MCP3208-BI/SL [MICROCHIP]

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface; 2.7V 4通道/ 8通道12位与SPI⑩串行接口的A / D转换器
MCP3208-BI/SL
型号: MCP3208-BI/SL
厂家: MICROCHIP    MICROCHIP
描述:

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface
2.7V 4通道/ 8通道12位与SPI⑩串行接口的A / D转换器

转换器 模数转换器 光电二极管 PC
文件: 总34页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3204/3208  
2.7V 4-Channel/8-Channel 12-Bit A/D Converters  
with SPISerial Interface  
Features  
Description  
• 12-bit resolution  
The Microchip Technology Inc. MCP3204/3208  
devices are successive approximation 12-bit Analog-  
to-Digital (A/D) Converters with on-board sample and  
hold circuitry. The MCP3204 is programmable to pro-  
vide two pseudo-differential input pairs or four single-  
ended inputs. The MCP3208 is programmable to pro-  
vide four pseudo-differential input pairs or eight single-  
ended inputs. Differential Nonlinearity (DNL) is speci-  
fied at ±1 LSB, while Integral Nonlinearity (INL) is  
offered in ±1 LSB (MCP3204/3208-B) and ±2 LSB  
(MCP3204/3208-C) versions.  
• ± 1 LSB max DNL  
• ± 1 LSB max INL (MCP3204/3208-B)  
• ± 2 LSB max INL (MCP3204/3208-C)  
• 4 (MCP3204) or 8 (MCP3208) input channels  
• Analog inputs programmable as single-ended or  
pseudo-differential pairs  
• On-chip sample and hold  
• SPI serial interface (modes 0,0 and 1,1)  
• Single supply operation: 2.7V - 5.5V  
• 100 ksps max. sampling rate at VDD = 5V  
• 50 ksps max. sampling rate at VDD = 2.7V  
• Low power CMOS technology:  
Communication with the devices is accomplished using  
a simple serial interface compatible with the SPI proto-  
col. The devices are capable of conversion rates of up  
to 100 ksps. The MCP3204/3208 devices operate over  
a broad voltage range (2.7V - 5.5V). Low current  
design permits operation with typical standby and  
active currents of only 500 nA and 320 µA, respec-  
tively. The MCP3204 is offered in 14-pin PDIP, 150 mil  
SOIC and TSSOP packages. The MCP3208 is offered  
in 16-pin PDIP and SOIC packages.  
- 500 nA typical standby current, 2 µA max.  
- 400 µA max. active current at 5V  
• Industrial temp range: -40°C to +85°C  
• Available in PDIP, SOIC and TSSOP packages  
Applications  
• Sensor Interface  
Functional Block Diagram  
• Process Control  
VSS  
VDD  
• Data Acquisition  
VREF  
• Battery Operated Systems  
CH0  
CH1  
Input  
Channel  
Mux  
Package Types  
PDIP, SOIC, TSSOP  
DAC  
CH7*  
Comparator  
CH0  
CH1  
CH2  
CH3  
NC  
1
2
3
4
5
6
7
14  
13  
VDD  
VREF  
12-Bit SAR  
Sample  
12 AGND  
and  
CLK  
11  
10  
9
Hold  
DOUT  
DIN  
Shift  
Register  
NC  
Control Logic  
DGND  
8
CS/SHDN  
PDIP, SOIC  
CS/SHDN DIN  
CLK  
DOUT  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
16 VDD  
VREF  
15  
14 AGND  
13 CLK  
* Note: Channels 5-7 available on MCP3208 Only  
2
3
4
5
12 DOUT  
DIN  
6
7
8
11  
10  
9
CS/SHDN  
DGND  
© 2007 Microchip Technology Inc.  
DS21298D-page 1  
MCP3204/3208  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
Absolute Maximum Ratings*  
VDD  
+2.7V to 5.5V Power Supply  
Digital Ground  
DGND  
AGND  
CH0-CH7  
CLK  
V
...................................................................................7.0V  
DD  
Analog Ground  
All inputs and outputs w.r.t. V ............... -0.6V to V +0.6V  
SS  
DD  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied ................-65°C to +125°C  
Soldering temperature of leads (10 seconds) .............+300°C  
ESD protection on all pins.............................................> 4 kV  
Analog Inputs  
Serial Clock  
DIN  
Serial Data In  
DOUT  
Serial Data Out  
*Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operation listings of this specification is not implied. Exposure  
to maximum rating conditions for extended periods may affect  
device reliability.  
CS/SHDN  
VREF  
Chip Select/Shutdown Input  
Reference Voltage Input  
ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, VREF = 5V,  
AMB = -40°C to +85°C,fSAMPLE = 100 ksps and fCLK = 20*fSAMPLE  
T
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Conversion Rate  
Conversion Time  
tCONV  
12  
clock  
cycles  
Analog Input Sample Time  
Throughput Rate  
tSAMPLE  
fSAMPLE  
1.5  
clock  
cycles  
100  
50  
ksps VDD = VREF = 5V  
ksps VDD = VREF = 2.7V  
DC Accuracy  
Resolution  
12  
bits  
Integral Nonlinearity  
INL  
±0.75  
±1.0  
±1  
±2  
LSB MCP3204/3208-B  
MCP3204/3208-C  
Differential Nonlinearity  
DNL  
±0.5  
±1  
LSB No missing codes  
over-temperature  
Offset Error  
±1.25  
±1.25  
±3  
±5  
LSB  
LSB  
Gain Error  
Dynamic Performance  
Total Harmonic Distortion  
-82  
72  
dB VIN = 0.1V to 4.9V@1 kHz  
dB VIN = 0.1V to 4.9V@1 kHz  
Signal to Noise and Distortion  
(SINAD)  
Spurious Free Dynamic  
Range  
86  
dB VIN = 0.1V to 4.9V@1 kHz  
Reference Input  
Voltage Range  
Current Drain  
0.25  
VDD  
V
Note 2  
100  
0.001  
150  
3.0  
µA  
µA CS = VDD = 5V  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graphs that relate linearity performance to VREF levels.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity  
performance, particularly at elevated temperatures. See Section 6.2, “Maintaining Minimum Clock Speed”,  
for more information.  
DS21298D-page 2  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, VREF = 5V,  
TAMB = -40°C to +85°C,fSAMPLE = 100 ksps and fCLK = 20*fSAMPLE  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Analog Inputs  
