MCP3201T-I/SN [MICROCHIP]

2.7V 12-Bit A/D Converter with SPI Serial Interface; 2.7V 12位A / D转换器,带有SPI串行接口
MCP3201T-I/SN
型号: MCP3201T-I/SN
厂家: MICROCHIP    MICROCHIP
描述:

2.7V 12-Bit A/D Converter with SPI Serial Interface
2.7V 12位A / D转换器,带有SPI串行接口

转换器
文件: 总28页 (文件大小:473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3201  
2.7V 12-Bit A/D Converter with SPISerial Interface  
Features  
Package Types  
• 12-bit resolution  
MSOP, PDIP, SOIC, TSSOP  
• ±1 LSB max DNL  
• ±1 LSB max INL (MCP3201-B)  
• ±2 LSB max INL (MCP3201-C)  
• On-chip sample and hold  
• SPIserial interface (modes 0,0 and 1,1)  
• Single supply operation: 2.7V - 5.5V  
• 100ksps max. sampling rate at VDD = 5V  
• 50ksps max. sampling rate at VDD = 2.7V  
• Low power CMOS technology  
VREF  
1
8
VDD  
IN+  
IN–  
VSS  
2
3
4
7
6
5
CLK  
DOUT  
CS/SHDN  
• 500 nA typical standby current, 2 µA max.  
• 400 µA max. active current at 5V  
• Industrial temp range: -40°C to +85°C  
• 8-pin MSOP, PDIP, SOIC and TSSOP packages  
Functional Block Diagram  
VSS  
VDD  
VREF  
Applications  
• Sensor Interface  
DAC  
• Process Control  
Comparator  
• Data Acquisition  
12-Bit SAR  
• Battery Operated Systems  
IN+  
IN-  
Sample  
and  
Hold  
Description  
The Microchip Technology Inc. MCP3201 is a succes-  
sive approximation 12-bit Analog-to-Digital (A/D) Con-  
verter with on-board sample and hold circuitry. The  
device provides a single pseudo-differential input. Dif-  
ferential Nonlinearity (DNL) is specified at ±1 LSB, and  
Integral Nonlinearity (INL) is offered in ±1 LSB  
(MCP3201-B) and ±2 LSB (MCP3201-C) versions.  
Communication with the device is done using a simple  
serial interface compatible with the SPI protocol. The  
device is capable of sample rates of up to 100 ksps at  
a clock rate of 1.6 MHz. The MCP3201 operates over  
a broad voltage range (2.7V - 5.5V). Low current  
design permits operation with typical standby and  
active currents of only 500 nA and 300 µA, respec-  
tively. The device is offered in 8-pin MSOP, PDIP,  
TSSOP and 150 mil SOIC packages.  
Shift  
Register  
Control Logic  
CS/SHDN CLK  
DOUT  
© 2007 Microchip Technology Inc.  
DS21290D-page 1  
MCP3201  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
1.1  
Maximum Ratings*  
VDD  
+2.7V to 5.5V Power Supply  
Ground  
VSS  
VDD.........................................................................7.0V  
All inputs and outputs w.r.t. VSS ...... -0.6V to VDD +0.6V  
Storage temperature ..........................-65°C to +150°C  
Ambient temp. with power applied .....-65°C to +125°C  
ESD protection on all pins (HBM).......................> 4 kV  
IN+  
Positive Analog Input  
Negative Analog Input  
Serial Clock  
IN-  
CLK  
DOUT  
CS/SHDN  
VREF  
Serial Data Out  
Chip Select/Shutdown Input  
Reference Voltage Input  
*Notice: Stresses above those listed under “Maximum ratings” may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at those or any other conditions  
above those indicated in the operational listings of this specification is  
not implied. Exposure to maximum rating conditions for extended peri-  
ods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
All parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TAMB = -40°C to +85°C, fSAMPLE = 100 ksps, and fCLK = 16*fSAMPLE  
unless otherwise noted.  
Parameter  
Conversion Rate:  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Conversion Time  
tCONV  
tSAMPLE  
fSAMPLE  
1.5  
12  
clock  
cycles  
Analog Input Sample Time  
Throughput Rate  
clock  
cycles  
100  
50  
ksps  
ksps  
VDD = VREF = 5V  
DD = VREF = 2.7V  
V
DC Accuracy:  
Resolution  
12  
bits  
Integral Nonlinearity  
INL  
±0.75  
±1  
±1  
±2  
LSB  
LSB  
MCP3201-B  
MCP3201-C  
Differential Nonlinearity  
DNL  
±0.5  
±1  
LSB  
No missing codes over  
temperature  
Offset Error  
±1.25  
±1.25  
±3  
±5  
LSB  
LSB  
Gain Error  
Dynamic Performance:  
Total Harmonic Distortion  
THD  
-82  
72  
dB  
dB  
VIN = 0.1V to 4.9V@1 kHz  
VIN = 0.1V to 4.9V@1 kHz  
Signal to Noise and Distortion  
(SINAD)  
SINAD  
Spurious Free Dynamic Range  
Reference Input:  
SFDR  
86  
dB  
VIN = 0.1V to 4.9V@1 kHz  
Voltage Range  
0.25  
