MCP2025T-500E/P [MICROCHIP]

LIN Transceiver with Voltage Regulator;
MCP2025T-500E/P
型号: MCP2025T-500E/P
厂家: MICROCHIP    MICROCHIP
描述:

LIN Transceiver with Voltage Regulator

文件: 总38页 (文件大小:1068K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2025  
LIN Transceiver with Voltage Regulator  
Features:  
Description:  
• Compliant with LIN Bus Specifications Version  
1.3, 2.1 and with SAE J2602-2  
The MCP2025 provides a bidirectional, half-duplex  
communication physical interface to meet the LIN bus  
specification Revision 2.1 and SAE J2602-2. The  
device incorporates a voltage regulator with 5V or 3.3V  
at 70 mA regulated power supply output. The device  
has been designed to meet the stringent quiescent  
current requirements of the automotive industry, and  
will survive +43V load dump transients and double  
battery jumps.  
• Supports Baud Rates up to 20 kBaud  
• 43V Load Dump Protected  
• Maximum Continuous Input Voltage: 30V  
• Wide LIN-Compliant Supply Voltage: 6.0-18.0V  
• Extended Temperature Range: -40°C to +125°C  
• Interface to PIC® EUSART and Standard USARTs  
• Wake-Up on LIN Bus Activity or Local Wake Input  
• Local Interconnect Network (LIN) Bus Pin:  
The MCP2025 family members include:  
- MCP2025-500, 8-pin, LIN driver with 5.0V  
regulator  
- Internal Pull-Up Termination Resistor and  
Diode for Slave Node  
- MCP2025-330, 8-pin, LIN driver with 3.3V  
regulator  
- Protected Against VBAT Shorts  
- Protected Against Loss of Ground  
- High-Current Drive  
Package Types  
• TXD and LIN Bus Dominant Time-Out Function  
• Two Low-Power Modes:  
MCP2025  
PDIP, SOIC  
- Transmitter Off: 90 µA (typical)  
- Power Down: 4.5 µA (typical)  
• MCP2025 On-Chip Voltage Regulator:  
VREG  
1
2
3
4
8
7
6
5
VBB  
RESET  
TXD  
CS/LWAKE  
VSS  
- Output Voltage of 5.0V or 3.3V  
at 70 mA Capability with Tolerances of ±3%  
Over the Temperature Range  
RXD  
LBUS  
MCP2025  
- Internal Short-Circuit Current Limit  
4x4 DFN  
- External Components Limited to Filter  
Capacitor and Load Capacitor  
VBB  
VREG  
1
8
7
6
5
CS/LWAKE  
VSS  
RESET  
TXD  
2
• Automatic Thermal Shutdown  
EP  
9
3
4
• High Electromagnetic Immunity (EMI), Low  
Electromagnetic Emission (EME)  
LBUS  
RXD  
• Robust ESD Performance: ±15 kV for LBUS and  
VBB Pin (IEC61000-4-2)  
• Transient Protection for LBUS and VBB pins in  
Automotive Environment (ISO7637)  
• Meets Stringent Automotive Design Requirements,  
including “OEM Hardware Requirements for LIN,  
CAN and FlexRay Interfaces in Automotive  
Applications”, Version 1.3, May 2012  
• Multiple Package Options, Including Small  
4x4 mm DFN Package  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 1  
MCP2025  
MCP2025 Block Diagram  
RESET  
Thermal  
Protection  
Short-Circuit  
Protection  
Voltage  
Regulator  
VBB  
Ratiometric  
Reference  
Wake-Up Logic  
and  
VREG  
4.2V  
Internal Circuits  
Power Control  
Bus Wake-Up  
Slope Control  
VREG  
RXD  
~ 30 k  
CS/LWAKE  
TXD  
LBUS  
VSS  
Bus  
Dominant  
Timer  
Thermal and  
Short-Circuit  
Protection  
DS20002306B-page 2  
2012-2014 Microchip Technology Inc.  
MCP2025  
1.1  
Modes of Operation  
1.0  
DEVICE OVERVIEW  
The MCP2025 works in five modes: Power-On Reset,  
Power-Down, Ready, Operation and Transmitter Off.  
For an overview of all operational modes, please refer  
to Table 1-1. For the operational mode transition,  
please refer to Figure 1-1.  
The MCP2025 provides a physical interface between a  
microcontroller and a LIN half-duplex bus. It is intended  
for automotive and industrial applications with serial  
bus baud rates up to 20 kBaud. This device will  
translate the CMOS/TTL logic levels to LIN logic levels,  
and vice versa.  
The device offers optimum EMI and ESD performance  
and it can withstand high voltage on the LIN bus. The  
device supports two low-power modes to meet  
automotive industry power consumption requirements.  
The MCP2025 also provides a +5V or 3.3V regulated  
power output at 70 mA.  
FIGURE 1-1:  
STATE DIAGRAM  
CS/LWAKE = 0  
READY  
POR(2)  
V
REG OFF  
VREG ON  
VBB > VON  
CS/LWAKE = 1 &TXD = 1  
VREG_OK = 1(1)  
RX OFF  
TX OFF  
RX ON  
TX OFF  
CS = 1 &TXD = 0&  
CS/LWAKE = 1&  
T
XD = 1&  
No Fault(3)  
CS/LWAKE = 1 OR  
Voltage Rising Edge on LBUS  
TX OFF  
OPERATION  
V
REG ON  
VREG ON  
RX ON  
RX ON  
TX ON  
TX OFF  
CS/LWAKE = 0 or  
Fault detected(3)  
CS/LWAKE = 0  
&TXD = 0  
POWER-DOWN  
V
REG OFF  
RX OFF  
TX OFF  
Note 1: VREG_OK: Regulator Output Voltage > 0.8VREG_NOM.  
2: If the voltage on pin VBB falls below VOFF, the device will enter Power-On Reset mode from all other  
modes, which is not shown in the figure.  
3: Faults include TXD/LBUS permanent dominant, LBUS short to VBB, thermal protection and VREG_OK is  
false.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 3  
MCP2025  
1.1.1  
POWER-ON RESET MODE  
1.1.4  
TRANSMITTER OFF MODE  
Upon application of VBB, or whenever the voltage on  
VBB is below the threshold of regulator turn-off voltage  
VOFF (typically 4.50V), the device enters Power-On  
Reset (POR) mode. During this mode, the device  
maintains the digital section in a Reset mode and waits  
until the voltage on the VBB pin rises above the  
threshold of regulator turn-on voltage VON (typically  
5.75V) to enter Ready mode. In Power-On Reset  
mode, the LIN physical layer and voltage regulator are  
disabled and the RESET pin is switched to ground.  
If VREG is OK (VREG > 0.8*VREG_NOM), the Transmitter  
Off mode can be reached from Ready mode by setting  
CS/LWAKE to high when the TXD pin is low, or from  
Operation mode by pulling down CS/LWAKE to low.  
In Transmitter Off mode, the receiver is enabled but the  