Input Voltage Range for CH0-  
CH7 in Single-Ended Mode  
VSS  
VREF  
V
Input Voltage Range for IN+ in  
pseudo-differential Mode  
Input Voltage Range for IN- in  
pseudo-differential Mode  
IN-  
V
REF+IN-  
V
SS-100  
VSS+100  
mV  
Leakage Current  
0.001  
1000  
20  
±1  
µA  
Ω
Switch Resistance  
See Figure 4-1  
Sample Capacitor  
pF  
See Figure 4-1  
Digital Input/Output  
Data Coding Format  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Leakage Current  
Straight Binary  
VIH  
VIL  
0.7 VDD  
0.3 VDD  
V
V
V
V
VOH  
VOL  
4.1  
IOH = -1 mA, VDD = 4.5V  
IOL = 1 mA, VDD = 4.5V  
0.4  
ILI  
-10  
-10  
10  
µA VIN = VSS or VDD  
µA VOUT = VSS or VDD  
ILO  
10  
Pin Capacitance  
(All Inputs/Outputs)  
CIN,COUT  
10  
pF  
VDD = 5.0V (Note 1)  
TAMB = 25°C, f = 1 MHz  
Timing Parameters  
Clock Frequency  
fCLK  
2.0  
1.0  
MHz VDD = 5V (Note 3)  
MHz  
VDD = 2.7V (Note 3)  
Clock High Time  
Clock Low Time  
tHI  
tLO  
250  
250  
100  
ns  
ns  
CS Fall To First Rising CLK  
Edge  
tSUCS  
ns  
Data Input Setup Time  
Data Input Hold Time  
CLK Fall To Output Data Valid  
CLK Fall To Output Enable  
CS Rise To Output Disable  
CS Disable Time  
tSU  
tHD  
tDO  
tEN  
tDIS  
tCSH  
tR  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
200  
200  
100  
See Figures 1-2 and 1-3  
See Figures 1-2 and 1-3  
See Figures 1-2 and 1-3  
500  
DOUT Rise Time  
100  
100  
See Figures 1-2 and 1-3 (Note 1)  
See Figures 1-2 and 1-3 (Note 1)  
DOUT Fall Time  
tF  
Power Requirements  
Operating Voltage  
VDD  
IDD  
2.7  
5.5  
V
Operating Current  
320  
225  
400  
µA VDD=VREF = 5V, DOUT unloaded  
VDD=VREF = 2.7V, DOUT unloaded  
Standby Current  
IDDS  
0.5  
2.0  
µA CS = VDD = 5.0V  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graphs that relate linearity performance to VREF levels.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity  
performance, particularly at elevated temperatures. See Section 6.2, “Maintaining Minimum Clock Speed”,  
for more information.  
© 2007 Microchip Technology Inc.  
DS21298D-page 3  
MCP3204/3208  
ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, VREF = 5V,  
TAMB = -40°C to +85°C,fSAMPLE = 100 ksps and fCLK = 20*fSAMPLE  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
TA  
TA  
-40  
-40  
+85  
+85  
°C  
°C  
Operating Temperature  
Range  
Storage Temperature Range  
TA  
-65  
+150  
°C  
Thermal Package Resistance  
Thermal Resistance,  
14L-PDIP  
θJA  
θJA  
θJA  
θJA  
θJA  
70  
108  
100  
70  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance,  
14L-SOIC  
Thermal Resistance,  
14L-TSSOP  
Thermal Resistance,  
16L-PDIP  
Thermal Resistance,  
16L-SOIC  
90  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graphs that relate linearity performance to VREF levels.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity  
performance, particularly at elevated temperatures. See Section 6.2, “Maintaining Minimum Clock Speed”,  
for more information.  
t
CSH  
CS  
t
SUCS  
t
t
LO  
HI  
CLK  
t
t
HD  
SU  
D
IN  
MSB IN  
t
t
t
DIS  
t
R
F
DO  
t
EN  
D
OUT  
Null Bit  
MSB OUT  
LSB  
FIGURE 1-1:  
Serial Interface Timing.  
DS21298D-page 4  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
Test Point  
1.4V  
V
DD  
t
t
DIS Waveform 2  
Waveform  
3 kΩ  
Test Point  
V
/2  
3 kΩ  
DD  
t
D
D
EN  
OUT  
OUT  
100 pF  
DIS Waveform 1  
C = 100 pF  
L
V
SS  
Voltage Waveforms for t , t  
R
F
Voltage Waveforms for t  
EN  
V
OH  
V
OL  
D
OUT  
CS  
t
t
F
R
1
2
3
4
CLK  
Voltage Waveforms for t  
DO  
B11  
D
OUT  
CLK  
t
EN  
t
DO  
Voltage Waveforms for t  
DIS  
D
OUT  
V
IH  
CS  
D
FIGURE 1-2:  
Load Circuit for tR, tF, tDO.  
OUT  
90%  
10%  
Waveform 1*  
T
DIS  
D
OUT  
Waveform 2†  
* Waveform 1 is for an output with internal  
conditions such that the output is high,  
unless disabled by the output control.  
Waveform 2 is for an output with internal  
conditions such that the output is low,  
unless disabled by the output control.  
FIGURE 1-3:  
Load circuit for tDIS and tEN.  
© 2007 Microchip Technology Inc.  
DS21298D-page 5  
MCP3204/3208  
2.0  
TYPICAL PERFORMANCE CHARACTERISTICS  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
1.0  
2.0  
VDD = VREF = 2.7 V  
0.8  
0.6  
Positive INL  
1.5  
1.0  
0.4  
Positive INL  
0.5  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
Negative INL  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
25  
50  
75  
100  
125  
150  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-1:  
Integral Nonlinearity (INL)  
FIGURE 2-4:  
Integral Nonlinearity (INL)  
vs. Sample Rate.  
vs. Sample Rate (VDD = 2.7V).  
2.5  
2.0  
1.5  
1.0  
2.0  
1.5  
Positive INL  
1.0  
Positive INL  
0.5  
0.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
Negative INL  
-1.0  
Negative INL  
-1.5  
-2.0  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VREF (V)  
VREF (V)  
FIGURE 2-2:  
vs. VREF  
Integral Nonlinearity (INL)  
FIGURE 2-5:  
vs. VREF (VDD = 2.7V).  
Integral Nonlinearity (INL)  
.
1.0  
1.0  
0.8  
VDD = VREF = 2.7 V  
0.8  
FSAMPLE = 50 ksps  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512  
1024 1536 2048 2560 3072 3584 4096  
Digital Code  
0
512  
1024 1536 2048 2560 3072 3584 4096  
Digital Code  
FIGURE 2-3:  
Integral Nonlinearity (INL)  
FIGURE 2-6:  
Integral Nonlinearity (INL)  
vs. Code (Representative Part).  
vs. Code (Representative Part, VDD = 2.7V).  
