MCP2510T-ISO [MICROCHIP]

暂无描述;
MCP2510T-ISO
型号: MCP2510T-ISO
厂家: MICROCHIP    MICROCHIP
描述:

暂无描述

文件: 总75页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
MCP25  
Stand-Alone CAN Controller with SPIΤΜ Interfac  
FEATURES  
DESCRIPTION  
• Implements Full CAN V2.0A and V2.0B at 1 Mb/s  
The Microchip Technology Inc. MCP2510 is  
troller Area Network (CAN) protocol contro  
menting CAN specification V2.0 A/B. It sup  
1.2, CAN 2.0A, CAN 2.0B Passive, and CAN  
versions of the protocol, and is capable of t  
and receiving standard and extended mess  
also capable of both acceptance filtering an  
management. It includes three transmit buffe  
receive buffers that reduce the amount of mic  
(MCU) management required. The MCU com  
is implemented via an industry standard Se  
eral Interface (SPI ) with data rates up to 5M  
- 0 - 8 byte message length  
- Standard and extended data frames  
- Programmable bit rate up to 1 Mb/s  
- Support for remote frames  
- Two receive buffers with prioritized message  
storage  
- Six full acceptance filters  
- Two full acceptance filter masks  
- Three transmit buffers with prioritization and  
abort features  
- Loop-back mode for self test operation  
• Hardware Features  
PACKAGE TYPES  
18 LEAD PDIP  
- High Speed SPI Interface (5 MHz at 4.5V)  
- Supports SPI modes 0,0 and 1,1  
1
VDD  
TXCAN  
18  
2
3
4
5
RESET  
CS  
17  
16  
RXCAN  
- Clock out pin with programmable prescaler  
- Interrupt output pin with selectable enables  
CLKOUT  
- ‘Buffer full’ output pins configure able as  
interrupt pins for each receive buffer or as  
general purpose digital outputs  
SO  
SI  
15  
14  
TX0RTS  
TX1RTS  
13  
12  
11  
10  
SCK  
6
7
TX2RTS  
OSC2  
- ‘Request to Send’ input pins configure able  
as control pins to request immediate mes-  
sage transmission for each transmit buffer or  
as general purpose digital inputs  
INT  
RX0BF  
RX1BF  
8
9
OSC1  
Vss  
- Low Power Sleep mode  
18 LEAD SOIC  
• Low power CMOS technology  
- Operates from 2.7V to 5.5V  
1
18  
VDD  
TXCAN  
RXCAN  
CLKOUT  
TX0RTS  
TX1RTS  
TX2RTS  
OSC2  
17  
16  
15  
14  
13  
12  
2
3
4
5
6
7
8
9
RESET  
- 5 mA active current typical  
CS  
SO  
SI  
- 10 µA standby current typical at 5.5V  
• 18-pin PDIP/SOIC and 20-pin TSSOP packages  
Temperature ranges supported:  
SCK  
INT  
11  
10  
-40°C to +85°C  
-40°C to +125°C  
- Industrial (I):  
- Extended (E):  
OSC1  
RX0BF  
RX1BF  
Vss  
20 LEAD TSSOP  
20  
19  
18  
17  
16  
15  
14  
13  
12  
1
2
3
4
5
6
7
8
VDD  
TXCAN  
RXCAN  
CLKOUT  
TX0RTS  
TX1RTS  
NC  
RESET  
CS  
SO  
SI  
NC  
SCK  
INT  
TX2RTS  
OSC2  
OSC1  
Vss  
9
10  
RX0BF  
RX1BF  
11  
SPI is a trademark of Motorola Inc.  
1999 Microchip Technology Inc.  
Preliminary  
DS212  
MCP2510  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
Device Functionality..................................................................................................................................................................... 3  
CAN Message Frames ................................................................................................................................................................ 7  
Message Transmission.............................................................................................................................................................. 15  
Message Reception................................................................................................................................................................... 21  
Bit Timing................................................................................................................................................................................... 33  
Error Detection........................................................................................................................................................................... 39  
Interrupts.................................................................................................................................................................................... 43  
Oscillator.................................................................................................................................................................................... 47  
Modes of Operation ................................................................................................................................................................... 49  
10.0 Register Map ............................................................................................................................................................................. 53  
11.0 SPI Interface.............................................................................................................................................................................. 55  
12.0 Electrical Characteristics ........................................................................................................................................................... 59  
13.0 Packaging Information............................................................................................................................................................... 63  
On-line Support ................................................................................................................................................................................... 67  
Reader Response ............................................................................................................................................................................... 68  
Product Identification System .............................................................................................................................................................. 69  
Index ................................................................................................................................................................................................... 71  
List Of Figures..................................................................................................................................................................................... 73  
List Of Tables ...................................................................................................................................................................................... 73  
List Of Registers................................................................................................................................................................................... 73  
Worldwide Sales and Service .............................................................................................................................................................. 74  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include lit-  
erature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS21291B-page 2  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
The MCU interfaces to the device via the SPI interface.  
Writing to and reading from all registers is done using  
standard SPI read and write commands.  
1.0  
DEVICE FUNCTIONALITY  
1.1  
Overview  
Interrupt pins are provided to allow greater system flex-  
ibility. There is one multi-purpose interrupt pin as well  
as specific interrupt pins for each of the receive regis-  
ters that can be used to indicate when a valid message  
has been received and loaded into one of the receive  
buffers. Use of the specific interrupt pins is optional,  
and the general purpose interrupt pin as well as status  
registers (accessed via the SPI interface) can also be  
used to determine when a valid message has been  
received.  
The MCP2510 is a stand-alone CAN controller devel-  
oped to simplify applications that require interfacing  
with a CAN bus. A simple block diagram of the  
MCP2510 is shown in Figure 1-1. The device consists  
of three main blocks:  
1. the CAN protocol engine,  
2. the control logic and SRAM registers that are  
used to configure the device and its operation,  
and  
3. the SPI protocol block.  
There are also three pins available to initiate immediate  
transmission of a message that has been loaded into  
one of the three transmit registers. Use of these pins is  
optional and initiating message transmission can also  
be done by utilizing control registers accessed via the  
SPI interface.  
A typical system implementation using the device is  
shown in Figure 1-2.  
The CAN protocol engine handles all functions for  
receiving and transmitting messages on the bus. Mes-  
sages are transmitted by first loading the appropriate  
message buffer and control registers. Transmission is  
initiated by using control register bits, via the SPI inter-  
face, or by using the transmit enable pins. Status and  
errors can be checked by reading the appropriate reg-  
isters. Any message detected on the CAN bus is  
checked for errors and then matched against the user  
defined filters to see if it should be moved into one of  
the two receive buffers.  
Table 1-1 gives a complete list of all of the pins on the  
MCP2510.  
RXCAN  
2 RX Buffers  
CAN  
SPI  
Interface  
Logic  
CS  
SCK  
SI  
6
Acceptance  
Filters  
3 TX  
Protocol  
SPI  
Bus  
Buffers  
Engine  
Message Assembly  
Buffer  
TXCAN  
SO  
Control Logic  
INT  
RX0BF  
RX1BF  
TX0RTS  
TX1RTS  
TX2RTS  
FIGURE 1-1: Block Diagram  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 3  
MCP2510  
Main  
System  
Controller  
MCP2510  
CAN  
Transceiver  
CAN  
BUS  
CAN  
CAN  
CAN  
CAN  
Transceiver  
Transceiver  
Transceiver  
Transceiver  
MCP2510  
MCP2510  
MCP2510  
MCP2510  
SPI  
INTERFACE  
Node  
Node  
Node  
Node  
Controller  
Controller  
Controller  
Controller  
FIGURE 1-2: Typical System Implementation  
DIP/  
SOIC  
Pin #  
TSSOP  
Pin #  
I/O/P  
Type  
Name  
Description  
TXCAN  
RXCAN  
CLKOUT  
TX0RTS  
TX1RTS  
TX2RTS  
OSC2  
OSC1  
VSS  
1
2
1
2
O
I
Transmit output pin to CAN bus  
Receive input pin from CAN bus  
3
3
O
I
Clock output pin with programmable prescaler  
4
4
Transmit buffer TXB0 request to send or general purpose digital input.  
Transmit buffer TXB1 request to send or general purpose digital input.  
Transmit buffer TXB2 request to send or general purpose digital input.  
Oscillator output  
5
5
I
6
7
I
7
8
O
I
8
9
Oscillator input  
9
10  
11  
12  
13  
14  
16  
17  
18  
19  
20  
6,15  
P
O
O
O
I
Ground reference for logic and I/O pins  
Receive buffer RXB1 interrupt pin or general purpose digital output  
Receive buffer RXB0 interrupt pin or general purpose digital output  
Interrupt output pin  
RX1BF  
RX0BF  
INT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
SCK  
Clock input pin for SPI interface  
SI  
I
Data input pin for SPI interface  
SO  
O
I
Data output pin for SPI interface  
CS  
Chip select input pin for SPI interface  
Active low device reset input  
RESET  
VDD  
I
P
Positive supply for logic and I/O pins  
NC  
No internal connection  
Note: Type Identification: I=Input; O=Output; P=Power  
TABLE 1-1: Pin Descriptions  
DS21219B-page 4  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
1.2  
Transmit/Receive Buffers  
The MCP2510 has three transmit and two receive buffers, two acceptance masks (one for each receive buffer), and a  
total of six acceptance filters. Figure 1-3 is a block diagram of these buffers and their connection to the protocol engine.  
Acceptance Mask  
RXM1  
BUFFERS  
Acceptance Filter  
RXF2  
Acceptance Mask  
RXM0  
Acceptance Filter  
RXF3  
A
c
c
e
p
t
A
c
c
e
p
t
TXB0  
TXB1  
TXB2  
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
Acceptance Filter  
RXF1  
Acceptance Filter  
RXF5  
R
X
B
0
R
X
B
1
M
A
B
Identifier  
Identifier  
Message  
Queue  
Control  
Transmit Byte Sequencer  
Data Field  
Data Field  
Receive  
Error  
Counter  
REC  
TEC  
PROTOCOL  
ENGINE  
Transmit  
Error  
Counter  
ErrPas  
BusOff  
Transmit<7:0>  
Shift<14:0>  
Receive<7:0>  
{Transmit<5:0>, Receive<8:0>}  
Comparator  
Protocol  
Finite  
State  
Machine  
CRC<14:0>  
Bit  
Timing  
Logic  
Transmit  
Logic  
Clock  
Generator  
TX  
RX  
Configuration  
Registers  
FIGURE 1-3: CAN Buffers and Protocol Engine Block Diagram  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 5  
MCP2510  
1.3  
CAN Protocol Engine  
1.6  
Error Management Logic  
The Error Management Logic is responsible for the fault  
confinement of the CAN device. Its two counters, the  
Receive Error Counter (REC) and the Transmit Error  
Counter (TEC), are incremented and decremented by  
commands from the Bit Stream Processor. According to  
the values of the error counters, the CAN controller is set  
into the states error-active, error-passive or bus-off.  
The CAN protocol engine combines several functional  
blocks, shown in Figure 1-4. These blocks and their  
functions are described below.  
1.4  
Protocol Finite State Machine  
The heart of the engine is the Finite State Machine  
(FSM). This state machine sequences through mes-  
sages on a bit by bit basis, changing states as the fields  
of the various frame types are transmitted or received.  
The FSM is a sequencer controlling the sequential data  
stream between the TX/RX Shift Register, the CRC Reg-  
ister, and the bus line. The FSM also controls the Error  
Management Logic (EML) and the parallel data stream  
between the TX/RX Shift Registers and the buffers. The  
FSM insures that the processes of reception, arbitration,  
transmission, and error signaling are performed accord-  
ing to the CAN protocol. The automatic retransmission of  
messages on the bus line is also handled by the FSM.  
1.7  
Bit Timing Logic  
The Bit Timing Logic (BTL) monitors the bus line input  
and handles the bus related bit timing according to the  
CAN protocol. The BTL synchronizes on a recessive to  
dominant bus transition at Start of Frame (hard syn-  
chronization) and on any further recessive to dominant  
bus line transition if the CAN controller itself does not  
transmit a dominant bit (resynchronization). The BTL  
also provides programmable time segments to com-  
pensate for the propagation delay time, phase shifts,  
and to define the position of the Sample Point within the  
bit time. The programming of the BTL depends upon  
the baud rate and external physical delay times.  
1.5  
Cyclic Redundancy Check  
The Cyclic Redundancy Check Register generates the  
Cyclic Redundancy Check (CRC) code which is trans-  
mitted after either the Control Field (for messages with  
0 data bytes) or the Data Field, and is used to check the  
CRC field of incoming messages.  
Tx  
Rx  
Bit Timing Logic  
Transmit Logic  
SAM  
REC  
Receive  
Sample<2:0>  
Error Counter  
TEC  
StuffReg<5:0>  
Transmit  
ErrPas  
Majority  
Decision  
Error Counter  
BusOff  
BusMon  
Comparator  
CRC<14:0>  
Comparator  
Protocol  
FSM  
Shift<14:0>  
(Transmit<5:0>, Receive<7:0>)  
Receive<7:0>  
RecData<7:0>  
Transmit<7:0>  
TrmData<7:0>  
Rec/Trm Addr.  
Interface to Standard Buffer  
FIGURE 1-4: CAN Protocol Engine Block Diagram  
DS21219B-page 6  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
It should be noted that if arbitration remains unresolved  
after transmission of the first 11 bits of the identifier,  
and one of the nodes involved in the arbitration is send-  
ing a standard CAN frame (11-bit identifier), then the  
standard CAN frame will win arbitration due to the  
assertion of a dominant lDE bit. Also, the SRR bit in an  
extended CAN frame must be recessive to allow the  
assertion of a dominant RTR bit by a node that is send-  
ing a standard CAN remote frame.  
2.0  
CAN MESSAGE FRAMES  
The MCP2510 supports Standard Data Frames,  
Extended Data Frames, and Remote Frames (Standard  
and Extended) as defined in the CAN 2.0B specification.  
2.1  
Standard Data Frame  
The CAN Standard Data Frame is shown in Figure 2-1.  
In common with all other frames, the frame begins with  
a Start Of Frame (SOF) bit, which is of the dominant  
state, which allows hard synchronization of all nodes.  
The SRR and lDE bits are followed by the remaining 18  
bits of the identifier (Extended lD) and the remote trans-  
mission request bit.  
The SOF is followed by the arbitration field, consisting  
of 12 bits; the 11-bit ldentifier and the Remote Trans-  
mission Request (RTR) bit. The RTR bit is used to dis-  
tinguish a data frame (RTR bit dominant) from a remote  
frame (RTR bit recessive).  
To enable standard and extended frames to be sent  
across a shared network, it is necessary to split the  
29-bit extended message identifier into 11-bit (most  
significant) and 18-bit (least significant) sections. This  
split ensures that the lDE bit can remain at the same bit  
position in both standard and extended frames.  
Following the arbitration field is the control field, con-  
sisting of six bits. The first bit of this field is the Identifier  
Extension (IDE) bit which must be dominant to specify  
a standard frame. The following bit, Reserved Bit Zero  
(RB0), is reserved and is defined to be a dominant bit  
by the can protocol. the remaining four bits of the con-  
trol field are the Data Length Code (DLC) which speci-  
fies the number of bytes of data contained in the  
message.  
Following the arbitration field is the six-bit control field.  
the first two bits of this field are reserved and must be  
dominant. the remaining four bits of the control field are  
the Data Length Code (DLC) which specifies the num-  
ber of data bytes contained in the message.  
The remaining portion of the frame (data field, CRC  
field, acknowledge field, end of frame and lntermission)  
is constructed in the same way as for a standard data  
frame (see Section 2.1).  
After the control field is the data field, which contains  
any data bytes that are being sent, and is of the length  
defined by the DLC above (0-8 bytes).  
2.3  
Remote Frame  
The Cyclic Redundancy Check (CRC) Field follows the  
data field and is used to detect transmission errors. The  
CRC Field consists of a 15-bit CRC sequence, followed  
by the recessive CRC Delimiter bit.  
Normally, data transmission is performed on an auton-  
omous basis by the data source node (e.g. a sensor  
sending out a data frame). It is possible, however, for a  
destination node to request data from the source. To  
accomplish this, the destination node sends a remote  
frame with an identifier that matches the identifier of the  
required data frame. The appropriate data source node  
will then send a data frame in response to the remote  
frame request.  
The final field is the two-bit acknowledge field. During  
the ACK Slot bit, the transmitting node sends out a  
recessive bit. Any node that has received an error free  
frame acknowledges the correct reception of the frame  
by sending back a dominant bit (regardless of whether  
the node is configured to accept that specific message  
or not). The recessive acknowledge delimiter com-  
pletes the acknowledge field and may not be overwrit-  
ten by a dominant bit.  
There are two differences between a remote frame  
(shown in Figure 2-3) and a data frame. First, the RTR  
bit is at the recessive state, and second, there is no  
data field. In the event of a data frame and a remote  
frame with the same identifier being transmitted at the  
same time, the data frame wins arbitration due to the  
dominant RTR bit following the identifier. In this way, the  
node that transmitted the remote frame receives the  
desired data immediately.  
2.2  
Extended Data Frame  
In the Extended CAN Data Frame, shown in Figure 2-2,  
the SOF bit is followed by the arbitration field which  
consists of 32 bits. The first 11 bits are the most signif-  
icant bits (Base-lD) of the 29-bit identifier. These 11 bits  
are followed by the Substitute Remote Request (SRR)  
bit which is defined to be recessive. The SRR bit is fol-  
lowed by the lDE bit which is recessive to denote an  
extended CAN frame.  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 7  
MCP2510  
2.4  
Error Frame  
2.5  
Overload Frame  
An Error Frame is generated by any node that detects  
a bus error. An error frame, shown in Figure 2-4, con-  
sists of two fields, an error flag field followed by an error  
delimiter field. There are two types of error flag fields.  
Which type of error flag field is sent depends upon the  
error status of the node that detects and generates the  
error flag field.  
An Overload Frame, shown in Figure 2-5, has the same  
format as an active error frame. An overload frame,  
however can only be generated during an lnterframe  
space. In this way an overload frame can be differenti-  
ated from an error frame (an error frame is sent during  
the transmission of a message). The overload frame  
consists of two fields, an overload flag followed by an  
overload delimiter. The overload flag consists of six  
dominant bits followed by overload flags generated by  
other nodes (and, as for an active error flag, giving a  
maximum of twelve dominant bits). The overload delim-  
iter consists of eight recessive bits. An overload frame  
can be generated by a node as a result of two condi-  
tions. First, the node detects a dominant bit during the  
interframe space which is an illegal condition. Second,  
due to internal conditions the node is not yet able to  
start reception of the next message. A node may gen-  
erate a maximum of two sequential overload frames to  
delay the start of the next message.  
If an error-active node detects a bus error then the  
node interrupts transmission of the current message by  
generating an active error flag. The active error flag is  
composed of six consecutive dominant bits. This bit  
sequence actively violates the bit stuffing rule. All other  
stations recognize the resulting bit stuffing error and in  
turn generate error frames themselves, called error  
echo flags. The error flag field, therefore, consists of  
between six and twelve consecutive dominant bits  
(generated by one or more nodes). The error delimiter  
field completes the error frame. After completion of the  
error frame, bus activity returns to normal and the inter-  
rupted node attempts to resend the aborted message.  
2.6  
Interframe Space  
If an error-passive node detects a bus error then the  
node transmits an error-passive flag followed by the  
error delimiter field. The error-passive flag consists of  
six consecutive recessive bits, and the error frame for  
an error-passive node consists of 14 recessive bits.  
From this, it follows that unless the bus error is detected  
by the node that is actually transmitting, the transmis-  
sion of an error frame by an error-passive node will not  
affect any other node on the network. If the transmitting  
node generates an error-passive flag then this will  
cause other nodes to generate error frames due to the  
resulting bit stuffing violation. After transmission of an  
error frame, an error-passive node must wait for six  
consecutive recessive bits on the bus before attempt-  
ing to rejoin bus communications.  
The lnterframe Space separates a preceeding frame  
(of any type) from a subsequent data or remote frame.  
The interframe space is composed of at least three  
recessive bits called the Intermission. This is provided  
to allow nodes time for internal processing before the  
start of the next message frame. After the intermission,  
the bus line remains in the recessive state (bus idle)  
until the next transmission starts.  
The error delimiter consists of eight recessive bits and  
allows the bus nodes to restart bus communications  
cleanly after an error has occurred.  
DS21219B-page 8  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
l e D K A C  
o t S B l k i t A c  
l e C D C R  
C 0 D L  
3 C D L  
R B 0  
t
e v d B s i e r R  
E I D  
R R T  
0 I D  
3 I D  
0 1 I D  
e
a r m F o t f a r S t  
FIGURE 2-1: Standard Data Frame  
S
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 9  
MCP2510  
l e D K A C  
o t S B l k i t A c  
l e  
R C D  
C 0 D L  
C 3 D L  
R B 0  
s t i  
e v d r b e s e R  
R B 1  
R R T  
E I D 0  
E I D 1 7  
I D E  
S R R  
I D 0  
3 I D  
0 1 I D  
a r m e F o f t r a S t  
FIGURE 2-2: Extended Data Frame  
DS21219B-page 10  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
l e D K A C  
k S A l o c t B i t  
C D C e R  
l
0 C D L  
3 C D L  
0
1
R B  
R B  
t i s b d e v r e s e R  
R R T  
D 0 E I  
D 1 E 7 I  
E I D  
R S R  
I D 0  
3 I D  
0 1 I D  
a r m e F o f t r a S t  
FIGURE 2-3: Remote Data Frame  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 11  
MCP2510  
C 0 D L  
C 3 D L  
0
R B  
I D E  
t
B d i e v r s e R  
R R T  
0 I D  
3 I D  
0 1 I D  
a r m e F o f t r a S t  
FIGURE 2-4: Error Frame  
DS21219B-page 12  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
l e D K A C  
B i S l k o t A c  
t
l
D e C R C  
C 0 D L  
C 3 D L  
R B 0  
E I D  
R R T  
0 I D  
0 1 I D  
e
a r m F o t f a r S t  
FIGURE 2-5: Overload Frame  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 13  
MCP2510  
NOTES:  
DS21219B-page 14  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
When TXBNCTRL.TXREQ is set, the TXBNCTRL.ABTF,  
TXBNCTRL.MLOA and TXBNCTRL.TXERR bits will be  
cleared.  
3.0  
MESSAGE TRANSMISSION  
3.1  
Transmit Buffers  
Setting the TXBNCTRL.TXREQ bit does not initiate a  
message transmission, it merely flags a message  
buffer as ready for transmission. Transmission will start  
when the device detects that the bus is available. The  
device will then begin transmission of the highest prior-  
ity message that is ready.  
The MCP2510 implements three Transmit Buffers. Each  
of these buffers occupies 14 bytes of SRAM and are  
mapped into the device memory maps. The first byte,  
TXBNCTRL, is a control register associated with the mes-  
sage buffer. The information in this register determines  
the conditions under which the message will be transmit-  
ted and indicates the status of the message transmission.  
(see Register 3-2). Five bytes are used to hold the stan-  
dard and extended identifiers and other message arbitra-  
tion information (see Register 3-3 through Register 3-8).  
The last eight bytes are for the eight possible data bytes  
of the message to be transmitted (see Register 3-8).  
When the transmission has completed successfully the  
TXBNCTRL.TXREQ bit will be cleared, the CAN-  
INTF.TXNIF bit will be set, and an interrupt will be gen-  
erated if the CANINTE.TXNIE bit is set.  
If the message transmission fails, the TXBNCTRL.TXREQ  
will remain set indicating that the message is still pending  
for transmission and one of the following condition flags  
will be set. If the message started to transmit but encoun-  
tered an error condition, the TXBNCTRL. TXERR and the  
CANINTF.MERRF bits will be set and an interrupt will be  
generated on the INT pin if the CANINTE.MERRE bit is  
set. If the message lost arbitration the TXBNCTRL.MLOA  
bit will be set.  
For the MCU to have write access to the message buffer,  
the TXBNCTRL.TXREQ bit must be clear, indicating that  
the message buffer is clear of any pending message to be  
transmitted. At a minimum, the TXBNSIDH, TXBNSIDL,  
and TXBNDLC registers must be loaded. If data bytes are  
present in the message, the TXBNDm registers must also  
be loaded. If the message is to use extended identifiers,  
the TXBNEIDm registers must also be loaded and the  
TXBNSIDL.EXIDE bit set.  
3.4  
TXnRTS Pins  
Prior to sending the message, the MCU must initialize  
the CANINTE.TXINE bit to enable or disable the gener-  
ation of an interrupt when the message is sent. The  
MCU must also initialize the TXBNCTRL.TXP priority  
bits (see Section 3.2).  
The TXNRTS Pins are input pins that can be configured  
as request-to-send inputs, which provides a secondary  
means of initiating the transmission of a message from  
any of the transmit buffers, or as standard digital inputs.  
Configuration and control of these pins is accomplished  
using the TXRTSCTRL register (see Register 3-2). The  
TXRTSCTRL register can only be modified when the  
MCP2510 is in configuration mode (see Section 9.0). If  
configured to operate as a request to send pin, the pin  
is mapped into the respective TXBNCTRL.TXREQ bit  
for the transmit buffer. The TXREQ bit is latched by the  
falling edge of the TXNRTS pin. The TXNRTS pins are  
designed to allow them to be tied directly to the RXNBF  
pins to automatically initiate a message transmission  
when the RXNBF pin goes low. The TXNRTS pins have  
internal pullup resistors of 100K ohms (nominal).  
3.2  
Transmit Priority  
Transmit priority is a prioritization, within the MCP2510,  
of the pending transmittable messages. This is indepen-  
dent from, and not necessarily related to, any prioritiza-  
tion implicit in the message arbitration scheme built into  
the CAN protocol. Prior to sending the SOF, the priority  
of all buffers that are queued for transmission is com-  
pared. The transmit buffer with the highest priority will be  
sent first. For example, if transmit buffer 0 has a higher  
priority setting than transmit buffer 1, buffer 0 will be sent  
first. If two buffers have the same priority setting, the  
buffer with the highest buffer number will be sent first. For  
example, if transmit buffer 1 has the same priority setting  
as transmit buffer 0, buffer 1 will be sent first. There are  
four levels of transmit priority. If TXBNCTRL.TXP<1:0>  
for a particular message buffer is set to 11, that buffer has  
the highest possible priority. If TXBNCTRL.TXP<1:0> for  
a particular message buffer is 00, that buffer has the low-  
est possible priority.  
3.5  
Aborting Transmission  
The MCU can abort a message in a specific message  
buffer by clearing the associated TXBNCTRL.TXREQ  
bit. If the message has not yet started transmission, or  
if the message started but loses arbitration, or if an  
error occurs, the abort will be processed. The abort is  
indicated by the TXBNCTRL.ABTF bits. Additionally,  
setting the CANCTRL.ABAT bit will request an abort of  
all pending messages. The CANCTRL.ABAT bit has to  
be cleared by the MCU, typically after verifying all mes-  
sages have been aborted by reading the individual  
TXREQ bits or via the SPI Read Status command.  
3.3  
Initiating Transmission  
To initiate message transmission the TXBNCTRL.TXREQ  
bit must be set for each buffer to be transmitted. This can  
be done by writing to the register via the SPI interface or  
by setting the TXNRTS pin low for the particular transmit  
buffer(s) that are to be transmitted. If transmission is initi-  
ated via the SPI interface, the TXREQ bit can be set at the  
same time as the TXP priority bits.  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 15  
MCP2510  
Start  
The message transmission  
sequence begins when the  
device determines that the  
TXBNCTRL.TXREQ for any of  
the transmit registers has been  
set.  
Are any  
No  
TXBNCTRL.TXREQ  
bits = 1  
?
Yes  
Clearing the TxBNCTRL.TXREQ  
Clear:  
bit while it is set, or setting the  
CANCTRL.ABAT bit before the  
message has started transmission  
will abort the message.  
TXBNCTRL.ABTF  
TXBNCTRL.MLOA  
TXBNCTRL.TXERR  
is  
Is  
No  
No  
TXBNCTRL.TXREQ=0  
CAN Bus available  
to start transmission  
?
or  
CANCTRL.ABAT=1  
?
Yes  
Yes  
Examine TXBNCTRL.TXP <1:0> to  
Determine Highest Priority Message  
Transmit Message  
Was  
No  
Did  
Yes  
Set  
Message Transmitted  
Successfully?  
a message error  
occur?  
TxBNCTRL.TXERR=1  
No  
Yes  
Set TxBNCTRL.TXREQ=0  
Was  
Yes  
Set  
Arbitration lost during  
transmission?  
TxBNCTRL.MLOA=1  
Yes  
Generate  
Interrupt  
CANINTE.TXnIE=1?  
No  
No  
A message can also be  
aborted if a message error or  
lost arbitration condition  
is  
occurred during transmission.  
TXBNCTRL.TXREQ=0 Yes  
or CANCTRL.ABAT=1  
?
Set  
CANTINF.TXNIF=1  
The CANINTE.TXnIE bit  
determines if an interrupt  
should be generated when  
a message is successfully  
transmitted.  
No  
About Transmission:  
Set TxBNCTRL.ABTF=1  
GOTO START  
FIGURE 3-1: Transmit Message Flowchart  
DS21219B-page 16  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
U-0  
R-0  
R-0  
R-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TXP0  
bit 0  
ABTF MLOA TXERR TXREQ  
TXP1  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
bit 7  
- n = Value at POR reset  
bit 7:  
bit 6:  
Unimplemented: Reads as ‘0’  
ABTF: Message Aborted Flag  
1 = Message was aborted  
0 = Message completed transmission successfully  
bit 5:  
bit 4:  
bit 3:  
MLOA: Message Lost Arbitration  
1 = Message lost arbitration while being sent  
0 = Message did not lose arbitration while being sent  
TXERR: Transmission Error Detected  
1 = A bus error occurred while the message was being transmitted  
0 = No bus error occurred while the message was being transmitted  
TXREQ: Message Transmit Request  
1 = Buffer is currently pending transmission  
(MCU sets this bit to request message be transmitted - bit is automatically cleared when  
the message is sent)  
0 = Buffer is not currently pending transmission  
(MCU can clear this bit to request a message abort)  
bit 2:  
Unimplemented: Reads as ‘0’  
bit 1-0: TXP<1:0>: Transmit Buffer Priority  
11 = Highest Message Priority  
10 = High Intermediate Message Priority  
01 = Low Intermediate Message Priority  
00 = Lowest Message Priority  
REGISTER 3-1: TXBNCTRL Transmit Buffer N Control Register (ADDRESS: 30h, 40h, 50h)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 17  
MCP2510  
U-0  
U-0  
R-x  
R-x  
R-x  
R/W-0  
R/W-0  
R/W-0  
B2RTS B1RTS B0RTS B2RTSM B1RTSM B0RTSM  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented -  
reads as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
Unimplemented: Reads as ‘0’  
Unimplemented: Reads as ‘0’  
B2RTS: TX2RTS Pin State  
- Reads state of TX2RTS pin when in digital input mode  
- Reads as ‘0’ when pin is in ‘request to send’ mode  
bit 4:  
B1RTS: TX1RTX Pin State  
- Reads state of TX1RTS pin when in digital input mode  
- Reads as ‘0’ when pin is in ‘request to send’ mode  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
B0RTS: TX0RTS Pin State  
- Reads state of TX0RTS pin when in digital input mode  
- Reads as ‘0’ when pin is in ‘request to send’ mode  
B2RTSM: TX2RTS Pin Mode  
1 = Pin is used to request message transmission of TXB2 buffer (on falling edge)  
0 = Digital input  
B1RTSM: TX1RTS Pin Mode  
1 = Pin is used to request message transmission of TXB1 buffer (on falling edge)  
0 = Digital input  
B0RTSM: TX0RTS Pin Mode  
1 = Pin is used to request message transmission of TXB0 buffer (on falling edge)  
0 = Digital input  
REGISTER 3-2: TXRTSCTRL - TXNRTS Pin Control and Status Register (ADDRESS: 0Dh)  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
SID10  
bit 7  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: SID10:SID3: Standard Identifier Bits <10:3>  
REGISTER 3-3: TXBNSIDH - Transmit Buffer N Standard Identifier High (ADDRESS: 31h, 41h, 51h)  
DS21219B-page 18  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
SID2  
bit 7  
SID1  
SID0  
EXIDE  
EID17 EID16  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-5: SID2:SID0: Standard Identifier Bits <2:0>  
bit 4:  
bit 3:  
Unimplemented: Reads as '0’  
EXIDE: Extended Identifier Enable  
1 = Message will transmit extended identifier  
0 = Message will transmit standard identifier  
bit 2:  
Unimplemented: Reads as '0’  
bit 1-0: EID17:EID16: Extended Identifier Bits <17:16>  
REGISTER 3-4: TXBNSIDL - Transmit Buffer N Standard Identifier Low (ADDRESS: 32h, 42h, 52h)  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
EID15 EID14 EID13 EID12 EID11 EID10  
bit 7  
EID9  
EID8  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID15:EID8: Extended Identifier Bits <15:8>  
REGISTER 3-5: TXBNEID8 - Transmit Buffer N Extended Identifier High (ADDRESS: 33h, 43h, 53h)  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
EID7  
bit 7  
EID6  
EID5  
EID4  
EID3  
EID2  
EID1  
EID0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID7:EID0: Extended Identifier Bits <7:0>  
REGISTER 3-6: TXBNEID0 - Transmit Buffer N Extended Identifier LOW (ADDRESS: 34h, 44h, 54h)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 19  
MCP2510  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
RTR  
DLC3  
DLC2  
DLC1  
DLC0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
Unimplemented: Reads as ‘0’  
RTR: Remote Transmission Request Bit  
bit 5-4: Unimplemented: Reads as ‘0’  
bit 3-0: DLC3:DLC0: Data Length Code  
REGISTER 3-7: TXBNDLC - Transmit Buffer N Data Length Code (ADDRESS: 35h, 45h, 55h)  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
TXBNDm7 TXBNDm6 TXBNDm5 TXBNDm4 TXBNDm3 TXBNDm2 TXBNDm1 TXBNDm0 R = Readable bit  
W = Writable bit  
C = Bit can be  
cleared by  
bit 7  
bit 0  
MCU but not set  
U = Unimplemented  
- reads as ‘0’  
- n = Value at POR  
reset  
bit 7-0: TXBNDm7:TXBNDm0: Transmit Buffer N Data Field Byte m  
REGISTER 3-8: TXBNDM - Transmit Buffer N Data Field Byte m (ADDRESS: 36h-3Dh, 46h-4Dh, 56h-5Dh)  
DS21219B-page 20  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
When a message is received, bits <3:0> of the RXBNCTRL  
Register will indicate the acceptance filter number that  
enabled reception, and whether the received message is a  
remote transfer request.  
4.0  
MESSAGE RECEPTION  
4.1  
Receive Message Buffering  
The MCP2510 includes two full receive buffers with  
multiple acceptance filters for each. There is also a  
separate Message Assembly Buffer (MAB) which acts  
as a third receive buffer (see Figure 4-1).  
The RXBNCTRL.RXM bits set special receive modes.  
Normally, these bits are set to 00 to enable reception of  
all valid messages as determined by the appropriate  
acceptance filters. In this case, the determination of  
whether or not to receive standard or extended mes-  
sages is determined by the RFXNSIDL.EXIDE bit in the  
acceptance filter register. If the RXBNCTRL.RXM bits  
are set to 01 or 10, the receiver will accept only mes-  
sages with standard or extended identifiers respec-  
tively. If an acceptance filter has the RFXNSIDL.EXIDE  
bit set such that it does not correspond with the  
RXBNCTRL.RXM mode, that acceptance filter is ren-  
dered useless. These two modes of RXBNCTRL.RXM  
bits can be used in systems where it is known that only  
standard or extended messages will be on the bus. If  
the RXBNCTRL.RXM bits are set to 11, the buffer will  
receive all messages regardless of the values of the  
acceptance filters. Also, if a message has an error  
before the end of frame, that portion of the message  
assembled in the MAB before the error frame will be  
loaded into the buffer. This mode has some value in  
debugging a CAN system and would not be used in an  
actual system environment.  
4.2  
Receive Buffers  
Of the three Receive Buffers, the MAB is always com-  
mitted to receiving the next message from the bus. The  
remaining two receive buffers are called RXB0 and  
RXB1 and can receive a complete message from the  
protocol engine. The MCU can access one buffer while  
the other buffer is available for message reception or  
holding a previously received message.  
The MAB assembles all messages received. These  
messages will be transferred to the RXBN buffers (See  
Register 4-4 to Register 4-9) only if the acceptance fil-  
ter criteria are met.  
Note: The entire contents of the MAB is moved into  
the receive buffer once  
a message is  
accepted. This means that regardless of the  
type of identifier (standard or extended) and  
the number of data bytes received, the entire  
receive buffer is overwritten with the MAB  
contents. Therefore the contents of all regis-  
ters in the buffer must be assumed to have  
been modified when any message is  
received.  
4.4  
RX0BF and RX1BF Pins  
In addition to the INT pin which provides an interrupt  
signal to the MCU for many different conditions, the  
receive buffer full pins (RX0BF and RX1BF) can be  
used to indicate that a valid message has been loaded  
into RXB0 or RXB1, respectively.  
When a message is moved into either of the receive  
buffers the appropriate CANINTF.RXNIF bit is set. This  
bit must be cleared by the MCU, when it has completed  
processing the message in the buffer, in order to allow  
a new message to be received into the buffer. This bit  
provides a positive lockout to ensure that the MCU has  
finished with the message before the MCP2510  
attempts to load a new message into the receive buffer.  
If the CANINTE.RXNIE and bit is set an interrupt will be  
generated on the INT pin to indicate that a valid mes-  
sage has been received.  
The RXBNBF full pins can be configured to act as buffer  
full interrupt pins or as standard digital outputs. Config-  
uration and status of these pins is available via the  
BFPCTRL register (Register 4-3). When set to operate  
in interrupt mode (by setting BFPCTRL.BxBFE and  
BFPCTRL.BxBFM bits to a 1), these pins are active low  
and are mapped to the CANINTF.RXNIF bit for each  
receive buffer. When this bit goes high for one of the  
receive buffers, indicating that a valid message has  
been loaded into the buffer, the corresponding RXNBF  
pin will go low. When the CANINTF.RXNIF bit is cleared  
by the MCU, then the corresponding interrupt pin will go  
to the logic high state until the next message is loaded  
into the receive buffer.  
4.3  
Receive Priority  
RXB0 is the higher priority buffer and has two message  
acceptance filters associated with it. RXB1 is the lower  
priority buffer and has four acceptance filters associ-  
ated with it. The lower number of acceptance filters  
makes the match on RXB0 more restrictive and implies  
a higher priority for that buffer. Additionally, the  
RXB0CTRL register can be configured such that if  
RXB0 contains a valid message, and another valid  
message is received, an overflow error will not occur  
and the new message will be moved into RXB1 regard-  
less of the acceptance criteria of RXB1. There are also  
two programmable acceptance filter masks available,  
one for each receive buffer (see Section 4.5).  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 21  
MCP2510  
Acceptance Mask  
RXM1  
Acceptance Filter  
RXF2  
Acceptance Mask  
RXM0  
Acceptance Filter  
RXF3  
A
c
c
e
p
t
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
A
c
c
e
p
t
Acceptance Filter  
RXF1  
Acceptance Filter  
RXF5  
R
X
B
0
M
A
B
R
X
B
1
Identifier  
Identifier  
Data Field  
Data Field  
FIGURE 4-1: Receive Buffer Block Diagram  
DS21219B-page 22  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
Start  
Detect  
Start of  
Message  
?
No  
Yes  
Begin Loading Message into  
Message Assembly Buffer (MAB)  
Valid  
Generate  
Error  
Frame  
No  
Message  
Received  
?
Yes  
Yes, meets criteria  
for RXBO  
Yes, meets criteria  
for RXB1  
Message  
Identifier meets  
a filter criteria  
?
No  
Go to Start  
The CANINTF.RXNIF bit  
determines if the receive  
register is empty and able  
to accept a new message  
The RXB0CTRL.BUKT  
bit determines if RXB0  
can roll over into RXB1  
Is  
RXB0CTRL.BUKT=1  
Is  
Yes  
No  
CANINTF.RX0IF=0  
?
?
No  
Yes  
Is  
No  
Generate Overflow Error:  
Set EFLG.RX0OVR  
Generate Overflow Error:  
Set EFLG.RX1OVR  
Move message into RXB0  
CANINTF.RX1IF = 0  
?
Set CANINTF.RX0IF=1  
Yes  
Move message into RXB1  
No  
Is  
Set RXB0CTRL.FILHIT <0>  
according to which filter criteria  
CANINTE.ERRIE=1  
?
Set CANINTF.RX1IF=1  
Yes  
Go to Start  
Set RXB0CTRL.FILHIT <2:0>  
according to which filter criteria  
was met  
Yes  
Yes  
Generate  
CANINTE.RX0IE=1?  
CANINTE.RX1IE=1?  
No  
Interrupt on INT  
No  
RXB1  
RXB0  
Set CANSTAT <3:0> accord-  
ing to which receive buffer  
the message was loaded into  
Yes  
Are  
Yes  
Are  
Set RXBF0  
Pin = 0  
Set RXBF1  
Pin = 0  
BFPCTRL.B0BFM=1  
BFPCTRL.B1BFM=1  
and  
and  
BF1CTRL.B0BFE=1  
BF1CTRL.B1BFE=1  
?
?
No  
No  
FIGURE 4-2: Message Reception Flowchart  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 23  
MCP2510  
U-0  
R/W-0 R/W-0  
RXM1 RXM0  
U-0  
R-0  
R/W-0  
R-0  
R-0  
RXRTR BUKT  
BUKT1 FILHIT0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Reads as ‘0’  
bit 6-5: RXM<1:0>: Receive Buffer Operating Mode  
11 = Turn mask/filters off; receive any message  
10 = Receive only valid messages with extended identifiers that meet filter criteria  
01 = Receive only valid messages with standard identifiers that meet filter criteria  
00 = Receive all valid messages using either standard or extended identifiers that meet filter criteria  
bit 4:  
bit 3:  
Unimplemented: Reads as ‘0’  
RXRTR: Received Remote Transfer Request  
1 = Remote Transfer Request Received  
0 = No Remote Transfer Request Received  
bit 2:  
BUKT: Rollover Enable  
1 = RXB0 message will rollover and be written to RXB1 if RXB0 is full  
0 = Rollover disabled  
bit 1:  
bit 0:  
BUKT1: Read Only Copy of BUKT Bit (used internally by the MCP2510).  
FILHIT<0>: Filter Hit - indicates which acceptance filter enabled reception of message  
1 = Acceptance Filter 1 (RXF1)  
0 = Acceptance Filter 0 (RXF0)  
REGISTER 4-1: RXB0CTRL - Receive Buffer 0 Control Register (ADDRESS: 60h)  
DS21219B-page 24  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
U-0  
R/W-0 R/W-0  
U-0  
R-0  
R-0  
R-0  
R-0  
RXM1 RXM0  
RXRTR FILHIT2 FILHIT1 FILHIT0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Reads as ‘0’  
bit 6-5: RXM<1:0>: Receive Buffer Operating Mode  
11 = Turn mask/filters off; receive any message  
10 = Receive only valid messages with extended identifiers that meet filter criteria  
01 = Receive only valid messages with standard identifiers that meet filter criteria  
00 = Receive all valid messages using either standard or extended identifiers that meet filter criteria  
bit 4:  
bit 3:  
Unimplemented: Reads as ‘0’  
RXRTR: Received Remote Transfer Request  
1 = Remote Transfer Request Received  
0 = No Remote Transfer Request Received  
bit 2-0: FILHIT<2:0>: Filter Hit - indicates which acceptance filter enabled reception of message  
101 = Acceptance Filter 5 (RXF5)  
100 = Acceptance Filter 4 (RXF4)  
011 = Acceptance Filter 3 (RXF3)  
010 = Acceptance Filter 2 (RXF2)  
001 = Acceptance Filter 1 (RXF1) (Only if BUKT bit set in RXB0CTRL)  
000 = Acceptance Filter 0 (RXF0) (Only if BUKT bit set in RXB0CTRL)  
REGISTER 4-2: RXB1CTRL - Receive Buffer 1 Control Register (ADDRESS: 70h)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 25  
MCP2510  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
B1BFS B0BFS B1BFE B0BFE B1BFM B0BFM  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
Unimplemented: Reads as ‘0’  
Unimplemented: Reads as ‘0’  
B1BFS: RX1BF Pin State (digital output mode only)  
Reads as 0 when RX1BF is configured as interrupt pin  
B0BFS: RX0BF Pin State (digital output mode only)  
Reads as 0 when RX0BF is configured as interrupt pin  
B1BFE: RX1BF Pin Function Enable  
bit 4:  
bit 3:  
1 = Pin function enabled, operation mode determined by B1BFM bit  
0 = Pin function disabled, pin goes to high impedance state  
bit 2:  
bit 1:  
bit 0:  
B0BFE: RX0BF Pin Function Enable  
1 = Pin function enabled, operation mode determined by B0BFM bit  
0 = Pin Function disabled, pin goes to high impedance state  
B1BFM: RX1BF Pin Operation Mode  
1 = Pin is used as interrupt when valid message loaded into RXB1  
0 = Digital output mode  
B0BFM: RX0BF Pin Operation Mode  
1 = Pin is used as interrupt when valid message loaded into RXB0  
0 = Digital output mode  
REGISTER 4-3: BFPCTRL - RXNBF Pin Control and Status Register (ADDRESS: 0Ch)  
R-x  
SID10  
bit 7  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
bit 0  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: SID10:SID3: Standard Identifier Bits <10:3>  
REGISTER 4-4: RXBNSIDH - Receive Buffer N Standard Identifier High (ADDRESS: 61h, 71h)  
DS21219B-page 26  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
R-x  
R-x  
R-x  
R-x  
R-x  
IDE  
U-0  
R-x  
R-x  
EID16  
bit 0  
SID2  
SID1  
SID0  
SRR  
EID17  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
bit 7  
- n = Value at POR reset  
bit 7-5: SID2:SID0: Standard Identifier Bits <2:0>  
bit 4:  
bit 3:  
bit 2:  
SRR: Substitute Remote Request Bit when IDE=1, RTR bit when IDE=0  
IDE: Extended Identifier Flag  
Unimplemented: Reads as '0'  
bit 1-0: EID17:EID16: Extended Identifier Bits <17:16>  
REGISTER 4-5: RXBNSIDL - Receive Buffer N Standard Identifier Low (ADDRESS: 62h, 72h)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
EID15 EID14 EID13  
bit 7  
EID12  
EID11  
EID10  
EID9  
EID8  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 0  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID15:EID8: Extended Identifier Bits <15:8>  
REGISTER 4-6: RXBNEID8 - Receive Buffer N Extended Identifier Mid (ADDRESS: 63h, 73h)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
EID7  
EID6  
EID5  
EID4  
EID3  
EID2  
EID1  
EID0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
bit 7  
bit 0  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID7:EID0: Extended Identifier Bits <7:0>  
REGISTER 4-7: RXBNEID0 - Receive Buffer N Extended Identifier Low (ADDRESS: 64h, 74h)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 27  
MCP2510  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
DLC0  
bit 0  
RTR  
RB1  
RB0  
DLC3  
DLC2  
DLC1  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
Unimplemented: Reads as '0'  
RTR: Remote Transmission Request Bit when RXBnSIDL.IDE = 1  
RB1: Reserved Bit 1  
RB0: Reserved Bit 0  
bit 3-0: DLC3:DLC0: Data Length Code  
REGISTER 4-8: RXBNDLC - Receive Buffer N Data Length Code (ADDRESS: 65h, 75h)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
RBNDm7 RBNDm6 RBNDm5 RBNDm4 RBNDm3 RBNDm2 RBNDm1 RBNDm0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
bit 0  
U = Unimplemented -  
reads as ‘0’  
- n = Value at POR reset  
bit 7-0: RBNDm7:RBNDm0: Receive Buffer N Data Field Byte m  
REGISTER 4-9: RXBNDM - Receive Buffer N Data Field Byte m (ADDRESS: 66h-6Dh, 76h-7Dh)  
DS21219B-page 28  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
As shown in the Receive Buffers Block Diagram  
(Figure 4-1), acceptance filters RXF0 and RXF1, and  
filter mask RXM0 are associated with RXB0. Filters  
RXF2, RXF3, RXF4, and RXF5 and mask RXM1 are  
associated with RXB1. When a filter matches and a  
message is loaded into the receive buffer, the filter  
number that enabled the message reception is loaded  
into the RXBNCTRL register FILHIT bit(s). For RXB1  
the RXB1CTRL register contains the FILHIT<2:0> bits.  
They are coded as follows:  
4.5  
Message Acceptance Filters and  
Masks  
The Message Acceptance Filters And Masks are used  
to determine if a message in the message assembly  
buffer should be loaded into either of the receive buffers  
(see Figure 4-3). Once a valid message has been  
received into the MAB, the identifier fields of the mes-  
sage are compared to the filter values. If there is a  
match, that message will be loaded into the appropriate  
receive buffer. The filter masks (see Register 4-10  
through Register 4-17) are used to determine which  
bits in the identifier are examined with the filters. A truth  
table is shown below in Table 4-10 that indicates how  
each bit in the identifier is compared to the masks and  
filters to determine if a the message should be loaded  
into a receive buffer. The mask essentially determines  
which bits to apply the acceptance filters to. If any mask  
bit is set to a zero, then that bit will automatically be  
accepted regardless of the filter bit.  
101 = Acceptance Filter 5 (RXF5)  
100 = Acceptance Filter 4 (RXF4)  
011 = Acceptance Filter 3 (RXF3)  
010 = Acceptance Filter 2 (RXF2)  
001 = Acceptance Filter 1 (RXF1)  
000 = Acceptance Filter 0 (RXF0)  
Note: 000 and 001 can only occur if the BUKT bit  
(see Table 4-1) is set in the RXB0CTRL  
register allowing RXB0 messages to roll  
over into RXB1.  
Message  
Identifier bit  
n001  
Mask Bit Filter Bit  
Accept or  
reject bit n  
n
n
RXB0CTRL contains two copies of the BUKT bit and  
the FILHIT<0> bit.  
0
X
X
0
1
0
1
Accept  
Accept  
Reject  
Reject  
Accept  
The coding of the BUKT bit enables these three bits to  
be used similarly to the RXB1CTRL.FILHIT bits and to  
distinguish a hit on filter RXF0 and RXF1 in either  
RXB0 or after a roll over into RXB1.  
1
0
1
1
0
1
111 = Acceptance Filter 1 (RXF1)  
110 = Acceptance Filter 0 (RXF0)  
001 = Acceptance Filter 1 (RXF1)  
000 = Acceptance Filter 0  
1
1
Note:  
X = don’t care  
TABLE 4-10: Filter/Mask Truth Table  
If the BUKT bit is clear, there are six codes correspond-  
ing to the six filters. If the BUKT bit is set, there are six  
codes corresponding to the six filters plus two addi-  
tional codes corresponding to RXF0 and RXF1 filters  
that roll over into RXB1.  
If more than one acceptance filter matches, the FILHIT  
bits will encode the binary value of the lowest num-  
bered filter that matched. In other words, if filter RXF2  
and filter RXF4 match, FILHIT will be loaded with the  
value for RXF2. This essentially prioritizes the accep-  
tance filters with a lower number filter having higher pri-  
ority. Messages are compared to filters in ascending  
order of filter number.  
The mask and filter registers can only be modified  
when the MCP2510 is in configuration mode (see  
Section 9.0).  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 29  
MCP2510  
Acceptance Filter Register  
Acceptance Mask Register  
RXFn0  
RXMn0  
RXMn1  
RxRqst  
RXFn1  
RXFnn  
RXMnn  
Message Assembly Buffer  
Identifier  
FIGURE 4-3: Message Acceptance Mask and Filter Operation  
R/W-x R/W-x R/W-x  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 0  
SID10  
SID9  
SID8  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: SID10:SID3: Standard Identifier  
REGISTER 4-10: RXFNSIDH - Acceptance Filter N Standard Identifier High (Address: 00h, 04h, 08h, 10h, 14h, 18h, 20h, 24h)  
R/W-x R/W-x R/W-x  
SID2 SID1 SID0  
bit 7  
U-0  
R/W-x  
U-0  
R/W-x R/W-x  
EID17 EID16  
bit 0  
EXIDE  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-5: SID2:SID0: Standard Identifier Bits <2:0>  
bit 4:  
bit 3:  
bit 2:  
Unimplemented: Reads as '0'  
EXIDE: Extended Identifier Enable - bit determines whether filter applies to Standard or Extended Frames  
Unimplemented: Reads as '0'  
bit 1-0: EID17:EID16: Extended Identifier Bits <17:16>  
REGISTER 4-11: RXFNSIDL - Acceptance Filter N Standard Identifier Low (Address: 01h, 05h, 09h, 11h, 15h, 19h, 21h, 25h)  
DS21219B-page 30  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
R/W-x R/W-x R/W-x  
EID15 EID14 EID13  
bit 7  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID15:EID8: Extended Identifier Bits <15:8>  
REGISTER 4-12: RXFNEID8 - Acceptance Filter N Extended Identifier High (Address: 02h, 06h, 0Ah, 12h, 16h, 1Ah, 22h, 26h)  
R/W-x R/W-x R/W-x  
EID7 EID6 EID5  
bit 7  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID7:EID0: Extended Identifier Bits <7:0>  
REGISTER 4-13: RXFNEID0 - Acceptance Filter N Extended Identifier Low (Address: 03h, 07h, 0Bh, 13h, 17h, 1Bh, 23h, 27h)  
R/W-x R/W-x R/W-x  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 0  
SID10  
bit 7  
SID9  
SID8  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: SID10:SID3: Standard Identifier Bits <10:3>  
REGISTER 4-14: RXMNSIDH - Acceptance Filter Mask N Standard Identifier High (Address: 20h, 24h)  
R/W-x R/W-x R/W-x  
SID2 SID1 SID0  
bit 7  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
EID16  
bit 0  
EID17  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-5: SID2:SID0: Standard Identifier Bits <2:0>  
bit 4-2: Unimplemented: Reads as '0'  
bit 1-0: EID17:EID16: Extended Identifier Bits <17:16>  
REGISTER 4-15: RXMNSIDL - Acceptance Filter Mask N Standard Identifier Low (Address: 21h, 25h)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 31  
MCP2510  
R/W-x R/W-x R/W-x  
EID15 EID14 EID13  
bit 7  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID15:EID8: Extended Identifier Bits <15:8>  
REGISTER 4-16: RXMNEID8 - Acceptance Filter Mask N Extended Identifier High (Address: 22h, 26h)  
R/W-x R/W-x R/W-x  
EID7 EID6 EID5  
bit 7  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: EID7:EID0: Extended Identifier Bits <7:0>  
REGISTER 4-17: RXMNEID0 - Acceptance Filter Mask N Extended Identifier Low (Address: 23h, 27h)  
DS21219B-page 32  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
The nominal bit rate is the number of bits transmitted  
per second assuming an ideal transmitter with an ideal  
oscillator, in the absence of resynchronization. The  
nominal bit rate is defined to be a maximum of 1Mb/s.  
5.0  
BIT TIMING  
All nodes on a given CAN bus must have the same  
nominal bit rate. The CAN protocol uses Non Return to  
Zero (NRZ) coding which does not encode a clock  
within the data stream. Therefore, the receive clock  
must be recovered by the receiving nodes and synchro-  
nized to the transmitters clock.  
Nominal Bit Time is defined as:  
TBIT = 1 / NOMlNAL BlT RATE  
The nominal bit time can be thought of as being divided  
into separate non-overlapping time segments. These  
segments are shown in Figure 5-1.  
As oscillators and transmission time may vary from  
node to node, the receiver must have some type of  
Phase Lock Loop (PLL) synchronized to data transmis-  
sion edges to synchronize and maintain the receiver  
clock. Since the data is NRZ coded, it is necessary to  
include bit stuffing to ensure that an edge occurs at  
least every six bit times, to maintain the Digital Phase  
Lock Loop (DPLL) synchronization.  
- Synchronization Segment (Sync_Seg)  
- Propagation Time Segment (Prop_Seg)  
- Phase Buffer Segment 1 (Phase_Seg1)  
- Phase Buffer Segment 2 [Phase_Seg2)  
Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg +  
Phase_Seg1 + Phase_Seg2)  
The bit timing of the MCP2510 is implemented using a  
DPLL that is configured to synchronize to the incoming  
data, and provide the nominal timing for the transmitted  
data. The DPLL breaks each bit time into multiple seg-  
