, the VREG will be checked  
again. If there is no short circuit (VREG  
>3.5V), the VREG will be switched back on.  
Designed for automotive applications, the regulator will  
protect itself from double-battery jumps and up to +43V  
load dump transients. The voltage regulator has both  
short-circuit and thermal-shut-down protection built in.  
Regarding the correlation between VBB, VREG and IDD,  
please refer to Figure 1-10 Figure 1-12. When the  
input voltage (VBB) drops below the differential needed  
to provide stable regulation, the output VREG will track  
the input down to approximately 3.5V, at which point  
the regulator will turn off. This will allow microcontrol-  
lers with internal POR circuits to generate a clean arm-  
The regulator has a thermal shutdown. If the thermal  
protection circuit detects an overtemperature condition,  
and the signals TXD and RXD are LOW, or TXD is HIGH,  
the regulator will shut down. The recovery from the  
thermal shutdown is equal to adequate cooling time.  
Pass  
Element  
VBB  
VREG  
Sampling  
Network  
Fast  
Transient  
Loop  
Buffer  
VSS  
VREF  
FIGURE 1-9:  
Voltage Regulator Block Diagram.  
DS22018G-page 16  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
1.6.2  
3.3V REGULATOR  
A metal option provides for a alternate 3.30 VDC ±3%  
at up to 50 mA of load current over the entire operating  
temperature range of -40°C to +125°C. All  
specifications given above for the 5.0V operation apply  
except for any difference noted here.  
The same input tracking of 4.25V applies the 3.3V  
regulator.  
Note:  
The regulator has an overload current  
limiting of approximately 100 mA. If VREG  
is lower than 2.5V, the VREG will turn off.  
VBB  
V
8
6
4
2
0
t
VREG  
V
5.0  
3.5  
3
0
t
(1)  
(2)  
(3)  
Note 1: Start-up, VBB < 5.75V, regulator off.  
2: VBB > 5.75V, regulator on.  
3: VBB 5.5V, regulator tracks VBB.  
4: VBB < 4.25V, regulator will turn off.  
FIGURE 1-10:  
Voltage Regulator Output on POR.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 17  
MCP2021/2/1P/2P  
VBB  
V
12  
8
6
4
3.5  
2
0
t
VREG  
V
5
4
3.5  
3
0
t
(1)  
(2) (3) (4)  
Note 1: Voltage regulator on.  
2: VBB 5.5V, regulator tracks VBB until VBB < 4.25V.  
3: VREG < 3.5V, regulator is off.  
4: VBB > 5.75V, regulator on.  
FIGURE 1-11:  
Voltage Regulator Output on Power Dip.  
DS22018G-page 18  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
IREG  
mA  
50  
0
t
VREG  
V
6
5.0  
3.5  
3
0
t
(1)  
Note 1: IREG less than 50 mA, regulator on.  
2: After IREG exceeds IREGmax, voltage regulator output will be reduced until VREG off is reached.  
(2)  
FIGURE 1-12:  
Voltage Regulator Output on Overcurrent Situation.  
1.7 ICSP™ Considerations  
The following should be considered when the  
MCP2021/2/1P/2P is connected to pins supporting  
in-circuit programming:  
• Power used for programming the microcontroller  
can be supplied from the programmer or from the  
MCP2021/2/1P/2P.  
• The voltage on VREG should not exceed the  
maximum output voltage of VREG.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 19  
MCP2021/2/1P/2P  
NOTES:  
DS22018G-page 20  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.0  
2.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VIN DC Voltage on RXD and TXD........................................................................................................-0.3 to VREG+0.3V  
VIN DC Voltage on FAULT and RESET.........................................................................................................-0.3 to +5.5V  