LBUS transmitter is off. It is a lower-power mode.  
In order to minimize power consumption, the regulator  
operates in a reduced-power mode. It has a lower  
GBW product and it is thus slower. However, the 70 mA  
drive capability is unchanged.  
1.1.2  
READY MODE  
The transmitter is also turned off whenever the voltage  
regulator is unstable or recovering from a fault. This  
prevents unwanted disruption on the bus during times  
of uncertain operation.  
The device enters Ready mode from POR mode after  
the voltage on VBB rises above the threshold of  
regulator turn-on voltage VON, or from Power-Down  
mode when a remote or local wake-up event happens.  
1.1.5  
POWER-DOWN MODE  
Upon entering Ready mode, the voltage regulator and  
the receiver section of the transceiver are powered-up.  
The transmitter remains in an off state. The device is  
ready to receive data, but not to transmit. In order to  
minimize the power consumption, the regulator  
operates in a reduced-power mode. It has a lower  
GBW product and it is thus slower. However, the 70 mA  
drive capability is unchanged.  
Power-Down mode is entered by pulling down both the  
CS/LWAKE pin and the TXD pin to low from Transmitter  
Off mode. In Power-Down mode, the transceiver and  
the voltage regulator are both off. Only the bus wake-up  
section and the CS/LWAKE pin wake-up circuits are in  
operation. This is the lowest-power mode.  
If any bus activity (e.g., a Break character) occurs or  
CS/LWAKE is set to high during Power-Down mode,  
the device will immediately enter Ready mode and  
enable the voltage regulator. Then, once the regulator  
output has stabilized (approximately 0.3 ms to 1.2 ms),  
it can go into either Operation mode or Transmitter Off  
mode. Refer to Section 1.1.6 “Remote Wake-Up” for  
more details.  
The device stays in Ready mode until the output of the  
voltage regulator has stabilized and the CS/LWAKE pin  
is high (‘1’).  
1.1.3  
OPERATION MODE  
If the CS/LWAKE pin changes to high while VREG is OK  
(VREG > 0.8*VREG_NOM) and the TXD pin is high, the  
part enters Operation mode from either Ready or  
Transmitter Off mode.  
1.1.6  
REMOTE WAKE-UP  
The Remote Wake-Up sub-module observes the LBUS  
in order to detect bus activity. In Power-Down mode,  
the normal LIN recessive/dominant threshold is  
disabled and the LIN bus wake-up voltage threshold  
VWK(LBUS) is used to detect bus activities. Bus activity  
is detected when the voltage on the LBUS falls below  
the LIN bus wake-up voltage threshold VWK(LBUS)  
(approximately 3.4V) for at least tBDB (a typical duration  
of 80 µs) followed by a rising edge. Such a condition  
causes the device to leave Power-Down mode.  
In this mode, all internal modules are operational. The  
internal pull-up resistor between LBUS and VBB is  
connected only in this mode.  
The device goes into Transmitter Off mode at the falling  
edge on the CS/LWAKE pin or when a fault is detected.  
Note:  
The TXD pin needs to be set high before  
setting the CS/LWAKE pin to low in order  
to jump and stay in Transmitter Off mode.  
If the TXD pin is set or maintained low  
before setting the CS/LWAKE pin to low,  
the part will transition to Transmitter Off  
mode and then jump to Power-Down  
mode after a deglitch delay of about  
20 µs.  
DS20002306B-page 4  
2012-2014 Microchip Technology Inc.  
MCP2025  
TABLE 1-1:  
State  
OVERVIEW OF OPERATIONAL MODES  
Internal  
Voltage  
Transmitter Receiver Wake  
Regulator  
Operation  
Comments  
Module  
POR  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
Proceed to Ready mode after  
VBB > VON.  
Ready  
Operation  
If CS/LWAKE is high, then proceed to Bus Off  
Operation or Transmitter Off mode. state  
If CS/LWAKE is low, then proceed to Normal  
Transmitter Off mode. Operation  
mode  
On LIN bus rising edge or CS/LWAKE Lowest-  
ON  
ON  
Power-Down  
OFF  
OFF  
OFF  
ON  
ON  
Activity  
Detect  
OFF  
ON  
high level, go to Ready mode.  
Power  
mode  
Transmitter Off  
OFF  
If TXD and CS/LWAKE are low, then  
proceed to Power-Down mode.  
Bus Off  
state,  
If TXD and CS/LWAKE are high, then lower-power  
proceed to Operation mode.  
mode  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 5  
MCP2025  
1.2  
Pin Descriptions  
The descriptions of the pins are listed in Table 1-2.  
TABLE 1-2:  
Pin Name  
PIN FUNCTION TABLE  
Pin Number  
Pin Type  
Description  
8-lead PDIP 4x4 DFN  
VBB  
CS/LWAKE  
VSS  
1
2
3
4
5
6
1
2
3
4
5
6
Power  
TTL input, HV-tolerant  
Power  
Battery  
Chip Select and Local Wake-up Input  
Ground  
LBUS  
I/O, HV  
LIN Bus  
RXD  
Output  
Receive Data Output  
Transmit Data Input  
TXD  
Input, HV-tolerant  
RESET  
VREG  
EP  
7
8
7
8
9
Open-drain output, HV-tolerant  
Reset Output  
Output  
Voltage Regulator Output  
Exposed Thermal Pad  
1.2.1  
BATTERY POSITIVE SUPPLY  
VOLTAGE (VBB)  
1.2.4  
LIN BUS (LBUS)  
LIN Bus pin. LBUS is a bidirectional LIN bus interface  
pin and is controlled by the signal TXD. It has an open  
collector output with a current limitation. To reduce  
electromagnetic emission, the slopes during signal  
changes are controlled and the LBUS pin has  
corner-rounding control for both falling and rising  
edges.  
Battery Positive Supply Voltage pin. An external diode  
is connected in series to prevent the device from being  
reversely powered (refer to Figure 1-7).  
1.2.2  
CHIP SELECT AND LOCAL  
WAKE-UP INPUT (CS/LWAKE)  
The internal LIN receiver observes the activities on the  
LIN bus and generates the output signal RXD that  
follows the state of the LBUS. A 1st degree 160 kHz  
low-pass input filter optimizes electromagnetic  
immunity.  
Chip Select and Local Wake-Up Input pin (TTL level,  