DS21298D-page 6  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
Note: Unless otherwise indicated, VDD = VREF = 5 V, VSS = 0 V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7 V  
FSAMPLE = 50 ksps  
Positive INL  
0.6  
0.6  
Positive INL  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative INL  
25  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
Integral Nonlinearity (INL)  
FIGURE 2-10:  
Integral Nonlinearity (INL)  
vs. Temperature.  
vs. Temperature (VDD = 2.7V).  
2.0  
1.0  
0.8  
VDD = VREF = 2.7 V  
1.5  
0.6  
1.0  
0.5  
0.4  
0.2  
Positive DNL  
Positive DNL  
Negative DNL  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative DNL  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
80  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-8:  
Differential Nonlinearity  
FIGURE 2-11:  
Differential Nonlinearity  
(DNL) vs. Sample Rate.  
(DNL) vs. Sample Rate (VDD = 2.7V).  
3.0  
2.0  
3.0  
VDD = VREF = 2.7 V  
F
SAMPLE = 50 ksps  
2.0  
1.0  
Positive DNL  
1.0  
Positive DNL  
0.0  
0.0  
Negative DNL  
Negative DNL  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VREF (V)  
VREF (V)  
FIGURE 2-9:  
(DNL) vs. VREF  
Differential Nonlinearity  
FIGURE 2-12:  
(DNL) vs. VREF (VDD = 2.7V).  
Differential Nonlinearity  
.
© 2007 Microchip Technology Inc.  
DS21298D-page 7  
MCP3204/3208  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7 V  
SAMPLE = 50 ksps  
F
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512  
1024 1536 2048 2560 3072 3584 4096  
Digital Code  
0
512  
1024 1536 2048 2560 3072 3584 4096  
Digital Code  
FIGURE 2-13:  
Differential Nonlinearity  
FIGURE 2-16:  
Differential Nonlinearity  
(DNL) vs. Code (Representative Part).  
(DNL) vs. Code (Representative Part, VDD  
2.7V).  
=
1.0  
0.8  
0.6  
1.0  
VDD = VREF = 2.7 V  
0.8  
FSAMPLE = 50 ksps  
0.6  
0.4  
0.4  
Positive DNL  
Positive DNL  
0.2  
0.0  
0.2  
0.0  
-0.2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.4  
Negative DNL  
Negative DNL  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
Differential Nonlinearity  
FIGURE 2-17:  
Differential Nonlinearity  
(DNL) vs. Temperature.  
(DNL) vs. Temperature (VDD = 2.7V).  
4
3
20  
18  
16  
VDD = VREF = 2.7 V  
SAMPLE = 50 ksps  
F
2
1
VDD = VREF = 5V  
14  
FSAMPLE = 100 ksps  
12  
10  
8
0
-1  
-2  
-3  
-4  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
6
VDD = VREF = 5 V  
SAMPLE = 100 ksps  
4
F
2
0
0
1
2
3
4
5
0
1
2
3
4
5
VREF (V)  
VREF (V)  
FIGURE 2-15:  
Gain Error vs. VREF.  
FIGURE 2-18:  
Offset Error vs. VREF.  
DS21298D-page 8  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.2  
0.0  
VDD = VREF = 2.7 V  
FSAMPLE = 50 ksps  
VDD = VREF = 5 V  
FSAMPLE = 100 ksps  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
VDD = VREF = 2.7 V  
FSAMPLE = 50 ksps  
VDD = VREF = 5 V  
F
SAMPLE = 100 ksps  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Gain Error vs. Temperature.  
FIGURE 2-22:  
Offset Error vs.  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
VDD = VREF = 5 V  
SAMPLE = 100 ksps  
VDD = VREF = 5 V  
F
F
SAMPLE = 100 ksps  
80  
70  
60  
VDD = VREF = 2.7 V  
SAMPLE = 50 ksps  
50  
40  
30  
20  
10  
0
F
VDD = VREF = 2.7V  
F
SAMPLE = 50 ksps  
0
1
10  
100  
1
10  
100  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-20:  
Signal to Noise (SNR) vs.  
FIGURE 2-23:  
Signal to Noise and  
Input Frequency.  
Distortion (SINAD) vs. Input Frequency.  
0
-10  
-20  
-30  
-40  
80  
VDD = VREF = 5 V  
FSAMPLE = 100 ksps  
70  
60  
50  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
VDD = VREF = 2.7 V  
SAMPLE = 50 ksps  
-50  
-60  
F
40  
30  
20  
10  
0
-70  
-80  
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
-90  
-100  
1
10  
100  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Frequency (kHz)  
Input Signal Level (dB)  
FIGURE 2-21:  
Total Harmonic Distortion  
FIGURE 2-24:  
Signal to Noise and  
(THD) vs. Input Frequency.  
Distortion (SINAD) vs. Input Signal Level.  
© 2007 Microchip Technology Inc.  
DS21298D-page 9  
MCP3204/3208  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
12.0  
12.00  
11.75  
11.50  
11.25  
11.00  
10.75  
10.50  
10.25  
10.00  
9.75  
11.5  
11.0  
10.5  
10.0  
9.5  
VDD = VREF = 5 V  
FSAMPLE =100 ksps  
VDD = VREF = 5 V  
SAMPLE = 100 ksps  
VDD = VREF = 2.7 V  
SAMPLE = 50 ksps  
F
F
VDD = VREF = 2.7 V  
FSAMPLE = 50 ksps  
9.0  
9.50  
8.5  
9.25  
9.00  
8.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VREF (V)  
1
10  
100  
Input Frequency (kHz)  
FIGURE 2-25:  
Effective Number of Bits  
FIGURE 2-28:  
Effective Number of Bits  
(ENOB) vs. VREF  
.
(ENOB) vs. Input Frequency.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
90  
VDD = VREF = 5 V  
FSAMPLE = 100 ksps  
80  
70  
60  
VDD = VREF = 2.7 V  
SAMPLE = 50 ksps  
50  
40  
30  
20  
10  
0
F
1
10  
100  
1000  
10000  
1
10  
100  
Input Frequency (kHz)  
Ripple Frequency (kHz)  
FIGURE 2-26:  
Spurious Free Dynamic  
FIGURE 2-29:  
Power Supply Rejection  
Range (SFDR) vs. Input Frequency.  
(PSR) vs. Ripple Frequency.  
0
-10  
0
VDD = VREF = 5 V  
VDD = VREF = 2.7 V  
FSAMPLE = 50 ksps  
-10  
-20  
F
F
SAMPLE = 100 ksps  
INPUT = 9.985 kHz  
-20  
F
INPUT = 998.76 Hz  
-30  
-30  
4096 points  
4096 points  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
5000  
10000  
15000  
20000  
25000  
0
10000  
20000  
30000  
40000  