VIN DC Voltage on CS/LWAKE.......................................................................................................................-0.3 to +43V  
VBB Battery Voltage, non-operating (LIN bus recessive, no regulator load, t < 60s) .....................................-0.3 to +43V  
VBB Battery Voltage, transient ISO 7637 Test 1 ......................................................................................................-200V  
VBB Battery Voltage, transient ISO 7637 Test 2a ...................................................................................................+150V  
VBB Battery Voltage, transient ISO 7637 Test 3a ....................................................................................................-300V  
VBB Battery Voltage, transient ISO 7637 Test 3b ...................................................................................................+200V  
VBB Battery Voltage, continuous....................................................................................................................-0.3 to +30V  
VLBUS Bus Voltage, continuous.......................................................................................................................-18 to +30V  
VLBUS Bus Voltage, transient (Note 1)............................................................................................................-27 to +43V  
ILBUS Bus Short Circuit Current Limit....................................................................................................................200 mA  
ESD protection on LIN, VBB (IEC 61000-4-2, 330 Ohm, 150 pF) (Note 3).............................................. minimum ±9 kV  
ESD protection on LIN, VBB (Charge Device Model) (Note 2)..............................................................................±1500V  
ESD protection on LIN, VBB (Human Body Model, 1 kOhm, 100 pF) (Note 4)....................................................... ±8 kV  
ESD protection on LIN, VBB (Machine Model) (Note 2)..........................................................................................±800V  
ESD protection on all other pins (Human Body Model) (Note 2) ............................................................................> 4 kV  
Maximum Junction Temperature............................................................................................................................. 150C  
Storage Temperature ..................................................................................................................................-55 to +150C  
Note 1: ISO 7637/1 load dump compliant (t < 500 ms).  
2: According to JESD22-A114-B.  
3: According to IBEE, without bus filter.  
4: Limited by Test Equipment.  
† NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 21  
MCP2021/2/1P/2P  
2.2  
DC Specifications  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CLOADREG = 10 µF  
Parameter  
Power  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VBB Quiescent Operating  
Current  
IBBQ  
115  
210  
µA  
IOUT = 0 mA,  
LBUS recessive  
120  
90  
215  
190  
µA  
µA  
VOUT = 3.3V  
VBB Transmitter-Off  
Current  
IBBTO  
IBBPD  
With VREG on, transmitter  
off, receiver on, FAULT/TXE  
= VIL, CS = VIH  
95  
16  
210  
26  
µA  
µA  
VOUT = 3.3V  
VBB Power-Down Current  
With VREG powered-off,  
receiver on and transmitter  
off, FAULT/TXE = VIH,  
TXD = VIH, CS = VIL)  
VBB Current with VSS  
Floating  
IBBNOGND  
VIH  
-1  
1
mA VBB = 12V, GND to VBB,  
VLIN = 0-18V  
Microcontroller Interface  
High-Level Input Voltage  
