MCP2557FD-H/SN [MICROCHIP]

DATACOM, INTERFACE CIRCUIT;
MCP2557FD-H/SN
型号: MCP2557FD-H/SN
厂家: MICROCHIP    MICROCHIP
描述:

DATACOM, INTERFACE CIRCUIT

电信 光电二极管 电信集成电路
文件: 总36页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2557FD/8FD  
CAN FD Transceiver with Silent Mode  
Features  
Description  
Silent Mode is Useful in the Following  
Applications:  
The MCP2557FD/8FD CAN transceiver family is  
designed for high-speed CAN FD applications with up  
to 8 Mbps communication speed. The maximum prop-  
agation delay was improved to support longer bus  
length.  
- Disables transmitter in redundant systems  
- Implements babbling idiot protection  
- Tests connection of bus medium  
The device meets automotive requirements for CAN  
FD bit rates exceeding 2 Mbps, low quiescent current,  
electromagnetic compatibility (EMC) and electrostatic  
discharge (ESD).  
- Prevents  
disrupting all network communications  
a faulty CAN controller from  
• Optimized for CAN FD at 2, 5 and 8 Mbps  
Operation:  
- Maximum propagation delay: 120 ns  
- Loop delay symmetry: ±10%(2 Mbps)  
Package Types  
• Meets or Exceeds Stringent Automotive Design  
Requirements Including “Hardware Require-  
ments for LIN, CAN and FlexRay Interfaces in  
Automotive Applications”, Version 1.3, May 2012:  
MCP2557FD  
MCP2558FD  
SOIC  
SOIC  
TXD  
VSS  
S
TXD  
VSS  
S
1
2
8
7
1
2
8
7
CANH  
CANH  
- Conducted emissions at 2 Mbps with  
Common-Mode Choke (CMC)  
VDD 3  
6
5
CANL  
NC  
VDD 3  
6
5
CANL  
VIO  
4
RXD  
4
RXD  
- DPI at 2 Mbps with CMC  
• Meets SAE J2962/2 “Communication Transceiv-  
ers Qualification Requirements – CAN”  
MCP2557FD  
2x3 TDFN*  
MCP2558FD  
2x3 TDFN*  
- Passes radiated emissions at 2 Mbps without  
a CMC  
TXD  
VSS  
S
TXD  
VSS  
S
1
2
8
7
1
2
8
7
CANH  
CANH  
EP  
9
EP  
9
• Meets Latest ISO/DIS-11898-2:2015  
VDD  
RXD  
3
4
6
5
CANL  
NC  
VDD  
RXD  
3
4
6
5
CANL  
VIO  
• Meets Latest SAE J2284-4 and -5 Working Drafts  
• Digital Inputs of the MCP2557FD are Compatible  
to 3.3V and 5V Microcontrollers. RXD Output  
Requires a 5V Tolerant Microcontroller Input  
MCP2558FD  
3x3 DFN*  
MCP2557FD  
3x3 DFN*  
• Functional Behavior Predictable Under all Supply  
Conditions:  
TXD  
VSS  
S
TXD  
S
1
2
8
7
1
2
8
7
- Device is in Unpowered mode if VDD drops  
below Power-on Reset (POR) level  
CANH  
VSS  
VDD  
RXD  
CANH  
EP  
9
EP  
9
VDD  
RXD  
CANL  
NC  
CANL  
VIO  
3
4
6
5
3
4
6
5
- Device is in Unpowered mode if VIO drops  
below POR level  
*Includes Exposed Thermal Pad (EP); see Table 1-1.  
Applications  
CAN 2.0 and CAN FD networks in Automotive,  
Industrial, Aerospace, Medical, and Consumer  
applications.  
MCP2557FD/8FD Family Members  
Device  
VIO Pin  
NC  
TTL I/O  
VIO I/O  
Description  
MCP2557FD  
MCP2558FD  
N/A  
Yes  
Yes  
N/A  
Yes  
N/A  
N/A  
Yes  
Internal level shifter on digital I/O pins.  
Note:  
For ordering information, see the Product Identification System section.  
2016 Microchip Technology Inc.  
DS20005533A-page 1  
MCP2557FD/8FD  
Block Diagram  
VIO  
VDD  
DIGITAL I/O  
SUPPLY  
THERMAL  
PROTECTION  
POR  
UVLO  
VIO  
PERMANENT  
DOMINANT DETECT  
TXD  
CANH  
CANL  
DRIVER  
AND  
SLOPE CONTROL  
VIO  
MODE  
CONTROL  
S
VDD  
CANH  
CANL  
HS_RX  
RXD  
VSS  
Note:  
Only the MCP2558FD has the VIO pin. In the MCP2557FD, the supply for the digital I/O is internally  
connected to VDD.  
DS20005533A-page 2  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
1.4  
Permanent Dominant Detection  
1.0  
DEVICE OVERVIEW  
The MCP2557FD/8FD device prevents a permanent  
dominant condition on TXD.  
The MCP2557FD/8FD CAN transceiver family is  
designed for high-speed CAN FD applications with up  
to 8 Mbps communication speed. The product offers a  
Silent mode controlled by the Silent mode pin. The  
Silent mode is used to disable the CAN transmitter.  
This ensures that the device doesn’t drive the CAN  
bus. The MCP2557FD/8FD device provides  
differential transmit and receive capability for the CAN  
protocol controller, and is fully compatible with  
specification ISO/DIS-11898-2:2015.  
In Normal mode, if the MCP2557FD/8FD detects an  
extended Low state on the TXD input, it will disable the  
CANH and CANL output drivers in order to prevent  
data corruption on the CAN bus. The drivers will remain  
disabled until TXD goes High. The high-speed receiver  
is active, and data on the CAN bus is received on RXD.  
The condition has a time-out of 1.9 ms (typical). This  
implies a maximum bit time of 128 µs (7.8 kHz),  
allowing up to 18 consecutive dominant bits on the bus.  
The loop delay symmetry is tested to support data rates  
that are up to 8 Mbps for CAN FD (Flexible Data rate).  
The maximum propagation delay was improved to  
support longer bus length.  
1.5  
Power-on Reset (POR) and  
Undervoltage Detection  
Typically, each node in a CAN system must have a  
