MCP3302T-I/P [MICROCHIP]

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface; 13位差分输入,低功耗A / D转换器,带有SPI串行接口
MCP3302T-I/P
型号: MCP3302T-I/P
厂家: MICROCHIP    MICROCHIP
描述:

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
13位差分输入,低功耗A / D转换器,带有SPI串行接口

转换器
文件: 总40页 (文件大小:790K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3302/04  
M
13-Bit Differential Input, Low Power A/D Converter  
with SPI™ Serial Interface  
Features  
General Description  
• Full Differential Inputs  
The Microchip Technology Inc. MCP3302/04 13-bit A/D  
converters feature full differential inputs and low power  
consumption in a small package that is ideal for battery  
powered systems and remote data acquisition applica-  
tions. The MCP3302 is programmable to provide two  
differential input pairs or four single ended inputs. The  
MCP3304 is programmable and provides four differen-  
tial input pairs or eight single ended inputs.  
• MCP3302: 2 Differential or 4 Single ended Inputs  
• MCP3304: 4 Differential or 8 Single ended Inputs  
• ±1 LSB max DNL  
• ±1 LSB max INL (MCP3302/04-B)  
• ±2 LSB max INL (MCP3302/04-C)  
• Single supply operation: 2.7V to 5.5V  
• 100 ksps sampling rate with 5V supply voltage  
• 50 ksps sampling rate with 2.7V supply voltage  
• 50 nA typical standby current, 1 µA max  
• 450 µA max active current at 5V  
Incorporating a successive approximation architecture  
with on-board sample and hold circuitry, these 13-bit  
A/D converters are specified to have ±1 LSB Differen-  
tial Nonlinearity (DNL); ±1 LSB Integral Nonlinearity  
(INL) for B-grade and ±2 LSB for C-grade devices. The  
industry-standard SPI™ serial interface enables 13-bit  
• Industrial temp range: -40°C to +85°C  
• 14 and 16-pin PDIP, SOIC and TSSOP packages  
®
A/D converter capability to be added to any PICmicro  
microcontroller.  
TM  
• MXDEV Evaluation kit available  
The MCP3302/04 devices feature low current design  
that permits operation with typical standby and active  
currents of only 50 nA and 300 µA, respectively. The  
devices operate over a broad voltage range of 2.7V to  
5.5V and are capable of conversion rates of up to  
100 ksps. The reference voltage can be varied from  
400 mV to 5V, yielding input-referred resolution  
between 98 µV and 1.22 mV.  
The MCP3302 is available in 14-pin PDIP, 150 mil  
SOIC and TSSOP packages. The MCP3304 is avail-  
able in 16-pin PDIP and 150 mil SOIC packages. The  
full differential inputs of these devices enable a wide  
variety of signals to be used in applications such as  
remote data acquisition, portable instrumentation and  
battery operated applications.  
Applications  
• Remote Sensors  
• Battery Operated Systems  
• Transducer Interface  
Package Types  
PDIP, SOIC, TSSOP  
14  
13  
CH0  
CH1  
CH2  
CH3  
NC  
VDD  
VREF  
12 AGND  
1
2
3
4
5
CLK  
DOUT  
DIN  
11  
10  
9
8
NC  
6
7
DGND  
CS/SHDN  
PDIP, SOIC  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
2
3
4
5
6
7
8
16 VDD  
VREF  
14 AGND  
13  
12 DOUT  
15  
CLK  
DIN  
11  
10  
9
CS/SHDN  
DGND  
2002 Microchip Technology Inc.  
DS21697B-page 1  
MCP3302/04  
Functional Block Diagram  
AGND DGND  
VDD  
VREF  
CH0  
CH1  
Input  
Channel  
Mux  
CH7*  
CDAC  
Comparator  
-
Sample  
& Hold  
Circuits  
13-Bit SAR  
+
Shift  
Control Logic  
Register  
CS/SHDN DIN  
CLK  
DOUT  
* Channels 5-7 available on MCP3304 Only  
DS21697B-page 2  
2002 Microchip Technology Inc.  
MCP3302/04  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
Maximum Ratings*  
CH0-CH7  
DGND  
CS/SHDN  
Analog Inputs  
Digital Ground  
Chip Select / Shutdown Input  
Serial Data In  
Serial Data Out  
Serial Clock  
Analog Ground  
Reference Voltage Input  
+2.7V to 5.5V Power Supply  
V
........................................................................7.0V  
DD  
All inputs and outputs w.r.t. V .....-0.3V to V +0.3V  
SS  
DD  
D
D
IN  
Storage temperature .......................... -65°C to +150°C  
Ambient temp. with power applied .....-65°C to +125°C  
Maximum Junction Temperature ....................... 150°C  
ESD protection on all pins (HBM)......................... > 4 kV  
*Notice: Stresses above those listed under “Maximum rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
OUT  
CLK  
AGND  
V
V
REF  
DD  
ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, and VREF = 5V. Full differential  
input configuration (Figure 3-4) with fixed common mode voltage of 2.5V. All parameters apply over temperature with  
TAMB = -40°C to +85°C (Note 7). Conversion speed (FSAMPLE) is 100 ksps with FCLK = 21*FSAMPLE  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Conversion Rate  
Maximum Sampling Frequency  
FSAMPLE  
100  
50  
ksps Note 8  
ksps VDD = VREF = 2.7V, VCM =1.35V  
Conversion Time  
Acquisition Time  
TCONV  
TACQ  
13  
CLK  
periods  
1.5  
CLK  
periods  
DC Accuracy  
Resolution  
12 data bits + sign  
bits  
Integral Nonlinearity  
INL  
-3  
-3  
-3  
±0.5  
±1  
±0.5  
-0.75  
-0.5  
+3  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
MCP3302/04-B  
MCP3302/04-C  
Monotonic over temperature  
±2  
±1  
+2  
+2  
+6  
Differential Nonlinearity  
Positive Gain Error  
Negative Gain Error  
Offset Error  
DNL  
Note 1: This specification is established by characterization and not 100% tested.  
2: See characterization graphs that relate converter performance to VREF level.  
3:  
VIN = 0.1V to 4.9V @ 1 kHz.  
4: VDD =5VP-P ±500 mV @ 1 kHz, see test circuit Figure 3-3.  
5: Maximum clock frequency specification must be met.  
6:  
VREF = 400 mV, VIN = 0.1V to 4.9V @ 1 kHz  
7: TSSOP devices are only specified at 25°C and +85°C.  
8: For slow sample rates, see Section 6.2.1 for limitations on clock frequency.  
2002 Microchip Technology Inc.  
DS21697B-page 3  
MCP3302/04  
ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, and VREF = 5V. Full differential  
input configuration (Figure 3-4) with fixed common mode voltage of 2.5V. All parameters apply over temperature with  
TAMB = -40°C to +85°C (Note 7). Conversion speed (FSAMPLE) is 100 ksps with FCLK = 21*FSAMPLE  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Dynamic Performance  
Total Harmonic Distortion  
Signal to Noise and Distortion  
Spurious Free Dynamic Range  
Common Mode Rejection  
Channel to Channel Crosstalk  
Power Supply Rejection  
Reference Input  
THD  
SINAD  
SFDR  
CMRR  
CT  
-91  
78  
92  
79  
> -110  
74  
dB  
dB  
dB  
dB  
dB  
dB  
Note 3  
Note 3  
Note 3  
Note 6  
Note 6  
Note 4  
PSR  
Voltage Range  
0.4  
VDD  
V
Note 2  
Current Drain  
100  
0.001  
150  
3
µA  
µA  
CS = VDD = 5V  
Analog Inputs  
Full Scale Input Span  
Absolute Input Voltage  
Leakage Current  
Switch Resistance  
Sample Capacitor  
CH0 - CH7  
CH0 - CH7  
-VREF  
-0.3  
0.001  
1
VREF  
VDD + 0.3  
V
V
µA  
kΩ  
pF  
±1  
RS  
CSAMPLE  
See Figure 6-3  
See Figure 6-3  
25  
Digital Input/Output  
Data Coding Format  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Leakage Current  
Pin Capacitance  
Binary Two’s Complement  
VIH  
VIL  
VOH  
VOL  
ILI  
0.7 VDD  
0.3 VDD  
V
V
V
4.1  
IOH = -1 mA, VDD = 4.5V  
IOL = 1 mA, VDD = 4.5V  
VIN = VSS or VDD  
VOUT = VSS or VDD  
TAMB = 25°C, F = 1 MHz, Note 1  
0.4  
V
-10  
-10  
10  
10  
10  
µA  
µA  
pF  
ILO  
CIN, COUT  
Note 1: This specification is established by characterization and not 100% tested.  
2: See characterization graphs that relate converter performance to VREF level.  
3:  
VIN = 0.1V to 4.9V @ 1 kHz.  