ments made up of minimal periods of time called the  
time quanta (TQ).  
The time segments and also the nominal bit time are  
made up of integer units of time called time quanta or  
TQ (see Figure 5-1). By definition, the nominal bit time  
is programmable from a minimum of 8 TQ to a maxi-  
mum of 25 TQ. Also, by definition the minimum nominal  
bit time is 1 µs, corresponding to a maximum 1 Mb/s  
rate.  
Bus timing functions executed within the bit time frame,  
such as synchronization to the local oscillator, network  
transmission delay compensation, and sample point  
positioning, are defined by the programmable bit timing  
logic of the DPLL.  
All devices on the CAN bus must use the same bit rate.  
However, all devices are not required to have the same  
master oscillator clock frequency. For the different clock  
frequencies of the individual devices, the bit rate has to  
be adjusted by appropriately setting the baud rate pres-  
caler and number of time quanta in each segment.  
Input Signal  
Prop  
Sync  
Phase  
Segment 1  
Phase  
Segment 2  
Segment  
Sample Point  
TQ  
FIGURE 5-1: Bit Time Partitioning  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 33  
MCP2510  
The total delay is calculated from the following individ-  
ual delays:  
5.1  
Time Quanta  
The Time Quanta is a fixed unit of time derived from the  
oscillator period. There is a programmable baud-rate  
prescaler, with integral values ranging from 1 to 64, in  
addition to a fixed divide by two for clock generation.  
2 * physical bus end to end delay; TBUS (defined by  
CAN specification as max. 100 ns)  
2 * input comparator delay; TCOMP (depends on appli-  
cation circuit)  
Time quanta is defined as:  
2 * output driver delay; TDRIVE (depends on application  
circuit)  
TQ = 2 * (Baud Rate +1) * TOSC  
where Baud Rate is the binary value represented by  
CNF1.BRP<5:0>  
1 * input to output of CAN controller; TCAN (maximum  
defined as 1 TQ + delay ns)  
For some examples:  
TPROPOGATION = 2 * (TBUS + TCOMP + TDRIVE) + TCAN  
Prop_Seg = TPROPOGATION / TQ  
If Fosc = 16 MHz, BRP<5:0> = 00h, and Nominal Bit  
Time = 8 TQ;  
5.4  
Phase Buffer Segments  
then TQ = 125 nsec and Nominal Bit Rate = 1 Mb/s  
If FOSC = 20 MHz, BRP<5:0> = 01h, and Nominal Bit  
Time = 8 TQ;  
The Phase Buffer Segments are used to optimally locate  
the sampling point of the received bit within the nominal  
bit time. The sampling point occurs between phase seg-  
ment 1 and phase segment 2. These segments can be  
lengthened or shortened by the resynchronization pro-  
cess (see Section 5.7.2). Thus, the variation of the val-  
ues of the phase buffer segments represent the DPLL  
functionality. The end of phase segment 1 determines  
the sampling point within a bit time. phase segment 1 is  
programmable from 1 TQ to 8 TQ in duration. Phase seg-  
ment 2 provides delay before the next transmitted data  
transition and is also programmable from 1 TQ to 8 TQ in  
duration (however due to IPT requirements the actual  
minimum length of phase segment 2 is 2 TQ - see Sec-  
tion 5.6 below), or it may be defined to be equal to the  
greater of phase segment 1 or the Information Process-  
ing Time (IPT). (see Section 5.6).  
then TQ = 200nsec and Nominal Bit Rate = 625 Kb/s  
If Fosc = 25 MHz, BRP<5:0> = 3Fh, and Nominal Bit  
Time = 25 TQ;  
then TQ = 5.12 usec and Nominal Bit Rate = 7.8 Kb/s  
The frequencies of the oscillators in the different nodes  
must be coordinated in order to provide a system-wide  
specified nominal bit time. This means that all oscilla-  
tors must have a TOSC that is a integral divisor of TQ.  
5.2  
Synchronization Segment  
This part of the bit time is used to synchronize the var-  
ious CAN nodes on the bus. The edge of the input sig-  
nal is expected to occur during the sync segment. The  
duration is 1 TQ.  
5.5  
Sample Point  
5.3  
Propagation Segment  
The Sample Point is the point of time at which the bus  
level is read and value of the received bit is determined.  
The Sampling point occurs at the end of phase seg-  
ment 1. If the bit timing is slow and contains many TQ,  
it is possible to specify multiple sampling of the bus line  
at the sample point. The value of the received bit is  
determined to be the value of the majority decision of  
three values. The three samples are taken at the sam-  
ple point, and twice before with a time of TQ/2 between  
each sample.  
This part of the bit time is used to compensate for phys-  
ical delay times within the network. These delay times  
consist of the signal propagation time on the bus line  
and the internal delay time of the nodes. The delay is  
calculated as being the round trip time from transmitter  
to receiver (twice the signal’s propagation time on the  
bus line), the input comparator delay, and the output  
driver delay. The length of the Propagation Segment  
can be programmed from 1 TQ to 8 TQ by setting the  
PRSEG2:PRSEG0 bits of the CNF2 register (Table  
6-2).  
5.6  
Information Processing Time  
The Information Processing Time (IPT) is the time seg-  
ment, starting at the sample point, that is reserved for  
calculation of the subsequent bit level. The CAN speci-  
fication defines this time to be less than or equal to 2 TQ.  
The MCP2510 defines this time to be 2 TQ. Thus, phase  
segment 2 must be at least 2 TQ long.  
DS21219B-page 34  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
The phase error of an edge is given by the position of  
the edge relative to Sync Seg, measured in TQ. The  
phase error is defined in magnitude of TQ as follows:  
5.7  
Synchronization  
To compensate for phase shifts between the oscillator  
frequencies of each of the nodes on the bus, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. Synchronization is  
the process by which the DPLL function is imple-  
mented. When an edge in the transmitted data is  
detected, the logic will compare the location of the edge  
to the expected time (Sync Seg). The circuit will then  
adjust the values of phase segment 1 and phase seg-  
ment 2 as necessary. There are two mechanisms used  
for synchronization.  
• e = 0 if the edge lies within SYNCESEG.  
• e > 0 if the edge lies before the SAMPLE POINT.  
• e < 0 if the edge lies after the SAMPLE POINT of  
the previous bit.  
If the magnitude of the phase error is less than or equal  
to the programmed value of the synchronization jump  
width, the effect of a resynchronization is the same as  
that of a hard synchronization.  
If the magnitude of the phase error is larger than the  
synchronization jump width, and if the phase error is  
positive, then phase segment 1 is lengthened by an  
amount equal to the synchronization jump width.  
5.7.1  
HARD SYNCHRONIZATION  
Hard Synchronization is only done when there is a  
recessive to dominant edge during a BUS IDLE condi-  
tion, indicating the start of a message. After hard syn-  
chronization, the bit time counters are restarted with  
Sync Seg. Hard synchronization forces the edge which  
has occurred to lie within the synchronization segment  
of the restarted bit time. Due to the rules of synchroni-  
zation, if a hard synchronization occurs there will not be  
a resynchronization within that bit time.  
If the magnitude of the phase error is larger than the  
resynchronization jump width, and if the phase error is  
negative, then phase segment 2 is shortened by an  
amount equal to the synchronization jump width.  
5.7.3  
SYNCHRONIZATION RULES  
• Only one synchronization within one bit time is  
allowed.  
5.7.2  
RESYNCHRONIZATION  
• An edge will be used for synchronization only if  
the value detected at the previous sample point  
(previously read bus value) differs from the bus  
value immediately after the edge.  
As a result of Resynchronization, phase segment 1  
may be lengthened or phase segment 2 may be short-  
ened. The amount of lengthening or shortening of the  
phase buffer segments has an upper bound given by  
the Synchronization Jump Width (SJW). The value of  
the SJW will be added to phase segment 1 (see  
Figure 5-2) or subtracted from phase segment 2 (see  
Figure 5-3). The SJW represents the loop filtering of  
the DPLL. The SJW is programmable between 1 TQ  
and 4 TQ.  
• All other recessive to dominant edges fulfilling  
rules 1 and 2 will be used for resynchronization  
with the exception that a node transmitting a dom-  
inant bit will not perform a resynchronization as a  
result of a recessive to dominant edge with a pos-  
itive phase error.  
Clocking information will only be derived from recessive  
to dominant transitions. The property that only a fixed  
maximum number of successive bits have the same  
value ensures resynchronization to the bit stream dur-  
ing a frame.  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
Actual Bit  
Length  
Nominal  
Bit Length  
Sample  
Point  
TQ  
FIGURE 5-2: Lengthening a Bit Period  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 35  
MCP2510  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
Sample  
Point  
Actual  
Bit Length  
Nominal  
Bit Length  
TQ  
FIGURE 5-3: Shortening a Bit Period  
5.8 Programming Time Segments  
5.9  
Oscillator Tolerance  
Some requirements for programming of the time seg-  
ments:  
The bit timing requirements allow ceramic resonators  
to be used in applications with transmission rates of up  
to 125 kbit/sec, as a rule of thumb. For the full bus  
speed range of the CAN protocol, a quartz oscillator is  
required. A maximum node-to-node oscillator variation  
of 1.7% is allowed.  
• Prop Seg + Phase Seg 1 >= Phase Seg 2  
• Prop Seg + Phase Seg 1 >= TDELAY  
• Phase Seg 2 > Sync Jump Width  
For example, assuming that a 125 kHz CAN baud rate  
with FOSC = 20 MHz is desired:  
TOSC = 50 nsec, choose BRP<5:0> = 04h, then TQ  
=
500nsec. To obtain 125 kHz, the bit time must be 16 TQ.  
Typically, the sampling of the bit should take place at  
about 60-70% of the bit time, depending on the system  
parameters. Also, typically, the TDELAY is 1-2 TQ.  
Sync Seg = 1 TQ; Prop Seg = 2 TQ; So setting Phase  
Seg 1 = 7 TQ would place the sample at 10 TQ after the  
transition. This would leave 6 TQ for Phase Seg 2.  
Since Phase Seg 2 is 6, by the rules, SJW could be the  
maximum of 4 TQ. However, normally a large SJW is  
only necessary when the clock generation of the differ-  
ent nodes is inaccurate or unstable, such as using  
ceramic resonators. So an SJW of 1 is typically  
enough.  
DS21219B-page 36  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
ting this bit to a ‘1’ causes the bus to be sampled three  
times; twice at TQ/2 before the sample point, and once  
at the normal sample point (which is at the end of  
phase segment 1). The value of the bus is determined  
to be the value read during at least two of the samples.  
If the SAM bit is set to a ‘0’ then the RXCAN pin is sam-  
pled only once at the sample point. The BTLMODE bit  
controls how the length of phase segment 2 is deter-  
mined. If this bit is set to a ‘1’ then the length of phase  
segment 2 is determined by the PHSEG2<2:0> bits of  
CNF3 (see Section 5.10.3). If the BTLMODE bit is set  
to a ‘0’ then the length of phase segment 2 is the  
greater of phase segment 1 and the information pro-  
cessing time (which is fixed at 2 TQ for the MCP2510).  
5.10  
Bit Timing Configuration Registers  
The configuration registers (CNF1, CNF2, CNF3) con-  
trol the bit timing for the CAN bus interface. These reg-  
isters can only be modified when the MCP2510 is in  
configuration mode (see Section 9.0).  
5.10.1 CNF1  
The BRP<5:0> bits control the baud rate prescaler.  
These bits set the length of TQ relative to the OSC1  
input frequency, with the minimum length of TQ being 2  
OSC1 clock cycles in length (when BRP<5:0> are set  
to 000000). The SJW<1:0> bits select the synchroniza-  
tion jump width in terms of number of TQ’s.  
5.10.2 CNF2  
5.10.3 CNF3  
The PRSEG<2:0> bits set the length, in TQ’s, of the  
propagation segment. The PHSEG1<2:0> bits set the  
length, in TQ’s, of phase segment 1. The SAM bit con-  
trols how many times the RXCAN pin is sampled. Set-  
The PHSEG2<2:0> bits set the length, in TQ’s, of  
Phase Segment 2, if the CNF2.BTLMODE bit is set to  
a ‘1’. If the BTLMODE bit is set to a ‘0’ then the  
PHSEG2<2:0> bits have no effect.  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
SJW1  
bit 7  
SJW0  
BRP5  
BRP4  
BRP3  
BRP2  
BRP1  
BRP0  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-6: SJW1:SJW0: Synchronization Jump Width Length  
11 = Length = 4 x TQ  
10 = Length = 3 x TQ  
01 = Length = 2 x TQ  
00 = Length = 1 x TQ  
bit 5-0: BRP5:BRP0: Baud Rate Prescaler  
111111 = TQ = 2 x 64 x 1/FOSC  
-
-
-
000000 = TQ = 2 x 1 x 1/FOSC  
REGISTER 5-1: CNF1 - Configuration Register1 (ADDRESS: 2Ah)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 37  
MCP2510  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BTLMODE SAM PHSEG12 PHSEG11 PHSEG10 PRSEG2 PRSEG1 PRSEG0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared  
by MCU but not set  
U = Unimplemented -  
reads as ‘0’  
bit 7  
bit 0  
- n = Value at POR  
reset  
bit 7:  
BTLMODE: Phase Segment 2 Bit Time Length  
1 = Length of Phase Seg 2 determined by PHSEG22:PHSEG20 bits of CNF3  
0 = Length of Phase Seg 2 is the greater of Phase Seg 1 and IPT (2TQ)  
bit 6:  
SAM: Sample Point Configuration  
1 = Bus line is sampled three times at the sample point  
0 = Bus line is sampled once at the sample point  
bit 5-3: PHSEG12:PHSEG10: Phase Segment 1 Length  
111 = Length = 8 x TQ  
-
-
-
000 = Length = 1 x TQ  
bit 2-0 PRSEG2:PRSEG0: Propagation Segment Length  
111 = Length = 8 x TQ  
-
-
-
000 = Length = 1 x TQ  
REGISTER 5-2: CNF2 - Configuration Register2 (ADDRESS: 29h)  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WAKFIL  
PHSEG22 PHSEG21 PHSEG20  
bit 0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared  
by MCU but not set  
U = Unimplemented -  
reads as ‘0’  
bit 7  
- n = Value at POR reset  
bit 7:  
bit 6:  
Unimplemented: Reads as '0'  
WAKFIL:  
0 = Wake-up filter disabled  
1 = Wake-up filter enabled  
bit 7:  
Unimplemented: Reads as '0'  
bit 2-0 PHSEG22:PHSEG20: Phase Buffer Segment 2  
111 = Length = 8 x TQ  
-
-
-
000 = Length = 1 x TQ  
REGISTER 5-3: CNF3 - Configuration Register 3 (ADDRESS: 28h)  
DS21219B-page 38  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
6.6  
Error States  
6.0  
ERROR DETECTION  
Detected errors are made public to all other nodes via  
error frames. The transmission of the erroneous mes-  
sage is aborted and the frame is repeated as soon as  
possible. Furthermore, each CAN node is in one of the  
three error states “error-active”, “error-passive” or  
“bus-off” according to the value of the internal error  
counters. The error-active state is the usual state  
where the bus node can transmit messages and active  
error frames (made of dominant bits) without any  
restrictions. In the error-passive state, messages and  
passive error frames (made of recessive bits) may be  
transmitted. The bus-off state makes it temporarily  
impossible for the station to participate in the bus com-  
munication. During this state, messages can neither be  
received nor transmitted.  
The CAN protocol provides sophisticated error detec-  
tion mechanisms. The following errors can be detected.  
6.1  
CRC Error  
With the Cyclic Redundancy Check (CRC), the trans-  
mitter calculates special check bits for the bit sequence  
from the start of a frame until the end of the data field.  
This CRC sequence is transmitted in the CRC Field.  
The receiving node also calculates the CRC sequence  
using the same formula and performs a comparison to  
the received sequence. If a mismatch is detected, a  
CRC error has occurred and an error frame is gener-  
ated. The message is repeated.  
6.2  
Acknowledge Error  
In the acknowledge field of a message, the transmitter  
checks if the acknowledge slot (which has sent out as  
a recessive bit) contains a dominant bit. If not, no other  
node has received the frame correctly. An acknowledge  
error has occurred; an error frame is generated; and  
the message will have to be repeated.  
6.7  
Error Modes and Error Counters  
The MCP2510 contains two error counters: the  
Receive Error Counter (REC) (see Register 6-2), and  
the Transmit Error Counter (TEC) (see Register 6-1).  
The values of both counters can be read by the MCU.  
These counters are incremented or decremented in  
accordance with the CAN bus specification.  
6.3  
Form Error  
lf a node detects a dominant bit in one of the four seg-  
ments including end of frame, interframe space,  
acknowledge delimiter or CRC delimiter; then a form  
error has occurred and an error frame is generated.  
The message is repeated.  
The MCP2510 is error-active if both error counters are  
below the error-passive limit of 128. It is error-passive  
if at least one of the error counters equals or exceeds  
128. It goes to bus-off if the transmit error counter  
equals or exceeds the bus-off limit of 256. The device  
remains in this state, until the bus-off recovery  
sequence is received. The bus-off recovery sequence  
consists of 128 occurrences and 11 consecutive reces-  
sive bits (see Figure 6-1). Note that the MCP2510, after  
going bus-off, will recover back to error-active, without  
any intervention by the MCU, if the bus remains idle for  
128 X 11 bit times. If this is not desired, the error inter-  
rupt service routine should address this. The current  
error mode of the MCP2510 can be read by the MCU  
via the EFLG register (Register 6-3).  
6.4  
Bit Error  
A Bit Error occurs if a transmitter sends a dominant bit  
and detects a recessive bit or if it sends a recessive bit  
and detects a dominant bit when monitoring the actual  
bus level and comparing it to the just transmitted bit. In  
the case where the transmitter sends a recessive bit  
and a dominant bit is detected during the arbitration  
field and the acknowledge slot, no bit error is generated  
because normal arbitration is occurring.  
6.5  
Stuff Error  
Additionally, there is an error state warning flag bit,  
EFLG:EWARN, which is set if at least one of the error  
counters equals or exceeds the error warning limit of  
96. EWARN is reset if both error counters are less than  
the error warning limit.  
lf, between the start of frame and the CRC delimiter, six  
consecutive bits with the same polarity are detected,  
the bit stuffing rule has been violated. A stuff error  
occurs and an error frame is generated. The message  
is repeated.  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 39  
MCP2510  
RESET  
Error-Active  
REC > 127 or  
TEC > 127  
128 occurrences of  
11 consecutive  
“recessive” bits  
REC < 127 or  
TEC < 127  
Error-Passive  
TEC > 255  
Bus-Off  
FIGURE 6-1: Error Modes State Diagram  
R-0  
TEC7  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TEC0  
bit 0  
TEC6  
TEC5  
TEC4  
TEC3  
TEC2  
TEC1  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: TEC7:TEC0: Transmit Error Count  
REGISTER 6-1: TEC - Transmitter Error Counter (ADDRESS: 1Ch)  
R-0  
REC7  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
REC0  
bit 0  
REC6  
REC5  
REC4  
REC3  
REC2  
REC1  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-0: REC7:REC0: Receive Error Count  
REGISTER 6-2: REC - Receiver Error Counter (ADDRESS: 1Dh)  
DS21219B-page 40  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
R/W-0  
R/W-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RX1OVR RX0OVR TXBO  
TXEP  
RXEP TXWAR RXWAR EWARN  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
bit 7  
bit 0  
U = Unimplemented -  
reads as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
RX1OVR: Receive Buffer 1 Overflow Flag  
- Set when a valid message is received for RXB1 and CANINTF.RX1IF = 1  
- Must be reset by MCU  
RX0OVR: Receive Buffer 0 Overflow Flag  
- Set when a valid message is received for RXB0 and CANINTF.RX0IF = 1  
- Must be reset by MCU  
TXBO: Bus-Off Error Flag  
- Bit set when TEC reaches 256  
- Reset after a successful bus recovery sequence  
TXEP: Transmit Error-Passive Flag  
- Set when TEC is equal to or greater than 128  
- Reset when TEC is less than 128  
RXEP: Receive Error-Passive Flag  
- Set when REC is equal to or greater than 128  
- Reset when REC is less than 128  
TXWAR: Transmit Error Warning Flag  
- Set when TEC is equal to or greater than 96  
- Reset when TEC is less than 96  
RXWAR: Receive Error Warning Flag  
- Set when REC is equal to or greater than 96  
- Reset when REC is less than 96  
EWARN: Error Warning Flag  
- Set when TEC or REC is equal to or greater than 96 (TXWAR or RXWAR = 1)  
- Reset when both REC and TEC are less than 96  
REGISTER 6-3: EFLG - Error Flag Register (ADDRESS: 2Dh)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 41  
MCP2510  
NOTES:  
DS21219B-page 42  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
7.2  
Transmit Interrupt  
7.0  
INTERRUPTS  
The device has eight sources of interrupts. The CANINTE  
register contains the individual interrupt enable bits for  
each interrupt source. The CANINTF register contains the  
corresponding interrupt flag bit for each interrupt source.  
When an interrupt occurs the INT pin is driven low by the  
MCP2510 and will remain low until the Interrupt is cleared  
by the MCU. An Interrupt can not be cleared if the respec-  
tive condition still prevails.  
When the Transmit Interrupt is enabled (CANINTE.TXNIE  
= 1) an Interrupt will be generated on the INT pin when  
the associated transmit buffer becomes empty and is  
ready to be loaded with a new message. The CAN-  
INTF.TXNIF bit will be set to indicate the source of the  
interrupt. The interrupt is cleared by the MCU resetting  
the TXNIF bit to a ‘0’.  
7.3  
Receive Interrupt  
It is recommended that the bit modify command be  
used to reset flag bits in the CANINTF register rather  
than normal write operations. This is to prevent unin-  
tentionally changing a flag that changes during the  
write command, potentially causing an interrupt to be  
missed.  
When the Receive Interrupt is enabled (CAN-  
INTE.RXNIE = 1) an interrupt will be generated on the  
INT pin when a message has been successfully  
received and loaded into the associated receive buffer.  
This interrupt is activated immediately after receiving the  
EOF field. The CANINTF.RXNIF bit will be set to indicate  
the source of the interrupt. The interrupt is cleared by the  
MCU resetting the RXNIF bit to a ‘0’.  
It should be noted that the CANINTF flags are read/  
write and an Interrupt can be generated by the MCU  
setting any of these bits, provided the associated CAN-  
INTE bit is also set.  
7.4  
Message Error Interrupt  
7.1  
Interrupt Code Bits  
When an error occurs during transmission or reception of  
a message the message error flag (CANINTF.MERRF)  
will be set and, if the CANINTE.MERRE bit is set, an inter-  
rupt will be generated on the INT pin. This is intended to  
be used to facilitate baud rate determination when used in  
conjunction with listen-only mode.  
The source of a pending interrupt is indicated in the  
CANSTAT.ICOD (interrupt code) bits as indicated in  
Register 9-2. In the event that multiple interrupts occur,  
the INT will remain low until all interrupts have been  
reset by the MCU, and the CANSTAT.ICOD bits will  
reflect the code for the highest priority interrupt that is  
currently pending. Interrupts are internally prioritized  
such that the lower the ICOD value the higher the inter-  
rupt priority. Once the highest priority interrupt condi-  
tion has been cleared, the code for the next highest  
priority interrupt that is pending (if any) will be reflected  
by the ICOD bits (see Table 7-1). Note that only those  
interrupt sources that have their associated CANINTE  
enable bit set will be reflected in the ICOD bits.  
7.5  
Bus Activity Wakeup Interrupt  
When the MCP2510 is in sleep mode and the bus activ-  
ity wakeup interrupt is enabled (CANINTE.WAKIE = 1),  
an interrupt will be generated on the INT pin, and the  
CANINTF.WAKIF bit will be set when activity is  
detected on the CAN bus. This interrupt causes the  
MCP2510 to exit sleep mode. The interrupt is reset by  
the MCU clearing the WAKIF bit.  
ICOD<2:0>  
000  
Boolean Expression  
ERR•WAK•TX0•TX1•TX2•RX0•RX1  
ERR  
001  
010  
ERR•WAK  
011  
ERR•WAK•TX0  
100  
ERR•WAK•TX0•TX1  
101  
ERR•WAK•TX0•TX1•TX2  
ERR•WAK•TX0•TX1•TX2•RX0  
ERR•WAK•TX0•TX1•TX2•RX0•RX1  
110  
111  
TABLE 7-1: ICOD<2:0> Decode  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 43  
MCP2510  
7.6.4  
RECEIVER ERROR-PASSIVE  
7.6  
Error Interrupt  
The receive error counter has exceeded the error- pas-  
sive limit of 127 and the device has gone to error- pas-  
sive state.  
When the error interrupt is enabled (CANINTE.ERRIE  
= 1) an interrupt is generated on the INT pin if an over-  
flow condition occurs or if the error state of transmitter  
or receiver has changed. The Error Flag Register  
(EFLG) will indicate one of the following conditions.  
7.6.5  
TRANSMITTER ERROR-PASSIVE  
The transmit error counter has exceeded the error-  
passive limit of 127 and the device has gone to error-  
passive state.  
7.6.1  
RECEIVER OVERFLOW  
An overflow condition occurs when the MAB has assem-  
bled a valid received message (the message meets the  
criteria of the acceptance filters) and the receive buffer  
associated with the filter is not available for loading of a  
new message. The associated EFLG.RXNOVR bit will  
be set to indicate the overflow condition. This bit must be  
cleared by the MCU.  
7.6.6  
BUS-OFF  
The transmit error counter has exceeded 255 and the  
device has gone to bus-off state.  
7.7  
Interrupt Acknowledge  
Interrupts are directly associated with one or more sta-  
tus flags in the CANINTF register. Interrupts are pend-  
ing as long as one of the flags is set. Once an interrupt  
flag is set by the device, the flag can not be reset by the  
MCU until the interrupt condition is removed.  
7.6.2  
RECEIVER WARNING  
The receive error counter has reached the MCU warn-  
ing limit of 96.  
7.6.3  
TRANSMITTER WARNING  
The transmit error counter has reached the MCU warn-  
ing limit of 96.  
R/W-0  
R/W-0 R/W-0 R/W-0 R/W-0  
R/W-0  
TX0IE  
R/W-0 R/W-0  
MERRE WAKIE ERRIE TX2IE TX1IE  
RX1IE RX0IE  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
bit 7  
bit 0  
MCU but not set  
U = Unimplemented - readsas ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
MERRE: Message Error Interrupt Enable  
0 = Disabled  
1 = Interrupt on error during message reception or transmission  
WAKIE: Wakeup Interrupt Enable  
0 = Disabled  
1 = Interrupt on CAN bus activity  
ERRIE: Error Interrupt Enable (multiple sources in EFLG register)  
0 = Disabled  
1 = Interrupt on EFLG error condition change  
TX2IE: Transmit Buffer 2 Empty Interrupt Enable  
0 = Disabled  
1 = Interrupt on TXB2 becoming empty  
TX1IE: Transmit Buffer 1 Empty Interrupt Enable  
0 = Disabled  
1 = Interrupt on TXB1 becoming empty  
TX0IE: Transmit Buffer 0 Empty Interrupt Enable  
0 = Disabled  
1 = Interrupt on TXB0 becoming empty  
RX1IE: Receive Buffer 1 Full Interrupt Enable  
0 = Disabled  
1 = Interrupt when message received in RXB1  
RX0IE: Receive Buffer 0 Full Interrupt Enable  
0 = Disabled  
1 = Interrupt when message received in RXB0  
REGISTER 7-1: CANINTE - Interrupt Enable Register (ADDRESS: 2Bh)  
DS21219B-page 44  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TX1IF  
R/W-0  
TX0IF  
R/W-0  
RX1IF  
R/W-0  
RX0IF  
bit 0  
MERRF WAKIF ERRIF TX2IF  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
bit 7  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
MERRF: Message Error Interrupt Flag  
WAKIF: Wakeup Interrupt Flag  
ERRIF: Error Interrupt Flag (multiple sources in EFLG register)  
TX2IF: Transmit Buffer 2 Empty Interrupt Flag  
TX1IF: Transmit Buffer 1 Empty Interrupt Flag  
TX0IF: Transmit Buffer 0 Empty Interrupt Flag  
RX1IF: Receive Buffer 1 Full Interrupt Flag  
RX0IF: Receive Buffer 0 Full Interrupt Flag  
For all bits unless otherwise specified:  
0 = No interrupt pending  
1 = Interrupt pending (must be cleared by MCU to reset interrupt condition)  
REGISTER 7-2: CANINTF - Interrupt FLAG Register (ADDRESS: 2Ch)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 45  
MCP2510  
NOTES:  
DS21219B-page 46  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
8.2  
CLKOUT Pin  
8.0  
OSCILLATOR  
The MCP2510 is designed to be operated with a crystal  
or ceramic resonator connected to the OSC1 and  
OSC2 pins. The MCP2510 oscillator design requires  
the use of a parallel cut crystal. Use of a series cut crys-  
tal may give a frequency out of the crystal manufactur-  
ers specifications. A typical oscillator circuit is shown in  
Figure 8-1. The MCP2510 may also be driven by an  
external clock source connected to the OSC1 pin as  
shown in Figure 8-2 and Figure 8-3.  
The clock out pin is provided to the system designer for  
use as the main system clock or as a clock input for other  
devices in the system. The CLKOUT has an internal  
prescaler which can divide FOSC by 1, 2, 4 and 8. The  
CLKOUT function is enabled and the prescaler is  
selected via the CANCNTRL register (see Register 9-1).  
The CLKOUT pin will be active upon system reset and  
default to the slowest speed (divide by 8) so that it can be  
used as the MCU clock. When sleep mode is requested,  
the MCP2510 will drive sixteen additional clock cycles on  
the CLKOUT pin before entering sleep mode. The idle  
state of the CLKOUT pin in sleep mode is low. When the  
CLKOUT function is disabled (CANCNTRL.CLKEN = ‘0’)  
the CLKOUT pin is in a high impedance state.  
8.1  
Oscillator Startup Timer  
The MCP2510 utilizes an oscillator startup timer  
(OST), which holds the MCP2510 in reset, to insure  
that the oscillator has stabilized before the internal  
state machine begins to operate. The OST maintains  
reset for the first 128 OSC1 clock cycles after power up  
or wake up from sleep mode occurs.  
The CLKOUT function is designed to guarantee that  
thCLKOUT and tlCLKOUT timings are preserved when the  
CLKOUT pin function is enabled, disabled, or the pres-  
caler value is changed.  
OSC1  
C1  
To internal logic  
SLEEP  
XTAL  
(2)  
RF  
(1)  
RS  
OSC2  
C2  
Note 1: A series resistor, R , may be required for AT strip cut crystals.  
S
Note 2: The feedback resistor, R , is typically in the range of 2 to 10 MΩ.  
F
FIGURE 8-1: Crystal/Ceramic Resonator Operation  
clock from  
OSC1  
external system  
(1)  
OSC2  
Open  
Note 1: A resistor to ground may be used to reduce system noise. This may increase system current.  
Note 2: Duty cycle restrictions must be observed (see Table 12-2).  
FIGURE 8-2: External Clock Source  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 47  
MCP2510  
To Other  
Devices  
330 kΩ  
74AS04  
330 kΩ  
74AS04  
74AS04  
MCP2510  
OSC1  
0.1 mF  
XTAL  
Note 1: Duty cycle restrictions must be observed (see Table 12-2).  
FIGURE 8-3: External Series Resonant Crystal Oscillator Circuit  
DS21219B-page 48  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
When in sleep mode the MCP2510 stops its internal  
oscillator. The MCP2510 will wake-up when bus activity  
occurs or when the MCU sets, via the SPI interface, the  
CANINTF.WAKIF bit to ‘generate’ a wake up attempt  
(the CANINTF.WAKIF bit must also be set in order for  
the wakeup interrupt to occur). The TXCAN pin will  
remain in the recessive state while the MCP2510 is in  
sleep mode.  
9.0  
MODES OF OPERATION  
The MCP2510 has five modes of operation. These  
modes are:  
1. Configuration Mode  
2. Normal Mode  
3. Sleep Mode  
4. Listen-Only Mode  
5. Loopback Mode  
9.2.1  
WAKE-UP FUNCTIONS  
The operational mode is selected via the CANCTRL.  
REQOP bits (see Register 9-1). When changing modes,  
the mode will not actually change until all pending mes-  
sage transmissions and receptions are complete.  
Because of this, the user must verify that the device has  
actually changed into the requested mode before further  
operations are executed. Verification of the current oper-  
ating mode is done by reading the CANSTAT. OPMODE  
bits (see Register 9-2).  
The device will monitor the RXCAN pin for activity while  
it is in sleep mode. If the CANINTE.WAKIE bit is set, the  
device will wake up and generate an interrupt. Since the  
internal oscillator is shut down when sleep mode is  
entered, it will take some amount of time for the oscilla-  
tor to start up and the device to enable itself to receive  
messages. The device will ignore the message that  
caused the wake-up from sleep mode as well as any  
messages that occur while the device is ‘waking up.’  
The device will wake up in listen-only mode. The MCU  
must set normal mode before the MCP2510 will be able  
to communicate on the bus.  
9.1  
Configuration Mode  
The MCP2510 must be initialized before activation. This  
is only possible if the device is in the configuration mode.  
Configuration mode is automatically selected after pow-  
erup or a reset, or can be entered from any other mode  
by setting the CANTRL.REQOP<2> bit to ‘1’. When con-  
figuration mode is entered all error counters are cleared.  
Configuration mode is the only mode where the follow-  
ing registers are modifiable:  
The device can be programmed to apply a low-pass fil-  
ter function to the RXCAN input line while in internal  
sleep mode. This feature can be used to prevent the  
device from waking up due to short glitches on the CAN  
bus lines. The CNF3.WAKFIL bit enables or disables  
the filter.  
9.3  
Listen Only Mode  
• CNF1, CNF2, CNF3  
• TXRTSCTRL  
Listen-only mode provides a means for the MCP2510  
to receive all messages including messages with  
errors. This mode can be used for bus monitor applica-  
tions or for detecting the baud rate in ‘hot plugging’ sit-  
uations. For auto-baud detection it is necessary that  
there are at least two other nodes, which are communi-  
cating with each other. The baud rate can be detected  
empirically by testing different values until valid mes-  
sages are received. The listen-only mode is a silent  
mode, meaning no messages will be transmitted while  
in this state, including error flags or acknowledge sig-  
nals. The filters and masks can be used to allow only  
particular messages to be loaded into the receive reg-  
isters, or the filter masks can be set to all zeros to allow  
a message with any identifier to pass. The error  
counters are deactivated in this state. The listen-only  
mode is activated by setting the mode request bits in  
the CANCTRL register.  
• Acceptance Filter Registers  
• Acceptance Mask Registers  
Only when the CANSTAT.OPMODE bits read as ‘100’  
can the initialization be performed, allowing the config-  
uration registers, acceptance mask registers, and the  
acceptance filter registers to be written. After the con-  
figuration is complete, the device can be activated by  
programming the CANCTRL.REQOP bits for normal  
operation mode (or any other mode).  
9.2  
Sleep Mode  
The MCP2510 has an internal sleep mode that is used  
to minimize the current consumption of the device. The  
SPI interface remains active even when the MCP2510  
is in sleep mode, allowing access to all registers.  
To enter sleep mode, the mode request bits are set in  
the CANCTRL register. The CANSTAT.OPMODE bits  
indicate whether the device successfully entered  
sleep mode. These bits should be read after sending  
the sleep command to the MCP2510. The MCP2510 is  
active and has not yet entered sleep mode until these  
bits indicate that sleep mode has been entered. When  
in internal sleep mode, the wakeup interrupt is still  
active (if enabled). This is done so the MCU can also  
be placed into a sleep mode and use the MCP2510 to  
wake it up upon detecting activity on the bus.  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 49  
MCP2510  
9.4  
Loopback Mode  
9.5  
Normal Mode  
This mode will allow internal transmission of messages  
from the transmit buffers to the receive buffers without  
actually transmitting messages on the CAN bus. This  
mode can be used in system development and testing.  
In this mode the ACK bit is ignored and the device will  
allow incoming messages from itself just as if they were  
coming from another node. The loopback mode is a  
silent mode, meaning no messages will be transmitted  
while in this state, including error flags or acknowledge  
signals. The TXCAN pin will be in a reccessive state  
while the device is in this mode. The filters and masks  
can be used to allow only particular messages to be  
loaded into the receive registers. The masks can be set  
to all zeros to provide a mode that accepts all mes-  
sages. The loopback mode is activated by setting the  
mode request bits in the CANCTRL register.  
This is the standard operating mode of the MCP2510.  
In this mode the device actively monitors all bus mes-  
sages and generates acknowledge bits, error frames,  
etc. This is also the only mode in which the MCP2510  
will transmit messages over the CAN bus.  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
REQOP2 REQOP1 REQOP0 ABAT  
CLKEN CLKPRE1CLKPRE0 R = Readable bit  
W = Writable bit  
bit 7  
bit 0  
C = Bit can be cleared by  
MCU but not set  
U = Unimplemented - reads  
as ‘0’  
- n = Value at POR reset  
bit 7-5: REQOP<2:0>: Request Operation Mode  
000 = Set Normal Operation Mode  
001 = Set Sleep Mode  
010 = Set Loopback Mode  
011 = Set Listen Only Mode  
100 = Set Configuration Mode  
All other values for REQOP bits are invalid and should not be used  
bit 4:  
ABAT: Abort All Pending Transmissions  
1 = Request abort of all pending transmit buffers  
0 = Terminate request to abort all transmissions  
bit 3:  
bit 2:  
Unimplemented: Reads as ‘0’  
CLKEN: CLKOUT Pin Enable  
0 = CLKOUT pin disabled (Pin is in high impedance state)  
1 =CLKOUT pin enabled  
bit 1-0: CLKPRE<1:0>: CLKOUT Pin Prescaler  
00 = FCLKOUT = System Clock/1  
01 = FCLKOUT = System Clock/2  
10 = FCLKOUT = System Clock/4  
11 = FCLKOUT = System Clock/8  
REGISTER 9-1: CANCTRL - CAN Control Register (ADDRESS: xFh)  
DS21219B-page 50  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
R-1  
R-0  
R-0  
U-0  
R-0  
R-0  
R-0  
U-0  
OPMOD2 OPMOD1 OPMOD0  
ICOD2 ICOD1 ICOD0  
R = Readable bit  
W = Writable bit  
C = Bit can be cleared  
by MCU but not set  
U = Unimplemented -  
reads as ‘0’  
bit 7  
bit 0  
- n = Value at POR reset  
bit 7-5: OPMOD<2:0>: Operation Mode  
000 = Device is in Normal Operation Mode  
001 = Device is in Sleep Mode  
010 = Device is in Loopback Mode  
011 = Device is in Listen Only Mode  
100 = Device is in Configuration Mode  
bit 4:  
Unimplemented: Reads as ‘0’  
bit 3-1: ICOD<2:0>: Interrupt Flag Code  
000 = No Interrupt  
001 = Error Interrupt  
010 = Wake Up Interrupt  
011 = TXB0 Interrupt  
100 = TXB1 Interrupt  
101 = TXB2 Interrupt  
110 = RXB0 Interrupt  
111 = RXB1 Interrupt  
bit 0:  
Unimplemented: Reads as ‘0’  
REGISTER 9-2: CANSTAT - CAN Status Register (ADDRESS: xEh)  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 51  
MCP2510  
NOTES:  
DS21219B-page 52  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
writing of data. Some specific control and status regis-  
ters allow individual bit modification using the SPI Bit  
Modify command. The registers that allow this com-  
mand are shown as shaded locations in Table 10-1. A  
summary of the MCP2510 control registers is shown in  
Table 10-2.  
10.0 REGISTER MAP  
The register map for the MCP2510 is shown in  
Table 10-1. Address locations for each register are  
determined by using the column (higher order 4 bits)  
and row (lower order 4 bits) values. The registers have  
been arranged to optimize the sequential reading and  
Higher Order Address Bits  
Lower  
Address Bits  
x000 xxxx x001 xxxx  
x010 xxxx x0011 xxxx x100 xxxx  
x101 xxxx  
x110 xxxx  
x111 xxxx  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
RXF0SIDH RXF3SIDH RXM0SIDH TXB0CTRL TXB1CTRL TXB2CTRL RXB0CTRL RXB1CTRL  
RXF0SIDL RXF3SIDL RXM0SIDL  
RXF0EID8 RXF3EID8 RXM0EID8  
RXF0EID0 RXF3EID0 RXM0EID0  
RXF1SIDH RXF4SIDH RXM1SIDH  
RXF1SIDL RXF4SIDL RXM1SIDL  
RXF1EID8 RXF4EID8 RXM1EID8  
RXF1EID0 RXF4EID0 RXM1EID0  
TXB0SIDH TXB1SIDH TXB2SIDH RXB0SIDH RXB1SIDH  
TXB0SIDL  
TXB0EID8  
TXB0EID0  
TXB0DLC  
TXB0D0  
TXB0D1  
TXB0D2  
TXB0D3  
TXB0D4  
TXB0D5  
TXB0D6  
TXB0D7  
CANSTAT  
CANCTRL  
TXB1SIDL  
TXB1EID8  
TXB1EID0  
TXB1DLC  
TXB1D0  
TXB1D1  
TXB1D2  
TXB1D3  
TXB1D4  
TXB1D5  
TXB1D6  
TXB1D7  
CANSTAT  
CANCTRL  
TXB2SIDL  
TXB2EID8  
TXB2EID0  
TXB2DLC  
TXB2D0  
TXB2D1  
TXB2D2  
TXB2D3  
TXB2D4  
TXB2D5  
TXB2D6  
TXB2D7  
CANSTAT  
CANCTRL  
RXB0SIDL RXB1SIDL  
RXB0EID8 RXB1EID8  
RXB0EID0 RXB1EID0  
RXB0DLC  
RXB0D0  
RXB0D1  
RXB0D2  
RXB0D3  
RXB0D4  
RXB0D5  
RXB0D6  
RXB0D7  
CANSTAT  
CANCTRL  
RXB1DLC  
RXB1D0  
RXB1D1  
RXB1D2  
RXB1D3  
RXB1D4  
RXB1D5  
RXB1D6  
RXB1D7  
CANSTAT  
CANCTRL  
RXF2SIDH RXF5SIDH  
RXF2SIDL RXF5SIDL  
RXF2EID8 RXF5EID8  
RXF2EID0 RXF5EID0  
CNF3  
CNF2  
CNF1  
CANINTE  
CANINTF  
EFLG  
BFPCTRL  
TXRTSCTRL  
CANSTAT  
TEC  
REC  
CANSTAT  
CANSTAT  
CANCTRL  
CANCTRL CANCTRL  
Note:  
Shaded register locations indicate that these allow the user to manipulate individual bits using the ‘Bit Modify’  
Command  
TABLE 10-1: CAN Controller Register Map  
Register  
Name  
Address  
(Hex)  
POR/RST  
Value  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BFPCTRL  
TXRTSCTRL  
CANSTAT  
CANCTRL  
TEC  
0C  
0D  
xE  
xF  
1C  
1D  
28  
29  
2A  
2B  
2C  
2D  
30  
40  
50  
60  
70  
B1BFS  
B2RTS  
B0BFS  
B1RTS  
B1BFE  
B0RTS  
ICOD2  
B0BFE  
B1BFM  
B0BFM --00 0000  
B2RTSM B1RTSM B0RTSM --xx x000  
ICOD1 ICOD0 100- 000-  
OPMOD2 OPMOD1 OPMOD0  
ABAT  
REQOP2 REQOP1 REQOP0  
CLKEN CLKPRE1 CLKPRE0 1110 -111  
0000 0000  
Transmit Error Counter  
Receive Error Counter  
REC  
0000 0000  
CNF3  
WAKFIL  
PHSEG22 PHSEG21 PHSEG20 -0-- -000  
CNF2  
BTLMODE  
SAM  
SJW0  
WAKIE  
WAKIF  
PHSEG12 PHSEG11 PHSEG10 PRSEG2 PRSEG1 PRSEG0 0000 0000  
CNF1  
SJW1  
BRP5  
ERRIE  
ERRIF  
TXB0  
BRP4  
TX2IE  
TX2IF  
BRP3  
TX1IE  
BRP2  
TX0IE  
TX0IF  
BRP1  
RX1IE  
RX1IF  
RXWAR  
TXP1  
BRP0  
RX0IE  
RX0IF  
0000 0000  
0000 0000  
0000 0000  
CANINTE  
CANINTF  
EFLG  
MERRE  
MERRF  
TX1IF  
RX1OVR RX0OVR  
TXEP  
RXEP  
TXWAR  
EWARN 0000 0000  
TXB0CTRL  
TXB1CTRL  
TXB2CTRL  
RXB0CTRL  
RXB1CTRL  
ABTF  
MLOA  
MLOA  
MLOA  
RXM0  
RXM0  
TXERR  
TXERR  
TXERR  
TXREQ  
TXREQ  
TXREQ  
RXRTR  
RXRTR  
TXP0  
TXP0  
TXP0  
-000 0-00  
-000 0-00  
-000 0-00  
ABTF  
TXP1  
ABTF  
TXP1  
BUKT  
RXM1  
BUKT  
FILHIT1  
FILHIT0 -00- 0000  
FILHIT0 -00- 0000  
RSM1  
FILHIT2  
TABLE 10-2: Control Register Summary  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 53  
MCP2510  
NOTES:  
DS21219B-page 54  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
11.5  
Read Status Instruction  
11.0 SPI INTERFACE  
The Read Status Instruction allows single instruction  
access to some of the often used status bits for mes-  
sage reception and transmission.  
11.1  
Overview  
The MCP2510 is designed to interface directly with the  
Serial Peripheral Interface (SPI) port available on many  
microcontrollers and supports Mode 0,0 and Mode 1,1.  
Commands and data are sent to the device via the SI  
pin, with data being clocked in on the rising edge of  
SCK. Data is driven out by the MCP2510, on the SO  
line, on the falling edge of SCK. The CS pin must be  
held low while any operation is performed. Table 11-1  
shows the instruction bytes for all operations. Refer to  
Figure 11-8 and Figure 11-9 for detailed input and out-  
put timing diagrams for both Mode 0,0 and Mode 1,1  
operation.  
The part is selected by lowering the CS pin and the read  
status command byte, shown in Figure 11-6, is sent to  
the MCP2510. After the command byte is sent, the  
MCP2510 will return eight bits of data that contain the  
status. If additional clocks are sent after the first eight  
bits are transmitted, the MCP2510 will continue to output  
the status bits as long as the CS pin is held low and  
clocks are provided on SCK. Each status bit returned in  
this command may also be read by using the standard  
read command with the appropriate register address.  
11.6  
Bit Modify Instruction  
11.2  
Read Instruction  
The Bit Modify Instruction provides a means for setting  
or clearing individual bits in specific status and control  
registers. This command is not available for all regis-  
ters. See Section 10.0 (register map) to determine  
which registers allow the use of this command.  
The Read Instruction is started by lowering the CS pin.  
The read instruction is then set to the MCP2510 fol-  
lowed by the 8-bit address (A7 through A0). After the  
read instruction and address are sent, the data stored  
in the register at the selected address will be shifted out  
on the SO pin. The internal address pointer is automat-  
ically incremented to the next address after each byte  
of data is shifted out. Therefore it is possible to read the  
next consecutive register address by continuing to pro-  
vide clock pulses. Any number of consecutive register  
locations can be read sequentially using this method.  
The read operation is terminated by raising the CS pin  
(Figure 11-2).  
The part is selected by lowering the CS pin and the Bit  
Modify command byte is then sent to the MCP2510.  
After the command byte is sent, the address for the reg-  
ister is sent followed by the mask byte and then the  
data byte. The mask byte determines which bits in the  
register will be allowed to change. A ‘1’ in the mask byte  
will allow a bit in the register to change and a ‘0’ will not.  
The data byte determines what value the modified bits  
in the register will be changed to. A ‘1’ in the data byte  
will set the bit and a ‘0’ will clear the bit, provided that  
the mask for that bit is set to a ‘1’. (see Figure 11-1)  
11.3  
Write Instruction  
The Write Instruction is started by lowering the CS pin.  
The write instruction is then set to the MCP2510 fol-  
lowed by the address and at least one byte of data. It is  
possible to write to sequential registers by continuing to  
clock in data bytes, as long as CS is held low. Data will  
actually be written to the register on the rising edge of  
the SCK line for the D0 bit. If the CS line is brought high  
before eight bits are loaded, the write will be aborted for  
that data byte, previous bytes in the command will have  
been written. Refer to the timing diagram in Figure 11-3  
for more detailed illustration of the byte write sequence.  
11.7  
Reset Instruction  
The Reset Instruction can be used to re-initialize the  
internal registers of the MCP2510 and set configuration  
mode. This command provides the same functionality,  
via the SPI interface, as the RESET pin. The Reset  
instruction is a single byte instruction which requires  
selecting the device by pulling CS low, sending the  
instruction byte, and then raising CS. It is highly recom-  
mended that the reset command be sent (or the  
RESET pin be lowered) as part of the power-on initial-  
ization sequence.  
11.4  
Request To Send (RTS) Instruction  
The RTS command can be used to initiate message  
transmission for one or more of the transmit buffers.  
0 0 1 1 0 1 0 1  
X X 1 0 X 0 X 1  
0 1 0 1 0 0 0 1  
0 1 1 0 0 0 0 1  
Mask byte  
Data byte  
The part is selected by lowering the CS pin and the RTS  
command byte is then set to the MCP2510. As shown in  
Figure 11-4, the last 3 bits of this command indicate  
which transmit buffer(s) are enabled to send. This com-  
mand will set the TxBnCTRL.TXREQ bit for the respec-  
tive buffer(s). Any or all of the last three bits can be set in  
a single command. If the RTS command is sent with  
nnn=000, the command will be ignored.  
Previous  
Register  
Contents  
Resulting  
Register  
Contents  
FIGURE 11-1: Bit Modify  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 55  
MCP2510  
Instruction Name Instruction Format  
Description  
RESET  
READ  
1100 0000  
0000 0011  
0000 0010  
1000 0nnn  
Resets internal registers to default state, set configuration mode  
Read data from register beginning at selected address  
Write data to register beginning at selected address  
Sets TXBnCTRL.TXREQ bit for one or more transmit buffers  
WRITE  
RTS  
(Request To Send)  
1000 0nnn  
Request to send for TXB2  
Request to send for TXBO  
Request to send for TXB1  
Read Status  
Bit Modify  
1010 0000  
0000 0101  
Polling command that outputs status bits for transmit/receive functions  
Bit modify selected registers  
TABLE 11-1: SPI Instruction Set  
CS  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCK  
instruction  
address byte  
0
0
0
0
0
0
1
1
A7  
6
5
4
3
2
1
A0  
don’t care  
SI  
data out  
high impedance  
SO  
7
6
5
4
3
2
1
0
FIGURE 11-2: Read Instruction  
CS  
0
0
1
0
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCK  
address byte  
data byte  
instruction  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
A7  
6
5
4
3
2
1
A0  
SI  
high impedance  
SO  
FIGURE 11-3: Byte Write Instruction  
DS21219B-page 56  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
CS  
0
1
1
0
2
3
4
5
6
7
SCK  
instruction  
T1  
0
0
0
T2  
T0  
SI  
high impedance  
SO  
FIGURE 11-4: Request To Send Instruction  
CS  
23 24 25 26 27 28 29 30 31  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  
0
0
SCK  
data byte  
mask byte  
address byte  
instruction  
7
6 5 4 3 2 1 0  
6 5 4 3 2 1 0  
7
0 0 0 0 1 0 1 A7 6 5 4 3 2  
1
A0  
SI  
high impedance  
SO  
Note: Not all registers can be accessed with this command. See the register map in Section 10.0 for a list of  
the registers that apply.  
FIGURE 11-5: BIT Modify instruction  
CS  
0
1
1
0
2
3
4
5
0
6
0
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SCK  
instruction  
don’t care  
repeat  
1
0
0
0
SI  
data out  
data out  
high impedance  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
CANINTF.RX0IF  
CANINTF.RX1IF  
TXB0CNTRL.TXREQ  
CANINTF.TX0IF  
TXB1CNTRL.TXREQ  
CANINTF.TX1IF  
TXB2CNTRL.TXREQ  
CANINTF.TX2IF  
FIGURE 11-6: Read Status Instruction  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 57  
MCP2510  
CS  
0
1
1
1
2
3
4
5
0
6
0
7
SCK  
instruction  
0
0
0
0
SI  
high impedance  
SO  
FIGURE 11-7: RESET Instruction  
TCSD  
CS  
TCLE  
TCLD  
TR  
TCSS  
TF  
TCSH  
Mode 1,1  
SCK  
SI  
Mode 0,0  
TSU  
THD  
MSB in  
LSB in  
high impedance  
SO  
FIGURE 11-8: SPI Input Timing  
CS  
TCSH  
THI  
TLO  
SCK  
Mode 1,1  
Mode 0,0  
TV  
TDIS  
THO  
SO  
MSB out  
LSB out  
don’t care  
SI  
FIGURE 11-9: SPI Output Timing  
DS21219B-page 58  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
12.0 ELECTRICAL CHARACTERISTICS  
*Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
12.1  
Maximum Ratings  
V
...................................................................................7.0V  
DD  
All inputs and outputs w.r.t. V ............... -0.6V to V +1.0V  
SS  
DD  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied ................-65°C to +125°C  
Soldering temperature of leads (10 seconds) .............+300°C  
ESD protection on all pins..................................................≥ 4 kV  
All parameters apply over the  
specified operating ranges  
unless otherwise noted.  
Industrial (I):  
Automotive (E):  
T
= -40°C to +85°C  
= -40°C to +125°C  
V
V
= 2.7V to 5.5V  
= 4.5V to 5.5V  
AMB  
DD  
DD  
T
AMB  
Parameter  
Symbol  
Min  
2.7  
2.4  
Max  
Units  
Test Conditions  
Supply Voltage  
V
5.5  
V
DD  
Register Retention Voltage  
High Level Input Voltage  
RXCAN,TXnRTS Pins  
SCK (Schmitt Trigger), CS,SI  
OSC1  
V
V
RET  
Note  
V
2
V
+1  
V
V
V
V
IH  
DD  
.7 V  
V
+1  
DD  
DD  
.85 V  
.85 V  
V
V
DD  
DD  
DD  
DD  
RESET (Schmitt Trigger)  
Low Level Input Voltage  
RXCAN,TXnRTS Pins  
SCK (Schmitt Trigger), CS,SI  
OSC1  
Note  
V
-0.3  
-0.3  
.15 V  
.8  
V
V
V
V
IL  
DD  
V
.3 V  
.15 V  
SS  
SS  
DD  
RESET (Schmitt Trigger)  
Low Level Output Voltage  
TXCAN  
V
DD  
V
0.4  
0.4  
0.4  
0.6  
V
V
V
V
V
V
V
V
V
I
I
I
I
= -6.0 mA  
OL  
OL  
OL  
OL  
OL  
RXnBF Pins  
= -8.5 mA, V = 4.5V  
DD  
SO, CLKOUT  
= -2.1 mA, V = 4.5V  
DD  
INT  
= -1.6 mA, V = 4.5V  
DD  
High Level Output Voltage  
TXCAN, RXnBF Pins  
SO, CLKOUT  
V
V
V
V
-0.7  
I
I
I
= 3.0mA, V = 4.5V, I temp  
OH  
DD  
DD  
DD  
OH  
OH  
OH  
DD  
-0.5  
= 400µA  
INT  
-0.7  
= 1.0mA, V = 4.5V  
DD  
Hysteresis  
V
.05 V  
HYS  
DD  
Input Leakage Current  
All I/O except OSC1  
OSC1 Pin  
I
-1  
-5  
+1  
+5  
10  
7
µA  
µA  
µA  
pF  
CS = V , V = V to V  
DD IN SS DD  
LI  
Output Leakage Current  
I
-10  
CS = V , V  
= V to V  
LO  
DD OUT SS DD  
Internal Capacitance  
(All Inputs And Outputs)  
C
T
= 25°C, f = 1.0 MHz,  
INT  
AMB  
C
V
= 5.0V (Note)  
DD  
Operating Current  
I
10  
20  
mA  
V
= 5.5V; F  
=5.0 MHz; SO = Open  
CLK  
DD  
DD  
Standby Current (Sleep Mode)  
I
--  
µA  
CS, TXnRTS = V , Inputs tied to V or V  
DD DD SS  
DDS  
Note:  
This parameter is not 100% tested.  
TABLE 12-1: DC Characteristics  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 59  
MCP2510  
All parameters apply over the  
specified operating ranges unless  
otherwise noted.  
Industrial (I):  
Automotive (E):  
T
= -40°C to +85°C  
= -40°C to +125°C  
V
V
= 2.7V to 5.5V  
= 4.5V to 5.5V  
AMB  
DD  
DD  
T
AMB  
Parameter  
Symbol  
Min  
Max  
Units  
Conditions  
Clock In Frequency  
F
1
25  
MHz  
OSC  
Clock In Period  
T
40  
1000  
ns  
OSC  
Clock In High, Low Time  
T
, T  
10  
5
ns  
ns  
Note  
Note  
OSL OSH  
Clock In Rise, Fall Time  
T
, T  
OSR OSF  
Duty Cycle (External Clock Input)  
T
.30  
.70  
T
/ (T  
+ T  
)
DUTY  
OSH  
OSH  
OSL  
Note:  
This parameter is periodically sampled and not 100% tested.  
TABLE 12-2: Oscillator Timing Characteristics  
All parameters apply over the  
specified operating ranges  
unless otherwise noted.  
Industrial (I):  
Automotive (E):  
T
= -40°C to +85°C  
= -40°C to +125°C  
V
V
= 2.7V to 5.5V  
= 4.5V to 5.5V  
AMB  
DD  
DD  
T
AMB  
Parameter  
Symbol  
Min  
100  
Max  
Units  
Conditions  
Wakeup Noise Filter  
T
ns  
WF  
CLOCKOUT Propagation Delay  
T
100  
ns  
DCLK  
TABLE 12-3: CAN Interface AC Characteristics  
All parameters apply over the  
specified operating ranges  
unless otherwise noted.  
Industrial (I):  
Automotive (E):  
T
= -40°C to +85°C  
= -40°C to +125°C  
V
V
= 2.7V to 5.5V  
= 4.5V to 5.5V  
AMB  
CC  
CC  
T
AMB  
Parameter  
Symbol  
Min  
Max  
Units  
Conditions  
CLKOUT Pin High Time  
t
15  
ns  
T
= 40 ns, CLKOUT prescaler set  
hCLKOUT  
OSC  
to divide by one  
CLKOUT Pin Low Time  
t
15  
ns  
T
OSC  
to divide by one  
= 40 ns, CLKOUT prescaler set  
lCLKOUT  
CLKOUT Pin Rise Time  
t
5
5
ns  
ns  
ns  
V
Measured from 0.3 V to 0.7 V  
rCLKOUT  
DD  
DD  
DD  
CLKOUT Pin Fall Time  
t
Measured from 0.7 V to 0.3 V  
fCLKOUT  
DD  
CLOCKOUT Propagation Delay  
CLKOUT Pin Output Low Voltage  
CLKOUT Pin Output High Voltage  
t
100  
0.3 V  
dCLKOUT  
V
I
= 0  
OLCLKOUT  
DD  
OL  
V
0.7 V  
V
OHCLKOUT  
DD  
TABLE 12-4: CLKOUT Pin AC/DC Characteristics  
DS21219B-page 60  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
All parameters apply over the  
specified operating ranges  
unless otherwise noted.  
Industrial (I):  
Automotive (E):  
T
= -40°C to +85°C  
= -40°C to +125°C  
V
V
= 2.7V to 5.5V  
= 4.5V to 5.5V  
AMB  
DD  
DD  
T
AMB  
Parameter  
Symbol  
Min  
Max  
Units  
Test Conditions  
F
Clock Frequency  
5
3
MHz  
MHz  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
CLK  
DD  
DD  
T
CS Setup Time  
CS Hold Time  
100  
ns  
CSS  
T
100  
150  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
CSH  
DD  
DD  
T
CS Disable Time  
Data Setup Time  
Data Hold Time  
100  
250  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
CSD  
DD  
DD  
T
T
20  
30  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
SU  
DD  
DD  
20  
50  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
HD  
DD  
DD  
CLK Rise Time  
CLK Fall Time  
Clock High Time  
T
2
2
ms  
ms  
Note  
Note  
R
T
F
T
80  
150  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
HI  
DD  
DD  
Clock Low Time  
T
80  
150  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
LO  
DD  
DD  
Clock Delay Time  
T
T
50  
50  
ns  
ns  
CLD  
Clock Enable Time  
CLE  
Output Valid from Clock Low  
T
100  
150  
ns  
ns  
V
V
= 4.5V to 5.5V  
= 2.7V to 4.5V  
V
DD  
DD  
Output Hold Time  
T
0
ns  
ns  
Note  
Note  
HO  
Output Disable Time  
T
200  
DIS  
Note:  
This parameter is periodically sampled and not 100% tested.  
TABLE 12-5: SPI Interface AC Characteristics  
1999 Microchip Technology Inc.  
Preliminary  
DS21219B-page 61  
MCP2510  
NOTES:  
DS21219B-page 62  
Preliminary  
1999 Microchip Technology Inc.  
MCP2510  
14.2  
Package Details  
13.0 PACKAGING INFORMATION  
The following sections give the technical details of the  
packages.  
14.1  
Package Marking Information  
Not available at the time of printing. Will be made  
available after definition of QS9000 compliant  
standard.  
1999 Microchip Technology Inc.  
Advance Information  
DS21291B-page 63  
MCP2510  
Package Type: 18-Lead Plastic Dual In-line (P) – 300 mil  
E1  
D
2
α
n
1
E
A2  
L
A
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
eB  
α
β
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
DS21291B-page 64  
Advance Information  
1999 Microchip Technology Inc.  
MCP2510  
Package Type: 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E
p
E1  
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
18  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
2.24  
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
1999 Microchip Technology Inc.  
Advance Information  
DS21291B-page 65  
MCP2510  
Package Type: 20-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm  
E
p
E1  
D
B
2
1
n
α
A
c
φ
β
A2  
L
A1  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.041  
.035  
.004  
.251  
.173  
.256  
.024  
4
0.65  
Overall Height  
A
.039  
.033  
.002  
.246  
.169  
.252  
.020  
0
.043  
1.00  
0.85  
1.05  
0.90  
0.10  
6.38  
4.40  
6.50  
0.60  
4
1.10  
0.95  
0.15  
6.50  
4.50  
6.60  
0.70  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.037  
.006  
.256  
.177  
.260  
.028  
8
0.05  
6.25  
4.30  
6.40  
0.50  
0
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-088  
DS21291B-page 63  
Advance Information  
1999 Microchip Technolo  
MCP2510  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
980106  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER and PRO MATE are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries. FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
21291B-page 67  
MCP2510  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
21291B  
Device:  
MCP2510  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
21291B-page 68  
1998 Microchip Technology Inc.  
MCP2510  
MCP2510 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
MCP2510 T /P  
P
SO  
ST  
=
=
=
Plastic DIP (300 mil Body), 18-lead  
Plastic SOIC (300 mil Body), 18-lead  
TSSOP, (4.4 mil), 20-lead  
Package:  
Temperature  
Range:  
I
E
=
=
–40°C to +85°C  
–40°C to +125°C  
MCP2510  
MCP2510T  
Device:  
(Tape and Reel)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
21291B-page 69  
MCP2510  
NOTES:  
21291B-page 70  
1999 Microchip Technology Inc.  
MCP2510  
L
INDEX  
Lenghtening a Bit Period . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Listen Only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
A
Acknowledge Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
M
B
Maximim Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Message Acceptance Filter . . . . . . . . . . . . . . . . . . . . . . . 30  
Message Acceptance Filters and Masks . . . . . . . . . . . . . 29  
Message Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Message Reception Flowchart . . . . . . . . . . . . . . . . . . . . . 23  
Message Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
BFpctrl - RXNBF Pin Control and Status Register . . . . . . 26  
Bit Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Bit Modify Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Bit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Bit Timing Configuration Registers . . . . . . . . . . . . . . . . . . 37  
Bit Timing Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Bus Activity Wakeup Interrupt. . . . . . . . . . . . . . . . . . . . . . 43  
Bus Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Byte Write instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
N
Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
O
C
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Oscillator Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Overload Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
CAN Buffers and Protocol Engine Block Diagram . . . . . . . 5  
CAN Controller Register Map . . . . . . . . . . . . . . . . . . . . . . 53  
CAN Interface AC Characteristics. . . . . . . . . . . . . . . . . . . 60  
CAN Protocol Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
CAN Protocol Engine Block Diagram . . . . . . . . . . . . . . . . . . 6  
CANCTRL - CAN Control Register . . . . . . . . . . . . . . . . . . 50  
CANINTE - Interrupt Enable Register . . . . . . . . . . . . . . . . 44  
CANSTAT - CAN Status Register. . . . . . . . . . . . . . . . . . . 51  
CNF1 - Configuration Register1 . . . . . . . . . . . . . . . . . . . . . 37  
CNF2 - Configuration Register2 . . . . . . . . . . . . . . . . . . . . . 38  
CNF3 - Configuration Register3 . . . . . . . . . . . . . . . . . . . . 38  
Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
CRC Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Crystal/Ceramic Resonator Operation . . . . . . . . . . . . . . . . 47  
Cyclic Redundancy Check . . . . . . . . . . . . . . . . . . . . . . . . . 6  
P
Package Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Phase Buffer Segments . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Programming Time Segments . . . . . . . . . . . . . . . . . . . . . 36  
Propagation Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Protocol Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . 6  
R
Read Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Read instruction Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Read Status Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Read Status instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
REC - Receiver Error Count . . . . . . . . . . . . . . . . . . . . . . . 40  
Receive Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Receive Buffers Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Receive Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Receive Message Buffering . . . . . . . . . . . . . . . . . . . . . . . 21  
Receiver Error Passive . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Receiver Overrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Receiver Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Remote Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Request To Send (RTS) Instruction . . . . . . . . . . . . . . 55, 57  
Resynchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
RXB0BF and RXB1BF Pins . . . . . . . . . . . . . . . . . . . . . . . 21  
RXB0CTRL - Receive Buffer 0 Control Register . . . . . . . 24  
RXB1CTRL - Receive Buffer 1 Control Register . . . . . . . 25  
RXBnDLC - Receive Buffer N Data Length Code . . . . . . . 28  
RXBNDm - Receive Buffer N Data Field Byte M . . . . . . . . .28  
RXBNEID0 - Receive Buffer N Extended  
D
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
E
EFLG - Error Flag Register . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Error Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 13  
Error Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Error Management Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Error Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Error Modes and Error Counters . . . . . . . . . . . . . . . . . . . . 39  
Error States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Extended Data Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
External Clock (Osc1) Timing Characteristics . . . . . . . . . . 60  
External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
External Series Resonant Crystal Oscillator Circuit . . . . . 48  
F
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
RXBNEID8 - Receive Buffer N Extended  
Identifier Mid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
RXBNSIDH - Receive Buffer N Standard  
Identifier High . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
RXBNSIDL - Receive Buffer N Standard  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
RXFNEID0 - Acceptance Filter N Extended  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Filter/Mask Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Form Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Frame Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
H
Hard Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
I
Initiating Message Transmission . . . . . . . . . . . . . . . . . . . . 15  
Interframe Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Interrupt Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
RXFNEID8 - Acceptance Filter N Extended  
Identifier Mid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
1999 Microchip Technology Inc.  
DS21291B-page 71  
MCP2510  
RXFNSIDH - Acceptance Filter N Standard  
T
Identifier High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
RXFNSIDL - Acceptance Filter N Standard  
TEC - Transmitter Error Count . . . . . . . . . . . . . . . . . . . . . 40  
Time Quanta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Transmit Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Transmit Message Aborting . . . . . . . . . . . . . . . . . . . . . . . 15  
Transmit Message Buffering . . . . . . . . . . . . . . . . . . . . . . . 15  
Transmit Message Buffers. . . . . . . . . . . . . . . . . . . . . . . . . 15  
Transmit Message Flowchart . . . . . . . . . . . . . . . . . . . . . . 16  
Transmit Message Priority . . . . . . . . . . . . . . . . . . . . . . . . 15  
Transmitter Error-Passive . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Transmitter Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
TXBNCTRL Transmit buffer N Control Register . . . . . . . . 17  
TXBNDm - Transmit Buffer N Data Field Byte M . . . . . . . . 20  
TXBNEID0 - Transmit Buffer N Extended  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
TXBNEID8 - Transmit Buffer N Extended  
Identifier Mid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
TXBNEIDH - Transmit Buffer N Extended  
Identifier High . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
TXBNSIDH - Transmit Buffer N Standard  
Identifier High . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TXBNSIDL - Transmit Buffer N Standard  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
RXMNEID0 - Acceptance Filter Mask N Extended  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RXMNEID8 - Acceptance Filter Mask N Extended  
Identifier Mid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RXMNSIDH - Acceptance Filter Mask N Standard  
Identifier High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
RXMNSIDL - Acceptance Filter Mask N Standard  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
S
Sample Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Shortening a Bit Period . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
SPI Interface Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
SPI PORT AC Characteristics . . . . . . . . . . . . . . . . . . . . . .61  
Standard Data Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Stuff Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Synchronization Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Synchronization Segment . . . . . . . . . . . . . . . . . . . . . . . . .34  
Identifier Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
TXNRTS Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TXRTSCTRL - TXBNRTS Pin Control and  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical System Implementation . . . . . . . . . . . . . . . . . . . . . 4  
W
WAKE-UP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Worldwide Sales and Service . . . . . . . . . . . . . . . . . . . . . . 74  
Write Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
DS21291B-page 72  
1999 Microchip Technology Inc.  
MCP2510  
LIST OF FIGURES  
LIST OF REGISTERS  
Figure 1-1:  
Figure 1-2:  
Figure 1-3:  
Block Diagram .............................................. 3  
Typical System Implementation.................... 4  
Can Buffers And Protocol Engine  
Register 3-1: TXBNCTRL Transmit Buffer N Control  
Register...................................................... 17  
Register 3-2: TXRTSCTRL - TXNRTS Pin Control  
And Status Register .................................. 18  
Register 3-3: TXBNSIDH - Transmit Buffer N  
Standard Identifier High ............................. 18  
Register 3-4: TXBNSIDL - Transmit Buffer N  
Standard Identifier Low ............................. 19  
Register 3-5: TXBNEID8 - Transmit Buffer N  
Extended Identifier Mid .............................. 19  
Register 3-6: TXBNEID0 - Transmit Buffer N  
Extended Identifier Low ............................. 19  
Register 3-7: TXBNDLC - Transmit Buffer N  
Data Length Code ..................................... 20  
Register 3-8: TXBNDM - Transmit Buffer N Data Field  
Byte M ....................................................... 20  
Register 4-1: RXB0CTRL - Receive Buffer 0 Control  
Register .................................................... 24  
Register 4-2: RXB1CTRL - Receive Buffer 1 Control  
Register ..................................................... 25  
Register 4-3: BFPCTRL - RXNBF Pin Control And  
Status Register .......................................... 26  
Register 4-4: RXBNSIDH - Receive Buffer N Standard  
Identifier High ............................................ 26  
Register 4-5: RXBNSIDL - Receive Buffer N Standard  
Identifier Low ............................................. 27  
Register 4-6: RXBNEID8 - Receive Buffer N Extended  
Identifier Mid .............................................. 27  
Register 4-7: RXBNEID0 - Receive Buffer N Extended  
Identifier Low ............................................. 27  
Register 4-8: RXBNDLC - Receive Buffer N Data Length  
Code .......................................................... 28  
Register 4-9: RXBNDM - Receive Buffer N Data Field  
Byte M ....................................................... 28  
Register 4-10: RXFNSIDH - Acceptance Filter N Standard  
Identifier High ............................................ 30  
Register 4-11: RXFNSIDl - Acceptance Filter N Standard  
Identifier Low ............................................. 30  
Register 4-12: RXFNEID8 - Acceptance Filter N Extended  
Identifier Mid .............................................. 31  
Register 4-13: RXFNEID0 - Acceptance Filter N Extended  
Identifier Low ............................................. 31  
Register 4-14: RXMNSIDH - Acceptance Filter Mask N  
Standard Identifier High ............................. 31  
Register 4-15: RXMNSIDl - Acceptance Filter Mask N  
Standard Identifier Low ............................. 31  
Register 4-16: RXMNEID8 - Acceptance Filter Mask N  
Extended Identifier Mid .............................. 32  
Register 4-17: RXMNEID0 - Acceptance Filter Mask N  
Extended Identifier Low ............................. 32  
Block Diagram .............................................. 5  
Can Protocol Engine Block Diagram ............ 6  
Standard Data Frame ................................... 9  
Extended Data Frame................................. 10  
Remote Data Frame ................................... 11  
Error Frame ................................................ 12  
Overload Frame ...................................... 13  
Transmit Message Flowchart...................... 16  
Receive Buffer Block Diagram.................... 22  
Message Reception Flowchart ................... 23  
Message Acceptance Filter ....................... 30  
Bit Time Partitioning.................................... 33  
Lengthening A Bit Period .......................... 35  
Shortening A Bit Period ............................ 36  
Error Modes ............................................... 40  
Crystal/Ceramic Resonator Operation........ 47  
External Clock Source ................................ 47  
External Series Resonant Crystal  
Figure 1-4:  
Figure 2-1:  
Figure 2-2:  
Figure 2-3:  
Figure 2-4:  
Figure 2-5:  
Figure 3-1:  
Figure 4-1:  
Figure 4-2:  
Figure 4-3:  
Figure 5-1:  
Figure 5-2:  
Figure 5-3:  
Figure 6-1:  
Figure 8-1:  
Figure 8-2:  
Figure 8-3:  
Oscillator Circuit ......................................... 48  
Figure 11-1: Bit Modify Command Example ................... 55  
Figure 11-2: Read Instruction.......................................... 56  
Figure 11-3: Byte Write Instruction.................................. 56  
Figure 11-4: Request To Send (RTS) Instruction............ 57  
Figure 11-5: Bit Modify Instruction .................................. 57  
Figure 11-6: Read Status Instruction .............................. 57  
Figure 11-7: Reset Instruction......................................... 57  
Figure 11-8: SPI Input Timing ......................................... 58  
Figure 11-9: SPI Output Timing ...................................... 58  
LIST OF TABLES  
Table 1-1:  
Table 4-10:  
Table 7-1:  
Pin Descriptions............................................ 4  
Filter/Mask Truth Table............................... 29  
ICOD<2:0> Decode .................................... 43  
CAN Controller Register Map ..................... 53  
CAN Controller Register Summary............. 53  
SPI Instruction Set...................................... 56  
DC Characteristics...................................... 59  
Oscillator Timing Characteristics ................ 60  
CAN Interface AC Characteristics ............. 60  
CLKOUT Pin AC/DC Characteristics.......... 60  
SPI Interface AC Characteristics ................ 61  
Table 10-1:  
Table 10-2:  
Table 11-1:  
Table 12-1:  
Table 12-2:  
Table 12-3:  
Table 12-4:  
Table 12-5:  
Register 5-1: CNF1 - Configuration Register1  
Register 5-2: CNF2 - Configuration Register2 ............. 38  
Register 5-3: CNF3 - Configuration Register3 ............ 38  
............ 37  
Register 6-1: TEC - Transmitter Error Count .................. 40  
Register 6-2: REC - Receiver Error Count ...................... 40  
Register 6-3: EFLG - Error Flag Register  
.................. 41  
Register 7-1: CANINTE - Interrupt Enable Register ........ 44  
Register 7-2: CANINTF - Interrupt FLAG Register .......... 45  
Register 9-1: CANCTRL - CAN Control Register ............ 50  
Register 9-2: CANSTAT - CAN Status Register ............. 51  
1999 Microchip Technology Inc.  
DS21291B-page 73  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
Corporate Office  
AMERICAS (continued)  
San Jose  
ASIA/PACIFIC (continued)  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
2107 North First Street, Suite 590  
San Jose, CA 95131  
200 Middle Road  
#07-02 Prime Centre  
Tel: 602-786-7200 Fax: 602-786-7277  
Technical Support: 602-786-7627  
Web Address: http://www.microchip.com  
Tel: 408-436-7950 Fax: 408-436-7955  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Toronto  
Microchip Technology Inc.  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
After September 1, 1999:  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Metroplaza  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Atlanta  
EUROPE  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
Winnersh Triangle  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
India  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
France  
Arizona Microchip Technology SARL  
Zone Industrielle de la Bonde  
2 Rue du Buisson aux Fraises  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
14651 Dallas Parkway, Suite 816  
Dallas, TX 75240-8809  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Tel: 972-991-7177 Fax: 972-991-8588  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Italy  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Milan, Italy  
Tel: 39-39-6899939 Fax: 39-39-6899883  
Detroit  
Microchip Technology Inc.  
Shanghai  
Microchip Technology  
42705 Grand River, Suite 201  
Novi, MI 48375-1727  
Tel: 248-374-1888 Fax: 248-374-2874  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
06/07/99  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
Los Angeles  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Microchip received ISO 9001 Quality  
System certification for its worldwide  
headquarters, design, and wafer  
fabrication facilities in January, 1997.  
Tel: 949-263-1888 Fax: 949-263-1338  
®
New York  
Microchip Technology Inc.  
Our field-programmable PICmicro 8-  
®
bit MCUs, KEELOQ code hopping  
devices, Serial EEPROMs, related  
specialty memory products and devel-  
opment systems conform to the strin-  
gent quality standards of the  
International Standard Organization  
(ISO).  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 516-273-5305 Fax: 516-273-5335  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 6/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS21291B-page 74  
1999 Microchip Technology Inc.  

相关型号:

MCP2510T-IST

Stand-Alone CAN Controller with SPIInterface
MICROCHIP

MCP2510_07

Stand-Alone CAN Controller with SPI⑩ Interface
MICROCHIP

MCP2515

Stand-Alone CAN Controller With SPI⑩ Interface
MICROCHIP

MCP2515-E

Stand-Alone CAN Controller with SPI Interface
MICROCHIP

MCP2515-E/ML

Stand-Alone CAN Controller with SPI Interface
MICROCHIP

MCP2515-E/P

Stand-Alone CAN Controller With SPI⑩ Interface
MICROCHIP

MCP2515-E/PG

1 CHANNEL(S), 1M bps, SERIAL COMM CONTROLLER, PDIP18, 0.300 INCH, LEAD FREE, PLASTIC, DIP-18
MICROCHIP

MCP2515-E/PRB4

TWO WIRE, STAND ALONE CAN CONTROLLER, -40C to +125C, 18-PDIP, TUBE
MICROCHIP

MCP2515-E/SO

Stand-Alone CAN Controller With SPI⑩ Interface
MICROCHIP

MCP2515-E/SOG

1 CHANNEL(S), 1M bps, SERIAL COMM CONTROLLER, PDSO18, 7.50 MM, LEAD FREE, PLASTIC, SOIC-18
MICROCHIP

MCP2515-E/SORB4

TWO-WIRE, STAND ALONE CAN CONTROLLER, -40C to +125C, 18-SOIC 300mil, TUBE
MICROCHIP

MCP2515-E/SOVAO

Serial I/O Controller, 1 Channel(s), 0.125MBps, CMOS, PDSO18
MICROCHIP