50000  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27:  
Frequency Spectrum of  
FIGURE 2-30:  
Frequency Spectrum of  
10 kHz input (Representative Part).  
1 kHz input (Representative Part, VDD = 2.7V).  
DS21298D-page 10  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VREF = VDD  
All points at FCLK = 2 MHz except  
at VREF = VDD = 2.5 V, FCLK = 1 MHz  
VREF = VDD  
All points at FCLK = 2 MHz, except  
at VREF = VDD = 2.5 V, FCLK = 1 MHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
VDD (V)  
FIGURE 2-31:  
IDD vs. VDD  
.
FIGURE 2-34:  
IREF vs. VDD.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
400  
350  
300  
250  
200  
150  
100  
50  
VDD = VREF = 5 V  
VDD = VREF = 5 V  
VDD = VREF = 2.7 V  
VDD = VREF = 2.7 V  
0
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Clock Frequency (kHz)  
Clock Frequency (kHz)  
FIGURE 2-32:  
IDD vs. Clock Frequency.  
FIGURE 2-35:  
IREF vs. Clock Frequency.  
400  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5 V  
FCLK = 2 MHz  
VDD = VREF = 5 V  
FCLK = 2 MHz  
350  
300  
250  
200  
150  
100  
50  
VDD = VREF = 2.7 V  
CLK = 1 MHz  
F
VDD = VREF = 2.7 V  
CLK = 1 MHz  
F
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-33:  
IDD vs. Temperature.  
FIGURE 2-36:  
IREF vs. Temperature.  
© 2007 Microchip Technology Inc.  
DS21298D-page 11  
MCP3204/3208  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE,TA = 25°C.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
VREF = CS = VDD  
VDD = VREF = 5 V  
CLK = 2 MHz  
F
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-50  
-25  
0
25  
50  
75  
100  
VDD (V)  
Temperature (°C)  
FIGURE 2-37:  
IDDS vs. VDD  
.
FIGURE 2-39:  
Analog Input Leakage  
Current vs. Temperature.  
100.00  
VDD = VREF = CS = 5 V  
10.00  
1.00  
0.10  
0.01  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
FIGURE 2-38:  
IDDS vs. Temperature.  
DS21298D-page 12  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
3.7  
Chip Select/Shutdown (CS/SHDN)  
3.0  
PIN DESCRIPTIONS  
The CS/SHDN pin is used to initiate communication  
with the device when pulled low and will end a conver-  
sion and put the device in low power standby when  
pulled high. The CS/SHDN pin must be pulled high  
between conversions.  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Name  
PIN FUNCTION TABLE  
Function  
VDD  
+2.7V to 5.5V Power Supply  
Digital Ground  
DGND  
AGND  
CH0-CH7  
CLK  
4.0  
DEVICE OPERATION  
Analog Ground  
The MCP3204/3208 A/D converters employ a conven-  
tional SAR architecture. With this architecture, a sam-  
ple is acquired on an internal sample/hold capacitor for  
1.5 clock cycles starting on the fourth rising edge of the  
serial clock after the start bit has been received. Fol-  
lowing this sample time, the device uses the collected  
charge on the internal sample/hold capacitor to pro-  
duce a serial 12-bit digital output code. Conversion  
rates of 100 ksps are possible on the MCP3204/3208.  
See Section 6.2, “Maintaining Minimum Clock Speed”,  
for information on minimum clock rates. Communica-  
tion with the device is accomplished using a 4-wire SPI-  
compatible interface.  
Analog Inputs  
Serial Clock  
DIN  
Serial Data In  
DOUT  
Serial Data Out  
CS/SHDN  
VREF  
Chip Select/Shutdown Input  
Reference Voltage Input  
3.1  
DGND  
Digital ground connection to internal digital circuitry.  
3.2  
AGND  
4.1  
Analog Inputs  
Analog ground connection to internal analog circuitry.  
The MCP3204/3208 devices offer the choice of using  
the analog input channels configured as single-ended  
inputs or pseudo-differential pairs. The MCP3204 can  
be configured to provide two pseudo-differential input  
pairs or four single-ended inputs, while the MCP3208  
can be configured to provide four pseudo-differential  
input pairs or eight single-ended inputs. Configuration  
is done as part of the serial command before each con-  
version begins. When used in the pseudo-differential  
mode, each channel pair (i.e., CH0 and CH1, CH2 and  
CH3 etc.) is programmed to be the IN+ and IN- inputs  
as part of the command string transmitted to the  
device. The IN+ input can range from IN- to (VREF + IN-  
). The IN- input is limited to ±100 mV from the VSS rail.  
The IN- input can be used to cancel small signal com-  
mon-mode noise which is present on both the IN+ and  
IN- inputs.  
3.3  
CH0 - CH7  
Analog inputs for channels 0 - 7 for the multiplexed  
inputs. Each pair of channels can be programmed to be  
used as two independent channels in single-ended  
mode or as a single pseudo-differential input, where  
one channel is IN+ and one channel is IN. See  
Section 4.1, “Analog Inputs”, and Section 5.0, “Serial  
Communications”, for information on programming the  
channel configuration.  
3.4  
Serial Clock (CLK)  
The SPI clock pin is used to initiate a conversion and  
clock out each bit of the conversion as it takes place.  
See Section 6.2, “Maintaining Minimum Clock Speed”,  
for constraints on clock speed.  
When operating in the pseudo-differential mode, if the  
voltage level of IN+ is equal to or less than IN-, the  
resultant code will be 000h. If the voltage at IN+ is  
equal to or greater than {[VREF + (IN-)] - 1 LSB}, then  
the output code will be FFFh. If the voltage level at IN-  
is more than 1 LSB below VSS, the voltage level at the  
IN+ input will have to go below VSS to see the 000h  