device convert the digital signals generated by a CAN  
controller to signals suitable for transmission over the  
bus cabling (differential output). It also provides a buffer  
between the CAN controller and the high-voltage  
spikes that can be generated on the CAN bus by  
outside sources.  
The MCP2557FD/8FD have POR detection on both  
supply pins, VDD and VIO. Typical POR thresholds to  
deassert the reset are 1.2V and 3.0V for VIO and VDD,  
respectively.  
When the device is powered on, CANH and CANL  
remain in a high-impedance state until VDD exceeds its  
undervoltage level. Once powered on, CANH and  
CANL will enter a high-impedance state if the voltage  
level at VDD drops below the undervoltage level,  
providing voltage brown-out protection during normal  
operation.  
1.1  
Transmitter Function  
The CAN bus has two states: Dominant and  
Recessive. Dominant state occurs when the  
A
differential voltage between CANH and CANL is  
greater than VDIFF(D)(I). A Recessive state occurs  
when the differential voltage is less than VDIFF(R)(I).  
The Dominant and Recessive states correspond to the  
Low and High states of the TXD input pin, respectively.  
However, a Dominant state initiated by another CAN  
node will override a Recessive state on the CAN bus.  
The receiver output is forced to a Recessive state  
during an undervoltage condition on VDD.  
1.2  
Receiver Function  
The RXD output pin reflects the differential bus voltage  
between CANH and CANL. The Low and High states of  
the RXD output pin correspond to the Dominant and  
Recessive states of the CAN bus, respectively.  
1.3  
Internal Protection  
CANH and CANL are protected against battery short  
circuits and electrical transients that can occur on the  
CAN bus. This feature prevents destruction of the  
transmitter output stage during such a fault condition.  
The device is further protected from excessive current  
loading by thermal shutdown circuitry that disables the  
output drivers when the junction temperature exceeds  
a nominal limit of +175°C.  
All other parts of the chip remain operational, and the  
chip temperature is lowered due to the decreased  
power dissipation in the transmitter outputs. This  
protection is essential to guard against bus line short-  
circuit-induced damage. Thermal protection is only  
active during Normal mode.  
2016 Microchip Technology Inc.  
DS20005533A-page 3  
MCP2557FD/8FD  
1.6  
Mode Control  
Figure 1-1 shows the state diagram of the MCP2557FD/  
8FD.  
1.6.1  
UNPOWERED MODE (POR)  
The MCP2557FD/8FD enters Unpowered mode if any  
of the following conditions occur:  
• After powering up the device  
• If VDD drops below VPORL  
• If VIO drops below VPORL_VIO  
In Unpowered mode, the CAN bus will be biased to  
ground using a high impedance. The MCP2557FD/  
8FD is not able to communicate on the bus.  
1.6.2  
WAKE MODE  
The MCP2557FD/8FD transitions from Unpowered  
mode to Wake mode when VDD and VIO are above  
their PORH levels. From Normal mode, if VDD is  
smaller than VUVL, or if the bandgap output voltage is  
not within valid range, the device will also enter Wake  
mode.  
In Wake mode, the CAN bus is biased to ground and  
RXD is always high.  
1.6.3  
NORMAL MODE  
When VDD exceeds VUVH, the band gap is within valid  
range and TXD is High, the device transitions into  
Normal mode. During POR, when the microcontroller  
powers up, the TXD pin could be unintentionally pulled  
down by the microcontroller powering up. To avoid  
driving the bus during a POR of the microcontroller,  
the transceiver proceeds to Normal mode only after  
TXD is high.  
In Normal mode, the driver block is operational and  
can drive the bus pins. The slopes of the output  
signals on CANH and CANL are optimized to reduce  
Electromagnetic Emissions (EME). The CAN bus is  
biased to VDD/2.  
The high-speed differential receiver is active.  
1.6.4  
SILENT MODE  
The device may be placed in Silent mode by applying  
a high level to the ‘S’ pin (pin 8). In Silent mode, the  
transmitter is disabled and the CAN bus is biased to  
VDD/2. The high-speed differential receiver is active.  
The CAN controller must put the MCP2557FD/8FD  
back into Normal mode to enable the transmitter.  
DS20005533A-page 4  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
FIGURE 1-1:  
MCP2557FD/8FD STATE DIAGRAM  
From any  
State  
V
DD < VPORL  
Or  
V
IO < VPORL_VIO  
UnPowered (POR)  
CAN High Impedance  
Common Mode Tied to  
GND  
T
XD Time-Out  
CAN Recessive  
Common Mode VDD/2  
HS RX ON  
HS RX OFF  
R
XD High  
R
XD = f(HS RX)  
Bandgap OFF  
V
DD > VPORH  
T
XD Low > Tpdt  
Or  
T > TJ(SD)  
T
XD High  
And  
And  
V
IO > VPORH_VIO  
T < TJ(SD)-TJ(HYST)  
TXD High  
And  
Bandgap ok  
And  
DD > VUVH  
And  
Silent Low  
Wake  
Start Bandgap  
CAN High Impedance  
Common Mode Tied to  
GND  