VDD  
V
Note 2  
Current Drain  
100  
.001  
150  
3
µA  
µA  
CS = VDD = 5V  
Analog Inputs:  
Input Voltage Range (IN+)  
IN+  
IN-  
IN-  
VREF+IN-  
VSS+100  
V
Input Voltage Range (IN-)  
V
SS-100  
mV  
Leakage Current  
Switch Resistance  
0.001  
1K  
±1  
µA  
W
RSS  
See Figure 4-1  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graph that relates linearity performance to VREF level.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance,  
especially at elevated temperatures. See Section 6.2 for more information.  
DS21290D-page 2  
© 2007 Microchip Technology Inc.  
MCP3201  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
All parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TAMB = -40°C to +85°C, fSAMPLE = 100 ksps, and fCLK = 16*fSAMPLE  
unless otherwise noted.  
Parameter  
Sample Capacitor  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
See Figure 4-1  
CSAMPLE  
20  
pF  
Digital Input/Output:  
Data Coding Format  
High Level Input Voltage  
Straight Binary  
VIH  
VIL  
0.7 VDD  
0.3 VDD  
V
V
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Leakage Current  
VOH  
4.1  
V
IOH = -1 mA, VDD = 4.5V  
IOL = 1 mA, VDD = 4.5V  
VIN = VSS or VDD  
VOL  
0.4  
V
ILI  
-10  
-10  
10  
µA  
µA  
pF  
ILO  
10  
VOUT = VSS or VDD  
Pin Capacitance  
CIN, COUT  
10  
VDD = 5.0V (Note 1)  
(all inputs/outputs)  
TAMB = 25°C, f = 1 MHz  
Timing Parameters:  
Clock Frequency  
fCLK  
1.6  
0.8  
MHz  
MHz  
VDD = 5V (Note 3)  
DD = 2.7V (Note 3)  
V
Clock High Time  
tHI  
tLO  
tSUCS  
tDO  
312  
312  
100  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Low Time  
CS Fall To First Rising CLK Edge  
CLK Fall To Output Data Valid  
CLK Fall To Output Enable  
CS Rise To Output Disable  
200  
200  
100  
See Test Circuits, Figure 1-2  
See Test Circuits, Figure 1-2  
tEN  
tDIS  
See Test Circuits, Figure 1-2  
(Note 1)  
CS Disable Time  
tCSH  
625  
ns  
ns  
D
OUT Rise Time  
t
100  
See Test Circuits, Figure 1-2  
(Note 1)  
R
DOUT Fall Time  
t
100  
ns  
See Test Circuits, Figure 1-2  
F
(Note 1)  
Power Requirements:  
Operating Voltage  
VDD  
IDD  
2.7  
5.5  
V
Operating Current  
300  
210  
400  
µA  
µA  
VDD = 5.0V, DOUT unloaded  
VDD = 2.7V, DOUT unloaded  
Standby Current  
IDDS  
0.5  
2
µA  
CS = VDD = 5.0V  
Temperature Ranges:  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance:  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+85  
°C  
°C  
°C  
+150  
qJA  
qJA  
qJA  
qJA  
85  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
124  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graph that relates linearity performance to VREF level.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance,  
especially at elevated temperatures. See Section 6.2 for more information.  
© 2007 Microchip Technology Inc.  
DS21290D-page 3  
MCP3201  
tCSH  
CS  
tSUCS  
tHI  
tLO  
CLK  
tEN  
tDO  
tDIS  
tR  
tF  
HI-Z  
HI-Z  
DOUT  
MSB OUT  
LSB  
NULL BIT  
FIGURE 1-1: Serial Timing.  
Load circuit for tDIS and tEN  
Load circuit for tR, tF, tDO  
1.4V  
Test Point  
VDD  
tDIS Waveform 2  
tEN Waveform  
3 kΩ  
Test Point  
VDD/2  
3 kΩ  
DOUT  
DOUT  
30 pF  
tDIS Waveform 1  
CL = 30 pF  
VSS  
Voltage Waveforms for tR, tF  
Voltage Waveforms for tEN  
VOH  
VOL  
DOUT  
CS  
tF  
tR  
1
2
3
4
CLK  
DOUT  
B9  
tEN  
Voltage Waveforms for tDO  
Voltage Waveforms for tDIS  
VIH  
CS  
CLK  
DOUT  
Waveform 1*  
90%  
tDO  
tDIS  
DOUT  
10%  
DOUT  
Waveform 2†  
* Waveform 1 is for an output with internal condi-  
tions such that the output is high, unless disabled  
by the output control.  
† Waveform 2 is for an output with internal condi-  
tions such that the output is low, unless disabled  
by the output control.  
FIGURE 1-2: Test Circuits.  
DS21290D-page 4  
© 2007 Microchip Technology Inc.  
MCP3201  
2.0  
TYPICAL PERFORMANCE CHARACTERISTICS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples  
and are provided for informational purposes only. The performance characteristics listed herein are not  
tested or guaranteed. In some graphs, the data presented may be outside the specified operating range  
(e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