output code. Conversely, if IN- is more than 1 LSB  
above VSS, then the FFFh code will not be seen unless  
the IN+ input level goes above VREF level.  
3.5  
Serial Data Input (DIN)  
The SPI port serial data input pin is used to load  
channel configuration data into the device.  
3.6  
Serial Data Output (DOUT)  
The SPI serial data output pin is used to shift out the  
results of the A/D conversion. Data will always change  
on the falling edge of each clock as the conversion  
takes place.  
For the A/D converter to meet specification, the charge  
holding capacitor (CSAMPLE) must be given enough  
time to acquire a 12-bit accurate voltage level during  
the 1.5 clock cycle sampling period. The analog input  
model is shown in Figure 4-1.  
© 2007 Microchip Technology Inc.  
DS21298D-page 13  
MCP3204/3208  
This diagram illustrates that the source impedance (RS)  
adds to the internal sampling switch (RSS) impedance,  
directly effecting the time that is required to charge the  
capacitor (Csample). Consequently, larger source  
impedances increase the offset, gain and integral  
linearity errors of the conversion (see Figure 4-2).  
EQUATION  
Digital Output Code =  
4096 × VIN  
--------------------------  
VREF  
VIN = analog input voltage  
REF = reference voltage  
V
4.2  
Reference Input  
When using an external voltage reference device, the  
system designer should always refer to the manufac-  
turer’s recommendations for circuit layout. Any instabil-  
ity in the operation of the reference device will have a  
direct effect on the operation of the A/D converter.  
For each device in the family, the reference input  
(VREF) determines the analog input voltage range. As  
the reference input is reduced, the LSB size is reduced  
accordingly. The theoretical digital output code pro-  
duced by the A/D converter is a function of the analog  
input signal and the reference input, as shown below.  
VDD  
Sampling  
Switch  
VT = 0.6V  
RS = 1 kΩ  
CHx  
RSS  
SS  
CSAMPLE  
= DAC capacitance  
= 20 pF  
CPIN  
7 pF  
ILEAKAGE  
VA  
VT = 0.6V  
±1 nA  
VSS  
Legend  
VA  
Signal Source  
Leakage Current At The Pin  
Due To Various Junctions  
=
I
=
leakage  
SS  
Source Impedance  
Input Channel Pad  
Input Pin Capacitance  
Threshold Voltage  
Sampling switch  
R
=
=
=
=
=
=
=
ss  
CHx  
Sampling switch resistor  
Sample/hold capacitance  
R
s
C
C
pin  
sample  
V
t
FIGURE 4-1:  
Analog Input Model.  
2.5  
2.0  
1.5  
1.0  
0.5  
VDD = 5 V  
VDD = 2.7 V  
0.0  
100  
1000  
10000  
Input Resistance (Ohms)  
FIGURE 4-2:  
Maximum Clock Frequency  
vs. Input resistance (RS) to maintain less than a  
0.1 LSB deviation in INL from nominal  
conditions.  
DS21298D-page 14  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
TABLE 5-1:  
CONFIGURATION BITS FOR  
THE MCP3204  
5.0  
SERIAL COMMUNICATIONS  
Communication with the MCP3204/3208 devices is  
accomplished using a standard SPI-compatible serial  
interface. Initiating communication with either device is  
done by bringing the CS line low (see Figure 5-1). If the  
device was powered up with the CS pin low, it must be  
brought high and back low to initiate communication.  
The first clock received with CS low and DIN high will  
constitute a start bit. The SGL/DIFF bit follows the start  
bit and will determine if the conversion will be done  
using single-ended or differential input mode. The next  
three bits (D0, D1 and D2) are used to select the input  
channel configuration. Table 5-1 and Table 5-2 show  
the configuration bits for the MCP3204 and MCP3208,  
respectively. The device will begin to sample the ana-  
log input on the fourth rising edge of the clock after the  
start bit has been received. The sample period will end  
on the falling edge of the fifth clock following the start  
bit.  
Control Bit  
Selections  
Input  
Channel  
Configuration Selection  
Single/  
D2* D1 D0  
Diff  
1
1
1
1
0
X
X
X
X
X
0
0
1
1
0
0
1
0
1
0
single-ended  
single-ended  
single-ended  
single-ended  
differential  
CH0  
CH1  
CH2  
CH3  
CH0 = IN+  
CH1 = IN-  
0
0
0
X
X
X
0
1
1
1
0
1
differential  
differential  
differential  
CH0 = IN-  
CH1 = IN+  
CH2 = IN+  
CH3 = IN-  
CH2 = IN-  
CH3 = IN+  
Once the D0 bit is input, one more clock is required to  
complete the sample and hold period (DIN is a “don’t  
care” for this clock). On the falling edge of the next  
clock, the device will output a low null bit. The next 12  
clocks will output the result of the conversion with MSB  
first, as shown in Figure 5-1. Data is always output from  
the device on the falling edge of the clock. If all 12 data  
bits have been transmitted and the device continues to  
receive clocks while the CS is held low, the device will  
output the conversion result LSB first, as shown in  
Figure 5-2. If more clocks are provided to the device  
while CS is still low (after the LSB first data has been  
transmitted), the device will clock out zeros indefinitely.  
* D2 is a “don’t care” for MCP3204  
TABLE 5-2:  
CONFIGURATION BITS FOR  
THE MCP3208  
Control Bit  
Selections  
Input  
Channel  
Configuration Selection  
Single  
D2 D1 D0  
/Diff  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
single-ended  
single-ended  
single-ended  
single-ended  
single-ended  
single-ended  
single-ended  
single-ended  
differential  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
If necessary, it is possible to bring CS low and clock in  