Normal  
V
CAN Driven  
Common Mode VDD/2  
HS RX ON  
HS RX OFF  
RXD = f(HS RX)  
Bandgap Not Ok  
Or  
RXD High  
V
DD < VUVL  
Bandgap Not Ok  
Or  
SILENT Low  
SILENT High  
SILENT High  
V
DD < VUVL  
And  
Silent  
CAN Recessive (TX OFF)  
Common Mode VDD/2  
HS RX ON  
RXD = f(HS RX)  
2016 Microchip Technology Inc.  
DS20005533A-page 5  
MCP2557FD/8FD  
1.7  
Pin Descriptions  
The descriptions of the pins are listed in Table 1-1.  
TABLE 1-1:  
MCP2557FD/8FD PIN DESCRIPTIONS  
MCP2557FD  
3 x 3 DFN,  
2 x 3 TDFN  
MCP2558FD  
3 x 3 DFN,  
2 x 3 TDFN  
MCP2557FD  
MCP2558FD  
Symbol  
Pin Function  
Transmit Data Input  
SOIC  
SOIC  
1
2
1
2
1
2
1
2
TXD  
VSS  
VDD  
RXD  
NC  
Ground  
3
3
3
3
Supply Voltage  
4
4
4
4
Receive Data Output  
No Connect (MCP2557FD only)  
5
5
5
5
VIO  
Digital I/O Supply Pin  
(MCP2558FD only)  
6
7
8
9
6
7
6
7
8
9
6
7
CANL CAN Low-Level Voltage I/O  
CANH CAN High-Level Voltage I/O  
8
8
S
Silent Mode Input  
EP  
Exposed Thermal Pad  
1.7.1  
TRANSMITTER DATA  
INPUT PIN (TXD)  
1.7.6  
VIO PIN (MCP2557FD)  
Supply for digital I/O pins. In the MCP2557FD, the  
supply for the digital I/O (TXD, RXD and S) is internally  
connected to VDD.  
The CAN transceiver drives the differential output pins  
CANH and CANL according to TXD. It is usually  
connected to the transmitter data output of the CAN  
controller device. When TXD is Low, CANH and CANL  
are in the Dominant state. When TXD is High, CANH  
and CANL are in the Recessive state, provided that  
another CAN node is not driving the CAN bus with a  
Dominant state. TXD is connected from an internal pull-  
up resistor (nominal 33 k) to VDD or VIO, in the  
MCP2557FD or MCP2558FD, respectively.  
1.7.7  
DIGITAL I/O  
The MCP2557FD/8FD enable easy interfacing to  
MCUs with I/O ranges from 1.8V to 5V.  
1.7.7.1  
MCP2557FD  
The VIH(MIN) and VIL(MAX) for TXD are independent of  
VDD. They are set at levels that are compatible with 3V  
and 5V microcontrollers.  
1.7.2  
GROUND SUPPLY PIN (VSS)  
The RXD pin is always driven to VDD; therefore, a 3V  
microcontroller will need a 5V tolerant input.  
Ground supply pin.  
1.7.3  
SUPPLY VOLTAGE PIN (VDD)  
1.7.7.2  
MCP2558FD  
Positive supply voltage pin. Supplies transmitter and  
receiver.  
VIH and VIL for S and TXD depend on VIO. The RXD pin  
is driven to VIO.  
1.7.4  
RECEIVER DATA OUTPUT PIN (RXD)  
1.7.8  
CAN LOW PIN (CANL)  
RXD is a CMOS-compatible output that drives High or  
Low depending on the differential signals on the CANH  
and CANL pins, and is usually connected to the  
receiver data input of the CAN controller device. RXD is  
High when the CAN bus is Recessive, and Low in the  
Dominant state. RXD is supplied by VDD or VIO, in the  
MCP2557FD or MCP2558FD, respectively.  
The CANL output drives the Low side of the CAN  
differential bus. This pin is also tied internally to the  
receive input comparator. CANL disconnects from the  
bus when the MCP2557FD/8FD devices are not  
powered.  
1.7.9  
CAN HIGH PIN (CANH)  
1.7.5  
NC PIN (MCP2557FD)  
The CANH output drives the high side of the CAN  
differential bus. This pin is also tied internally to the  
receive input comparator. CANH disconnects from the  
bus when the MCP2557FD/8FD devices are not  
powered.  
No Connect. This pin can be left open or connected to  
VSS.  
DS20005533A-page 6  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
1.7.10  
SILENT MODE INPUT PIN (S)  
This pin sets Normal or Silent mode. In Silent mode, the  
transmitter is off and the high-speed receiver is active.  
The CAN bus common mode voltage is VDD/2 when in  
Silent mode.  
The ‘S’ pin (pin 8) is connected to an internal MOS pull-  
up resistor to VDD or VIO, in the MCP2557FD or  
MCP2558FD, respectively. The value of the MOS pull-  
up resistor depends on the supply voltage. Typical val-  
ues are 660 kfor 5V, 1.1 Mfor 3.3V and 4.4 Mfor  
1.8V  
1.7.11  
EXPOSED THERMAL PAD (EP)  
It is recommended to connect this pad to VSS to  
enhance electromagnetic immunity and thermal  
resistance.  
2016 Microchip Technology Inc.  
DS20005533A-page 7  
MCP2557FD/8FD  
1.8  
TYPICAL APPLICATION  
Figure 1-2 shows  
a typical application for the  
MCP2557FD with the NC pin and a split termination.  
Figure 1-3 illustrates a typical application for the  
MCP2558FD.  
FIGURE 1-2:  
MCP2557FD WITH NC AND SPLIT TERMINATION  
V
BAT  
5V LDO  
0.1 μF  
CANH  
CANL  
V
DD  
VDD  
CANH  
CANTX  
T
XD  
XD  
60  
60  
4700 pF  
CANRX  
RBX  
R
NC  
S
CANL  
V
SS  
V
SS  
FIGURE 1-3:  
MCP2558FD WITH VIO PIN  
VBAT  
5V LDO  
3.3V LDO  
0.1 µF  
0.1 µF  
CANH  
CANL  
VDD  
VIO  
VDD  
CANH  
CANTX  
TXD  
120  
CANRX  
RXD  
S
RBX  
VSS  
CANL  
VSS  
DS20005533A-page 8  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
2.1.5  
DIFFERENTIAL VOLTAGE, VDIFF  
(OF CAN BUS)  
2.0  
2.1  
ELECTRICAL  
CHARACTERISTICS  