(TXD, FAULT/TXE)  
2.0 or  
(0.25VREG  
+ 0.8)  
VREG  
+0.3  
V
V
Low-Level Input Voltage  
(TXD, FAULT/TXE)  
VIL  
IIH  
-0.3  
-2.5  
-10  
0.15 VREG  
High-Level Input Current  
(TXD, FAULT/TXE)  
µA  
µA  
µA  
V
Input voltage = 0.8*VREG  
Input voltage = 0.2*VREG  
Low-Level Input Current  
(TXD, FAULT/TXE)  
IIL  
Pull-up Current on Input  
(TXD)  
IPUTXD  
VIH  
-3.0  
0.7 VREG  
-0.3  
~800 kinternal pull-up to  
VREG @ VIH = 0.7*VREG  
High-Level Input Voltage  
(CS/LWAKE)  
VBB  
0.3VREG  
7.0  
Through a current-limiting  
resistor  
Low-Level Input Voltage  
(CS/LWAKE)  
VIL  
V
High-Level Input Current  
(CS/LWAKE)  
IIH  
µA  
µA  
µA  
Input voltage = 0.8*VREG  
Input voltage = 0.2*VREG  
Low-Level Input Current  
(CS/LWAKE)  
IIL  
3.0  
Pull-down Current on  
Input (CS/LWAKE)  
IPDCS  
6.0  
~1.3Minternal pull-down  
to VSS @ VIH = 3.5V  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: For design guidance only, not tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
DS22018G-page 22  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.2  
DC Specifications (Continued)  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CLOADREG = 10 µF  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Bus Interface  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Hysteresis  
VIH(LBUS)  
VIL(LBUS)  
VHYS  
0.6 VBB  
18  
V
V
V
Recessive state  
-8  
0.4 VBB  
0.175 VBB  
200  
Dominant state  
VIH(LBUS) - VIL(LBUS)  
Low-Level Output  
Current  
IOL(LBUS)  
40  
mA Output voltage = 0.1 VBB,  
VBB = 12V  
Pull-up Current on Input  
IPU(LBUS)  
ISC  
5
50  
180  
200  
µA  
~30 kinternal pull-up  
@ VIH (LBUS) = 0.7 VBB  
Short Circuit Current  
Limit  
mA (Note 1)  
High-Level Output  
Voltage  
VOH(LBUS)  
0.8 VBB  
VBB  
V
V
VOH(LBUS) must be at least  
0.8 VBB  
Low-Level Output  
Voltage  
VOLLO  
(LBUS)  
0.2 VBB  
Input Leakage Current (at IBUS_PAS_DOM  
the receiver during  
-1  
mA Driver off,  
VBUS = 0V,  
dominant bus level)  
VBAT = 12V  
Leakage Current  
(disconnected from  
ground)  
IBUS_NO_GND  
IBUS  
-1  
+1  
10  
mA  
µA  
GNDDEVICE = VBAT,  
0V < VBUS < 18V,  
VBAT = 12V  
Leakage Current  
(disconnected from VBAT)  
VBAT = GND,  
0 < VBUS < 18V,  
TA = -40°C to +85°C  
(Note 3)  
50  
µA  
V
TA = +85°C to +125°C  
Receiver Center Voltage  
Slave Termination  
VBUS_CNT  
Rslave  
0.475 VBB  
20  
0.5  
VBB  
0.525 VBB  
VBUS_CNT = (VIL (LBUS) +  
VIH (LBUS))/2  
30  
47  
k  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: For design guidance only, not tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 23  
MCP2021/2/1P/2P  
2.2  
DC Specification (Continued)  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CLOADREG = 10 µF  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Voltage Regulator - 5.0V  
Output Voltage  
VOUT  
4.85  
5.00  
10  
5.15  
50  
V
0 mA < IOUT < 50 mA,  
Load Regulation  
VOUT2  
mV 5 mA < IOUT < 50 mA  
refer to Section 1.6  
“Internal Voltage  
Regulator”  
Quiescent Current  
IVRQ  
25  
50  
µA  
dB  
IOUT = 0 mA, (Note 2)  
Power Supply Ripple  
Reject  
PSRR  
1 VPP @10-20 kHz  
CLOAD = 10 µf,  
ILOAD = 50 mA  
Output Noise Voltage  
eN  
100  
µVRMS 10 Hz – 40 MHz  
CFILTER = 10 µf,  
CBP = 0.1 µf, CLOAD 10 µf,  
ILOAD = 50 mA  
Shutdown Voltage  
VSD  
VBB  
3.5  
6.0  
4.0  
V
V
See Figure 1-8  
Input Voltage to Maintain  
Regulation  
18.0  
Input Voltage to Turn Off  
Output  
VOFF  
VON  
4.0  
5.5  
4.5  
6.0  
V
V
Input Voltage to Turn On  
Output  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: For design guidance only, not tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