leading zeros on the DIN line before the start bit. This is  
often done when dealing with microcontroller-based  
SPI ports that must send 8 bits at a time. Refer to  
Section 6.1 for more details on using the MCP3204/  
3208 devices with hardware SPI ports.  
CH0 = IN+  
CH1 = IN-  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
differential  
differential  
differential  
differential  
differential  
differential  
differential  
CH0 = IN-  
CH1 = IN+  
CH2 = IN+  
CH3 = IN-  
CH2 = IN-  
CH3 = IN+  
CH4 = IN+  
CH5 = IN-  
CH4 = IN-  
CH5 = IN+  
CH6 = IN+  
CH7 = IN-  
CH6 = IN-  
CH7 = IN+  
© 2007 Microchip Technology Inc.  
DS21298D-page 15  
MCP3204/3208  
t
t
CYC  
CYC  
t
CSH  
CS  
t
SUCS  
CLK  
SGL/  
DIFF  
SGL/  
DIFF  
D
Don’t Care  
Start  
Start  
D2 D1 D0  
D2  
IN  
HI-Z  
HI-Z  
Null  
Bit  
D
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*  
OUT  
t
CONV  
t
t
**  
SAMPLE  
DATA  
* After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output LSB  
first data, followed by zeros indefinitely (see Figure 5-2 below).  
** tDATA: during this time, the bias current and the comparator power down while the reference input becomes  
a high impedance node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-1:  
Communication with the MCP3204 or MCP3208.  
t
CYC  
t
CSH  
CS  
t
SUCS  
Power Down  
CLK  
Start  
D
Don’t Care  
D2 D1 D0  
IN  
SGL/  
DIFF  
HI-Z  
*
Null  
Bit  
HI-Z  
B11  
B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11  
B10 B9  
D
OUT  
(MSB)  
t
**  
t
DATA  
CONV  
t
SAMPLE  
* After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output zeros  
indefinitely.  
** tDATA: During this time, the bias circuit and the comparator power down while the reference input becomes a  
high impedance node, leaving the CLK running to clock out LSB first data or zeroes.  
FIGURE 5-2:  
Communication with MCP3204 or MCP3208 in LSB First Format.  
DS21298D-page 16  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
6.0  
6.1  
APPLICATIONS INFORMATION  
Using the MCP3204/3208 with  
Microcontroller (MCU) SPI Ports  
With most microcontroller SPI ports, it is required to  
send groups of eight bits. It is also required that the  
microcontroller SPI port be configured to clock out data  
on the falling edge of clock and latch data in on the ris-  
ing edge. Because communication with the MCP3204/  
3208 devices may not need multiples of eight clocks, it  
will be necessary to provide more clocks than are  
required. This is usually done by sending ‘leading  
zeros’ before the start bit. As an example, Figure 6-1  
and Figure 6-2 illustrate how the MCP3204/3208 can  
be interfaced to a MCU with a hardware SPI port.  
Figure 6-1 depicts the operation shown in SPI Mode  
0,0, which requires that the SCLK from the MCU idles  
in the ‘low’ state, while Figure 6-2 shows the similar  
case of SPI Mode 1,1, where the clock idles in the ‘high’  
state.  
As is shown in Figure 6-1, the first byte transmitted to  
the A/D converter contains five leading zeros before  
the start bit. Arranging the leading zeros this way  
allows the output 12 bits to fall in positions easily  
manipulated by the MCU. The MSB is clocked out of  
the A/D converter on the falling edge of clock number  
12. Once the second eight clocks have been sent to the  
device, the MCU’s receive buffer will contain three  
unknown bits (the output is at high impedance for the  
first two clocks), the null bit and the highest order four  
bits of the conversion. Once the third byte has been  
sent to the device, the receive register will contain the  
lowest order eight bits of the conversion results.  
Employing this method ensures simpler manipulation  
of the converted data.  
Figure 6-2 shows the same thing in SPI Mode 1,1,  
which requires that the clock idles in the high state. As  
with mode 0,0, the A/D converter outputs data on the  
falling edge of the clock and the MCU latches data from  
the A/D converter in on the rising edge of the clock.  
© 2007 Microchip Technology Inc.  
DS21298D-page 17  
MCP3204/3208  
CS  
MCU latches data from A/D  
converter on rising edges of SCLK  
SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
Data is clocked out of A/D  
converter on falling edges  
SGL/  
D2  
DO  
D1  
Don’tCare
DIN  
DIFF  
Start  
NULL  
BIT  
HI-Z  
B7  
B6 B5 B4 B3 B2 B1 B0  
B11 B10 B9 B8  
DOUT  
Start  
Bit  
MCU Transmitted Data  
(Aligned with falling  
edge of clock)  
SGL/
0
0
0
0
0
1
D1 DO  
X X  
X  
X  
X X X  
D2  
X X  
X  
DIFF
MCU Received Data  
(Aligned with rising  
edge of clock)  
0
?
?
(Null)  
B11 B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
?
?
?
?
?
?
?
?
?
Data stored into MCU receive  
register after transmission of first  
8 bits  
Data stored into MCU receive  
register after transmission of  
second 8 bits  
Data stored into MCU receive  
register after transmission of last  
8 bits  
X = “Don’t Care” Bits  
FIGURE 6-1:  
SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).  
CS  
MCU latches data from A/D converter  
on rising edges of SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
Data is clocked out of A/D  
converter on falling edges  
SGL/  
DIFF  
Don’t Care  
D2  
D1 DO  
Start  
HI-Z  
NULL  
BIT  
B11 B10 B9  
B8  
B7 B6 B5 B4 B3 B2 B1 B0  
D
OUT  
Start  
Bit  
MCU Transmitted Data  
(Aligned with falling  
edge of clock)  
SGL/  
DIFF  
0
0
0