Differential voltage of the two-wire CAN bus, with value  
equal to VDIFF = VCANH – VCANL.  
Terms and Definitions  
A number of terms are defined in ISO/DIS-11898 that  
are used to describe the electrical characteristics of a  
CAN transceiver device. These terms and definitions  
are summarized in this section.  
2.1.6  
INTERNAL CAPACITANCE, CIN  
(OF A CAN NODE)  
Capacitance seen between CANL (or CANH) and  
ground during the Recessive state when the CAN node  
is disconnected from the bus (see Figure 2-1).  
2.1.1  
BUS VOLTAGE  
VCANL and VCANH denote the voltages of the bus line  
wires CANL and CANH relative to the ground of each  
individual CAN node.  
2.1.7  
INTERNAL RESISTANCE, RIN  
(OF A CAN NODE)  
Resistance seen between CANL (or CANH) and  
ground during the Recessive state when the CAN node  
is disconnected from the bus (see Figure 2-1).  
2.1.2  
COMMON MODE BUS VOLTAGE  
RANGE  
Boundary voltage levels of VCANL and VCANH with  
respect to ground, for which proper operation will occur,  
if the maximum number of CAN nodes are connected  
to the bus.  
FIGURE 2-1:  
PHYSICAL LAYER  
DEFINITIONS  
ECU  
2.1.3  
DIFFERENTIAL INTERNAL  
CAPACITANCE, CDIFF  
(OF A CAN NODE)  
RIN  
RIN  
CANL  
Capacitance seen between CANL and CANH during  
the Recessive state when the CAN node is  
disconnected from the bus (see Figure 2-1).  
CDIFF  
RDIFF  
CANH  
CIN  
CIN  
2.1.4  
DIFFERENTIAL INTERNAL  
RESISTANCE, RDIFF  
(OF A CAN NODE)  
GROUND  
Resistance seen between CANL and CANH during the  
Recessive state when the CAN node is disconnected  
from the bus (see Figure 2-1).  
2016 Microchip Technology Inc.  
DS20005533A-page 9  
MCP2557FD/8FD  
2.2  
Absolute Maximum Ratings†  
VDD.............................................................................................................................................................................7.0V  
VIO..............................................................................................................................................................................7.0V  
DC Voltage at TXD, RXD, S and VSS....................................................................................................-0.3V to VIO + 0.3V  
DC Voltage at CANH, and CANL .................................................................................................................-58V to +58V  
Transient Voltage on CANH, and CANL (ISO/DIS-7637) (Figure 2-5) .....................................................-150V to +100V  
Differential Bus Input Voltage VDIFF(I) (t = 60 days, continuous)....................................................................-5V to +10V  
Differential Bus Input Voltage VDIFF(I) (1000 pulses, t = 0.1 ms, VCANH = +18V).....................................................+17V  
Dominant State Detection VDIFF(I) (10000 pulses, t = 1 ms).......................................................................................+9V  
Storage temperature ...............................................................................................................................-55°C to +150°C  
Operating ambient temperature ..............................................................................................................-40°C to +150°C  
Virtual Junction Temperature, TVJ (IEC60747-1) ....................................................................................-40°C to +190°C  
Soldering temperature of leads (10 seconds) .......................................................................................................+300°C  
ESD protection on CANH and CANL pins (IEC 61000-4-2)...................................................................................±13 kV  
ESD protection on CANH and CANL pins (IEC 801; Human Body Model)..............................................................±8 kV  
ESD protection on all other pins (IEC 801; Human Body Model).............................................................................±4 kV  
ESD protection on all pins (IEC 801; Machine Model)............................................................................................±400V  
ESD protection on all pins (IEC 801; Charge Device Model)..................................................................................±750V  
† Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
DS20005533A-page 10  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
TABLE 2-1:  
DC CHARACTERISTICS  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, TAMB = -40°C to +150°C;  
VDD = 4.5V to 5.5V, VIO = 1.7V to 5.5V (Note 2), RL = 60CL = 100 pF; unless  
otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply  
VDD Pin  
Voltage Range  
Supply Current  
4.5  
5.5  
VDD  
IDD  
V
2.5  
55  
1
5
70  
3
Recessive; VTXD = VDD  
Dominant; VTXD = 0V  
MCP2557FD  
mA  
Silent Current  
IDDS  
mA  
1
3
MCP2558FD Includes IIO  