60  
12V DFN  
50  
18V DFN  
12V SOIC  
40  
18V SOIC  
30  
20  
10  
0
Temperature (°C)  
FIGURE 2-1:  
MCP2021-500 Safe Operating Range.  
DS22018G-page 24  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.2  
DC Specification (Continued)  
Electrical Characteristics:  
Unless otherwise indicated, all limits are specified for:  
VBB = 6.0V to 18.0V  
DC Specifications  
TA = -40°C to +125°C  
CLOADREG = 10 µF  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Voltage Regulator - 3.3V  
Output Voltage  
VOUT  
3.20  
3.30  
10  
3.40  
50  
V
0 mA < IOUT < 50 mA  
Line Regulation  
VOUT1  
mV IOUT = 1 mA,  
6.0V < VBB < 18V  
Load Regulation  
VOUT2  
10  
50  
mV 5 mA < IOUT < 50 mA  
Refer to Section 1.6  
“Internal Voltage  
Regulator”  
Quiescent Current  
IVRQ  
25  
50  
µA  
dB  
IOUT = 0 mA, (Note 2)  
Power Supply Ripple  
Reject  
PSRR  
1 VPP @10-20 kHz  
CLOAD = 10 µf,  
ILOAD = 50 mA  
Output Noise Voltage  
eN  
100  
µVRMS 10 Hz – 40 MHz  
/Hz CFILTER = 10 µf, CBP =  
0.1 µf CLOAD = 10 µf,  
ILOAD = 50 mA  
Shutdown Voltage  
VSD  
VBB  
2.5  
6.0  
2.7  
V
V
See Figure 1-8  
Input Voltage to Maintain  
Regulation  
18.0  
Input Voltage to Turn Off  
Output  
VOFF  
VON  
4.0  
5.5  
4.5  
6.0  
V
V
Input Voltage to Turn On  
Output  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: For design guidance only, not tested.  
3: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
60  
12V DFN  
50  
18V DFN  
12V SOIC  
40  
18V SOIC  
30  
20  
10  
0
Temperature (°C)  
FIGURE 2-2:  
MCP2021-330 Safe Operating Range.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 25  
MCP2021/2/1P/2P  
ESR Curves  
10  
Instable  
Unstable  
Stable only  
1
0.1  
with Tantalum or  
Electrolytic cap.  
Stable with  
Tantalum,  
Electrolytic and  
Ceramic cap.  
Unstable  
Instable  
0.01  
0.001  
Unstable  
Instable  
1000  
0.1  
1
100  
10  
Load Capacitor [uF]  
FIGURE 2-3:  
ESR Curves for Load Capacitor Selection.  
DS22018G-page 26  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.3  
AC Specification  
VBB = 6.0V to 18.0V; TA = -40°C to +125°C  
AC CHARACTERISTICS  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Bus Interface - Constant Slope Time Parameters  
Slope rising and falling  
edges  
tSLOPE  
tTRANSPD  
tRECPD  
3.5  
22.5  
4.0  
µs  
µs  
µs  
µs  
7.3V <= VBB <= 18V  
Propagation Delay of  
Transmitter  
tTRANSPD = max (tTRANSPDR or  
tTRANSPDF)  
Propagation Delay of  
Receiver  
6.0  
tRECPD = max (tRECPDR or  
tRECPDF)  
Symmetry of Propagation  
Delay of Receiver rising  
edge w.r.t. falling edge  
tRECSYM  
-2.0  
2.0  
tRECSYM = max (tRECPDF -  
tRECPDR)  
Symmetry of Propagation  
Delay of Transmitter rising  
edge w.r.t. falling edge  
tTRANSSYM  
tFAULT  
-2.0  
2.0  
µs  
µs  
tTRANSSYM = max (tTRANSPDF -  
tTRANSPDR)  
Time to sample of FAULT/  
TXE for bus conflict reporting  
32.5  
tFAULT = max (tTRANSPD +  
tSLOPE + tRECPD)  
Duty Cycle 1 @20.0 kbit/sec  
Duty Cycle 2 @20.0 kbit/sec  
Duty Cycle 3 @10.4 kbit/sec  
Duty Cycle 4 @10.4 kbit/sec  
39.6  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660|  
10 nF; 500  
THREC(MAX) = 0.744 x VBB,  
THDOM(MAX) = 0.581 x VBB,  
VBB =7.0V - 18V; tBIT = 50 µs.  
D1 = tBUS_REC(MIN) / 2 x tBIT)  
41.7  
58.1  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660|  
10 nF; 500  
THREC(MAX) = 0.284 x VBB,  
THDOM(MAX) = 0.422 x VBB,  
VBB =7.6V - 18V; tBIT = 50 µs.  
D2 = tBUS_REC(MAX) / 2 x tBIT)  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660|  
10 nF; 500  