0
0
1
D2  
D1 DO  
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
MCU Received Data  
(Aligned with rising  
edge of clock)  
?
?
?
?
?
?
?
?
?
?
?
B11 B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
(Null)  
Data stored into MCU receive  
register after transmission of first  
8 bits  
Data stored into MCU receive  
register after transmission of  
second 8 bits  
Data stored into MCU receive  
register after transmission of last  
8 bits  
X = “Don’t Care” Bits  
FIGURE 6-2:  
SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).  
DS21298D-page 18  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
6.2  
Maintaining Minimum Clock  
Speed  
6.3  
Buffering/Filtering the Analog  
Inputs  
When the MCP3204/3208 initiates the sample period,  
charge is stored on the sample capacitor. When the  
sample period is complete, the device converts one bit  
for each clock that is received. It is important for the  
user to note that a slow clock rate will allow charge to  
bleed off the sample capacitor while the conversion is  
taking place. At 85°C (worst case condition), the part  
will maintain proper charge on the sample capacitor for  
at least 1.2 ms after the sample period has ended. This  
means that the time between the end of the sample  
period and the time that all 12 data bits have been  
clocked out must not exceed 1.2 ms (effective clock  
frequency of 10 kHz). Failure to meet this criterion may  
introduce linearity errors into the conversion outside  
the rated specifications. It should be noted that during  
the entire conversion cycle, the A/D converter does not  
require a constant clock speed or duty cycle, as long as  
all timing specifications are met.  
If the signal source for the A/D converter is not a low  
impedance source, it will have to be buffered or inaccu-  
rate conversion results may occur (see Figure 4-2). It is  
also recommended that a filter be used to eliminate any  
signals that may be aliased back into the conversion  
results, as is illustrated in Figure 6-3, where an op amp  
is used to drive the analog input of the MCP3204/3208.  
This amplifier provides a low impedance source for the  
converter input, and a low pass filter, which eliminates  
unwanted high frequency noise.  
Low pass (anti-aliasing) filters can be designed using  
Microchip’s free interactive FilterLab™ software. Filter-  
Lab will calculate capacitor and resistor values, as well  
as determine the number of poles that are required for  
the application. For more information on filtering sig-  
nals, see AN699, “Anti-Aliasing Analog Filters for Data  
Acquisition Systems”.  
VDD  
10 µF  
4.096V  
Reference  
0.1 µF  
1 µF  
MCP1541  
1 µF  
IN+  
IN-  
VREF  
MCP3204  
C1  
R2  
MCP601  
R1  
VIN  
+
-
C2  
R4  
R3  
FIGURE 6-3:  
The MCP601 Operational Amplifier is used to implement a second order anti-aliasing  
filter for the signal being converted by the MCP3204.  
© 2007 Microchip Technology Inc.  
DS21298D-page 19  
MCP3204/3208  
6.4  
Layout Considerations  
6.5  
Utilizing the Digital and Analog  
Ground Pins  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
noise wherever possible. A bypass capacitor should  
always be used with this device, placed as close as  
possible to the device pin. A bypass capacitor value of  
1 µF is recommended.  
The MCP3204/3208 devices provide both digital and  
analog ground connections to provide another means  
of noise reduction. As shown in Figure 6-5, the analog  
and digital circuitry is separated internal to the device.  
This reduces noise from the digital portion of the device  
being coupled into the analog portion of the device. The  
two grounds are connected internally through the sub-  
strate, which has a resistance of 5 -10Ω.  
Digital and analog traces should be separated as much  
as possible on the board, with no traces running under-  
neath the device or the bypass capacitor. Extra precau-  
tions should be taken to keep traces with high  
frequency signals (such as clock lines) as far as  
possible from analog traces.  
If no ground plane is utilized, then both grounds must  
be connected to VSS on the board. If a ground plane is  
available, both digital and analog ground pins should  
be connected to the analog ground plane. If both an  
analog and a digital ground plane are available, both  
the digital and the analog ground pins should be con-  
nected to the analog ground plane. Following these  
steps will reduce the amount of digital noise from the  
rest of the board being coupled into the A/D converter.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating return current paths and associated  
errors (see Figure 6-4). For more information on layout  
tips when using A/D converters, refer to AN688,  
“Layout Tips for 12-Bit A/D converter Applications”.  
VDD  
VDD  
MCP3204/08  
Connection  
Digital Side  
Analog Side  
-SPI Interface  
-Shift Register  
-Control Logic  
-Sample Cap  
-Capacitor Array  
-Comparator  
Substrate  
5 - 10Ω  
Device 4  
Device 1  
DGND  
AGND  
0.1 µF  
Device 3  
Analog Ground Plane  
Device 2  
FIGURE 6-5:  
Separation of Analog and  
Digital Ground Pins.  
FIGURE 6-4:  
VDD traces arranged in a  
‘Star’ configuration in order to reduce errors  
caused by current return paths.  
DS21298D-page 20  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
14-Lead PDIP (300 mil)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP3204-B  