Maximum Supply Current  
95  
140  
Fault condition: VTXD = VSS;  
VCANH = VCANL = -5V to +18V  
IDDMAX  
VPORH  
VPORL  
VPORD  
VUVH  
mA  
V
High Level of the POR  
Comparator for VDD  
1.0  
0.2  
4.0  
3.6  
3.0  
2.0  
3.95  
3.2  
2.0  
4.4  
4.0  
Note 1  
Note 1  
Note 1  
Low Level of the POR  
Comparator for VDD  
V
Hysteresis of POR  
Comparator for VDD  
0.9  
V
High Level of the UV  
Comparator for VDD  
4.25  
3.8  
V
Low Level of the UV  
Comparator for VDD  
VUVL  
V
Hysteresis of UV comparator  
0.4  
Note 1  
VUVD  
V
VIO Pin  
Digital Supply Voltage Range  
1.7  
5.5  
VIO  
IIO  
V
Supply Current on VIO  
7
30  
400  
1.7  
Recessive; VTXD = VIO  
Dominant; VTXD = 0V  
µA  
200  
1.2  
High Level of the POR  
Comparator for VIO  
0.8  
VPORH_VIO  
VPORL_VIO  
VPORD_VIO  
V
V
V
Low Level of the POR  
Comparator for VIO  
0.7  
1.1  
0.2  
1.4  
Hysteresis of POR  
Comparator for VIO  
Bus Line (CANH; CANL) Transmitter  
CANH; CANL:  
Recessive Bus Output Voltage  
2.0  
0.5 VDD  
3.0  
VTXD = VDD; No load  
VO(R)  
V
Recessive Output Current  
IO(R)  
-5  
+5  
mA -24V < VCAN < +24V  
CANH: Dominant Output  
Voltage  
2.75  
3.50  
4.50  
TXD = 0; RL = 50 to 65  
VO(D)  
V
CANL: Dominant Output  
Voltage  
0.50  
0.9  
1.50  
1.0  
2.25  
1.1  
RL = 50to 65  
Driver Symmetry  
(VCANH+VCANL)/VDD  
VSYM  
1 MHz square wave,  
Recessive and Dominant  
states, and transition (Note 1)  
V
Note 1: Characterized; not 100% tested.  
2: Only MCP2558FD has a VIO pin. For MCP2557FD, VIO is internally connected to VDD.  
3: -12V to 12V is ensured by characterization, and tested from -2V to 7V.  
2016 Microchip Technology Inc.  
DS20005533A-page 11  
MCP2557FD/8FD  
TABLE 2-1:  
DC CHARACTERISTICS (CONTINUED)  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, TAMB = -40°C to +150°C;  
VDD = 4.5V to 5.5V, VIO = 1.7V to 5.5V (Note 2), RL = 60CL = 100 pF; unless  
otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Dominant: Differential Output VO(DIFF)(D)  
Voltage  
1.5  
2.0  
3.0  
V
VTXD = VSS; RL = 50to 65  
(Figure 2-2, Figure 2-4)  
(Note 1)  
1.4  
1.3  
1.5  
2.0  
2.0  
3.0  
3.0  
5.0  
VTXD = VSS; RL = 45to 70  
(Figure 2-2, Figure 2-4,  
Section 3) (Note 1)  
VTXD = VSS; RL = 40to 75  
(Figure 2-2, Figure 2-4,  
Section 3)  
VTXD = VSS; RL = 2240  
(Figure 2-2, Figure 2-4,  
Section 3) (Note 1)  
Recessive:  
Differential Output Voltage  
VO(DIFF)(R)  
IO(SC)  
-500  
-115  
0
50  
mV VTXD = VDD, no load  
(Figure 2-2, Figure 2-4)  
CANH: Short-Circuit  
Output Current  
-85  
75  
mA VTXD = VSS; VCANH = -3V;  
CANL: floating  
CANL: Short Circuit  
Output Current  
+115  
mA VTXD = VSS; VCANL = +18V;  
CANH: floating  
Bus Line (CANH; CANL) Receiver  
Recessive Differential  
Input Voltage  
VDIFF(R)(I)  
-4.0  
0.9  
0.5  
30  
6
0.7  
0
+0.5  
9.0  
0.9  
200  
50  
V
V
V
-12V < V(CANH, CANL) < +12V;  
see Figure 2-6 (Note 3)  
Dominant Differential  
Input Voltage  
VDIFF(D)(I)  
VTH(DIFF)  
VHYS(DIFF)  
-12V < V(CANH, CANL) < +12V;  
see Figure 2-6 (Note 3)  
Differential  
Receiver Threshold  
-12V < V(CANH, CANL) < +12V;  
see Figure 2-6 (Note 3)  
Differential  
Input Hysteresis  
mV See Figure 2-6, (Note 1)  
Single Ended  
Input Resistance  
RCAN_H,  
RCAN_L  
kNote 1  
Internal  
mR  
-3  
+3  
%
VCANH = VCANL (Note 1)  
Resistance Matching  
mR=2*(RCANH-RCANL)/(RCANH+RCANL)  
Differential Input  
Resistance  
RDIFF  
12  
25  
100  
kNote 1  
Internal Capacitance  
CIN  
20  
10  
pF 1 Mbps (Note 1)  
pF 1 Mbps (Note 1)  
Differential  
CDIFF  
Internal Capacitance  
CANH, CANL:  
Input Leakage  
ILI  
-5  
+5  
µA VDD = VTXD = VS = 0V.  
For MCP2558FD, VIO = 0V.  
VCANH = VCANL = 5 V.  
Digital Input Pins (TXD, S)  
High-Level Input Voltage  
VIH  
2.0  
VDD + 0.3  
VIO + 0.3  
V
MCP2557FD  
MCP2558FD  
0.7 VIO  
Note 1: Characterized; not 100% tested.  
2: Only MCP2558FD has a VIO pin. For MCP2557FD, VIO is internally connected to VDD.  
3: -12V to 12V is ensured by characterization, and tested from -2V to 7V.  
DS20005533A-page 12  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
TABLE 2-1:  
DC CHARACTERISTICS (CONTINUED)  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, TAMB = -40°C to +150°C;  
VDD = 4.5V to 5.5V, VIO = 1.7V to 5.5V (Note 2), RL = 60CL = 100 pF; unless  
otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
MCP2557FD  
Low-Level Input Voltage  
VIL  
-0.3  
-0.3  
-1  
0.8  
0.3VIO  
+1  
V
MCP2558FD  
High-Level Input Current  
IIH  
µA  
µA  
µA  
TXD: Low-Level Input Current  
S: Low-Level Input Current  
Receive Data (RXD) Output  
High-Level Output Voltage  
IIL(TXD)  
IIL(S)  
-270  
-30  
-150  
-30  
-1  
VOH  
VDD - 0.4  
VIO - 0.4  
V
MCP2557FD: IOH = -2 mA;  
typical -4 mA  
MCP2558FD:  
VIO = 2.7V to 5.5V,  
IOH = -1 mA;  
VIO = 1.7V to 2.7V,  
IOH = -0.5 mA,  
typical -2 mA  
Low-Level Output Voltage  
VOL  
0.4  
V
IOL = 4 mA; typical 8 mA  
Thermal Shutdown  
Shutdown  
Junction Temperature  
TJ(SD)  
165  
15  
175  
185  
30  
°C -12V < V(CANH, CANL) < +12V  
(Note 1)  
Shutdown  
Temperature Hysteresis  
TJ(HYST)  
°C -12V < V(CANH, CANL) < +12V  
(Note 1)  
Note 1: Characterized; not 100% tested.  
2: Only MCP2558FD has a VIO pin. For MCP2557FD, VIO is internally connected to VDD.  
3: -12V to 12V is ensured by characterization, and tested from -2V to 7V.  
2016 Microchip Technology Inc.  
DS20005533A-page 13  
MCP2557FD/8FD  
FIGURE 2-2:  
PHYSICAL BIT REPRESENTATION AND SIMPLIFIED BIAS IMPLEMENTATION  
Normal Mode  
CANH  
Silent Mode  
CANL  
Recessive  
CANH  
Dominant  
Recessive  
Recessive  
Time  
VDD  
Normal and Silent  
Unpowered  
VDD/2  
Rx  
D
CANL  
TABLE 2-2:  
AC CHARACTERISTICS  
AC Characteristics  
Electrical Characteristics: Unless otherwise indicated, TAMB = -40°C to  
+150°C; VDD = 4.5V to 5.5V, VIO = 1.7V to 5.5V (Note 2), RL = 60CL = 100 pF.  
Maximum VDIFF(D)(I) = 3V.  
Param.  
No.  
Parameter  
Bit Time  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
1
2
3
tBIT  
NBR  
0.125  
14.4  
50  
69.44  
µs  
Nominal Bit Rate  
8000 kbps  
Delay TXD Low to Bus  
Dominant  
tTXD-BUSON  
85  
85  
ns Note 1  
4
5
6
Delay TXD High to Bus  
Recessive  
tTXD-BUSOFF  
tBUSON-RXD  
tBUSOFF-RXD  
40  
70  
ns Note 1  
ns Note 1  
ns Note 1  
Delay Bus Dominant to  
RXD  
85  
Delay Bus Recessive to  
RXD  
110  
145  
Note 1: Characterized, not 100% tested.  
2: Not in ISO/DIS-11898-2:2015, but needs to be characterized.  
DS20005533A-page 14  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
TABLE 2-2:  
AC CHARACTERISTICS (CONTINUED)  
AC Characteristics  
Electrical Characteristics: Unless otherwise indicated, TAMB = -40°C to  
+150°C; VDD = 4.5V to 5.5V, VIO = 1.7V to 5.5V (Note 2), RL = 60CL = 100 pF.  
Maximum VDIFF(D)(I) = 3V.  
Param.  
No.  
Parameter  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
7
Propagation Delay TXD to  
RXD  
Worst Case of tLOOP(R)  
and tLOOP(F) Figure 2-9  
tTXD - RXD  
90  
120  
150  
ns  
115  
RL = 150,  
CL = 200 pF(Note 1)  
7a  
7b  
8a  
Propagation Delay,  
Rising Edge  
tLOOP(R)  
tLOOP(F)  
90  
80  
120  
120  
ns  
ns  
Propagation Delay,  
Falling Edge  
Recessive Bit Time on  
RXD – 1 Mbps,  
Loop Delay Symmetry  
(Note 2)  
tBIT(RXD), 1M  
900  
800  
985  
960  
1100  
1255  
tBIT(TXD) = 1000 ns  
(Figure 2-9)  
ns  
tBIT(TXD) = 1000 ns  
(Figure 2-9), RL = 150,  
CL = 200 pF (Note 1)  
8b  
Recessive Bit Time on  
RXD – 2 Mbps,  
Loop Delay Symmetry  
tBIT(RXD), 2M  
450  
400  
490  
460  
550  
550  
tBIT(TXD) = 500 ns  
(Figure 2-9)  
ns  
tBIT(TXD) = 500 ns  
(Figure 2-9), RL = 150,  
CL = 200 pF(Note 1)  
8c  
8d  
Recessive Bit Time on  
RXD – 5 Mbps,  
Loop Delay Symmetry  
tBIT(RXD), 5M  
tBIT(RXD), 8M  
160  
85  
190  
100  
220  
135  
tBIT(TXD) = 200 ns  
(Figure 2-9)  
ns  
ns  
Recessive Bit Time on  
RXD – 8 Mbps,  
tBIT(TXD) = 120 ns  
(Figure 2-9) (Note 1)  
Loop Delay Symmetry  
(Note 2)  
10  
11  
12  
Delay Silent to Normal  
Mode  
tWAKE  
tPDT  
0.8  
7
1.9  
5
30  
5
µs Negative edge on S  
ms TXD = 0V  
Permanent Dominant  
Detect Time  
Permanent Dominant  
Timer Reset  
tPDTR  
ns The shortest recessive  
pulse on TXD or CAN bus  
to reset Permanent  
Dominant Timer  
13a Transmitted Bit Time on  
Bus – 1 Mbps (Note 2)  
tBIT(BUS), 1M  
tBIT(BUS), 2M  
870  
870  
1000  
1000  
1060  
1060  
tBIT(TXD) = 1000 ns  
(Figure 2-9)  
ns  
tBIT(TXD) = 1000 ns  
(Figure 2-9),  
RL = 150, CL = 200 pF  
(Note 1)  
13b Transmitted Bit Time on  
Bus – 2 Mbp  
435  
435  
515  
480  
530  
550  
tBIT(TXD) = 500 ns  
(Figure 2-9)  
ns  
tBIT(TXD) = 500 ns  
(Figure 2-9) RL = 150,  
CL = 200 pF (Note 1)  
Note 1: Characterized, not 100% tested.  
2: Not in ISO/DIS-11898-2:2015, but needs to be characterized.  
2016 Microchip Technology Inc.  
DS20005533A-page 15  
MCP2557FD/8FD  
TABLE 2-2:  
AC CHARACTERISTICS (CONTINUED)  
AC Characteristics  
Electrical Characteristics: Unless otherwise indicated, TAMB = -40°C to  
+150°C; VDD = 4.5V to 5.5V, VIO = 1.7V to 5.5V (Note 2), RL = 60CL = 100 pF.  
Maximum VDIFF(D)(I) = 3V.  
Param.  
No.  
Parameter  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
13c  
Transmitted Bit Time on  
Bus – 5 Mbps  
tBIT(BUS), 5M  
155  
200  
210  
140  
tBIT(TXD) = 200 ns  
(Figure 2-9) (Note 1)  
ns  
ns  
13d Transmitted Bit Time on  
Bus - 8Mbps  
tBIT(BUS), 8M  
100  
125  
tBIT(TXD) = 120 ns  
(Figure 2-9) (Note 1)  
(Note 2)  
14a Receiver Timing  
Symmetry – 1 Mbps  
(Note 2)  
tDIFF(REC), 1M  
-65  
0
0
40  
80  
tBIT(TXD) = 1000 ns  
(Figure 2-9)  
ns  
ns  
=
tBIT(RXD)  
-
tBIT(BUS)  
-130  
tBIT(TXD) = 1000 ns  
(Figure 2-9), RL = 150,  
CL = 200 pF (Note 1)  
14b Receiver Timing  
Symmetry – 2 Mbps  
tDIFF(REC), 2M  
-65  
-70  
0
0
40  
40  
tBIT(TXD) = 500 ns  
(Figure 2-9)  
tBIT(TXD) = 500 ns  