2.0  
VDD = VREF = 2.7V  
Positive INL  
0.8  
0.6  
Positive INL  
Negative INL  
1.5  
1.0  
0.4  
0.5  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
0
20  
40  
60  
80  
100  
0
25  
50  
75  
100  
125  
150  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample  
FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample  
Rate.  
Rate (VDD = 2.7V).  
2.0  
1.5  
1.0  
2.0  
VDD = 2.7V  
1.5  
F
SAMPLE = 50 ksps  
1.0  
0.5  
Positive INL  
Positive INL  
0.5  
0.0  
0.0  
-0.5  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
Negative INL  
-1.0  
-1.5  
-2.0  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VREF (V)  
VREF (V)  
FIGURE 2-2: Integral Nonlinearity (INL) vs. VREF.  
FIGURE 2-5: Integral Nonlinearity (INL) vs. VREF  
(VDD = 2.7V).  
1.0  
1.0  
0.8  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
Digital Code  
FIGURE 2-3: Integral Nonlinearity (INL) vs. Code  
FIGURE 2-6: Integral Nonlinearity (INL) vs. Code  
(Representative Part).  
(Representative Part, VDD = 2.7V).  
© 2007 Microchip Technology Inc.  
DS21290D-page 5  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
Positive INL  
F
0.6  
0.6  
Positive INL  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative INL  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-10: Integral  
Nonlinearity  
(INL)  
vs.  
FIGURE 2-7: Integral  
Nonlinearity  
(INL)  
vs.  
Temperature (VDD = 2.7V).  
Temperature.  
1.0  
0.8  
0.6  
0.4  
2.0  
VDD = VREF = 2.7V  
1.5  
1.0  
Positive DNL  
Positive DNL  
0.5  
0.0  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative DNL  
Negative DNL  
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-11: Differential Nonlinearity (DNL) vs.  
FIGURE 2-8: Differential Nonlinearity (DNL) vs.  
Sample Rate (VDD = 2.7V).  
Sample Rate.  
3.0  
2.0  
3.0  
VDD = 2.7V  
2.0  
1.0  
FSAMPLE = 50 ksps  
Positive DNL  
Negative DNL  
1.0  
Positive DNL  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
Negative DNL  
-1.0  
-2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
VREF(V)  
VREF (V)  
FIGURE 2-12: Differential Nonlinearity (DNL) vs. VREF  
(VDD = 2.7V).  
FIGURE 2-9: Differential Nonlinearity (DNL) vs.  
VREF  
.
DS21290D-page 6  
© 2007 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
Digital Code  
FIGURE 2-13: Differential Nonlinearity (DNL) vs.  
FIGURE 2-16: Differential Nonlinearity (DNL) vs.  
Code (Representative Part).  
Code (Representative Part, VDD = 2.7V).  
1.0  
0.8  
0.6  
1.0  
VDD = VREF = 2.7V  
0.8  
FSAMPLE = 50 ksps  
0.6  
Positive DNL  
0.4  
0.4  
Positive DNL  
0.2  
0.0  
0.2  
0.0  
-0.2  
-0.2  
Negative DNL  
Negative DNL  
-0.4  
-0.4  
-0.6  
-0.8  
-1.0  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14: Differential Nonlinearity (DNL) vs.  
FIGURE 2-17: Differential Nonlinearity (DNL) vs.  
Temperature.  
Temperature (VDD = 2.7V).  
20  
18  
5
4
16  
14  
12  
10  
8
VDD = 5V  
VDD = 2.7V  
3
FSAMPLE = 100 ksps  
FSAMPLE = 50 ksps  
2
1
VDD = 2.7V  
6
0
FSAMPLE = 50ksps  
VDD = 5V  
SAMPLE = 100 ksps  
4
-1  
-2  
F
2
0
0
1
2
3
4
5
0
1
2
3
4
5
VREF(V)  
VREF (V)  
FIGURE 2-15: Gain Error vs. VREF  
.
FIGURE 2-18: Offset Error vs. VREF.  
© 2007 Microchip Technology Inc.  
DS21290D-page 7  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
0.8  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.6  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
VDD = VREF = 5V  
SAMPLE = 100 ksps  
0.4  
F
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19: Gain Error vs. Temperature.  
FIGURE 2-22: Offset Error vs. Temperature.  
100  
100  
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
VDD = VREF = 5V  
SAMPLE = 100 ksps  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
F
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
1
10  
100  
1
10  
100  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-20: Signal to Noise Ratio (SNR) vs. Input  
FIGURE 2-23:  
Signal to Noise and Distortion  
Frequency.  
(SINAD) vs. Input Frequency.  
0
-10  
-20  
-30  
80  
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
70  
60  
50  
40  
30  
20  
10  
0
-40  
-50  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
-60  