THREC(MAX) = 0.778 x VBB,  
THDOM(MAX) = 0.616 x VBB,  
VBB =7.0V - 18V; tBIT = 96 µs.  
D3 = tBUS_REC(MIN) / 2 x tBIT)  
59.0  
%tBIT CBUS;RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660|  
10 nF; 500  
THREC(MAX) = 0.251 x VBB,  
THDOM(MAX) = 0.389 x VBB,  
VBB =7.6V - 18V; tBIT = 96 µs.  
D4 = tBUS_REC(MAX) / 2 x tBIT)  
2005-2013 Microchip Technology Inc.  
DS22018G-page 27  
MCP2021/2/1P/2P  
2.3  
AC Specification (Continued)  
VBB = 6.0V to 18.0V; TA = -40°C to +125°C  
AC CHARACTERISTICS  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Voltage Regulator  
Bus Activity Debounce Time  
tBDB  
5
10  
20  
µs  
µs  
Bus debounce time  
Bus Activity to Voltage  
Regulator Enabled  
tBACTVE  
100  
250  
500  
After bus debounce time  
Voltage Regulator Enabled  
to Ready  
tVEVR  
tCSOR  
(Note 1)  
1200  
500  
µs  
µs  
Chip Select to Operation  
Ready  
(Note 1, 2)  
Chip Select to Power-Down  
Short-Circuit to Shut-Down  
RESET Timing  
tCSPD  
80  
µs  
µs  
tSHUTDOWN  
20  
100  
VREG OK Detect to RESET  
Inactive  
tRPU  
tRPD  
10.0  
10.0  
µs  
µs  
VREG OK Detect to RESET  
Active  
Note 1: Time depends on external capacitance and load.  
2: Design guidance only, not tested.  
2.4  
Thermal Specifications  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Typ  
Max  
Units  
Test Conditions  
Recovery Temperature  
RECOVERY  
SHUTDOWN  
tTHERM  
+140  
+150  
1.5  
C  
C  
ms  
Shutdown Temperature  
Short Circuit Recovery Time  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
5.0  
JA  
JA  
JA  
JA  
JA  
JA  
35.7  
89.3  
149.5  
70  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
95.3  
100  
Note 1: The maximum power dissipation is a function of TJMAX, JA and ambient temperature TA. The maximum  
allowable power dissipation at an ambient temperature is PD = (TJMAX - TA)JA. If this dissipation is  
exceeded, the die temperature will rise above 150C and the MCP2021 will go into thermal shutdown.  
DS22018G-page 28  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
2.5  
Timing Diagrams and Specifications  
TXD  
50%  
50%  
LBUS  
.95VLBUS  
.50VBB  
.0.4VBB  
0.0V  
TTRANSPDR  
TTRANSPDF  
TRECPDF  
TRECPDR  
50%  
RXD  
50%  
Internal TXD/RXD  
Match  
Match  
Match  
Match  
Match  
Compare  
FAULT Sampling  
T
T
FAULT  
FAULT  
Hold  
Value  
Hold  
Value  
FAULT/TXE Output  
Stable  
Stable  
Stable  
FIGURE 2-4:  
Bus Timing Diagram.  
CS/LWAKE  
T
CSOR  
VREG  
VOUT  
TCSPD  
FIGURE 2-5:  
Regulator CS/LWAKE Timing Diagram.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 29  
MCP2021/2/1P/2P  
TVEVR  
LBUS  
0.4VBB  
TBDB + TBACTVE  
VREG  
VOUT  
FIGURE 2-6:  
Regulator BUS WAKE Timing Diagram.  
6.0V  
5.0V  
VBB  
5.0V  
4.0V  
3.5V  
VREG  
TRPD  
TRPD  
RESET  
TRPU  
TRPU  
FIGURE 2-7:  
RESET Timing Diagram.  
DS22018G-page 30  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
CS/LWAKE  
TCSOR  
VREG  
VOUT  
TRPU  
TCSPD  
RESET  
FIGURE 2-8:  
CS/LWAKE to RESET Timing Diagram.  
0.2  
0.15  
0.1  
Vbb = 6V  
Vbb = 7.3V  
Vbb = 12V  
Vbb = 14.4V  
Vbb = 18V  
0.05  
0
-40C  
25C  
85C  
125C  
Temperature (°C)  
FIGURE 2-9:  
Typical IBBQ vs. Temperature.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 31  
MCP2021/2/1P/2P  
0.18  
0.16  
0.14  
0.12  
0.1  
Vbb = 6V  
0.08  
0.06  
0.04  
0.02  
0
Vbb = 7.3V  
Vbb = 12V  
Vbb = 14.4V  
Vbb = 18V  
-40C  
25C  
85C  
125C  
Temperature (°C)  
FIGURE 2-10:  
Typical IBBTO vs Temperature.  
0.025  
0.02  
0.015  
0.01  
0.005  
0
Vbb = 6V  
Vbb = 7.3V  
Vbb = 12V  
Vbb = 14.4V  
Vbb = 18V  
-40C  
25C  