(Figure 2-9), RL = 150,  
CL = 200 pF (Note 1)  
14c  
Receiver Timing  
Symmetry – 5 Mbps  
tDIFF(REC), 5M  
tDIFF(REC), 8M  
-45  
-45  
0
0
15  
10  
tBIT(TXD) = 200 ns  
(Figure 2-9) (Note 1)  
ns  
ns  
14d Receiver Timing  
Symmetry – 8 Mbps  
(Note 2) tDIFF(REC),8M  
tBIT(TXD) = 120 ns  
(Figure 2-9) (Note 1)  
Note 1: Characterized, not 100% tested.  
2: Not in ISO/DIS-11898-2:2015, but needs to be characterized.  
FIGURE 2-3:  
TEST LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
RL = 464  
VSS  
VSS  
CL = 50 pF for all digital pins  
DS20005533A-page 16  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
FIGURE 2-4:  
TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS  
0.1 µF  
V
DD  
CANH  
T
XD  
CAN  
R
L
CL  
Transceiver  
R
XD  
CANL  
15 pF  
GND  
S
Note:  
On MCP2558FD, VIO is connected to VDD.  
FIGURE 2-5:  
TEST CIRCUIT FOR AUTOMOTIVE TRANSIENTS  
1000 pF  
CANH  
TXD  
Transient  
Generator  
CAN  
Transceiver  
RL  
RXD  
CANL  
1000 pF  
S
GND  
Note 1: On MCP2558FD, VIO is connected to VDD.  
2: The wave forms of the applied transients should comply with ISO/DIS-7637, Part 1, test pulses 1, 2, 3a  
and 3b.  
FIGURE 2-6:  
HYSTERESIS OF THE RECEIVER  
RXD (receive data  
output voltage)  
VOH  
VOL  
VDIFF (R)(I)  
VDIFF (D)(I)  
VDIFF (H)(I)  
VDIFF (V)  
0.5  
0.9  
2016 Microchip Technology Inc.  
DS20005533A-page 17  
MCP2557FD/8FD  
2.3  
Timing Diagrams and Specifications  
TIMING DIAGRAM FOR AC CHARACTERISTICS  
FIGURE 2-7:  
VDD  
0V  
TXD (transmit data  
input voltage)  
VDIFF (CANH,  
CANL differential  
voltage)  
RXD (receive data  
output voltage)  
3
5
6
7
4
7
FIGURE 2-8:  
PERMANENT DOMINANT TIMER RESET DETECT  
Minimum pulse width until CAN bus goes to Dominant state after the falling edge.  
TXD  
VDIFF (VCANH-VCANL)  
Driver is off  
11  
12  
DS20005533A-page 18  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
FIGURE 2-9:  
TIMING DIAGRAM FOR LOOP DELAY SYMMETRY  
70%  
TXD  
30%  
30%  
5*tBIT(TXD)  
tLOOP(F)  
TBIT(TXD)  
VDIFF_BUS  
900 mV  
500 mV  
13  
tBIT(BUS)  
70%  
RXD  
30%  
tLOOP(R)  
8
tBIT(RXD)  
2.4  
Thermal Specifications  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 8LD DFN (3x3)  
Thermal Resistance, 8LD SOIC  
Thermal Resistance, 8LD TDFN (2x3)  
TA  
TA  
TA  
-40  
-40  
-65  
+150  
+150  
+155  
C  
C  
C  
JA  
JA  
JA  
56.7  
149.5  
53  
C/W  
C/W  
C/W  
2016 Microchip Technology Inc.  
DS20005533A-page 19  
MCP2557FD/8FD  
3.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
2.3  
2.2  
2.1  
2
-40  
25  
150  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
40  
45  
50  
55  
60  
65  
70  
75  
RL (Ω)  
FIGURE 3-1:  
Dominant Differential Output  
vs. RL (VDD = 4.5V).  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
-40  
65  
25  
150  
40  
45  
50  
55  
60  
70  
75  
RL (Ω)  
FIGURE 3-2:  
Dominant Differential Output  
vs. RL (VDD = 5.0V).  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.7  
1.6  
-40  
25  
150  
40  
45  
50  
55  
60  
65  
70  
75  
RL (Ω)  
FIGURE 3-3:  
Dominant Differential Output  
vs. RL (VDD = 5.5V).  
DS20005533A-page 20  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
4.0  
4.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead SOIC (150 mil)  
Example:  
Part Number  
Code  
MCP2557  
MCP2557FDT-H/SN  
MCP2557FD-H/SN  
MCP2558FDT-H/SN  
MCP2558FD-H/SN  
MCP2557  
MCP2557  
MCP2558  
MCP2558  
SN  
1609  
e
3
256  
8-Lead TDFN (02x03x0.8 mm)  
Example:  
Part Number  
Code  
ACZ  
609  
25  
MCP2557FDT-H/MNY  
MCP2558FDT-H/MNY  
ACZ  
ADA  
8-Lead DFN (03x03x0.9 mm)  
Example:  
Part Number  
Code  
DAEN  
1609  
256  
MCP2557FDT-H/MF  
MCP2557FD-H/MF  
MCP2558FDT-H/MF  
MCP2558FD-H/MF  
DAEO  
DAEO  
DAEQ  
DAEQ  
Legend:  
XX...X  
Y
Customer-specific information  
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
®  
®
e
3
e
3
can be found on the outer packaging for this package.  
Note:  
In the event the full Microchip part number cannot be marked on one line, it will be  
carried over to the next line, thus limiting the number of available characters for  
customer-specific information.  
2016 Microchip Technology Inc.  
DS20005533A-page 21  
MCP2557FD/8FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005533A-page 22  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2016 Microchip Technology Inc.  
DS20005533A-page 23  
MCP2557FD/8FD  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆMꢆꢓꢄꢕꢕꢖꢗꢘꢆꢙꢚꢛ ꢆꢎꢎꢆ!ꢖꢅ"ꢆ#ꢍꢏ$%&  
ꢓꢖꢊꢃ' ꢀꢁꢂꢃ!ꢄꢅꢃ"ꢁ#!ꢃꢆ$ꢂꢂꢅꢇ!ꢃꢈꢉꢆ%ꢉꢊꢅꢃ&ꢂꢉ'ꢋꢇꢊ#(ꢃꢈꢌꢅꢉ#ꢅꢃ#ꢅꢅꢃ!ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ)ꢉꢆ%ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ*ꢋꢆꢉ!ꢋꢁꢇꢃꢌꢁꢆꢉ!ꢅ&ꢃꢉ!ꢃ  
ꢄ!!ꢈ+11'''ꢏ"ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ"1ꢈꢉꢆ%ꢉꢊꢋꢇꢊ  
DS20005533A-page 24  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
8-LeadꢜPlasticꢜDualꢜFlat,ꢜNoꢜLeadꢜPackageꢜ(ꢝN)ꢜ–ꢜ2x3x0.75mmꢜBodyꢜ[TDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
ꢑDATUM Aꢒ  
ꢑDATUM Bꢒ  
NOTE ꢐ  
2X  
0.ꢐ5 C  
2X  
2
0.ꢐ5 C  
TOP VIEW  
0.ꢐ0 C  
ꢑA3ꢒ  
C
A
SEATING  
PLANE  
8X  
Aꢐ  
L
0.08 C  
C A B  
SIDE VIEW  
0.ꢐ0  
D2  
2
0.ꢐ0  
C A B  
NOTE ꢐ  
E2  
K
N
8X b  
0.ꢐ0  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing No. C04-ꢐ29-MN Rev D Sheet 2 of 2  
2016 Microchip Technology Inc.  
DS20005533A-page 25  
MCP2557FD/8FD  
8-LeadꢜPlasticꢜDualꢜFlat,ꢜNoꢜLeadꢜPackageꢜ(ꢝN)ꢜ–ꢜ2x3x0.75mmꢜBodyꢜ[TDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Length  
Overall Width  
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
N
8
0.50 BSC  
0.75  
e
A
Aꢐ  
A3  
D
0.70  
0.00  
0.80  
0.05  
0.02  
0.20 REF  
2.00 BSC  
3.00 BSC  
-
E
D2  
E2  
b
L
K
ꢐ.45  
ꢐ.60  
0.20  
0.25  
0.20  
ꢐ.65  
ꢐ.80  
0.30  
0.45  
-
-
0.25  
0.30  
-
Contact-to-Exposed Pad  
Notes:  
ꢐ. Pin ꢐ visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated  
4. Dimensioning and tolerancing per ASME Yꢐ4.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04-ꢐ29-MN Rev D Sheet 2 of 2  
DS20005533A-page 26  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
8-LeadꢜPlasticꢜDualꢜFlat,ꢜNoꢜLeadꢜPackageꢜ(ꢝN)ꢜ–ꢜ2x3x0.75mmꢜBodyꢜ[TDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X2  
EV  
8
ØV  
C
Y2  
EV  
Yꢐ  
2
SILK SCREEN  
Xꢐ  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.50 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C
ꢐ.65  
ꢐ.80  
2.90  
Contact Pad Width ꢑX8ꢒ  
Contact Pad Length ꢑX8ꢒ  
Thermal Via Diameter  
Thermal Via Pitch  
Xꢐ  
Yꢐ  
V
0.25  
0.85  
0.30  
ꢐ.00  
EV  
Notes:  
ꢐ. Dimensioning and tolerancing per ASME Yꢐ4.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing No. C04-ꢐ29-MN Rev. A  
2016 Microchip Technology Inc.  
DS20005533A-page 27  
MCP2557FD/8FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005533A-page 28  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2016 Microchip Technology Inc.  
DS20005533A-page 29  
MCP2557FD/8FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005533A-page 30  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
APPENDIX A: REVISION HISTORY  
Revision A (March 2016)  
Initial release of this document.  
2016 Microchip Technology Inc.  
DS20005533A-page 31  
MCP2557FD/8FD  
NOTES:  
DS20005533A-page 32  
2016 Microchip Technology Inc.  
MCP2557FD/8FD  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
X
/XX  
PART NO.  
Device  
[X]  
Examples:  
Temperature Package  
Range  
Tape and Reel  
Option  
a) MCP2558FDT-H/MF: Tape and Reel,  
8-lead, Plastic Dual  
Flat No Lead DFN  
package.  
Device:  
MCP2557FD:  
MCP2558FD:  
CAN FD Transceiver w/No  
Connect Pin 5  
CAN FD Transceiver w/VIO  
Connect Pin 5  
b) MCP2557FD-H/SN: 8-lead, Plastic Small  
Outline SOIC pack-  
age.  
c) MCP2558FDT-H/MNY:Tape and Reel,  
8-lead, Plastic Dual  
Flat No Lead TDFN  
package.  
Tape and Reel  
Option:  
Blank = Standard packaging (tube or tray)  
(1)  
T
= Tape and Reel  
Temperature  
Range:  
H
= -40C to +150°C  
Note1: Tape and Reel identifier only appears  
in the catalog part number description.  
This identifier is used for ordering  
purposes and is not printed on the  
device package. Check with your  
Microchip Sales Office for package  
availability with the Tape and Reel  
option.  
Package:  
MF  
=
=
=
Plastic Dual Flat No Lead Package –  
3x3x0.9 mm Body (DFN), 8-lead  
MNY  
SN  
Plastic Dual Flat No Lead Package –  
2x3x0.75 mm Body (TDFN), 8-lead  
Plastic Small Outline (SN) – Narrow,  
3.90 mm, Body (SOIC), 8-lead  
2016 Microchip Technology Inc.  
DS20005533A-page 33  
MCP2557FD/8FD  
NOTES:  
DS20005533A-page 34  
2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,  
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2016, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0443-9  
== ISO/TS 16949 ==  
2016 Microchip Technology Inc.  
DS20005533A-page 35  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.micro-  
chip.com/support  
Web Address:  
www.microchip.com  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS20005533A-page 36  
2016 Microchip Technology Inc.  

相关型号:

MCP2557FDT-H/MF

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2557FDT-H/MNY

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FD-H/MNY

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FD-H/SN

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FDT-H/MF

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2561

High-Speed CAN Transceiver
MICROCHIP

MCP2561-E/MF

DATACOM, NETWORK INTERFACE SUPPORT CIRCUIT
MICROCHIP

MCP2561-E/P

DATACOM, NETWORK INTERFACE SUPPORT CIRCUIT
MICROCHIP

MCP25612FD-E/SL

DATACOM, NETWORK INTERFACE SUPPORT CIRCUIT
MICROCHIP

MCP2561FD

High-Speed CAN Flexible Data Rate Transceiver
MICROCHIP

MCP2561FD-E/MF

High-Speed CAN Flexible Data Rate Transceiver
MICROCHIP

MCP2561FD-E/P

High-Speed CAN Flexible Data Rate Transceiver
MICROCHIP