-70  
-80  
-90  
VDD = VREF = 5V, FSAMPLE = 100 ksps  
10  
-100  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
1
100  
Input Signal Level (dB)  
Input Frequency (kHz)  
FIGURE 2-21: Total Harmonic Distortion (THD) vs.  
FIGURE 2-24:  
Signal to Noise and Distortion  
Input Frequency.  
(SINAD) vs. Input Signal Level.  
DS21290D-page 8  
© 2007 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
12.00  
11.75  
11.50  
11.25  
11.00  
10.75  
10.50  
10.25  
10.00  
9.75  
VDD = 5V  
SAMPLE = 100 ksps  
F
VDD = VREF = 5V  
FSAMPLE =100 ksps  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
9.0  
VDD = 2.7V  
SAMPLE = 50 ksps  
9.50  
9.25  
8.5  
F
9.00  
8.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
1
10  
100  
VREF (V)  
Input Frequency (kHz)  
FIGURE 2-25: Effective Number of Bits (ENOB) vs.  
VREF  
FIGURE 2-28: Effective Number of Bits (ENOB) vs.  
Input Frequency.  
.
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V, FSAMPLE = 100 ksps  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
1
10  
100  
1
10  
100  
1000  
10000  
Input Frequency (kHz)  
Ripple Frequency (kHz)  
FIGURE 2-26: Spurious Free Dynamic Range  
FIGURE 2-29: Power Supply Rejection (PSR) vs.  
(SFDR) vs. Input Frequency.  
Ripple Frequency.  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
FINPUT = 998.76 Hz  
FINPUT = 9.985kHz  
4096 points  
4096 points  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
10000  
20000  
30000  
40000  
50000  
0
5000  
10000  
15000  
20000  
25000  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27: Frequency Spectrum of 10 kHz input  
FIGURE 2-30: Frequency Spectrum of 1 kHz input  
(Representative Part).  
(Representative Part, VDD = 2.7V).  
© 2007 Microchip Technology Inc.  
DS21290D-page 9  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
500  
100  
VREF = VDD  
VREF = VDD  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
All points at FCLK = 1.6 MHz, except  
at VREF = VDD = 2.5V, FCLK = 800 kHz  
All points at FCLK = 1.6 MHz, except  
at VREF = VDD = 2.5V, FCLK = 800 kHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
10000  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
VDD (V)  
FIGURE 2-31: IDD vs. VDD  
.
FIGURE 2-34: IREF vs. VDD  
.
400  
350  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V  
VDD = VREF = 5V  
300  
250  
200  
150  
100  
50  
VDD = VREF = 2.7V  
VDD = VREF = 2.7V  
0
10  
100  
1000  
10  
100  
1000  
10000  
Clock Frequency (kHz)  
Clock Frequency (kHz)  
FIGURE 2-35: IREF vs. Clock Frequency.  
FIGURE 2-32: IDD vs. Clock Frequency.  
400  
100  
VDD = VREF = 5V  
CLK = 1.6 MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V  
FCLK = 1.6 MHz  
350  
300  
250  
200  
150  
100  
50  
F
VDD = VREF = 2.7V  
CLK = 800 kHz  
F
VDD = VREF = 2.7V  
CLK = 800 kHz  
F
0
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-36: IREF vs. Temperature.  
FIGURE 2-33: IDD vs. Temperature.  
DS21290D-page 10  
© 2007 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE,TA = 25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VREF = CS = VDD  
VDD = VREF = 5V  
FCLK = 1.6 MHz  
-50  
-25  
0
25  
50  
75  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Temperature (°C)  
VDD (V)  
FIGURE 2-39: Analog Input Leakage Current vs.  
Temperature.  
FIGURE 2-37: IDDS vs. VDD  
.
100.00  
VDD = VREF = CS = 5V  
10.00  
1.00  
0.10  
0.01  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
FIGURE 2-38: IDDS vs. Temperature.  
© 2007 Microchip Technology Inc.  
DS21290D-page 11  
MCP3201  
In this diagram, it is shown that the source impedance  
(RS) adds to the internal sampling switch (RSS) imped-  
ance, directly affecting the time that is required to  
charge the capacitor (CSAMPLE). Consequently, a larger  
source impedance increases the offset, gain, and inte-  
gral linearity errors of the conversion.  
3.0  
PIN DESCRIPTIONS  
3.1  
IN+  
Positive analog input. This input can vary from IN- to  
VREF + IN-.  
Ideally, the impedance of the signal source should be  
near zero. This is achievable with an operational ampli-  
fier such as the MCP601, which has a closed loop out-  
put impedance of tens of ohms. The adverse affects of  