e
3
I/P  
YYWWNNN  
0723NNN  
14-Lead SOIC (150 mil)  
Example:  
e
3
MCP3204-B  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
0723NNN  
14-Lead TSSOP (4.4mm) *  
Example:  
XXXXXXXX  
YYWW  
3204-C  
e3  
0723  
NNN  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS21298D-page 21  
MCP3204/3208  
Package Marking Information (Continued)  
16-Lead PDIP (300 mil) (MCP3304)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP3208-B e  
3
I/P  
YYWWNNN  
0723NNN  
16-Lead SOIC (150 mil) (MCP3304)  
Example:  
e
3
MCP3208-B  
XXXXXXXXXX  
XXXXXXXXXXXXX  
XXXXXXXXXXXXX  
YYWWNNN  
IYWWNNN  
DS21298D-page 22  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
Units  
INCHES  
NOM  
14  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.735  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.750  
.130  
.010  
.060  
.018  
.325  
.280  
.775  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located with the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-005B  
© 2007 Microchip Technology Inc.  
DS21298D-page 23  
MCP3204/3208  
14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
Units  
MILLMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
1.25  
0.10  
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
3.90 BSC  
8.65 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-065B  
DS21298D-page 24  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.20  
1.05  
0.15  
A2  
A1  
E
0.80  
0.05  
1.00  
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
6.40 BSC  
E1  
D
4.30  
4.90  
0.45  
4.40  
4.50  
5.10  
0.75  
5.00  
L
0.60  
Footprint  
L1  
φ
1.00 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
Lead Width  
c
0.09  
0.19  
0.20  
0.30  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-087B  
© 2007 Microchip Technology Inc.  
DS21298D-page 25  
MCP3204/3208  
16-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2
3
D
E
A
A2  
L
c
A1  
b1  
e
eB  
b
Units  
INCHES  
NOM  
16  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.290  
.240  
.735  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.755  
.130  
.010  
.060  
.018  
.325  
.280  
.775  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-017B  
DS21298D-page 26  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
16-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
3
1
2
e
b
h
α
h
c
φ
A2  
A
L
β
A1  
L1  
Units  
MILLMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
16  
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
1.25  
0.10  
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
3.90 BSC  
9.90 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-108B  
© 2007 Microchip Technology Inc.  
DS21298D-page 27  
MCP3204/3208  
NOTES:  
DS21298D-page 28  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
APPENDIX A: REVISION HISTORY  
Revision D (January 2007)  
This revision includes updates to the packaging dia-  
grams.  
© 2007 Microchip Technology Inc.  
DS21298D-page 29  
MCP3204/3208  
NOTES:  
DS21298D-page 30  
© 2007 Microchip Technology Inc.  
MCP3204/3208  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
X
/XX  
Examples:  
a)  
b)  
c)  
MCP3204-BI/P: ±1 LSB INL, Industrial Tem-  
perature, PDIP package.  
Grade Temperature Package  
Range  
MCP3204-BI/SL: ±1 LSB INL, Industrial  
Temperature, SOIC package.  
Device:  
MCP3204: 4-Channel 12-Bit Serial A/D Converter  
MCP3204T: 4-Channel 12-Bit Serial A/D Converter  
(Tape and Reel)  
MCP3204-CI/ST: ±2 LSB INL, Industrial  
Temperature, TSSOP package.  
MCP3208: 8-Channel 12-Bit Serial A/D Converter  
MCP3208T: 8-Channel 12-Bit Serial A/D Converter  
(Tape and Reel)  
a)  
b)  
c)  
MCP3208-BI/P: ±1 LSB INL, Industrial  
Temperature, PDIP package.  
MCP3208-BI/SL: ±1 LSB INL, Industrial  
Temperature, SOIC package.  
Grade:  
B
C
=
=
±1 LSB INL  
±2 LSB INL  
MCP3208-CI/ST: ±2 LSB INL, Industrial  
Temperature, TSSOP package.  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
P
SL  
ST  
=
=
=
Plastic DIP (300 mil Body), 14-lead, 16-lead  
Plastic SOIC (150 mil Body), 14-lead, 16-lead  
Plastic TSSOP (4.4mm), 14-lead  
© 2007 Microchip Technology Inc.  
DS21298D-page31  
MCP3204/3208  
NOTES:  
DS21298D-page 32  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21298D-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21298D-page 34  
© 2007 Microchip Technology Inc.  

相关型号:

MCP3208-BI/SLG

8-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO16, 3.90 MM, PLASTIC, SOIC-16
MICROCHIP

MCP3208-BI/SN

8-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO16, 0.150 INCH, SO-16
MICROCHIP

MCP3208-BI/ST

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface
MICROCHIP

MCP3208-BIP

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface
MICROCHIP

MCP3208-BISL

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface
MICROCHIP

MCP3208-CI/P

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface
MICROCHIP

MCP3208-CI/SL

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface
MICROCHIP

MCP3208-CI/ST

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface
MICROCHIP

MCP3208-CIP

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface
MICROCHIP

MCP3208-CISL

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface
MICROCHIP

MCP3208T

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface
MICROCHIP

MCP3208T-BI/P

2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI⑩ Serial Interface
MICROCHIP