high-voltage tolerant). This pin controls the device state  
transition. Refer to Figure 1-1.  
An internal pull-down resistor will keep the CS/LWAKE  
pin low to ensure that no disruptive data will be present  
on the bus while the microcontroller is executing a  
Power-On Reset and I/O initialization sequence. When  
CS/LWAKE is ‘1’, a weak pull-down (~600 k) is used  
to reduce current. When CS/LWAKE is ‘0’, a stronger  
pull-down (~300 k) is used to maintain the logic level.  
1.2.5  
RECEIVE DATA OUTPUT (RXD)  
Receive Data Output pin. The RXD pin is a standard  
CMOS output pin and it follows the state of the LBUS  
pin.  
This pin may also be used as a local wake-up input  
(see Figure 1-7). The microcontroller will set the I/O pin  
to control the CS/LWAKE. An external switch or  
another source can then wake up both the transceiver  
and the microcontroller.  
1.2.6  
TRANSMIT DATA INPUT (TXD)  
Transmit Data Input pin (TTL level, HV-compliant,  
adaptive pull-up). The transmitter reads the data  
stream on the TXD pin and sends it to the LIN bus. The  
LBUS pin is low (dominant) when TXD is low, and high  
(recessive) when TXD is high.  
Note:  
CS/LWAKE should NOT be tied directly to  
the VREG pin, as this could force the  
MCP2025 into Operation mode before the  
microcontroller is initialized.  
TXD is internally pulled-up to approximately 4.2V. When  
TXD is ‘0’, a weak pull-up (~900 k) is used to reduce  
current. When TXD is ‘1’, a stronger pull-up (~300 k)  
is used to maintain the logic level.  
A series  
1.2.3  
GROUND (VSS)  
reverse-blocking diode allows applying TXD input  
voltages greater than the internally generated 4.2V and  
renders the TXD pin HV-compliant up to 30V (see  
MCP2025 Block Diagram).  
Ground pin.  
DS20002306B-page 6  
2012-2014 Microchip Technology Inc.  
MCP2025  
1.2.7  
RESET  
FIGURE 1-2:  
THERMAL SHUTDOWN  
STATE DIAGRAMS  
Reset output pin. This is an open-drain output pin. It  
indicates the internal voltage has reached a valid,  
stable level. As long as the internal voltage is valid  
(above 0.8 VREG), this pin will present high impedance;  
otherwise, the RESET pin switches to ground.  
LIN Bus  
Shorted to  
Output  
Overload  
VBB  
Voltage  
Regulator  
Shutdown  
Operation  
Mode  
Transmitter  
Shutdown  
1.2.8  
POSITIVE SUPPLY VOLTAGE  
REGULATOR OUTPUT (VREG)  
Positive Supply Voltage Regulator Output pin. An  
on-chip Low Dropout Regulator (LDO) gives +5.0 or  
+3.3V at 70 mA regulated voltage on this pin.  
Temp < SHUTDOWNTEMP Temp < SHUTDOWNTEMP  
1.3.3  
TXD/LBUS TIME-OUT TIMER  
1.2.9  
EXPOSED THERMAL PAD (EP)  
The LIN bus can be driven to a dominant level, either  
from the TXD pin or externally. An internal timer  
deactivates the LBUS transmitter if a dominant status  
(low) on the LIN bus lasts longer than Bus Dominant  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
Time-Out  
Time,  
tTO(LIN)  
(approximately  
20 milliseconds). At the same time, the RXD output is  
put in recessive (high) and the internal pull-up resistor  
between LBUS and VBB is disconnected. The timer is  
reset on any recessive LBUS status or POR mode. The  
recessive status on LBUS can be caused either by the  
bus being externally pulled-up or by the TXD pin being  
returned high.  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (JA).  
1.3  
Fail-Safe Features  
1.3.1  
GENERAL FAIL-SAFE FEATURES  
• An internal pull-down resistor on the CS/LWAKE  
pin disables the transmitter if the pin is floating.  
1.4  
Internal Voltage Regulator  
The MCP2025 has a positive regulator capable of  
supplying +5.00 or +3.30 VDC ±3% at up to 70 mA of  
load current over the entire operating temperature  
range of -40°C to +125°C. The regulator uses an LDO  
design, is short-circuit-protected and will turn the  
regulator output off if its output falls below the shutdown  
voltage threshold, VSD.  
• An internal pull-up resistor on the TXD pin places  
TXD in high and the LBUS in recessive if the TXD  
pin is floating.  
• High-Impedance and low-leakage current on LBUS  
during loss of power or ground.  
• The current limit on LBUS protects the transceiver  
from being damaged if the pin is shorted to VBB.  
With  
a
load current of 70 mA, the minimum  
1.3.2  
THERMAL PROTECTION  
input-to-output voltage differential required for the  
output to remain in regulation is typically +0.5V (+1V  
maximum over the full operating temperature range).  
Quiescent current is less than 100 µA with a full 70 mA  
load current when the input-to-output voltage  
differential is greater than +3.00V.  
The thermal protection circuit monitors the die  
temperature and is able to shut down the LIN  
transmitter and voltage regulator.  
There are three causes for a thermal overload. A  
thermal shutdown can be triggered by any one, or a  
combination of, the following thermal overload  
conditions:  
Regarding the correlation between VBB, VREG and IDD,  
please refer to Figures 1-4 and 1-5. When the input  
voltage (VBB) drops below the differential needed to  
provide stable regulation, the voltage regulator output,  
VREG, will track the input down to approximately VOFF,  
at which point the regulator will turn off the output. This  
will allow PIC® microcontrollers with internal POR  
circuits to generate a clean arming of the POR trip  
point. The MCP2025 will then monitor VBB and turn on  
the regulator when VBB is above the threshold of  
regulator turn-on voltage, VON.  
• Voltage regulator overload  
• LIN bus output overload  
• Increase in die temperature due to increase in  
environment temperature  
The recovery time from the thermal shutdown is equal  
to adequate cooling time.  
Driving the TXD and checking the RXD pin make it  