85C  
125C  
Temperature (°C)  
FIGURE 2-11:  
Typical IBBPD vs. Temperature.  
DS22018G-page 32  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (4x4x0.9 mm)  
Example  
202150  
E/MD  
1033  
256  
XXXXXX  
XXXXXX  
3
MCP2021  
202150  
MCP2021P  
2021P5  
YYWW  
NNN  
PIN 1  
PIN 1  
8-Lead DFN-S (6x5x0.9 mm)  
Example  
2021500  
3
E/MF  
MCP2021  
2021500  
1033  
256  
NNN  
PIN 1  
PIN 1  
8-Lead PDIP (300 mil)  
Example  
2021500  
XXXXXXXX  
XXXXXNNN  
3
MCP2021  
2021500  
E/P 256  
1033  
YYWW  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 33  
MCP2021/2/1P/2P  
3.1 Package Marking Information (Continued)  
8-Lead SOIC (3.90 mm)  
Example  
2021500E  
SN 1033  
MCP2021  
MCP2021P  
3
2021500E  
2021P50E  
256  
NNN  
14-Lead PDIP (300 mil)  
Example  
MCP2022-500  
3
MCP2022  
MCP2022P  
E/P  
MCP2022-500 MCP2022P-500  
1033256  
14-Lead SOIC (3.90 mm)  
Example  
MCP2022-500  
3
MCP2022  
E/SL  
MCP2022-500  
1033256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22018G-page 34  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
3.1 Package Marking Information (Continued)  
14-Lead TSSOP (4.4 mm)  
Example  
2022500E  
1033  
XXXXXXXX  
MCP2022  
MCP2022P  
2022P50E  
YYWW  
NNN  
2022500E  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 35  
MCP2021/2/1P/2P  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 1 of 2  
DS22018G-page 36  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 2 of 2  
2005-2013 Microchip Technology Inc.  
DS22018G-page 37  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22018G-page 38  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
L
b
N
N
K
E
E2  
EXPOSED PAD  
NOTE 1  
NOTE 1  
1
2
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
NOTE 2  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
1.27 BSC  
0.85  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Length  
Overall Width  
N
e
A
A1  
A3  
D
0.80  
0.00  
1.00  
0.05  
0.01  
0.20 REF  
5.00 BSC  
6.00 BSC  
4.00  
2.30  
0.40  
E
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
D2  
E2  
b
L
K
3.90  
2.20  
0.35  
0.50  
0.20  
4.10  
2.40  
0.48  
0.75  
0.60  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-122B  
2005-2013 Microchip Technology Inc.  
DS22018G-page 39  
MCP2021/2/1P/2P  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁ†ꢄꢃꢈˆꢂꢂꢆꢉꢄꢃꢊꢋꢈxꢋꢌꢆꢃqꢂꢋꢍꢉꢌ†ꢎꢃꢊꢏꢆꢋ†ꢆꢃ†ꢆꢆꢃꢄꢅꢆꢃꢐꢍꢈꢂꢁꢈꢅꢍꢊꢃQꢋꢈxꢋꢌꢍꢉꢌꢃꢑꢊꢆꢈꢍsꢍꢈꢋꢄꢍꢁꢉꢃꢏꢁꢈꢋꢄꢆqꢃꢋꢄꢃ  
ꢅꢄꢄꢊ)ꢒꢒꢓꢇꢍꢈꢂꢁꢈꢅꢍꢊꢓꢈꢁꢇꢒꢊꢋꢈxꢋꢌꢍꢉꢌ  
DS22018G-page 40  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
8
.100 BSC  
.130  
.310  
.250  
.365  
.130  
.010  
.060  
.018  
MAX  
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
N
e
A
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.210  
.195  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-018B  
2005-2013 Microchip Technology Inc.  
DS22018G-page 41  
MCP2021/2/1P/2P  
Note: For the moꢔt current package drawingꢔ, pleaꢔe ꢔee the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22018G-page 42  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the moꢔt current package drawingꢔ, pleaꢔe ꢔee the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2013 Microchip Technology Inc.  
DS22018G-page 43  
MCP2021/2/1P/2P  
ꢅꢆꢇꢃꢈꢉꢊꢋꢌꢈꢍꢂꢎꢏꢊꢐꢑꢈꢌꢌꢊꢒꢓꢂꢌꢎꢔꢃꢊꢕꢐꢀꢖꢊꢗꢊꢀꢈꢘꢘꢁꢙꢚꢊꢛꢜꢝꢞꢊꢑꢑꢊꢟꢁꢉꢠꢊꢡꢐꢒꢢꢣꢤ  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁ†ꢄꢃꢈˆꢂꢂꢆꢉꢄꢃꢊꢋꢈxꢋꢌꢆꢃqꢂꢋꢍꢉꢌ†ꢎꢃꢊꢏꢆꢋ†ꢆꢃ†ꢆꢆꢃꢄꢅꢆꢃꢐꢍꢈꢂꢁꢈꢅꢍꢊꢃQꢋꢈxꢋꢌꢍꢉꢌꢃꢑꢊꢆꢈꢍsꢍꢈꢋꢄꢍꢁꢉꢃꢏꢁꢈꢋꢄꢆqꢃꢋꢄꢃ  
ꢅꢄꢄꢊ)ꢒꢒꢓꢇꢍꢈꢂꢁꢈꢅꢍꢊꢓꢈꢁꢇꢒꢊꢋꢈxꢋꢌꢍꢉꢌ  
DS22018G-page 44  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
Units  
Dimension Limits  
INCHES  
NOM  
14  
.100 BSC  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.735  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.750  
.130  
.010  
.060  
.018  
.325  
.280  
.775  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-005B  
2005-2013 Microchip Technology Inc.  
DS22018G-page 45  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22018G-page 46  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2013 Microchip Technology Inc.  
DS22018G-page 47  
MCP2021/2/1P/2P  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁ†ꢄꢃꢈˆꢂꢂꢆꢉꢄꢃꢊꢋꢈxꢋꢌꢆꢃqꢂꢋꢍꢉꢌ†ꢎꢃꢊꢏꢆꢋ†ꢆꢃ†ꢆꢆꢃꢄꢅꢆꢃꢐꢍꢈꢂꢁꢈꢅꢍꢊꢃQꢋꢈxꢋꢌꢍꢉꢌꢃꢑꢊꢆꢈꢍsꢍꢈꢋꢄꢍꢁꢉꢃꢏꢁꢈꢋꢄꢆqꢃꢋꢄꢃ  
ꢅꢄꢄꢊ)ꢒꢒꢓꢇꢍꢈꢂꢁꢈꢅꢍꢊꢓꢈꢁꢇꢒꢊꢋꢈxꢋꢌꢍꢉꢌ  
DS22018G-page 48  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the moꢔt current package drawingꢔ, pleaꢔe ꢔee the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2013 Microchip Technology Inc.  
DS22018G-page 49  
MCP2021/2/1P/2P  
Note: For the moꢔt current package drawingꢔ, pleaꢔe ꢔee the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22018G-page 50  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2013 Microchip Technology Inc.  
DS22018G-page 51  
MCP2021/2/1P/2P  
NOTES:  
DS22018G-page 52  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
Revision B (August 2007)  
APPENDIX A: REVISION HISTORY  
The following is the list of modifications:  
1. Modified Block Diagram on page 2.  
Revision G (July 2013)  
The following has been modified:  
2. Section 1.3.5  
“Transmitter-OFF  
Mode”:  
Deleted text in 1st paragraph.  
1. Added Note 2 in Section 2.3 “AC Specifica-  
tion”.  
3. Example 1-6: Removed +5V notation.  
2. Added pull up to nFAULT/TXE pin in  
4. Section 1.4 “Pin Descriptions”: Removed 10-  
Section 1.4  
“Pin  
Descriptions”  
and  
pin DFN, MSOP column from table.  
Section 1.5 “Typical Applications”.  
5. Section 1.4.8 “Fault/TXE”: Deleted text from  
2nd paragraph.  
Revision F (January 2012)  
6. Section 3.0 “Packaging Information”: Added  
8-lead 4x4 and 6x5 DFN and 14-lead TSSOP  
packages. Updated package outline drawings  
and added drawings for 8-lead DFN and 14-lead  
TSSOP drawings.  
The following has been modified:  
1. Added the MCP2021P and MCP2022P options  
and related information throughout the  
document.  
Revision A (November 2005)  
Revision E (February 2009)  
Original Release of this Document.  
The following is the list of modifications:  
1. Added Example 1-7 and Example 1-8.  
2. Updated Section 1.4.9 “RESET”.  
3. Updated Section 1.7 “ICSP™ Consider-  
ations”.  
4. Updated Section 2.1 “Absolute Maximum  
Ratings†”.  
5. Updated Section 2.2 “DC Specifications” and  
Section 2.3 “AC Specification”.  
6. Added FIGURE 2-3: “ESR Curves for Load  
Capacitor Selection.”.  
7. Updated the Product Identification System  
section.  
Revision D (July 2008)  
The following is the list of modifications:  
1. Updated ESD specs under ‘Absolute DC’.  
2. Updated notes in Example 1-1.  
3. Updated Package Outline Drawings.  
Revision C (April 2008)  
The following is the list of modifications:  
1. Added LIN2.1 and J2602 compliance statement  
to Features section.  
2. Added recommended RC network for CS/  
LWAKE in Example 1-1.  
3. Updated 2.1 “Absolute Maximum Ratings†”  
to reflect current test results.  
4. Updated 2.2 “DC Specifications” and 2.3 “AC  
Specification” 2.3 AC Specifications to reflect  
current production device.  
5. Added 8-Lead SOIC Landing Pattern Outline  
drawing.  
2005-2013 Microchip Technology Inc.  
DS22018G-page 53  
MCP2021/2/1P/2P  
NOTES:  
DS22018G-page 54  
2005-2013 Microchip Technology Inc.  
MCP2021/2/1P/2P  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
–X  
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP2021-330E/SN: 3.3V, 8L-SOIC pkg.  
MCP2021-330E/P: 3.3V, 8L-PDIP pkg.  
Temperature  
Range  
Package  
MCP2021-500E/MF: 5.0V, 8L-DFN-S pkg.  
MCP2021-500E/SN: 5.0V, 8L-SOIC pkg.  
MCP2021-500E/MD: 5.0V, 8L-DFN pkg.  
Device:  
MCP2021: LIN Transceiver with Voltage Regulator; wakes up on  
dominant level of LIN bus.  
MCP2021-500E/P:  
5.0V, 8L-PDIP pkg.  
MCP2021T: LIN Transceiver with Voltage Regulator; wakes up on  
dominant level of LIN bus.  
g)  
MCP2021T-330E/SN: Tape and Reel,  
3.3V, 8L-SOIC pkg.  
(Tape and Reel) (SOIC only)  
h)  
i)  
MCP2021T-500E/MD: Tape and Reel,  
5.0V, 8L-DFN pkg.  
MCP2022: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up on dominant level of LIN bus.  
MCP2021T-500E/SN: Tape and Reel,  
5.0V, 8L-SOIC pkg.  
MCP2022T: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up on dominant level of LIN bus.  
(Tape and Reel) (SOIC only)  
MCP2021P: LIN Transceiver with Voltage Regulator; wakes up at a  
falling edge of LIN bus level.  
a)  
b)  
c)  
d)  
e)  
MCP2022-330E/SL:  
MCP2022-330E/P:  
MCP2022-500E/SL:  
MCP2022-500E/P:  
3.3V, 14L-SOIC pkg.  
3.3V, 14L-PDIP pkg.  
5.0V, 14L-SOIC pkg.  
5.0V, 14L-PDIP pkg.  
MCP2021PT: LIN Transceiver with Voltage Regulator; wakes up at a  
falling edge of LIN bus level  
(Tape and Reel) (SOIC only)  
MCP2022T-330E/SL: Tape and Reel,  
3.3V, 14L-SOIC pkg.  
MCP2022T-500E/SL: Tape and Reel,  
5.0V, 14L-SOIC pkg.  
MCP2022T-500E/ST: Tape and Reel,  
5.0V, 14L-TSSOP pkg.  
MCP2022P: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up at a falling edge of LIN bus level.  
MCP2022PT: LIN Transceiver with Voltage Regulator, and RESET  
pin; wakes up at a falling edge of LIN bus level.  
(Tape and Reel) (SOIC only)  
f)  
g)  
Temperature  
Range:  
E
=
-40°C to +125°C  
Package:  
MD  
MF  
P
SN  
SL  
ST  
=
=
=
=
=
=
Plastic Micro Small Outline (4x4), 8-lead  
Plastic Micro Small Outline (6x5), 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic SOIC, (150 mil Body), 14-lead  
Plastic Thin Shrink Small Outline, 14-lead  
2005-2013 Microchip Technology Inc.  
DS22018G-page 55  
MCP2021/2/1P/2P  
NOTES:  
DS22018G-page 56  
2005-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-345-1  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2005-2013 Microchip Technology Inc.  
DS22018G-page 57  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS22018G-page 58  
2005-2013 Microchip Technology Inc.  

相关型号:

MCP2022-E-SL

DATACOM, INTERFACE CIRCUIT, PDSO14, 3.90 MM, LEAD FREE, PLASTIC, SOIC-14
MICROCHIP

MCP2022-E-SN

DATACOM, INTERFACE CIRCUIT, PDSO8, 3.90 MM, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2022-E/MD

DATACOM, INTERFACE CIRCUIT, PDSO8, 4 X 4 MM, 0.90 MM HEIGHT, LEAD FREE, PLASTIC, DFN-8
MICROCHIP

MCP2022-E/P

DATACOM, INTERFACE CIRCUIT, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8
MICROCHIP

MCP2022-E/SN

DATACOM, INTERFACE CIRCUIT, PDSO8, 3.90 MM, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2022A

The MCP2022A provides a bidirectional, half-duplex communication physical interface to an automoti
MICROCHIP

MCP2022A-330E/MD

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2022A-330E/P

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2022A-330E/SL

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2022A-330E/SN

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2022A-330E/ST

MCP2022A-330E/ST
MICROCHIP

MCP2022A-500E/MD

LIN Transceiver with Voltage Regulator
MICROCHIP