higher source impedances are shown in Figure 4-2.  
3.2  
IN-  
Negative analog input. This input can vary ±100 mV  
from VSS.  
3.3  
Chip Select/Shutdown (CS/SHDN)  
If the voltage level of IN+ is equal to or less than IN-, the  
resultant code will be 000h. If the voltage at IN+ is equal  
to or greater than {[VREF + (IN-)] - 1 LSB}, then the out-  
put code will be FFFh. If the voltage level at IN- is more  
than 1 LSB below VSS, then the voltage level at the IN+  
input will have to go below VSS to see the 000h output  
code. Conversely, if IN- is more than 1 LSB above  
Vss, then the FFFh code will not be seen unless the  
IN+ input level goes above VREF level.  
The CS/SHDN pin is used to initiate communication  
with the device when pulled low and will end a conver-  
sion and put the device in low power standby when  
pulled high. The CS/SHDN pin must be pulled high  
between conversions.  
3.4  
Serial Clock (CLK)  
The SPI clock pin is used to initiate a conversion and to  
clock out each bit of the conversion as it takes place.  
See Section 6.2 for constraints on clock speed.  
4.2  
Reference Input  
3.5  
Serial Data Output (DOUT)  
The reference input (VREF) determines the analog input  
voltage range and the LSB size, as shown below.  
The SPI serial data output pin is used to shift out the  
results of the A/D conversion. Data will always change  
on the falling edge of each clock as the conversion  
takes place.  
VREF  
LSB Size = ------------  
4096  
As the reference input is reduced, the LSB size is  
reduced accordingly. The theoretical digital output code  
produced by the A/D Converter is a function of the ana-  
log input signal and the reference input as shown  
below.  
4.0  
DEVICE OPERATION  
The MCP3201 A/D Converter employs a conventional  
SAR architecture. With this architecture, a sample is  
acquired on an internal sample/hold capacitor for  
1.5 clock cycles starting on the first rising edge of the  
serial clock after CS has been pulled low. Following this  
sample time, the input switch of the converter opens  
and the device uses the collected charge on the inter-  
nal sample and hold capacitor to produce a serial 12-bit  
digital output code. Conversion rates of 100 ksps are  
possible on the MCP3201. See Section 6.2 for informa-  
tion on minimum clock rates. Communication with the  
device is done using a 3-wire SPI-compatible interface.  
4096*VIN  
Digital Output Code = ------------------------  
VREF  
where:  
VIN = analog input voltage = V(IN+) - V(IN-)  
VREF = reference voltage  
When using an external voltage reference device, the  
system designer should always refer to the manufac-  
turer’s recommendations for circuit layout. Any instabil-  
ity in the operation of the reference device will have a  
direct effect on the operation of the A/D Converter.  
4.1  
Analog Inputs  
The MCP3201 provides a single pseudo-differential  
input. The IN+ input can range from IN- to VREF  
(VREF +IN-). The IN- input is limited to ±100 mV from the  
VSS rail. The IN- input can be used to cancel small sig-  
nal common-mode noise which is present on both the  
IN+ and IN- inputs.  
For the A/D Converter to meet specification, the charge  
holding capacitor (CSAMPLE) must be given enough time  
to acquire a 12-bit accurate voltage level during the  
1.5 clock cycle sampling period. The analog input  
model is shown in Figure 4-1.  
DS21290D-page 12  
© 2007 Microchip Technology Inc.  
MCP3201  
VDD  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
RS = 1 kΩ  
CHx  
SS  
RSS  
CSAMPLE  
= DAC capacitance  
= 20 pF  
CPIN  
7 pF  
ILEAKAGE  
±1 nA  
VA  
VSS  
LEGEND  
VA  
=
=
=
=
=
=
Signal Source  
R
Source Impedance  
Input Channel Pad  
ss  
CHX  
CPIN  
Input Pin Capacitance  
Threshold Voltage  
VT  
ILEAKAGE  
Leakage Current At The Pin  
Due To Various Junctions  
Sampling Switch  
SS  
=
=
=
R
Sampling Switch Resistor  
Sample/hold Capacitance  
s
CSAMPLE  
FIGURE 4-1: Analog Input Model.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
VDD = VREF = 5V  
VDD = VREF = 2.7V  
0.6  
0.4  
0.2  
0.0  
100  
1000  
10000  
Input Resistance (Ohms)  
FIGURE 4-2: Maximum Clock Frequency vs. Input  