possible to determine whether there is a bus contention  
(TXD = high, RXD = low) or  
In Power-Down mode, the VBB monitor is turned off.  
a
thermal overload  
condition (TXD = low, RXD = high).  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 7  
MCP2025  
Under specific ambient temperature and battery  
voltage range, the voltage regulator can output as high  
as 150 mA current. For current load capability of the  
voltage regulator, refer to Figures 2-8 and 2-9.  
In worst-case scenarios, the ceramic capacitor may  
derate by 50%, based on tolerance, voltage and  
temperature. Therefore, in order to ensure stability,  
ceramic capacitors smaller than 10 µF may require a  
small series resistance to meet the ESR requirements,  
as shown in Table 1-3.  
Note:  
The regulator has an overload current limit  
of approximately 250 mA. The regulator  
output voltage, VREG, is monitored. If  
output voltage VREG is lower than VSD, the  
voltage regulator will turn off. After a  
recovery time of about 3 ms, the VREG will  
be checked again. If there is no short  
circuit, (VREG > VSD), then the voltage  
regulator remains on.  
TABLE 1-3:  
RECOMMENDED SERIES  
RESISTANCE FOR CERAMIC  
CAPACITORS  
Resistance  
Capacitor  
1  
1 µF  
0.47  
0.22  
0.1  
2.2 µF  
4.7 µF  
6.8 µF  
The regulator requires an external output bypass  
capacitor for stability. See Figure 2-1 for correct  
capacity and ESR for stable operation.  
Note:  
A ceramic capacitor of at least 10 µF or a  
tantalum capacitor of at least 2.2 µF is  
recommended for stability.  
FIGURE 1-3:  
VOLTAGE REGULATOR BLOCK DIAGRAM  
Pass  
Element  
VBB  
VREG  
Sampling  
Network  
Fast  
Transient  
Loop  
Buffer  
VSS  
VREF  
DS20002306B-page 8  
2012-2014 Microchip Technology Inc.  
MCP2025  
FIGURE 1-4:  
VOLTAGE REGULATOR OUTPUT ON POWER-ON RESET  
VBB  
V
Minimum VBB to maintain regulation  
8
6
4
2
0
VON  
VOFF  
t
VREG  
V
VREG-NOM  
5
4
3
2
1
0
t
(4)  
(1)  
(2)  
(3)  
Note 1: Start-up, VBB < VON, regulator off.  
2: VBB > VON, regulator on.  
3: VBB  Minimum VBB to maintain regulation.  
4: VBB < VOFF, regulator will turn off.  
FIGURE 1-5:  
VOLTAGE REGULATOR OUTPUT ON OVERCURRENT SITUATION  
IREG  
mA  
ILIM  
0
t
VREG  
V
6
5
VREG-NOM  
4
VSD  
3
2
1
0
t
(1)  
Note 1: IREG less than lLIM, regulator on.  
2: After IREG exceeds lLIM, the voltage regulator output will be reduced until VSD is reached.  
(2)  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 9  
MCP2025  
EQUATION 1-2:  
1.5  
Optional External Protection  
VRECESSIVE  
RTP ---------------------------------  
1.5.1  
REVERSE BATTERY PROTECTION  
IREGMAX  
An external reverse-battery-blocking diode should be  
used to provide polarity protection (see Figure 1-7).  
Where:  
VRECESSIVE = Maximum variation tolerated on  
1.5.2  
TRANSIENT VOLTAGE  
PROTECTION (LOAD DUMP)  
the recessive level  
An external 43V transient suppressor (TVS) diode,  
between VBB and ground, with a transient protection  
resistor (RTP) in series with the battery supply and the  
VBB pin, protects the device from power transients and  
ESD events greater than 43V (see Figure 1-7). The  
maximum value for the RTP protection resistor depends  
upon two parameters: the minimum voltage the part will  
start at and the impacts of this RTP resistor on the VBB  
value, thus on the bus recessive level and slopes.  
Assume  
that  
VRECCESSIVE = 1V  
and  
IREGMAX = 50 mA. Equation 1-2 gives 20.  
EQUATION 1-3:  
Slope VBATMIN 1V  
RTP ----------------------------------------------------------------  
IREGMAX  
Where:  
Slope = Maximum variation tolerated on the  
This leads to a set of three equations to fulfill.  
slope level  
Equation 1-1 provides a maximum RTP value according  
to the minimum battery voltage the user wants.  
IREGMAX = Maximum current the current will  
provide to the load  
Equation 1-2 provides  
a
maximum RTP value  
VBATMIN > VOFF + 1.0V  
according to the maximum error on the recessive level,  
thus VBB, since the part uses VBB as the reference  
value for the recessive level.  
Assume that Slope = 15%, VBATMIN = 8V and  
IREGMAX = 50 mA. Equation 1-3 gives 20.  
Equation 1-3 provides  
a
maximum RTP value  
according to the maximum relative variation the user  
can accept on the slope when IREG varies.  
1.5.3  
CBAT CAPACITOR  
Selecting  
CBAT = 10 x CREG  
is recommended.  
Since both Equations 1-1 and 1-2 must be fulfilled, the  
maximum allowed value for RTP is thus the smaller of the  
two values found when solving Equations 1-1 and 1-2.  
However, this leads to a high-value capacitor. Lower  
values for CBAT capacitor can be used with respect to  
some rules. In any case, the voltage at the VBB pin  
should remain above VOFF when the device is turned  
on.  
Usually, Equation 1-1 gives the higher constraint  
(smaller value) for RTP, as shown in the following  
example where VBATMIN is 8V.  
The current peak at start-up (due to the fast charge of  
the CREG and CBAT capacitors) may induce a  
significant drop on the VBB pin. This drop is  
proportional to the impedance of the VBAT connection  
(see Figure 1-7).  
However, the user needs to verify that the value found  
with Equation 1-1 fulfills Equations 1-2 and 1-3.  
While this protection is optional, it should be  
considered as good engineering practice.  
The VBAT connection is mainly inductive and resistive.  
Therefore, it can be modeled as a resistor (RTOT) in  
series with an inductor (L). RTOT and L can be  
measured.  
EQUATION 1-1:  
VBATMIN 5.5V  
RTP ---------------------------------------  
250 mA  
The following formula gives an indication of the  
minimum value of CBAT using RTOT and L:  
5.5V = VOFF + 1.0V  
EQUATION 1-4:  
Where:  
CBAT  
100L2 + RT2OT  
250 mA = Peak current at power-on when  
VBB = 5.5V  
------------- = ------------------------------------  
RT2OT  
CREG  
1 + L2 + ------------  
100  
Assume that VBATMIN = 8V. Equation 1-1 gives 10.  
Where:  
L = Inductor (measured in mH)  
RTOT = RLINE + RTP (measured in )  
Equation 1-4 allows lower CBAT/CREG values than the  
10x ratio we recommend.  
DS20002306B-page 10  
2012-2014 Microchip Technology Inc.  
MCP2025  
Assume that we have a good quality VBAT connection  
with RTOT = 0.1and L = 0.1 mH.  
Solving the equation gives CBAT/CREG = 1.  
If we increase RTOT up to 1, the result becomes  
CBAT/CREG = 1.4. However, if the connection is highly  
resistive or highly inductive (poor connection), the  
CBAT/CREG ratio greatly increases.  
TABLE 1-4:  
CBAT/CREG RATIO BY VBAT  
CONNECTION TYPE  
Connection  
Type  
CBAT/CREG  
RTOT  
L
Ratio  
Good  
0.10.1 mH  
1
1.4  
7
Typical  
1  
0.1 mH  
1 mH  
Highly inductive 0.1  
Highly resistive  
100.1 mH  
7
Figure 1-6 shows the minimum recommended  
CBAT/CREG ratio as a function of the impedance of the  
VBAT connection.  
FIGURE 1-6:  
Minimum Recommended  
CBAT/CREG Ratio  
CBAT/CREG Ratio as Function of the VBAT Line  
Impedance  
RBAT = 10  
10  
RBAT = 4  
RBAT = 2  
RBAT = 1  
RBAT = 0.3  
RBAT = 0.1  
1
0.1  
1
VBAT Line Inductance [mH]  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 11  
MCP2025  
1.6  
Typical Applications  
FIGURE 1-7:  
TYPICAL APPLICATION CIRCUIT  
VBAT  
VBAT  
RTP  
CBAT  
220 k  
43V(5)  
Master Node Only  
VBB  
CREG  
Wake-Up  
VBB  
VDD  
VREG  
TXD  
RXD  
TXD  
RXD  
(6)  
1 k  
LIN Bus  
MMBZ27V (4)  
LBUS  
I/O  
CS/LWAKE  
RESET  
VSS  
(3)  
RESET  
VSS  
220 pF  
100 nF  
Note 1: CREG, the load capacitor, should be ceramic or tantalum rated for extended temperatures, 1.0-22 µF. See  
Figure 2-1 to select the correct ESR.  
2: CBAT is the filter capacitor for the external voltage supply. Typically 10 x CREG, with no ESR restriction. See  
Figure 1-6 to select the minimum recommended value for CBAT. The RTP value is added to the line resistance.  
3: This diode is only needed if CS/LWAKE is connected to the VBAT supply.  
4: ESD protection diode.  
5: This component is for additional load dump protection.  
6: An external 10 kresistor is recommended for some applications.  
FIGURE 1-8:  
TYPICAL LIN NETWORK CONFIGURATION  
40m  
+ Return  
LIN bus  
1 k  
VBB  
LIN bus  
MCP2025  
LIN bus  
MCP205X  
LIN bus  
MCP202XA  
LIN bus  
MCP2003  
Slave 1  
(MCU)  
Slave n <16  
(MCU)  
Slave 2  
(MCU)  
Master  
(MCU)  
DS20002306B-page 12  
2012-2014 Microchip Technology Inc.  
MCP2025  
1.7  
ICSP™ Considerations  
The following should be considered when the MCP2025  
are connected to pins supporting in-circuit programming:  
• Power used for programming the microcontroller  
can be supplied from the programmer or from  
the MCP2025.  
The voltage on the VREG pin should not exceed the  
maximum value of VREG in DC Specifications.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 13  
MCP2025  
2.0  
2.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VIN DC Voltage on RXD and RESET .................................................................................................-0.3V to VREG + 0.3  
VIN DC Voltage on TXD, CS/LWAKE.............................................................................................................. -0.3 to +40V  
VBB Battery Voltage, continuous, non-operating (Note 1)............................................................................. -0.3 to +40V  
VBB Battery Voltage, non-operating (LIN bus recessive, no regulator load, t < 60s) (Note 2) ...................... -0.3 to +43V  
VBB Battery Voltage, transient ISO 7637 Test 1 ..................................................................................................... -100V  
VBB Battery Voltage, transient ISO 7637 Test 2a .....................................................................................................+75V  
VBB Battery Voltage, transient ISO 7637 Test 3a ................................................................................................... -150V  
VBB Battery Voltage, transient ISO 7637 Test 3b ...................................................................................................+100V  
VLBUS Bus Voltage, continuous...................................................................................................................... -18 to +30V  
VLBUS Bus Voltage, transient (Note 3)........................................................................................................... -27 to +43V  
ILBUS Bus Short Circuit Current Limit ....................................................................................................................200 mA  
ESD protection on LIN, VBB (IEC 61000-4-2) (Note 4)............................................................................................±15 V  
ESD protection on LIN, VBB (Human Body Model) (Note 5)....................................................................................±8 kV  
ESD protection on all other pins (Human Body Model) (Note 5) .............................................................................±4 kV  
ESD protection on all pins (Charge Device Model) (Note 6).................................................................................±1500V  
ESD protection on all pins (Machine Model) (Note 7).............................................................................................±200V  
Maximum Junction Temperature.............................................................................................................................150C  
Storage Temperature...................................................................................................................................-65 to +150C  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Note 1: LIN 2.x compliant specification.  
2: SAE J2602-2 compliant specification.  
3: ISO 7637/1 load dump compliant (t < 500 ms).  
4: According to IEC 61000-4-2, 330, 150 pF and Transceiver EMC Test Specifications [2] to [4].  
5: According to AEC-Q100-002/JESD22-A114.  
6: According to AEC-Q100-011B.  
7: According to AEC-Q100-003/JESD22-A115.  
2.2  
Nomenclature Used in this Document  
Some terms and names used in this data sheet deviate from those referred to in the LIN specifications. Equivalent  
values are shown below.  
LIN 2.1 Name  
Term used in the following tables  
Definition  
ECU operating voltage  
VBAT  
not used  
VBB  
VSUP  
Supply voltage at device pin  
Current limit of driver  
Recessive state  
VBUS_LIM  
VBUSREC  
VBUSDOM  
ISC  
VIH(LBUS)  
VIL(LBUS)  
Dominant state  
DS20002306B-page 14  
2012-2014 Microchip Technology Inc.  
MCP2025  
2.3  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 18.0V, TA = -40°C to +125°C, CREG = 10 µF.  
DC Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power  
VBB Quiescent Operating  
Current  
IBBQ  
200  
µA  
IOUT = 0 mA  
LBUS recessive  
VREG = 5.0V  
4.5  
200  
100  
100  
100  
100  
8
µA  
µA  
µA  
µA  
µA  
µA  
IOUT = 0 mA  
LBUS recessive  
VREG = 3.3V  
VBB Ready Current  
IBBRD  
IBBTO  
IOUT = 0 mA  
LBUS recessive  
VREG = 5.0V  
IOUT = 0 mA  
LBUS recessive  
VREG = 3.3V  
VBB Transmitter-Off Current  
with Watchdog Disabled  
With voltage regulator on,  
transmitter off, receiver on,  
CS = VIH,VREG = 5.0V  
With voltage regulator on,  
transmitter off, receiver on,  
CS = VIH,VREG = 3.3V  
VBB Power-Down Current  
IBBPD  
With voltage regulator off,  
receiver on and  
transmitter off,  
CS = VIL  
VBB Current with VSS  
Floating  
IBBNOGND  
-1  
1
mA VBB = 12V, GND to VBB,  
VLIN = 0 – 18V  
Microcontroller Interface  
High-Level Input Voltage  
(TXD)  
VIH  
VIL  
IIH  
2.0  
-0.3  
-2.5  
30  
0.8  
0.4  
V
V
Low-Level Input Voltage  
(TXD)  
High-Level Input Current  
(TXD)  
µA  
µA  
Input voltage = 4.0V  
~800 kinternal adaptive  
pull-up  
Low-Level Input Current  
(TXD)  
IIL  
-10  
Input voltage = 0.5V  
~800 kinternal adaptive  
pull-up  
High-Level Input Voltage  
(CS/LWAKE)  
VIH  
VIL  
IIH  
2
-0.3  
30  
0.8  
8.0  
V
V
Through a current-limiting  
resistor  
Low-Level Input Voltage  
(CS/LWAKE)  
High-Level Input Current  
(CS/LWAKE)  
µA  
Input voltage = 0.8VREG  
~1.3 Minternal  
pull-down to VSS  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0, VLBUS = VBB).  
2: Characterized, not 100% tested.  
3: In Power-Down mode, normal LIN recessive/dominant threshold is disabled; VWK(LBUS) is used to detect  
bus activities.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 15  
MCP2025  
2.3  
DC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 18.0V, TA = -40°C to +125°C, CREG = 10 µF.  
DC Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Low-Level Input Current  
(CS/LWAKE)  
IIL  
5.0  
µA  
Input voltage = 0.2VREG  
~1.3 Minternal  
pull-down to VSS  
Low-Level Output Voltage  
(RXD)  
VOLRXD  
VOHRXD  
0.2VREG  
V
V
IOL = 2 mA  
IOH = 2 mA  
High-Level Output Voltage  
(RXD)  
0.8VREG  
Bus Interface  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Hysteresis  
VIH(LBUS)  
VIL(LBUS)  
VHYS  
0.6 VBB  
V
V
V
Recessive state  
-8  
40  
0.4 VBB  
0.175 VBB  
200  
Dominant state  
VIH(LBUS) – VIL(LBUS)  
Low-Level Output Current  
IOL(LBUS)  
mA Output voltage = 0.1 VBB,  
VBB = 12V  
Pull-Up Current on Input  
IPU(LBUS)  
-180  
-72  
µA  
~30 kinternal pull-up  
@ VIH(LBUS) = 0.7 VBB,  
VBB = 12V  
Short Circuit Current Limit  
High-Level Output Voltage  
Driver Dominant Voltage  
ISC  
50  
0.8 VBB  
200  
VBB  
1.1  
mA Note 1  
VOH(LBUS)  
V_LOSUP  
V
V
VBB = 7.3V  
RLOAD = 1000  
V_HISUP  
-1  
1.2  
V
VBB = 18V  
RLOAD = 1000  
Input Leakage Current  
(at the receiver during  
dominant bus level)  
IBUS_PAS_DOM  
mA Driver off  
VBUS = 0V  
VBB = 12V  
Input Leakage Current  
(at the receiver during  
recessive bus level)  
IBUS_PAS_REC  
IBUS_NO_GND  
-20  
-10  
20  
µA  
Driver off  
8V < VBB < 18V  
8V < VBUS < 18V  
VBUS VBB  
Leakage Current  
(disconnected from ground)  
+10  
+10  
µA  
GNDDEVICE = VBB  
0V < VBUS < 18V  
VBB = 12V  
Leakage Current  
(disconnected from VBB)  
IBUS_NO_PWR  
VBUS_CNT  
-10  
µA  
V
VBB = GND  
0 < VBUS < 18V  
Receiver Center Voltage  
0.475 VBB  
0.5 0.525 VBB  
VBB  
VBUS_CNT = (VIL(LBUS) +  
VIH(LBUS))/2  
Slave Termination  
RSLAVE  
CSLAVE  
20  
30  
47  
50  
k  
pF  
V
Note 2  
Note 2  
Capacitance of Slave Node  
Wake-Up Voltage Thresh-  
old on LIN Bus  
VWK(LBUS)  
3.4  
Wake up from  
Power-Down mode  
(Note 3)  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0, VLBUS = VBB).  
2: Characterized, not 100% tested.  
3: In Power-Down mode, normal LIN recessive/dominant threshold is disabled; VWK(LBUS) is used to detect  
bus activities.  
DS20002306B-page 16  
2012-2014 Microchip Technology Inc.  
MCP2025  
2.3  
DC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 18.0V, TA = -40°C to +125°C, CREG = 10 µF.  
DC Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Voltage Regulator – 5.0V  
Output Voltage Range  
Line Regulation  
VREG  
4.85  
5.00  
10  
5.15  
50  
V
0 mA < IOUT < 70 mA  
VOUT1  
mV IOUT = 1 mA  
6.0V < VBB < 18V  
Load Regulation  
VOUT2  
PSRR  
eN  
10  
50  
50  
mV 5 mA < IOUT < 70 mA  
6.0V < VBB < 12V  
Power Supply Ripple Reject  
Output Noise Voltage  
dB  
1 VPP @ 10-20 kHz  
ILOAD = 20 mA  
100  
µVRMS 10 Hz – 40 MHz  
CFILTER = 10 µf  
CBP = 0.1 µf  
ILOAD = 20 mA  
Shutdown Voltage  
Threshold  
VSD  
VOFF  
VON  
3.5  
3.9  
4.0  
4.5  
6.0  
V
V
V
See Figure 1-5 (Note 2)  
Input Voltage to  
Turn-Off Output  
Input Voltage to  
Turn-On Output  
5.25  
Voltage Regulator – 3.3V  
Output Voltage  
VREG  
3.20  
3.30  
10  
3.40  
50  
V
0 mA < IOUT < 70 mA  
Line Regulation  
VOUT1  
mV IOUT = 1 mA  
6.0V < VBB < 18V  
Load Regulation  
VOUT2  
PSRR  
eN  
10  
50  
50  
mV 5 mA < IOUT < 70 mA  
6.0V < VBB < 12V  
Power Supply Ripple Reject  
Output Noise Voltage  
dB  
1 VPP @ 10-20 kHz  
ILOAD = 20 mA  
100  
µVRMS 10 Hz – 40 MHz  
/Hz CFILTER = 10 µF  
CBP = 0.1 µF  
ILOAD = 20 mA  
Shutdown Voltage  
VSD  
2.5  
3.9  
2.7  
4.5  
V
V
See Figure 1-5 (Note 2)  
Input Voltage to  
Turn-Off Output  
VOFF  
Input Voltage to  
Turn-On Output  
VON  
5.25  
6
V
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0, VLBUS = VBB).  
2: Characterized, not 100% tested.  
3: In Power-Down mode, normal LIN recessive/dominant threshold is disabled; VWK(LBUS) is used to detect  
bus activities.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 17  
MCP2025  
FIGURE 2-1:  
ESR CURVES FOR LOAD CAPACITOR SELECTION  
ESR Curves  
10  
1
Unstable  
Stable only  
with Tantalum or  
Electrolytic cap.  
Stable with  
Tantalum,  
Electrolytic and  
Ceramic cap.  
Unstable  
Instable  
0.1  
0.01  
0.001  
Unstable  
Instable  
1000  
0.1  
1
100  
10  
Load Capacitance [uF]  
Note 1: The graph shows the minimum required capacitance after derating due to tolerance, temperature and voltage.  
DS20002306B-page 18  
2012-2014 Microchip Technology Inc.  
MCP2025  
2.4  
AC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 18.0V; TA = -40°C to +125°C.  
AC Characteristics  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Bus Interface – Constant Slope Time Parameters  
Slope Rising and Falling  
Edges  
tSLOPE  
tTRANSPD  
tRECPD  
3.5  
22.5  
6.0  
µs  
µs  
µs  
µs  
7.3V VBB 18V  
Propagation Delay of  
Transmitter  
tTRANSPD = max.  
(tTRANSPDR or tTRANSPDF)  
Propagation Delay of  
Receiver  
6.0  
tRECPD = max.  
(tRECPDR or tRECPDF)  
Symmetry of Propagation  
Delay of Receiver Rising  
Edge w.r.t. Falling Edge  
tRECSYM  
-2.0  
2.0  
tRECSYM = max.  
(tRECPDF – tRECPDR)  
RRXD = 2.4 kto VCC  
CRXD = 20 pF  
Symmetry of Propagation  
Delay of Transmitter Rising  
Edge w.r.t. Falling Edge  
tTRANSSYM  
-2.0  
2.0  
µs  
tTRANSSYM = max.  
(tTRANSPDF – tTRANSPDR)  
Bus Dominant Time-Out  
Time  
tTO(LIN)  
25  
mS  
Duty Cycle 1 @ 20.0 kbps  
Duty Cycle 2 @ 20.0 kbps  
Duty Cycle 3 @ 10.4 kbps  
Duty Cycle 4 @ 10.4 kbps  
0.396  
%tBIT CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660| 10 nF; 500  
THREC(MAX) = 0.744 x VBB,  
THDOM(MAX) = 0.581 x VBB,  
VBB = 7.0V – 18V;  
tBIT = 50 µs.  
D1 = tBUS_REC(MIN)/2 x tBIT  
0.417  
0.581  
%tBIT CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660| 10 nF; 500  
THREC(MAX) = 0.284 x VBB,  
THDOM(MAX) = 0.422 x VBB,  
VBB = 7.6V – 18V;  
tBIT = 50 µs.  
D2 = tBUS_REC(MAX)/2 x tBIT  
%tBIT CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660| 10 nF; 500  
THREC(MAX) = 0.778 x VBB,  
THDOM(MAX) = 0.616 x VBB,  
VBB = 7.0V – 18V;  
tBIT = 96 µs.  
D3 = tBUS_REC(MIN)/2 x tBIT  
0.590  
%tBIT CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF;  
660| 10 nF; 500  
THREC(MAX) = 0.251 x VBB,  
THDOM(MAX) = 0.389 x VBB,  
VBB = 7.6V – 18V;  
tBIT = 96 µs.  
D4 = tBUS_REC(MAX)/2 x tBIT  
Note 1: Time depends on external capacitance and load. Test condition: CREG = 4.7 µF, no resistor load.  
2: Characterized, not 100% tested.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 19  
MCP2025  
2.4  
AC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 6.0V to 18.0V; TA = -40°C to +125°C.  
AC Characteristics  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Voltage Regulator  
Bus Activity Debounce Time  
tBDB  
30  
35  
80  
250  
200  
µs  
µs  
Bus Activity to Voltage  
Regulator Enabled  
tBACTIVE  
Voltage Regulator Enabled  
to Ready  
tVEVR  
tCSR  
Note 1  
Note 2  
300  
1200  
µs  
Chip Select to Ready Mode  
20  
230  
300  
100  
µs  
µs  
µs  
Chip Select to Power-Down  
Short Circuit to Shutdown  
tCSPD  
tSHUTDOWN  
RESET Timing  
VREG OK Detect to RESET  
Inactive  
tRPU  
tRPD  
Note 2  
Note 2  
60.0  
60.0  
µs  
µs  
VREG Not OK Detect to  
RESET Active  
Note 1: Time depends on external capacitance and load. Test condition: CREG = 4.7 µF, no resistor load.  
2: Characterized, not 100% tested.  
2.5  
Thermal Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Recovery Temperature  
TA  
TJ  
-40  
+125  
+150  
+150  
C  
C  
C  
C  
C  
ms  
TA  
-65  
RECOVERY  
SHUTDOWN  
tTHERM  
+140  
+150  
1.5  
Shutdown Temperature  
Short Circuit Recovery Time  
Thermal Package Resistances  
Thermal Resistance, 8-PDIP  
Thermal Resistance, 8-SOIC  
Thermal Resistance, 8L-DFN  
5.0  
JA  
JA  
JA  
89.3  
149.5  
48.0  
C/W  
C/W  
C/W  
Note 1: The maximum power dissipation is a function of TJMAX, JA and ambient temperature, TA. The maximum  
allowable power dissipation at an ambient temperature is PD = (TJMAX TA) JA. If this dissipation is  
exceeded, the die temperature will rise above 150C and the MCP2025 will go into thermal shutdown.  
DS20002306B-page 20  
2012-2014 Microchip Technology Inc.  
MCP2025  
2.6  
Typical Performance Curves  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VBB = 6.0V to 18.0V; TA = -40°C to +125°C.  
200  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
VBB = 12V  
VBB = 6V  
VBB = 18V  
VBB = 18V  
VBB = 6V  
VBB = 12V  
60  
60  
40  
40  
20  
20  
0
0
-45  
-10  
25  
90  
130  
-45  
-10  
25  
90  
130  
Temperature (
ͼ
C)  
Temperature (
ͼ
C)  
FIGURE 2-2:  
Temperature – 5.0V.  
Typical IBBQ vs.  
FIGURE 2-5:  
Temperature – 3.3V.  
Typical IBBQ vs.  
80  
90  
80  
70  
60  
70  
VBB = 18V  
VBB = 18V  
60  
VBB = 12V  
VBB = 12V  
VBB = 6V  
50  
VBB = 6V  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-45  
-10  
25  
90  
130  
-45  
-10  
25  
90  
130  
Temperature (
ͼ
C)  
Temperature (
ͼ
C)  
FIGURE 2-3:  
Temperature – 5.0V.  
IBBQ Transmitter-Off vs.  
FIGURE 2-6:  
Temperature – 3.3V.  
IBBQ Transmitter-Off vs.  
6
6
5
VBB =  
12V  
5
VBB = 18V  
VBB = 12V  
VBB = 6V  
VBB = 18V  
4
4
3
2
1
0
VBB = 6V  
3
2
1
0
-45  
-10  
25  
90  
130  
-45  
-10  
25  
90  
130  
Temperature (
ͼ
C)  
Temperature (
ͼ
C)  
FIGURE 2-4:  
Temperature – 5.0V.  
IBBQ Power-Down vs.  
FIGURE 2-7:  
Temperature – 3.3V.  
IBBQ Power-Down vs.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 21  
MCP2025  
3.5  
3
+25°C  
-40°C  
+90°C  
2.5  
2
+125°C  
1.5  
1
0.5  
0
0
100  
200  
300  
IREG (mA)  
FIGURE 2-8:  
5.0V VREG vs. IREG at  
VBB = 12V.  
6
5
4
3
2
1
-40°C  
+25°C  
+90°C  
+125°C  
0
0
100  
200  
300  
IREG (mA)  
FIGURE 2-9:  
3.3V VREG vs. IREG at  
VBB = 12V.  
DS20002306B-page 22  
2012-2014 Microchip Technology Inc.  
MCP2025  
2.7  
Timing Diagrams and Specifications  
FIGURE 2-10:  
BUS TIMING DIAGRAM  
TXD  
50%  
50%  
LBUS  
0.95 VLBUS  
0.50 VBB  
0.05 VLBUS  
tTRANSPDR  
0.0V  
tTRANSPDF  
tRECPDF  
tRECPDR  
RXD  
50%  
50%  
FIGURE 2-11:  
REGULATOR BUS WAKE TIMING DIAGRAM  
LBUS  
VWK(LBUS)  
tVEVR  
tBACTIVE  
tBDB  
VREG-NOM  
VREG  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 23  
MCP2025  
FIGURE 2-12:  
CS/LWAKE, REGULATOR AND RESET TIMING DIAGRAM  
CS/LWAKE  
tCSR  
tVEVR  
VREG-NOM  
VREG  
tRPD  
tCSPD  
tRPU  
RESET  
DS20002306B-page 24  
2012-2014 Microchip Technology Inc.  
MCP2025  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (4x4x0.9 mm)  
Example  
202550  
XXXXXX  
XXXXXX  
YYWW  
NNN  
e
3
E/MD
1426  
256  
PIN 1  
PIN 1  
8-Lead PDIP (300 mil)  
Example  
XXXXXXXX  
XXXXXNNN  
2025330  
e
3
E/P 256  
1426  
YYWW  
8-Lead SOIC (3.90 mm)  
Example  
2025-500  
E/SN1426  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 25  
MCP2025  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 1 of 2  
DS20002306B-page 26  
2012-2014 Microchip Technology Inc.  
MCP2025  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 2 of 2  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 27  
MCP2025  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002306B-page 28  
2012-2014 Microchip Technology Inc.  
MCP2025  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 29  
MCP2025  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
DS20002306B-page 30  
2012-2014 Microchip Technology Inc.  
MCP2025  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 31  
MCP2025  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002306B-page 32  
2012-2014 Microchip Technology Inc.  
MCP2025  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 33  
MCP2025  
NOTES:  
DS20002306B-page 34  
2012-2014 Microchip Technology Inc.  
MCP2025  
APPENDIX A: REVISION HISTORY  
Revision B (August 2014)  
The following is the list of modifications:  
1. Clarified CREG selection.  
2. Updated Section 1.6 “Typical Applications”  
with values used during ESD tests.  
3. Minor typographical corrections.  
Revision A (June 2012)  
• Original Release of this Document.  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 35  
MCP2025  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
–X  
X
/XX  
a)  
b)  
c)  
MCP2025-330E/MD: 3.3V, 8-lead DFN package  
MCP2025-500E/MD: 5.0V, 8-lead DFN package  
MCP2025T-330E/MD: 3.3V, 8-lead DFN package,  
Tape and Reel  
Voltage  
Temperature  
Range  
Package  
d)  
MCP2025T-500E/MD: 5.0V, 8-lead DFN package,  
Tape and Reel  
Device:  
Voltage:  
MCP2025:  
LIN Transceiver with Voltage Regulator  
e)  
f)  
g)  
h)  
i)  
MCP2025-330E/P:  
MCP2025-500E/P:  
MCP2025-330E/SN: 3.3V, 8-lead SOIC package  
MCP2025-500E/SN: 5.0V, 8-lead SOIC package  
MCP2025T-330E/SN: 3.3V, 8-lead SOIC package,  
Tape and Reel  
3.3V, 8-lead PDIP package  
5.0V, 8-lead PDIP package  
MCP2025T: LIN Transceiver with Voltage Regulator  
(Tape and Reel)  
330  
500  
=
=
3.3V  
5.0V  
j)  
MCP2025T-500E/SN: 5.0V, 8-lead SOIC package,  
Tape and Reel  
Temperature Range:  
Package:  
E
= -40°C to +125°C  
MD  
P
=
8LD Plastic Dual Flat, No Lead – 4x4x0.8 mm  
Body  
=
8LD/14LD Plastic Dual In-Line – 300 mil Body  
SN = 8LD Plastic Small Outline – Narrow, 3.90 mm  
Body  
DS20002306B-page 36  
2012-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2012-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-499-7  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2012-2014 Microchip Technology Inc.  
DS20002306B-page 37  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002306B-page 38  
2012-2014 Microchip Technology Inc.  

相关型号:

MCP2025T-500E/SN

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2025_14

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP2030

Three-Channel Analog Front-End Device
MICROCHIP

MCP2030-I/P

Three-Channel Analog Front-End Device
MICROCHIP

MCP2030-I/SL

Three-Channel Analog Front-End Device
MICROCHIP

MCP2030-I/ST

Three-Channel Analog Front-End Device
MICROCHIP

MCP2030A

Three-Channel Analog Front-End Devicewith 1 mVPP Input Detection Sensitivity
MICROCHIP

MCP2030A-I

Three-Channel Analog Front-End Device
MICROCHIP

MCP2030A-I/SL

IC,TELECOMM INTERFACE, OTHER/SPECIAL/MISC,SOP,14PIN,PLASTIC
MICROCHIP

MCP2030A-I/ST

IC,TELECOMM INTERFACE, OTHER/SPECIAL/MISC,TSSOP,14PIN,PLASTIC
MICROCHIP

MCP2030AT-I/SL

IC,TELECOMM INTERFACE, OTHER/SPECIAL/MISC,SOP,14PIN,PLASTIC
MICROCHIP

MCP2030T

Three-Channel Analog Front-End Device
MICROCHIP