4: VDD =5VP-P ±500 mV @ 1 kHz, see test circuit Figure 3-3.  
5: Maximum clock frequency specification must be met.  
6:  
VREF = 400 mV, VIN = 0.1V to 4.9V @ 1 kHz  
7: TSSOP devices are only specified at 25°C and +85°C.  
8: For slow sample rates, see Section 6.2.1 for limitations on clock frequency.  
DS21697B-page 4  
2002 Microchip Technology Inc.  
MCP3302/04  
ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, and VREF = 5V. Full differential  
input configuration (Figure 3-4) with fixed common mode voltage of 2.5V. All parameters apply over temperature with  
TAMB = -40°C to +85°C (Note 7). Conversion speed (FSAMPLE) is 100 ksps with FCLK = 21*FSAMPLE  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Timing Specifications:  
Clock Frequency (Note 8)  
FCLK  
0.105  
0.105  
210  
210  
100  
50  
2.1  
MHz VDD = 5V, FSAMPLE = 100 ksps  
1.05  
MHz  
ns  
VDD = 2.7V, FSAMPLE = 50 ksps  
Clock High Time  
Clock Low Time  
CS Fall To First Rising CLK Edge  
Data In Setup time  
Data In Hold Time  
THI  
TLO  
TSUCS  
TSU  
THD  
TDO  
50  
Note 5  
Note 5  
ns  
ns  
ns  
ns  
CLK Fall To Output Data Valid  
125  
200  
ns  
ns  
VDD = 5V, see Figure 3-1  
V
DD = 2.7V, see Figure 3-1  
CLK Fall To Output Enable  
CS Rise To Output Disable  
TEN  
125  
200  
100  
ns  
ns  
ns  
VDD = 5V, see Figure 3-1  
DD = 2.7V, see Figure 3-1  
See test circuits, Figure 3-1  
Note 1  
V
TDIS  
CS Disable Time  
DOUT Rise Time  
TCSH  
TR  
475  
100  
ns  
ns  
See test circuits, Figure 3-1  
Note 1  
DOUT Fall Time  
TF  
100  
ns  
See test circuits, Figure 3-1  
Note 1  
Power Requirements:  
Operating Voltage  
Operating Current  
VDD  
IDD  
2.7  
300  
200  
5.5  
450  
V
µA  
VDD, VREF = 5V, DOUT unloaded  
V
DD, VREF = 2.7V, DOUT unloaded  
Standby Current  
IDDS  
0.05  
1
µA  
CS = VDD = 5.0V  
Temperature Ranges:  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance:  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
Thermal Resistance, 16L-PDIP  
Thermal Resistance, 16L-SOIC  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+85  
+150  
°C  
°C  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
70  
108  
100  
70  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
90  
Note 1: This specification is established by characterization and not 100% tested.  
2: See characterization graphs that relate converter performance to VREF level.  
3:  
VIN = 0.1V to 4.9V @ 1 kHz.  
4: VDD =5VP-P ±500 mV @ 1 kHz, see test circuit Figure 3-3.  
5: Maximum clock frequency specification must be met.  
6:  
VREF = 400 mV, VIN = 0.1V to 4.9V @ 1 kHz  
7: TSSOP devices are only specified at 25°C and +85°C.  
8: For slow sample rates, see Section 6.2.1 for limitations on clock frequency.  
2002 Microchip Technology Inc.  
DS21697B-page 5  
MCP3302/04  
.
TCSH  
CS  
TSUCS  
TLO  
THI  
CLK  
THD  
TSU  
MSB IN  
DIN  
TR  
TF  
TDO  
Null Bit  
TDIS  
TEN  
DOUT  
LSB  
Sign BIT  
FIGURE 1-1:  
Timing Parameters  
DS21697B-page 6  
2002 Microchip Technology Inc.  
MCP3302/04  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
SS  
DD  
REF  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE  
CLK  
SAMPLE  
A
.
.
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
VDD=VREF=2.7V  
Positive INL  
Positive INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Negative INL  
Negative INL  
0
10  
20  
30  
40  
50  
60  
70  
0
50  
100  
150  
200  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-1:  
Integral Nonlinearity (INL)  
FIGURE 2-4:  
Integral Nonlinearity (INL)  
DD  
vs. Sample Rate  
vs. Sample Rate (V = 2.7V)  
.
2
1.5  
1
2
VDD = 2.7V  
1.5  
1
0.5  
0
Positive INL  
Negative INL  
Positive INL  
Negative INL  
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
1
2
3
4
5
0
0.5  
1
1.5  
VREF(V)  
2
2.5  
3
VREF(V)  
FIGURE 2-2:  
Integral Nonlinearity (INL)  
FIGURE 2-5:  
Integral Nonlinearity (INL)  
vs. V  
vs. V  
(V = 2.7V)  
REF.  
REF  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-4096 -3072 -2048 -1024  
0
1024  
2048  
3072  
4096  
-4096 -3072 -2048 -1024  
0
1024  
2048  
3072  
4096  
Code  
Code  
FIGURE 2-3:  
Integral Nonlinearity (INL)  
FIGURE 2-6:  
Integral Nonlinearity (INL)  
vs. Code (Representative Part).  
vs. Code (Representative Part, V = 2.7V).  
DD  
2002 Microchip Technology Inc.  
DS21697B-page 7  
MCP3302/04  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
SS  
DD  
REF  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE A  
SAMPLE  
CLK  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
Positive INL  
Positive INL  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Negative INL  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature(°C)  
Temperature (°C)  
FIGURE 2-7:  
Integral Nonlinearity (INL)  
FIGURE 2-10:  
Integral Nonlinearity (INL)  
DD  
vs. Temperature.  
vs. Temperature (V = 2.7V).  
1
0.8  
0.6  
0.4  
0.2  
0
1
VDD=VREF=2.7V  
0.8  
0.6  
Positive DNL  
Positive DNL  
Negative DNL  
0.4  
0.2  
0
-0.2  
-0.2  
-0.4  
-0.6  
-0.8  
Negative DNL  
-0.4  
-0.6  
-0.8  
-1  
0
10  
20  
30  
40  
50  
60  
70  
-1  
0
50  
100  
150  
200  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-8:  
Differential Nonlinearity  
FIGURE 2-11:  
Differential Nonlinearity  
(DNL) vs. Sample Rate.  
(DNL) vs. Sample Rate (V = 2.7V).  
DD  
2
1.5  
1
2
VDD=2.7V  
FSAMPLE = 50 ksps  
1.5  
1
Positive DNL  
Positive DNL  
0.5  
0
0.5  
0
Negative DNL  
-0.5  
-1  
Negative DNL  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
1
2
3
4
5
6
0
0.5  
1
1.5  
2
2.5  
3
VREF(V)  
VREF (V)  
FIGURE 2-9:  
Differential Nonlinearity  
FIGURE 2-12:  
(DNL) vs. V  
Differential Nonlinearity  
(V = 2.7V).]  
(DNL) vs. V  
.
REF  
REF  
DD  
DS21697B-page 8  
2002 Microchip Technology Inc.  
MCP3302/04  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
SS  
DD  
REF  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE A  
SAMPLE  
CLK  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-4096 -3072 -2048 -1024  
0
1024  
2048  
3072  
4096  
-4096 -3072 -2048 -1024  
0
1024  
2048  
3072  
4096  
Code  
Code  
FIGURE 2-13:  
Differential Nonlinearity  
FIGURE 2-16:  
Differential Nonlinearity  
(DNL) vs. Code (Representative Part).  
(DNL) vs. Code (Representative Part,  
V
= 2.7V).  
DD  
1
0.8  
0.6  
1
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
0.8  
0.6  
0.4  
0.2  
0
Positive DNL  
Negative DNL  
Positive DNL  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Negaitive DNL  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
Differential Nonlinearity  
FIGURE 2-17:  
Differential Nonlinearity  
(DNL) vs. Temperature.  
(DNL) vs. Temperature (V = 2.7V).  
DD  
4
3
2
20  
18  
16  
14  
12  
VDD=5V  
FSAMPLE = 100 ksps  
VDD = 5V  
FSAMPLE = 100 ksps  
1
10  
0
-1  
-2  
-3  
8
6
4
VDD = 2.7V  
SAMPLE = 50 ksps  
2
0
F
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VREF(V)  
VREF(V)  
FIGURE 2-15:  
REF  
Positive Gain Error vs.  
FIGURE 2-18:  
Offset Error vs. V  
.
REF  
V
.
2002 Microchip Technology Inc.  
DS21697B-page 9  
MCP3302/04  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
SS  
DD  
REF  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE A  
SAMPLE  
CLK  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3.5  
3
VDD=VREF=5V  
SAMPLE = 100 ksps  
F
VDD=VREF=5V  
FSAMPLE = 100 ksps  
2.5  
2
VDD=VREF=2.7V  
SAMPLE = 50 ksps  
F
1.5  
1
-1.2  
-1.4  
-1.6  
-1.8  
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
0.5  
0
-50  
0
50  
100  
150  
-50  
0
50  
Temperature (°C)  
100  
150  
Temperature (°C)  
FIGURE 2-19:  
Positive Gain Error vs.  
FIGURE 2-22:  
Offset Error vs.  
Temperature.  
Temperature.  
90  
80  
70  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VDD=VREF=5V  
F
SAMPLE = 100 ksps  
60  
50  
40  
30  
20  
10  
0
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
VDD=VREF=2.7V  
SAMPLE = 50 ksps  
F
VDD=VREF=5V  
FSAMPLE = 100 ksps  
0
1
1
10  
100  
10  
100  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-20:  
Signal to Noise Ratio (SNR)  
FIGURE 2-23:  
Signal to Noise and  
vs. Input Frequency.  
Distortion (SINAD) vs. Input Frequency.  
0
-10  
-20  
-30  
80  
70  
60  
50  
40  
VDD=VREF=2.7V  
-40  
VDD=VREF=5V  
SAMPLE = 100 ksps  
F
SAMPLE = 50 ksps  
F
-50  
-60  
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
VDD=VREF=5V  
FSAMPLE = 100 ksps  
30  
20  
10  
0
-70  
-80  
-90  
-100  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
1
10  
Input Frequency (kHz)  
100  
Input Signal Level (dB)  
FIGURE 2-21:  
Total Harmonic Distortion  
FIGURE 2-24:  
Signal to Noise and  
(THD) vs. Input Frequency.  
Distortion (SINAD) vs. Input Signal Level.  
DS21697B-page 10  
2002 Microchip Technology Inc.  
MCP3302/04  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
SS  
DD  
REF  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE A  
SAMPLE  
CLK  
13  
12  
11  
10  
9
13  
12.8  
12.6  
12.4  
12.2  
12  
VDD=VREF=5V  
FSAMPLE = 100 ksps  
VDD=2.7V  
FSAMPLE = 50 ksps  
VDD=5V  
FSAMPLE = 100 ksps  
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
11.8  
11.6  
11.4  
11.2  
8
7
1
10  
Input Frequency (kHz)  
100  
0
1
2
3
4
5
VREF(V)  
FIGURE 2-25:  
Effective Number of Bits  
FIGURE 2-28:  
Effective Number of Bits  
(ENOB) vs. V  
.
(ENOB) vs. Input Frequency.  
REF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
VDD=VREF=5V  
0.1 µF Bypass  
Capacitor  
FSAMPLE = 100 ksps  
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
0
1
10  
Input Frequency (kHz)  
100  
1
10  
100  
1000  
10000  
Ripple Frequency (kHz)  
FIGURE 2-26:  
Spurious Free Dynamic  
FIGURE 2-29:  
Power Supply Rejection  
Range (SFDR) vs. Input Frequency.  
(PSR) vs. Ripple Frequency.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
0
10000  
20000  
30000  
40000  
50000  
0
5000  
10000  
15000  
20000  
25000  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27:  
Frequency Spectrum of  
FIGURE 2-30:  
Frequency Spectrum of  
10 kHz Input (Representative Part).  
1 kHz Input (Representative Part, V = 2.7V).  
DD  
2002 Microchip Technology Inc.  
DS21697B-page 11  
MCP3302/04  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
SS  
DD  
REF  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE A  
SAMPLE  
CLK  
450  
400  
350  
300  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD (V)  
VDD (V)  
FIGURE 2-31:  
I
vs. V  
.
FIGURE 2-34:  
I
vs. V  
.
DD  
DD  
DD  
REF  
600  
500  
400  
300  
200  
100  
120  
100  
80  
VDD=VREF=5V  
VDD=VREF=5V  
60  
40  
VDD=VREF=2.7V  
VDD=VREF=2.7V  
20  
0
0
0
0
50  
100  
150  
200  
50  
100  
150  
200  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-32:  
I
vs. Sample Rate.  
FIGURE 2-35:  
I
vs. Sample Rate.  
DD  
REF  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VDD=VREF=5V  
VDD=VREF=5V  
FSAMPLE = 100 ksps  
FSAMPLE = 100 ksps  
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
VDD=VREF=2.7V  
SAMPLE = 50 ksps  
F
0
0
-50  
0
50  
100  
150  
-50  
0
50  
Temperature (°C)  
100  
150  
Temperature (°C)  
FIGURE 2-33:  
I
vs. Temperature.  
FIGURE 2-36:  
I
vs. Temperature.  
DD  
REF  
DS21697B-page 12  
2002 Microchip Technology Inc.  
MCP3302/04  
Note: Unless otherwise indicated, V = V  
= 5V, Full differential input configuration, V = 0V,  
DD  
REF  
SS  
F
= 100 ksps, F  
= 21*F  
, T = 25°C.  
SAMPLE A  
SAMPLE  
CLK  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1.5  
1
VDD=VREF=2.7V  
FSAMPLE = 50 ksps  
VDD=VREF=5V  
FSAMPLE = 100 ksps  
0.5  
0
-0.5  
-1  
-1.5  
-2  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-50  
0
50  
100  
150  
VDD (V)  
Temperature (°C)  
FIGURE 2-37:  
I
vs. V  
.
DD  
FIGURE 2-40:  
Negative Gain Error vs.  
DDS  
Temperature.  
100  
10  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
1
0.1  
0.01  
0.001  
-50  
-25  
0
25  
50  
75  
100  
70  
1
Temperature (°C)  
10  
100  
1000  
Input Frequency (kHz)  
FIGURE 2-38:  
I
vs. Temperature.  
DDS  
FIGURE 2-41:  
Common Mode Rejection  
vs. Frequency.  
4
3.5  
3
2.5  
2
1.5  
1
VDD=5V  
FSAMPLE = 100 ksps  
0.5  
0
-0.5  
-1  
0
1
2
3
4
5
6
VREF (V)  
FIGURE 2-39:  
Negative Gain Error vs.  
Reference Voltage.  
2002 Microchip Technology Inc.  
DS21697B-page 13  
MCP3302/04  
3.0  
TEST CIRCUITS  
1/2 MCP602  
1 k  
1 kΩ  
+
-
1.4V  
5V ±500 mVP-P  
To V DD on DUT  
20 kΩ  
5VP-P  
3 kΩ  
Test Point  
DOUT  
1 kΩ  
2.63V  
CL = 100 pF  
FIGURE 3-3:  
Power Supply Sensitivity  
FIGURE 3-1:  
Test Point  
Load Circuit for T , T , T  
.
DO  
R
F
Test Circuit (PSRR).  
VREF = 5V  
1 µF  
VDD = 5V  
0.1 µF  
VDD  
VDD/2  
TDIS Waveform 2  
TEN Waveform  
3 kΩ  
100 pF  
DOUT  
0.1 µF  
5VP-P  
TDIS Waveform 1  
IN(+)  
IN(-)  
VREF VDD  
MCP330X  
VSS  
VSS  
5VP-P  
Voltage Waveforms for TDIS  
VIH  
VCM = 2.5V  
CS  
DOUT  
90%  
10%  
FIGURE 3-4:  
Full Differential Test  
Waveform 1*  
Configuration Example.  
TDIS  
DOUT  
Waveform 2†  
VREF = 2.5V  
1µF  
VDD = 5V  
0.1µF  
*Waveform 1 is for an output with internal con-  
ditions such that the output is high, unless dis-  
abled by the output control.  
†Waveform 2 is for an output with internal con-  
ditions such that the output is low, unless dis-  
abled by the output control.  
0.1µF  
IN(+)  
VREF VDD  
MCP330X  
5VP-P  
IN(-)  
VSS  
VCM = 2.5V  
FIGURE 3-2:  
Load circuit for  
T
and  
DIS  
T
.
EN  
FIGURE 3-5:  
Pseudo Differential Test  
Configuration Example.  
DS21697B-page 14  
2002 Microchip Technology Inc.  
MCP3302/04  
4.6  
Serial Clock (CLK)  
4.0  
PIN DESCRIPTIONS  
The SPI clock pin is used to initiate a conversion and to  
clock out each bit of the conversion as it takes place.  
See Section 6.2 for constraints on clock speed. See  
Figure 7-2 for serial communication protocol.  
The descriptions of the pins are listed in Table 4-1.  
TABLE 4-1:  
Name  
PIN FUNCTION TABLE  
Function  
4.7  
AGND  
CH0-CH7  
DGND  
CS/SHDN  
Analog Inputs  
Digital Ground  
Chip Select / Shutdown Input  
Serial Data In  
Serial Data Out  
Ground connection to internal analog circuitry. To  
ensure accuracy, this pin must be connected to the  
same ground as DGND. If an analog ground plane is  
available, it is recommended that this device be tied to  
the analog ground plane in the circuit. See Section 6.6  
for more information regarding circuit layout.  
D
D
IN  
OUT  
CLK  
Serial Clock  
AGND  
Analog Ground  
Reference Voltage Input  
+2.7V to 5.5V Power Supply  
4.8  
Voltage Reference (V  
)
REF  
V
V
REF  
DD  
This input pin provides the reference voltage for the  
device, which determines the maximum range of the  
analog input signal and the LSB size.  
The LSB size is determined according to the equation  
shown below. As the reference input is reduced, the  
LSB size is reduced accordingly.  
4.1  
CH0-CH7  
Analog input channels. These pins have an absolute  
voltage range of V - 0.3V to V + 0.3V. The full scale  
SS  
DD  
differential input range is defined as the absolute value  
of (IN+) - (IN-). This difference can not exceed the  
EQUATION  
value of V  
occur.  
- 1 LSB or digital code saturation will  
REF  
2 x V  
REF  
LSB Size =  
8192  
4.2  
DGND  
Ground connection to internal digital circuitry. To  
ensure accuracy this pin must be connected to the  
same ground as AGND. If an analog ground plane is  
available, it is recommended that this device be tied to  
the analog ground plane in the circuit. See Section 6.6  
for more information regarding circuit layout.  
When using an external voltage reference device, the  
system designer should always refer to the manufac-  
turer’s recommendations for circuit layout. Any instabil-  
ity in the operation of the reference device will have a  
direct effect on the accuracy of the ADC conversion  
results.  
4.3  
Chip Select/Shutdown (CS/SHDN)  
4.9  
V
DD  
The CS/SHDN pin is used to initiate communication  
with the device when pulled low. This pin will end a con-  
version and put the device in low power standby when  
pulled high. The CS/SHDN pin must be pulled high  
between conversions and cannot be tied low for multi-  
ple conversions. See Figure 7-2 for serial communica-  
tion protocol.  
The voltage on this pin can range from 2.7 to 5.5V. To  
ensure accuracy, a 0.1 µF ceramic bypass capacitor  
should be placed as close as possible to the pin. See  
Section 6.6 for more information regarding circuit lay-  
out.  
4.4  
Serial Data Input (D )  
IN  
The SPI port serial data input pin is used to clock in  
input channel configuration data. Data is latched on the  
rising edge of the clock. See Figure 7-2 for serial com-  
munication protocol.  
4.5  
Serial Data Output (D  
)
OUT  
The SPI serial data output pin is used to shift out the  
results of the A/D conversion. Data will always change  
on the falling edge of each clock as the conversion  
takes place. See Figure 7-2 for serial communication  
protocol.  
2002 Microchip Technology Inc.  
DS21697B-page 15  
MCP3302/04  
Signal to Noise Ratio - Signal to Noise Ratio (SNR) is  
defined as the ratio of the signal to noise measured at  
the output of the converter. The signal is defined as the  
rms amplitude of the fundamental frequency of the  
input signal. The noise value is dependant on the  
device noise as well as the quantization error of the  
converter and is directly affected by the number of bits  
in the converter. The theoretical signal to noise ratio  
limit based on quantization error only for an N-bit con-  
verter is defined as:  
5.0  
DEFINITION OF TERMS  
Bipolar Operation - This applies to either a differential  
or single ended input configuration, where both positive  
and negative codes are output from the A/D converter.  
Full bipolar range includes all 8192 codes. For bipolar  
operation on a single ended input signal, the A/D con-  
verter must be configured to operate in pseudo differ-  
ential mode.  
Unipolar Operation - This applies to either a single  
ended or differential input signal where only one side of  
the device transfer is being used. This could be either  
the positive or negative side, depending on which input  
(IN+ or IN-) is being used for the DC bias. Full unipolar  
operation is equivalent to a 12-bit converter.  
EQUATION  
SNR = (6.02N + 1.76)dB  
For a 13-bit converter, the theoretical SNR limit is  
80.02 dB.  
Total Harmonic Distortion - Total Harmonic Distortion  
(THD) is the ratio of the rms sum of the harmonics to  
the fundamental, measured at the output of the con-  
verter. For the MCP3302/04, it is defined using the first  
9 harmonics, as is shown in the following equation:  
Full Differential Operation - Applying a full differential  
signal to both the IN(+) and IN(-) inputs is referred to as  
full differential operation. This configuration is  
described in Figure 3-4.  
Pseudo-Differential Operation - Applying a single  
ended signal to only one of the input channels with a  
bipolar output is referred to as pseudo differential oper-  
ation. To obtain a bipolar output from a single ended  
input signal the inverting input of the A/D converter  
EQUATION  
V22 + V23 + V24 + ..... + V28 + V29  
must be biased above V . This operation is described  
SS  
THD(-dB) = –20 log  
--------------------------------------------------------------------------  
in Figure 3-5.  
V21  
Integral Nonlinearity - The maximum deviation from a  
straight line passing through the endpoints of the bipo-  
lar transfer function is defined as the maximum integral  
nonlinearity error. The endpoints of the transfer func-  
tion are a point 1/2 LSB above the first code transition  
(0x1000) and 1/2 LSB below the last code transition  
(0x0FFF).  
Differential Nonlinearity - The difference between two  
measured adjacent code transitions and the 1 LSB  
ideal is defined as differential nonlinearity.  
Here V is the rms amplitude of the fundamental and V  
1
2
through V are the rms amplitudes of the second  
9
through ninth harmonics.  
Signal to Noise plus Distortion (SINAD) - Numeri-  
cally defined, SINAD is the calculated combination of  
SNR and THD. This number represents the dynamic  
performance of the converter, including any harmonic  
distortion.  
Positive Gain Error - This is the deviation between the  
EQUATION  
last positive code transition (0x0FFF) and the ideal volt-  
age level of V  
-1/2 LSB, after the bipolar offset error  
REF  
SINAD(dB) = 20 log 10(SNR 10) + 10(THD 10)  
has been adjusted out.  
Negative Gain Error - This is the deviation between  
EffectIve Number of Bits - Effective Number of Bits  
(ENOB) states the relative performance of the ADC in  
terms of its resolution. This term is directly related to  
SINAD by the following equation:  
the last negative code transition (0X1000) and the ideal  
voltage level of -V  
-1/2 LSB, after the bipolar offset  
REF  
error has been adjusted out.  
Offset Error - This is the deviation between the first  
positive code transition (0x0001) and the ideal 1/2 LSB  
voltage level.  
EQUATION  
SINAD 1.76  
ENOB(N) = ----------------------------------  
6.02  
Acquisition Time - The acquisition time is defined as  
the time during which the internal sample capacitor is  
charging. This occurs for 1.5 clock cycles of the exter-  
nal CLK as defined in Figure 7-2.  
Conversion Time - The conversion time occurs imme-  
diately after the acquisition time. During this time, suc-  
cessive approximation of the input signal occurs as the  
13-bit result is being calculated by the internal circuitry.  
This occurs for 13 clock cycles of the external CLK as  
defined in Figure 7-2.  
For SINAD performance of 78 dB, the effective number  
of bits is 12.66.  
Spurious Free Dynamic Range - Spurious Free  
Dynamic Range (SFDR) is the ratio of the rms value of  
the fundamental to the next largest component in  
ADC’s output spectrum. This is, typically, the first har-  
monic, but could also be a noise peak.  
DS21697B-page 16  
2002 Microchip Technology Inc.  
MCP3302/04  
6.2  
Driving the Analog Input  
6.0  
6.1  
APPLICATIONS INFORMATION  
Conversion Description  
The analog input of the MCP3302/04 is easily driven,  
either differentially or single ended. Any signal that is  
common to the two input channels will be rejected by  
the common mode rejection of the device. During the  
charging time of the sample capacitor, a small charging  
current will be required. For low source impedances,  
this input can be driven directly. For larger source  
impedances, a larger acquisition time will be required  
due to the RC time constant that includes the source  
impedance. For the A/D Converter to meet specifica-  
The MCP3302/04 A/D converters employ a conven-  
tional SAR architecture. With this architecture, the  
potential between the IN+ and IN- inputs are simulta-  
neously sampled and stored with the internal sample  
circuits for 1.5 clock cycles. Following this sampling  
time, the input hold switches of the converter open and  
the device uses the collected charge to produce a  
serial 13-bit binary two’s complement output code. This  
conversion process is driven by the external clock and  
must include 13 clock cycles, one for each bit. During  
this process, the most significant bit (MSB) is output  
first. This bit is the sign bit and indicates if the IN+ or IN-  
input is at a higher potential.  
tion, the charge holding capacitor (C  
given enough time to acquire a 13-bit accurate voltage  
level during the 1.5 clock cycle acquisition period.  
) must be  
SAMPLE  
An analog input model is shown in Figure 6-3. This  
model is accurate for an analog input, regardless if it is  
configured as a single ended input, or the IN+ and IN-  
input in differential mode. In this diagram, it is shown  
CDAC  
that the source impedance (R ) adds to the internal  
S
Hold  
IN+  
sampling switch (R ) impedance, directly affecting the  
SS  
time that is required to charge the capacitor (C  
).  
SAMPLE  
CSAMP  
Consequently, a larger source impedance with no addi-  
tional acquisition time increases the offset, gain and  
integral linearity errors of the conversion. To overcome  
this, a slower clock speed can be used to allow for the  
longer charging time. Figure 6-2 shows the maximum  
clock speed associated with source impedances.  
+
Comp  
13-Bit SAR  
-
CSAMP  
IN-  
Shift  
Register  
Hold  
DOUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
FIGURE 6-1:  
Simplified Block Diagram.  
100  
1000  
10000  
100000  
Source Resistance (ohms)  
FIGURE 6-2:  
Maximum Clock Frequency  
vs. Source Resistance (R ) to maintain ±1 LSB  
S
INL.  
2002 Microchip Technology Inc.  
DS21697B-page 17  
MCP3302/04  
V
DD  
Sampling  
Switch  
V = 0.6V  
T
R = 1 kΩ  
CHx  
SS  
R
S
SS  
C
SAMPLE  
C
I
PIN  
LEAKAGE  
±1 nA  
VA  
= DAC capacitance  
= 25 pF  
V = 0.6V  
T
7 pF  
V
SS  
Legend  
VA  
signal source  
=
=
=
=
=
=
source impedance  
input channel pad  
input pin capacitance  
threshold voltage  
R
SS  
CHx  
C
PIN  
V
T
leakage current at the pin  
due to various junctions  
I
LEAKAGE  
SS  
sampling switch  
=
=
=
sampling switch resistor  
sample/hold capacitance  
R
S
C
SAMPLE  
bring down the high pass corner. The value of R will  
need to be 1 k, or less, since higher input impedances  
require additional acquisition time. Using the RC values  
in Figure 6-4, we have a 100 Hz corner frequency. See  
Figure 2-12 for relation between input impedance and  
acquisition time.  
FIGURE 6-3:  
6.2.1  
Analog Input Model.  
MAINTAINING MINIMUM CLOCK  
SPEED  
When the MCP3302/04 initiates, charge is stored on  
the sample capacitor. When the sample period is com-  
plete, the device converts one bit for each clock that is  
received. It is important for the user to note that a slow  
clock rate will allow charge to bleed off the sample cap  
while the conversion is taking place. For the MCP330X  
devices, the recommended minimum clock speed dur-  
VDD = 5V  
0.1 µF  
ing the conversion cycle (T  
) is 105 kHz. Failure to  
C
CONV  
10 µF  
meet this criteria may induce linearity errors into the  
conversion outside the rated specifications. It should  
be noted that during the entire conversion cycle, the  
A/D converter does not have requirements for clock  
speed or duty cycle, as long as all timing specifications  
are met.  
IN+  
VIN  
MCP330X  
R
1 kΩ  
IN-  
VREF  
VIN  
VOUT  
6.3  
Biasing Solutions  
MCP1525  
0.1 µF  
1 µF  
For pseudo-differential bipolar operation, the biasing  
circuit (shown in Figure 6-4) shows a single ended  
input AC coupled to the converter. This configuration  
will give a digital output range of -4096 to +4095. With  
the 2.5V reference, the LSB size equal to 610 µV.  
FIGURE 6-4:  
Pseudo-differential biasing  
circuit for bipolar operation.  
Using an external operation amplifier on the input  
allows for gain and also buffers the input signal from the  
input to the ADC allowing for a higher source imped-  
ance. This circuit is shown in Figure 6-5.  
Although the ADC is not production tested with a 2.5V  
reference as shown, linearity will not change more than  
0.1 LSB. See Figure 2-2 and Figure 2-9 for DNL and  
INL errors versus V  
at V = 5V. A trade-off exists  
DD  
REF  
between the high pass corner and the acquisition time.  
The value of C will need to be quite large in order to  
DS21697B-page 18  
2002 Microchip Technology Inc.  
MCP3302/04  
6.4  
Common Mode Input Range  
The common mode input range has no restriction and is  
VDD = 5V  
0.1 µF  
equal to the absolute input voltage range: V -0.3V to  
SS  
V
+ 0.3V. However, for a given V  
, the common  
DD  
REF  
10 kΩ  
mode voltage has a limited swing, if the entire range of  
the A/D converter is to be used. Figure 6-7 and  
MCP6021  
1 kΩ  
Figure 6-8 show the relationship between V  
common mode voltage swing. A smaller V  
and the  
REF  
-
IN+  
IN-  
allows for  
REF  
REF  
VIN  
+
MCP330X  
wider flexibility in a common mode voltage. V  
levels,  
1 µF  
VREF  
down to 400 mv, exhibit less than 0.1 LSB change in  
DNL and INL. For characterization graphs that show  
this performance relationship, see Figure 2-9 and  
Figure 2-12.  
1 MΩ  
VOUT  
VIN  
MCP1525  
1 µF  
V
DD = 5V  
0.1 µF  
5
4
4.05V  
0.95V  
2.8V  
3
2
1
0
FIGURE 6-5:  
Adding an amplifier allows  
for gain and also buffers the input from any high  
impedance sources.  
2.3V  
This circuit shows that some headroom will be lost due  
to the amplifier output not being able to swing all the  
way to the rail. An example would be for an output  
swing of 0V to 5V. This limitation can be overcome by  
-1  
supplying a V  
that is slightly less than the common  
REF  
0.25  
1.0  
5.0  
2.5  
VREF (V)  
4.0  
mode voltage. Using a 2.048V reference for the A/D  
converter while biasing the input signal at 2.5V solves  
the problem. This circuit is shown in Figure 6-5.  
FIGURE 6-7:  
Common Mode Input Range  
of Full Differential Input Signal versus V  
.
REF  
VDD = 5V  
VDD = 5V  
10 kΩ  
0.1 µF  
5
4.05V  
4
MCP606  
1 kΩ  
2.8V  
2.3V  
3
2
-
+
IN+  
IN-  
VIN  
MCP330X  
1 µF  
VREF  
1 MΩ  
1
0.95V  
10 kΩ  
0
2.048V  
VIN  
-1  
0.25  
0.5  
2.5  
1.25  
VREF (V)  
2.0  
VOUT  
MCP1525  
1 µF  
0.1 µF  
FIGURE 6-8: Common Mode Input Range  
for Pseudo Differential Input.  
versus V  
REF  
FIGURE 6-6:  
Circuit solution to overcome  
amplifier output swing limitation.  
2002 Microchip Technology Inc.  
DS21697B-page 19  
MCP3302/04  
6.5  
Buffering/Filtering the Analog  
6.6  
Layout Considerations  
Inputs  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
Inaccurate conversion results may occur if the signal  
source for the A/D converter is not a low impedance  
source. Buffering the input will overcome the imped-  
ance issue. It is also recommended that an analog filter  
be used to eliminate any signals that may be aliased  
back into the conversion results. This is illustrated in  
Figure 6-9, where an op amp is used to drive the ana-  
log input of the MCP3302/04. This amplifier provides a  
low impedance source for the converter input and a low  
pass filter, which eliminates unwanted high frequency  
noise. Values shown are for a 10 Hz Butterworth Low  
Pass filter.  
Low pass (anti-aliasing) filters can be designed using  
Microchip’s interactive FilterLab software. FilterLab  
will calculate capacitor and resistor values, as well as  
determine the number of poles that are required for the  
application. For more information on filtering signals,  
see Application Note 699 “Anti-Aliasing Analog Filters  
for Data Acquisition Systems”.  
noise wherever possible. A bypass capacitor from V  
DD  
to ground should always be used with this device and  
should be placed as close as possible to the device pin.  
A bypass capacitor value of 0.1 µF is recommended.  
Digital and analog traces on the board should be sepa-  
rated as much as possible, with no traces running  
underneath the device or the bypass capacitor. Extra  
precautions should be taken to keep traces with high  
frequency signals (such as clock lines) as far as possi-  
ble from analog traces.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing V  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors (see Figure 6-10). For more information on lay-  
out tips when using the MCP3302/04, or other ADC  
devices, refer to Application Note 688, “Layout Tips for  
12-Bit A/D Converter Applications”.  
®
connections to  
DD  
VDD  
10 µF  
VDD  
Connection  
4.096V  
Reference  
1 µF  
0.1 µF  
MCP1541  
CL  
0.1 µF  
VREF  
IN+  
MCP330X  
IN-  
Device 4  
2.2 µF  
MCP601  
+
7.86 kΩ  
VIN  
14.6 kΩ  
1 µF  
-
Device 1  
FIGURE 6-9:  
The MCP601 Operational  
Device 3  
Amplifier is used to implement a 2nd order anti-  
aliasing filter for the signal being converted by  
the MCP3302/04.  
Device 2  
FIGURE 6-10:  
V
traces arranged in a  
DD  
‘Star’ configuration in order to reduce errors  
caused by current return paths.  
DS21697B-page 20  
2002 Microchip Technology Inc.  
MCP3302/04  
6.7  
Utilizing the Digital and Analog  
Ground Pins  
The MCP3302/04 devices provide both digital and ana-  
log ground connections to provide another means of  
noise reduction. As shown in Figure 6-11, the analog  
and digital circuitry are separated internal to the device.  
This reduces noise from the digital portion of the device  
being coupled into the analog portion of the device. The  
two grounds are connected internally through the sub-  
strate which has a resistance of 5 -10 .  
If no ground plane is utilized, then both grounds must  
be connected to V on the board. If a ground plane is  
SS  
available, both digital and analog ground pins should  
be connected to the analog ground plane. If both an  
analog and a digital ground plane are available, both  
the digital and the analog ground pins should be con-  
nected to the analog ground plane, as shown in  
Figure 6-11. Following these steps will reduce the  
amount of digital noise from the rest of the board being  
coupled into the A/D Converter.  
V
DD  
MCP3302/04  
Analog Side  
Digital Side  
-Sample Cap  
-Capacitor Array  
-Comparator  
-SPI Interface  
-Shift Register  
-Control Logic  
Substrate  
5 - 10  
DGND  
AGND  
0.1 µF  
Analog Ground Plane  
FIGURE 6-11:  
Separation of Analog and  
Digital Ground Pins.  
2002 Microchip Technology Inc.  
DS21697B-page 21  
MCP3302/04  
TABLE 7-1:  
BINARY TWO’S  
7.0  
SERIAL COMMUNICATIONS  
COMPLEMENT OUTPUT  
CODE EXAMPLES.  
7.1  
Output Code Format  
Sign  
Decimal  
The output code format is a binary two’s complement  
scheme, with a leading sign bit that indicates the sign  
of the output. If the IN+ input is higher than the IN-  
input, the sign bit will be a zero. If the IN- input is higher,  
the sign bit will be a ‘1’.  
Analog Input Levels  
Binary Data  
Bit  
DATA  
Full Scale Positive  
(IN+)-(IN-)=VREF-1 LSB  
0
0
0
0
0
1
1
1
1111 1111 1111  
1111 1111 1110  
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
0000 0000 0001  
+4095  
+4094  
+2  
+1  
0
-1  
-2  
-4095  
(IN+)-(IN-) = VREF-2 LSB  
IN+ = (IN-) +2 LSB  
IN+ = (IN-) +1 LSB  
IN+ = IN-  
IN+ = (IN-) - 1 LSB  
IN+ = (IN-) - 2 LSB  
(IN+)-(IN-) = VREF-2 LSB  
The diagram shown in Figure 7-1 shows the output  
code transfer function. In this diagram, the horizontal  
axis is the analog input voltage and the vertical axis is  
the output code of the ADC. It shows that when IN+ is  
equal to IN-, both the sign bit and the data word is zero.  
As IN+ gets larger with respect to IN-, the sign bit is a  
zero and the data word gets larger. The full scale output  
code is reached at +4095 when the input [(IN+) - (IN-)]  
Full Scale Negative  
(IN+)-(IN-) = VREF-1 LSB  
1
0000 0000 0000  
-4096  
reaches V  
- 1 LSB. When IN- is larger than IN+, the  
REF  
two’s complement output codes will be seen with the  
sign bit being a one. Some examples of analog input  
levels and corresponding output codes are shown in  
Table 7-1.  
Output  
Code  
Positive Full  
Scale Output = V  
-1 LSB  
REF  
0 + 1111 1111 1111 (+4095)  
0 + 1111 1111 1110 (+4094)  
0 + 0000 0000 0011 (+3)  
0 + 0000 0000 0010 (+2)  
0 + 0000 0000 0001 (+1)  
Analog Input  
Voltage  
IN+ > IN-  
0 + 0000 0000 0000 (0)  
IN+ - IN-  
IN+ < IN-  
1 + 1111 1111 1111 (-1)  
1 + 1111 1111 1110 (-2)  
1 + 1111 1111 1101 (-3)  
-V  
REF  
V
REF  
1 + 0000 0000 0001 (-4095)  
1 + 0000 0000 0000 (-4096)  
Negative Full  
Scale Output = -V  
REF  
FIGURE 7-1:  
Output Code Transfer Function.  
DS21697B-page 22  
2002 Microchip Technology Inc.  
MCP3302/04  
TABLE 7-2:  
CONFIGURATION BITS FOR  
7.2  
Communicating with the MCP3302  
and MCP3304  
THE MCP3302  
Control Bit  
Selections  
Communication with the MCP3302/04 devices is done  
using a standard SPI-compatible serial interface. Initi-  
ating communication with either device is done by  
bringing the CS line low (see Figure 7-2). If the device  
was powered up with the CS pin low, it must be brought  
high and back low to initiate communication. The first  
Input  
Channel  
Configuration Selection  
Single  
D2* D1 D0  
/Diff  
1
1
1
1
0
X
X
X
X
X
0
0
1
1
0
0
1
0
1
0
single ended  
single ended  
single ended  
single ended  
differential  
CH0  
CH1  
CH2  
CH3  
clock received with CS low and D high will constitute  
IN  
a start bit. The SGL/DIFF bit follows the start bit and will  
determine if the conversion will be done using single  
ended or differential input mode. Each channel in  
single ended mode will operate as a 12-bit converter  
with a unipolar output. No negative codes will be output  
in single ended mode. The next three bits (D0, D1 and  
D2) are used to select the input channel configuration.  
Table 7-2 and Table 7-3 show the configuration bits for  
the MCP3302 and MCP3304, respectively. The device  
will begin to sample the analog input on the fourth rising  
edge of the clock after the start bit has been received.  
The sample period will end on the falling edge of the  
fifth clock following the start bit.  
CH0 = IN+  
CH1 = IN-  
0
0
0
X
X
X
0
1
1
1
0
1
differential  
differential  
differential  
CH0 = IN-  
CH1 = IN+  
CH2 = IN+  
CH3 = IN-  
CH2 = IN-  
CH3 = IN+  
*D2 is don’t care for MCP3302  
After the D0 bit is input, one more clock is required to  
TABLE 7-3:  
CONFIGURATION BITS FOR  
THE MCP3304  
complete the sample and hold period (D is a “don’t  
IN  
care” for this clock). On the falling edge of the next  
clock, the device will output a low null bit. The next 13  
clocks will output the result of the conversion with the  
sign bit first, followed by the 12 remaining data bits, as  
shown in Figure 7-2. Note that if the device is operating  
in the single ended mode, the sign bit will always be  
transmitted as a ‘0’. Data is always output from the  
device on the falling edge of the clock. If all 13 data bits  
have been transmitted, and the device continues to  
receive clocks while the CS is held low, the device will  
output the conversion result, LSB, first, as shown in  
Figure 7-3. If more clocks are provided to the device  
while CS is still low (after the LSB first data has been  
transmitted), the device will clock out zeros indefinitely.  
Control Bit  
Selections  
Input  
Channel  
Configuration Selection  
SinglE  
D2 D1 D0  
/Diff  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
single ended  
single ended  
single ended  
single ended  
single ended  
single ended  
single ended  
single ended  
differential  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
If necessary, it is possible to bring CS low and clock in  
leading zeros on the D line before the start bit. This is  
IN  
often done when dealing with microcontroller-based  
SPI ports that must send 8 bits at a time. Refer to  
Section 7.3 for more details on using the MCP3302/04  
devices with hardware SPI ports  
CH0 = IN+  
CH1 = IN-  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
differential  
differential  
differential  
differential  
differential  
differential  
differential  
CH0 = IN-  
CH1 = IN+  
CH2 = IN+  
CH3 = IN-  
CH2 = IN-  
CH3 = IN+  
CH4 = IN+  
CH5 = IN-  
CH4 = IN-  
CH5 = IN+  
CH6 = IN+  
CH7 = IN-  
CH6 = IN-  
CH7 = IN+  
2002 Microchip Technology Inc.  
DS21697B-page 23  
MCP3302/04  
TSAMPLE  
TSAMPLE  
TCSH  
CS  
TSUCS  
CLK  
SGL/  
SGL/  
Don’t Care  
Start  
Start  
D2 D1 D0  
D2  
DIN  
DIFF  
DIFF  
HI-Z  
HI-Z  
Null  
Bit  
DOUT  
B7  
SB† B11 B10 B9 B8  
B6 B5 B4 B3 B2 B1 B0 *  
TCONV  
TACQ  
TDATA **  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output LSB  
first data, followed by zeros indefinitely. See Figure 7-3 below.  
** T  
: during this time, the bias current and the comparator power down while the reference input becomes  
DATA  
a high impedance node, leaving the CLK running to clock out the LSB-first data or zeros.  
When operating in single ended mode, the sign bit will always be transmitted as a ‘0’.  
FIGURE 7-2:  
Communication with MCP3302/04 (MSB first Format).  
TSAMPLE  
TCSH  
CS  
TSUCS  
Power Down  
CLK  
Start  
DIN  
D2 D1 D0  
SGL/  
DIFF  
Don’t Care  
HI-Z  
Null  
Bit  
HI-Z  
SB† B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 SB*  
DOUT  
(MSB)  
TCONV  
TDATA **  
TACQ  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros  
indefinitely.  
** T  
: During this time, the bias circuit and the comparator power down while the reference input becomes  
DATA  
a high impedance node, leaving the CLK running to clock out LSB first data or zeroes.  
When operating in single ended mode, the sign bit will always be transmitted as a ‘0’.  
FIGURE 7-3:  
Communication with MCP3302/04 (LSB first Format).  
DS21697B-page 24  
2002 Microchip Technology Inc.  
MCP3302/04  
7.3  
Using the MCP3302/04 with  
Microcontroller (MCU) SPI Ports  
With most microcontroller SPI ports, it is required to  
send groups of eight bits. It is also required that the  
microcontroller SPI port be configured to clock out data  
on the falling edge of clock and latch data in on the ris-  
ing edge. Because communication with the MCP3302  
and MCP3304 devices may not need multiples of eight  
clocks, it will be necessary to provide more clocks than  
are required. This is usually done by sending ‘leading  
zeros’ before the start bit. For example, Figure 7-4 and  
Figure 7-5 show how the MCP3302/04 devices can be  
interfaced to a MCU with a hardware SPI port.  
Figure 7-4 depicts the operation shown in SPI Mode  
0,0, which requires that the SCLK from the MCU idles  
in the ‘low’ state, while Figure 7-5 shows the similar  
case of SPI Mode 1,1, where the clock idles in the ‘high’  
state.  
As shown in Figure 7-4, the first byte transmitted to the  
A/D Converter contains 6 leading zeros before the start  
bit. Arranging the leading zeros this way produces the  
13 data bits to fall in positions easily manipulated by the  
MCU. The sign bit is clocked out of the A/D Converter  
on the falling edge of clock number 11, followed by the  
remaining data bits (MSB first). After the second eight  
clocks have been sent to the device, the MCU receive  
buffer will contain 2 unknown bits (the output is at high  
impedance for the first two clocks), the null bit, the sign  
bit and the 4 highest order bits of the conversion. After  
the third byte has been sent to the device, the receive  
register will contain the lowest order eight bits of the  
conversion results. Easier manipulation of the con-  
verted data can be obtained by using this method.  
Figure 7-5 shows the same situation in SPI Mode 1,1,  
which requires that the clock idles in the high state. As  
with mode 0,0, the A/D Converter outputs data on the  
falling edge of the clock and the MCU latches data from  
the A/D Converter in on the rising edge of the clock.  
2002 Microchip Technology Inc.  
DS21697B-page 25  
MCP3302/04  
CS  
MCU latches data from A/D Converter  
on rising edges of SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
Data is clocked out of  
A/D Converter on falling edges  
SGL/  
DIFF  
D2 D1  
Start  
D0  
Don’t Care  
D
IN  
HI-Z  
NULL  
B1 B0  
SB B11 B10 B9 B8  
BIT  
B7  
B6 B5 B4 B3 B2  
D
OUT  
Start  
Bit  
1
MCU Transmitted Data  
(Aligned with falling  
edge of clock)  
SGL/  
X
X
0
0
0
0
D2 D1  
DO  
X
X
X
X
X
X
X
X
X
X
X
X
X
DIFF  
MCU Received Data  
(Aligned with rising  
edge of clock)  
0
?
?
?
?
?
?
?
?
?
?
SB B11 B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
(Null)  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
Data stored into MCU receive register  
after transmission of last 8 bits  
? = Unknown Bits  
X = Don’t Care Bits  
FIGURE 7-4:  
SPI Communication with the MCP3302/04 using 8-bit segments (Mode 0,0: SCLK  
idles low).  
MCU latches data from A/D Converter  
on rising edges of SCLK  
CS  
4
9
1
2
3
5
6
7
8
10 11 12 13 14 15  
16  
17 18 19 20 21 22 23  
24  
SCLK  
Data is clocked out of  
A/D Converter on falling edges  
SGL/  
Don’t Care  
Start  
D2  
D1  
D0  
D
IN  
DIFF  
HI-Z  
NULL  
SB B11 B10 B9  
BIT  
B8  
B7 B6 B5 B4 B3 B2 B1 B0  
D
OUT  
Start  
Bit  
MCU Transmitted Data  
(Aligned with falling  
edge of clock)  
MCU Received Data  
(Aligned with rising  
edge of clock)  
SGL/  
DIFF  
0
0
0
0
1
D2 D1  
?
DO  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
?
?
?
?
?
?
?
?
?
SB B11 B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
(Null)  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
Data stored into MCU receive register  
after transmission of last 8 bits  
? = Unknown Bits  
X = Don’t Care Bits  
FIGURE 7-5:  
SPI Communication with the MCP3302/04 using 8-bit segments (Mode 1,1: SCLK  
idles high).  
DS21697B-page 26  
2002 Microchip Technology Inc.  
MCP3302/04  
8.0  
8.1  
PACKAGING INFORMATION  
Package Marking Information  
14-Lead PDIP (300 mil)  
Example:  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP3302-B  
I/P  
0125NNN  
YYWWNNN  
14-Lead SOIC (150 mil)  
MCP3302-B  
XXXXXXXXXXX  
0YWWNNN  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
14-Lead TSSOP (4.4mm) †  
Example:  
XXXXXXXX  
YYWW  
3302-C  
IYWW  
NNN  
NNN  
Please contact Microchip Factory for B-Grade TSSOP devices  
Legend: XX...X  
Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code,  
mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your  
Microchip Sales Office.  
2002 Microchip Technology Inc.  
DS21697B-page 27  
MCP3302/04  
Package Marking Information (Continued)  
16-Lead PDIP (300 mil) (MCP3304)  
Example:  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP3304-B  
I/P  
YYWWNNN  
YYWWNNN  
16-Lead SOIC (150 mil) (MCP3304)  
MCP3304-B  
XXXXXXXXXX  
XXXXXXXXXXXXX  
XXXXXXXXXXXXX  
YYWWNNN  
IYWWNNN  
Legend: XX...X  
Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
* Standard marking consists of Microchip part number, year code, week code, traceability code (facility code,  
mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your  
Microchip Sales Office.  
DS21697B-page 28  
2002 Microchip Technology Inc.  
MCP3302/04  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
14  
14  
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
4.32  
3.68  
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
2002 Microchip Technology Inc.  
DS21697B-page 29  
MCP3302/04  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
h
L
φ
c
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
0
12  
15  
0
12  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
DS21697B-page 30  
2002 Microchip Technology Inc.  
MCP3302/04  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
Overall Height  
14  
14  
.026  
0.65  
A
.043  
1.10  
Molded Package Thickness  
A2  
A1  
E
E1  
D
.033  
.002  
.246  
.169  
.193  
.020  
0
.004  
.007  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.006  
.010  
5
.037  
.006  
.256  
.177  
.201  
.028  
8
.008  
.012  
10  
0.85  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
0.15  
0.25  
5
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
0.20  
0.30  
10  
Standoff  
§
0.05  
6.25  
4.30  
4.90  
0.50  
0
0.09  
0.19  
0
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L
φ
c
B1  
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
2002 Microchip Technology Inc.  
DS21697B-page 31  
MCP3302/04  
16-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
β
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
16  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
16  
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
.036  
7.87  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-017  
DS21697B-page 32  
2002 Microchip Technology Inc.  
MCP3302/04  
16-Lead Plastic Small Outline (SL) – Narrow 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
L
A1  
β
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
16  
16  
.050  
.061  
.057  
.007  
.237  
.154  
.390  
.015  
.033  
4
1.27  
1.55  
1.44  
0.18  
6.02  
3.90  
9.91  
0.38  
0.84  
4
Overall Height  
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
Standoff  
.052  
.004  
.228  
.150  
.386  
.010  
.016  
0
.061  
.010  
.244  
.157  
.394  
.020  
.050  
8
1.32  
0.10  
5.79  
3.81  
9.80  
0.25  
0.41  
0
1.55  
0.25  
6.20  
3.99  
10.01  
0.51  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
h
L
φ
c
B
α
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
Mold Draft Angle Top  
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
0
12  
15  
0
12  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-108  
2002 Microchip Technology Inc.  
DS21697B-page 33  
MCP3302/04  
NOTES:  
DS21697B-page 34  
2002 Microchip Technology Inc.  
MCP3302/04  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
013001  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2002 Microchip Technology Inc.  
DS21697B-page 35  
MCP3302/04  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS21697B  
Device:  
MCP3302/04  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS21697B-page 36  
2002 Microchip Technology Inc.  
MCP3302/04  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
X
/XX  
Examples:  
a)  
b)  
c)  
MCP3302-BI/P: ±1 LSB INL, Industrial Tem-  
Grade Temperature Package  
Range  
perature, PDIP package  
MCP3302-BI/SL: ±1 LSB INL, Industrial  
Temperature, SOIC package  
MCP3302-CI/ST: ±2 LSB INL, Industrial  
Temperature, TSSOP package  
Device:  
MCP3302: 13-Bit Serial A/D Converter  
MCP3302T: 13-Bit Serial A/D Converter (Tape and Reel)  
MCP3304: 13-Bit Serial A/D Converter  
MCP3304T: 13-Bit Serial A/D Converter (Tape and Reel)  
a)  
b)  
MCP3304-BI/P: ±1 LSB INL, Industrial  
Temperature, PDIP package  
MCP3304-BI/SL: ±1 LSB INL, Industrial  
Temperature, SOIC package  
Grade:  
B
C
=
=
±1 LSB INL  
±2 LSB INL  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
P
=
=
=
Plastic DIP (300 mil Body), 14-lead, 16-lead  
Plastic SOIC (150 mil Body), 14-lead, 16-lead  
Plastic TSSOP (4.4mm), 14-lead  
SL  
ST  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21697B-page37  
MCP3302/04  
NOTES:  
DS21697B-page 38  
2002 Microchip Technology Inc.  
MCP3302/04  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21697B-page 39  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
Chicago  
No. 88 TIDU Street  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
No. 71 Wusi Road  
EUROPE  
Detroit  
Fuzhou 350001, China  
Denmark  
Tri-Atria Office Building  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Kokomo  
Room 701, Bldg. B  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Far East International Plaza  
No. 317 Xian Xia Road  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
China - Shenzhen  
Batiment A - ler Etage  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
91300 Massy, France  
Tel: 949-263-1888 Fax: 949-263-1338  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
New York  
Germany  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Shenzhen 518001, China  
Tel: 631-273-5305 Fax: 631-273-5335  
Tel: 86-755-2350361 Fax: 86-755-2366086  
San Jose  
China - Hong Kong SAR  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Milan, Italy  
Microchip Technology Inc.  
India Liaison Office  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Divyasree Chambers  
Microchip Ltd.  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Austria  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
05/16/02  
DS21697B-page 40  
2002 Microchip Technology Inc.  

相关型号:

MCP3302T-I/SL

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3302T-I/ST

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3302TI/P

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3302TI/SL

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3302TI/ST

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3302_07

13-Bit Differential Input, Low Power A/D Converter with SPI⑩ Serial Interface
MICROCHIP

MCP3302_08

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3302_11

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3304

13-Bit Differential Input, Low Power A/D Converter with SPI Serial Interface
MICROCHIP

MCP3304-BI/P

13-Bit Differential Input, Low Power A/D Converter with SPI⑩ Serial Interface
MICROCHIP

MCP3304-BI/SL

13-Bit Differential Input, Low Power A/D Converter with SPI⑩ Serial Interface
MICROCHIP

MCP3304-BI/ST

13-Bit Differential Input, Low Power A/D Converter with SPI⑩ Serial Interface
MICROCHIP