Resistance (RS) to maintain less than a 0.1 LSB  
deviation in INL from nominal conditions.  
© 2007 Microchip Technology Inc.  
DS21290D-page 13  
MCP3201  
sion with MSB first, as shown in Figure 5-1. Data is  
always output from the device on the falling edge of the  
clock. If all 12 data bits have been transmitted and the  
device continues to receive clocks while the CS is held  
low, the device will output the conversion result LSB  
first, as shown in Figure 5-2. If more clocks are pro-  
vided to the device while CS is still low (after the LSB  
first data has been transmitted), the device will clock  
out zeros indefinitely.  
5.0  
SERIAL COMMUNICATIONS  
Communication with the device is done using a stan-  
dard SPI-compatible serial interface. Initiating commu-  
nication with the MCP3201 begins with the CS going  
low. If the device was powered up with the CS pin low,  
it must be brought high and back low to initiate commu-  
nication. The device will begin to sample the analog  
input on the first rising edge after CS goes low. The  
sample period will end in the falling edge of the second  
clock, at which time the device will output a low null bit.  
The next 12 clocks will output the result of the conver-  
tCYC  
TCSH  
CS  
POWER  
DOWN  
TSUCS  
CLK  
tDATA**  
tCONV  
B7 B6  
TSAMPLE  
HI-Z  
HI-Z  
NULL  
BIT  
NULL  
BIT  
DOUT  
B11 B10 B9  
B8  
B5  
B4  
B3  
B2  
B1 B0*  
B11 B10 B9  
B8  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output LSB first data, followed  
by zeros indefinitely. See Figure below.  
** tDATA: during this time, the bias current and the comparator power down and the reference input becomes a high impedance  
node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-1: Communication with MCP3201 using MSB first Format.  
tCYC  
tCSH  
CS  
tSUCS  
POWER DOWN  
CLK  
tSAMPLE  
tDATA**  
tCONV  
HI-Z  
HI-Z  
NULL  
BIT  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11*  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely.  
** tDATA: during this time, the bias current and the comparator power down and the reference input becomes a high impedance  
node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-2: Communication with MCP3201 using LSB first Format.  
DS21290D-page 14  
© 2007 Microchip Technology Inc.  
MCP3201  
controller’s receive buffer will contain two unknown bits  
(the output is at high impedance for the first two  
clocks), the null bit and the highest order five bits of the  
conversion. After the second eight clocks have been  
sent to the device, the MCU receive register will contain  
the lowest order seven bits and the B1 bit repeated as  
the A/D Converter has begun to shift out LSB first data  
with the extra clock. Typical procedure would then call  
for the lower order byte of data to be shifted right by one  
bit to remove the extra B1 bit. The B7 bit is then trans-  
ferred from the high order byte to the lower order byte,  
and then the higher order byte is shifted one bit to the  
right as well. Easier manipulation of the converted data  
can be obtained by using this method.  
6.0  
APPLICATIONS INFORMATION  
6.1  
Using the MCP3201 with  
Microcontroller SPI Ports  
With most microcontroller SPI ports, it is required to  
clock out eight bits at a time. If this is the case, it will be  
necessary to provide more clocks than are required for  
the MCP3201. As an example, Figure 6-1 and  
Figure 6-2 show how the MCP3201 can be interfaced  
to a microcontroller with a standard SPI port. Since the  
MCP3201 always clocks data out on the falling edge of  
clock, the MCU SPI port must be configured to match  
this operation. SPI Mode 0,0 (clock idles low) and SPI  
Mode 1,1 (clock idles high) are both compatible with  
the MCP3201. Figure 6-1 depicts the operation shown  
in SPI Mode 0,0, which requires that the CLK from the  
microcontroller idles in the ‘low’ state. As shown in the  
diagram, the MSB is clocked out of the A/D Converter  
on the falling edge of the third clock pulse. After the first  
eight clocks have been sent to the device, the micro-  
Figure 6-2 shows the same thing in SPI Mode 1,1  
which requires that the clock idles in the high state. As  
with mode 0,0, the A/D Converter outputs data on the  
falling edge of the clock and the MCU latches data from  
the A/D Converter in on the rising edge of the clock.  
CS  
MCU latches data from A/D  
Converter on rising edges of SCLK  
CLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
B1  
Data is clocked out of A/D  
Converter on falling edges  
HI-Z  
HI-Z  
B2  
NULL  
BIT  
B11 B10 B9  
B7  
B6  
B5 B4 B3 B2 B1 B0  
B8  
DOUT  
LSB first data begins  
to come out  
?
?
0
B11 B10 B9 B8 B7  
B6 B5 B4 B3 B2 B1 B0 B1  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).  
CS  
MCU latches data from A/D  
Converter on rising edges of SCLK  
CLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13 14  
15  
16  
B1  
Data is clocked out of A/D  
Converter on falling edges  
HI-Z  
HI-Z  
NULL  
BIT  
B11 B10 B9 B8  
B7  
B6 B5 B4 B3 B2 B1 B0  
DOUT  
LSB first data begins  
to come out  
?
?
0
B11 B10 B9 B8 B7  
B6 B5 B4 B3 B2 B1 B0 B1  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-2: SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).  
© 2007 Microchip Technology Inc.  
DS21290D-page 15  
MCP3201  
6.2  
Maintaining Minimum Clock Speed  
6.4  
Layout Considerations  
When the MCP3201 initiates the sample period, charge  
is stored on the sample capacitor. When the sample  
period is complete, the device converts one bit for each  
clock that is received. It is important for the user to note  
that a slow clock rate will allow charge to bleed off the  
sample cap while the conversion is taking place. At  
85°C (worst case condition), the part will maintain  
proper charge on the sample capacitor for at least  
1.2 ms after the sample period has ended. This means  
that the time between the end of the sample period and  
the time that all 12 data bits have been clocked out  
must not exceed 1.2 ms (effective clock frequency of  
10 kHz). Failure to meet this criteria may induce linear-  
ity errors into the conversion outside the rated specifi-  
cations. It should be noted that during the entire  
conversion cycle, the A/D Converter does not require a  
constant clock speed or duty cycle, as long as all timing  
specifications are met.  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
noise wherever possible. A bypass capacitor should  
always be used with this device and should be placed  
as close as possible to the device pin. A bypass capac-  
itor value of 1 µF is recommended.  
Digital and analog traces should be separated as much  
as possible on the board and no traces should run  
underneath the device or the bypass capacitor. Extra  
precautions should be taken to keep traces with high  
frequency signals (such as clock lines) as far as possi-  
ble from analog traces.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors. See Figure 6-4. For more information on layout  
tips when using A/D Converter, refer to AN688 “Layout  
Tips for 12-Bit A/D Converter Applications”.  
6.3  
Buffering/Filtering the Analog Inputs  
If the signal source for the A/D Converter is not a low  
impedance source, it will have to be buffered or inaccu-  
rate conversion results may occur. See Figure 4-2. It is  
also recommended that a filter be used to eliminate any  
signals that may be aliased back into the conversion  
results. This is illustrated in Figure 6-3 where an op  
amp is used to drive the analog input of the MCP3201.  
This amplifier provides a low impedance source for the  
converter input and a low pass filter, which eliminates  
unwanted high frequency noise.  
VDD  
Connection  
Device 4  
Low pass (anti-aliasing) filters can be designed using  
Microchip’s interactive FilterLabsoftware. FilterLab  
will calculate capacitor and resistor values, as well as  
determine the number of poles that are required for the  
application. For more information on filtering signals,  
see the application note AN699 “Anti-Aliasing Analog  
Filters for Data Acquisition Systems.”  
Device 1  
Device 3  
Device 2  
VDD  
FIGURE 6-4: VDD traces arranged in  
configuration in order to reduce errors caused by  
current return paths.  
a
‘Star’  
10 µF  
4.096V  
Reference  
10 µF  
CL  
0.1 µF  
MCP1541  
1 µF  
VREF  
IN+  
MCP3201  
IN-  
C1  
MCP601  
R1  
VIN  
+
R2  
C2  
-
R4  
R3  
FIGURE 6-3: The MCP601 Operational Amplifier is  
used to implement a 2nd order anti-aliasing filter for  
the signal being converted by the MCP3201.  
DS21290D-page 16  
© 2007 Microchip Technology Inc.  
MCP3201  
7.0  
PACKAGING INFORMATION  
7.1  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP3201  
I/PNNN  
e
3
YYWW  
0725  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
MCP3201  
XXXXYYWW  
ISN 0725  
e
3
NNN  
NNN  
Example:  
8-Lead MSOP  
XXXXXX  
3201I  
e
3
YWWNNN  
725NNN  
Example:  
8-Lead TSSOP  
3201  
0725  
NNN  
XXXX  
YYWW  
NNN  
e3  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS21290D-page 17  
MCP3201  
8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
Units  
INCHES  
Dimension Limits  
MIN  
NOM  
8
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
.130  
.310  
.250  
.365  
.130  
.010  
.060  
.018  
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-018B  
DS21290D-page 18  
© 2007 Microchip Technology Inc.  
MCP3201  
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
1.25  
0.10  
§
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-057B  
© 2007 Microchip Technology Inc.  
DS21290D-page 19  
MCP3201  
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
0.65 BSC  
Overall Height  
A
1.10  
0.95  
0.15  
Molded Package Thickness  
Standoff  
A2  
A1  
E
0.75  
0.00  
0.85  
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
0.40  
0.80  
Footprint  
L1  
φ
0.95 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
Lead Width  
c
0.08  
0.23  
0.40  
b
0.22  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-111B  
DS21290D-page 20  
© 2007 Microchip Technology Inc.  
MCP3201  
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
0.65 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
Molded Package Thickness  
Standoff  
A2  
A1  
E
0.80  
0.05  
1.00  
Overall Width  
6.40 BSC  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
4.30  
2.90  
0.45  
4.40  
4.50  
3.10  
0.75  
3.00  
L
0.60  
Footprint  
L1  
φ
1.00 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
c
0.09  
0.20  
0.30  
Lead Width  
b
0.19  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-086B  
© 2007 Microchip Technology Inc.  
DS21290D-page 21  
MCP3201  
NOTES:  
DS21290D-page 22  
© 2007 Microchip Technology Inc.  
MCP3201  
APPENDIX A: REVISION HISTORY  
Revision D (January 2007)  
This revision includes updates to the packaging  
diagrams.  
© 2007 Microchip Technology Inc.  
DS21290D-page 23  
MCP3201  
NOTES:  
DS21290D-page 24  
© 2007 Microchip Technology Inc.  
MCP3201  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature Package  
Range  
a)  
MCP3201-I/P: Industrial Temperature,  
PDIP package.  
b)  
MCP3201-I/SN: Industrial Temperature,  
SOIC package.  
Device:  
MCP3201: 12-Bit A/D Converter w/SPI Interface  
MCP3201T: 12-Bit A/D Converter w/SPI Interface  
(Tape and Reel) (SOIC and TSSOP only)  
c)  
d)  
MCP3201-I/ST: Industrial Temperature,  
TSSOP package.  
MCP3201-I/MS: Industrial Temperature,  
MSOP package.  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
MS  
P
SN  
ST  
=
=
=
=
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic TSSOP (4.4 mm), 8-lead  
© 2007 Microchip Technology Inc.  
DS21290D-page25  
MCP3201  
NOTES:  
DS21290D-page 26  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21290D-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21290D-page 28  
© 2007 Microchip Technology Inc.  

相关型号:

MCP3201T-I/ST

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201_07

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201_08

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/MS

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/P

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/SN

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/ST

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BIP

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BISN

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BIST

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-CI/MS

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP