MCP33131D-05 [MICROCHIP]

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC;
MCP33131D-05
型号: MCP33131D-05
厂家: MICROCHIP    MICROCHIP
描述:

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC

文件: 总59页 (文件大小:3359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP33131D/21D/11D-XX  
1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC  
Features  
Typical Applications  
• Sample Rate (Throughput):  
• High-Precision Data Acquisition  
• Medical Instruments  
- MCP33131D/21D/11D-10: 1 Msps  
- MCP33131D/21D/11D-05: 500 kSPS  
Test Equipment  
• 16/14/12-Bit Resolution with No Missing Codes  
• No Latency Output  
• Electric Vehicle Battery Management Systems  
• Motor Control Applications  
• Wide Operating Voltage Range:  
- Analog Supply Voltage (AVDD): 1.8V  
• Switch-Mode Power Supply Applications  
• Battery-Powered Equipment  
- Digital Input/Output Interface Voltage (DVIO):  
1.7V - 5.5V  
System Design Supports  
- External Reference (VREF): 2.5V - 5.1V  
• Differential Input Operation  
The MCP331x1D-XX Evaluation Kit demonstrates the  
performance of the MCP331x1D-XX SAR ADC family  
devices. The evaluation kit includes: (a) MCP331x1D  
Evaluation Board, (b) PIC32MZ EF Curiosity Board for  
data collection, and (c) SAR ADC Utility PC GUI.  
- Input Full-Scale Range: -VREF to +VREF  
• Ultra Low Current Consumption (typical):  
- During Input Acquisition (Standby): ~ 0.8 µA  
- During Conversion:  
Contact Microchip Technology Inc. for the evaluation  
tools and the PIC32 MCU firmware example codes.  
MCP33131D/21D/11D-10: ~1.6 mA  
MCP33131D/21D/11D-05: ~1.4 mA  
Package Types  
• SPI-Compatible Serial Communication:  
- SCLK Clock Rate: up to 100 MHz  
VREF  
AVDD  
1
10 DVIO  
9 SDI  
• ADC Self-Calibration for Offset, Gain, and  
Linearity Errors:  
MSOP-10  
TDFN-10  
2
3
4
5
Top View  
AIN+  
AIN-  
8 SCLK  
- During Power-Up (automatic)  
SDO  
7
- On-Demand via user’s command during  
normal operation  
GND  
6 CNVST  
• AEC-Q100 Qualified:  
VREF  
DV  
IO  
1
2
10  
9
- Temperature Grade 1: -40°C to +125°C  
• Package Options: MSOP-10 and TDFN-10  
AVDD  
AIN+  
AIN-  
SDI  
Top View  
SCLK  
3
4
5
8
7
6
SDO  
CNVST  
GND  
MCP331x1D-XX Device Offering (Note 1):  
Performance (Typical)  
Sample  
Rate  
Input Range  
(Differential)  
Part Number Resolution  
Input Type  
SNR  
(dBFS)  
SFDR  
THD  
(dB)  
INL  
DNL  
(dB)  
(LSB)  
(LSB)  
MCP33131D-10  
MCP33121D-10  
MCP33111D-10  
MCP33131D-05  
MCP33121D-05  
MCP33111D-05  
16-bit  
14-bit  
12-bit  
16-bit  
14-bit  
12-bit  
1 Msps  
1 Msps  
1 Msps  
Differential  
Differential  
Differential  
±5.1V  
±5.1V  
±5.1V  
±5.1V  
±5.1V  
±5.1V  
91.3  
85.1  
73.9  
91.3  
85.1  
73.9  
103.5  
103.5  
99.3  
-99.3  
-99.2  
-96.7  
-99.3  
-99.2  
-96.7  
±2  
±0.5  
±0.12  
±2  
±0.8  
±0.25  
±0.06  
±0.8  
500 kSPS Differential  
500 kSPS Differential  
500 kSPS Differential  
103.5  
103.5  
99.3  
±0.5  
±0.12  
±0.25  
±0.06  
Note 1: SNR, SFDR, and THD are measured with fIN = 10 kHz, VIN = -1 dBFS, VREF = 5.1V.  
2018 Microchip Technology Inc.  
DS20005947B-page 1  
MCP33131D/MCP33121D/MCP33111D-XX  
Application Diagram  
1.8V to 5.5V  
2.5V to 5.1V 1.8V  
V
DV  
IO  
AV  
REF  
DD  
22  
1.7 nF  
22Ω  
1.7 nF  
A
+
IN  
0V to V  
REF  
REF  
SDI  
MCP331x1D-XX  
Host Device  
CNVST  
SCLK  
SDO  
(PIC32MZ)  
A
-
IN  
0V to V  
GND  
During Standby, most of the internal analog circuitry is  
shutdown in order to reduce current consumption.  
Typically, the device consumes less than 1 µA during  
Standby. A new conversion is started on the rising edge  
of CNVST. When the conversion is complete and the  
host lowers CNVST, the output data is presented on  
SDO, and the device enters Standby to begin acquiring  
the next input sample. The user can clock out the ADC  
output data using the SPI-compatible serial clock  
during Standby.  
Description  
The MCP33131D/MCP33121D/MCP33111D-10 and  
MCP33131D/MCP33121D/MCP33111D-05 are  
fully-differential 16, 14, and 12-bit, single-channel  
1 Msps and 500 kSPS ADC family devices,  
respectively, featuring low power consumption and  
high performance, using a successive approximation  
register (SAR) architecture.  
The device operates with a 2.5V to 5.1V external  
reference (VREF), which supports a wide range of input  
full-scale range from -VREF to +VREF. The reference  
voltage setting is independent of the analog supply  
voltage (AVDD  
conversion output is available through an easy-to-use  
simple SPI- compatible 3-wire interface.  
The ADC system clock is generated by the internal  
on-chip clock, therefore the conversion is performed  
independent of the SPI serial clock (SCLK).  
) and is higher than AVDD. The  
This device can be used for various high-speed and  
high-accuracy analog-to-digital data conversion  
applications, where design simplicity, low power, and  
no output latency are needed.  
The device requires a 1.8V analog supply voltage  
(AVDD) and a 1.7V to 5.5V digital I/O interface supply  
voltage (DVIO). The wide digital I/O interface supply  
(DVIO) range (1.7V – 5.5V) allows the device to  
interface with most host devices (Master) available in  
the current industry such as the PIC32  
microcontrollers, without using external voltage level  
shifters.  
The device is AEC-Q100 qualified for automotive appli-  
cations and operates over the extended temperature  
range of -40°C to +125°C. The available package  
options are Pb-free small 3 mm x 3 mm TDFN-10 and  
MSOP-10.  
When the device is first powered-up, it performs a  
self-calibration to minimize offset, gain and linearity  
errors. The device performance stays stable across the  
specified temperature range. However, when extreme  
changes in the operating environment, such as in the  
reference voltage, are made with respect to the initial  
conditions (e.g. the reference voltage was not fully  
settled during the initial power-up sequence), the user  
may send a recalibrate command anytime to initiate  
another  
self-calibration  
to  
restore  
optimum  
performance.  
When the initial power-up sequence is completed, the  
device enters a low-current input acquisition mode,  
where sampling capacitors are connected to the input  
pins. This mode is called Standby.  
DS20005947B-page 2  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
†Notice: Stresses above those listed under “Absolute  
1.0  
1.1  
KEY ELECTRICAL  
Maximum Ratings” may cause permanent damage to the  
CHARACTERISTICS  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
Absolute Maximum Ratings†  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
External Analog Supply Voltage (AVDD)............. -0.3V to 2.0V  
External Digital Supply Voltage (DVIO)............... -0.3V to 5.8V  
External Reference Voltage (VREF).................... -0.3V to 5.8V  
Analog Inputs w.r.t GND ......................... -0.3V to VREF+0.3V  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ..........................±250 mA  
Storage Temperature ....................................-65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD protection on all pins .... 2kV HBM, 200V MM, 2kV CDM  
periods may affect device reliability.  
1.2  
Electrical Specifications  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF  
IN  
IN  
LOAD_SDO  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Requirements  
Analog Supply Voltage Range  
AV  
1.7  
1.7  
1.8  
1.9  
5.5  
V
V
(Note 3)  
(Note 3)  
DD  
Digital Input/Output Interface Voltage  
Range  
DV  
IO  
Analog Supply Current at AV pin:  
DD  
During Conversion  
I
1.6  
1.4  
0.8  
2.4  
2.0  
mA  
mA  
µA  
f
f
= 1 Msps (MCP331x1D-10)  
= 500 kSPS (MCP331x1D-05)  
DDAN  
s
s
During Standby  
I
During input acquisition (t  
)
DDAN_STBY  
ACQ  
Digital Supply Current At DV pin:  
DD  
During Output Data Reading  
I
290  
200  
30  
A  
A  
nA  
f
f
= 1 Msps (MCP331x1D-10)  
= 500 kSPS (MCP331x1D-05)  
IO_DATA  
s
s
During Standby  
I
During input acquisition (t  
)
IO_STBY  
ACQ  
External Reference Voltage Input  
Reference Voltage  
(Note 2), (Note 3)  
V
2.5  
2.7  
5.1  
5.1  
V
-40°C T 85°C  
A
REF  
85°C < T 125°C  
A
Reference Load Current at V  
During Conversion  
pin:  
REF  
I
450  
220  
240  
600  
360  
µA  
µA  
nA  
f
f
= 1 Msps (MCP331x1D-10)  
= 500 kSPS (MCP331x1D-05)  
REF  
s
s
During Standby  
I
During input acquisition (t  
)
REF_STBY  
ACQ  
Total Power Consumption (Including AVDD, DVIO, VREF pins)  
MCP331x1D-10  
at 1 Msps  
P
6.2  
3.1  
0.6  
2.6  
mW  
mW  
mW  
W  
Averaged power for t  
+ t  
ACQ  
DISS_TOTAL  
CNV  
at 500 kSPS  
at 100 kSPS  
During Standby  
P
During input acquisition (t  
)
DISS_STBY  
ACQ  
MCP331x1D-05  
at 500 kSPS  
at 100 kSPS  
During Standby  
P
4.2  
0.8  
2.6  
mW  
mW  
W  
Averaged power for t  
+ t  
ACQ  
DISS_TOTAL  
CNV  
P
During input acquisition (t  
)
DISS_STBY  
ACQ  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AV pin: 1 F ceramic capacitor, (b) DV pin: 0.1 F ceramic capacitor, (c) V pin: 10 F tantalum capacitor.  
REF  
DD  
IO  
4: Differential Input Full-Scale Range (FSR) = 2 x V  
REF  
5: PSRR (dB) = -20 log (D  
/AV ), where D  
= change in conversion result.  
VOUT  
VOUT  
DD  
6: ENOB = (SINAD - 1.76)/6.02  
2018 Microchip Technology Inc.  
DS20005947B-page 3  
MCP33131D/MCP33121D/MCP33111D-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF  
IN  
IN  
LOAD_SDO  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Analog Inputs  
Input Voltage Range  
(Note 2)  
V
-0.1  
-0.1  
V
V
+0.1  
+0.1  
V
V
Differential Input:  
= (V - V )  
IN-  
IN+  
REF  
REF  
V
IN  
IN+  
V
IN-  
Input Full-Scale Voltage Range  
Input Common-Mode Voltage Range  
Input Sampling Capacitance  
-3dB Input Bandwidth  
FSR  
-V  
+V  
V
PP  
Differential Input (Note 2), (Note 4)  
REF  
REF  
V
0
V
/2  
V
(Note 2)  
(Note 1)  
(Note 1)  
CM  
REF  
31  
REF  
C
pF  
S
BW  
25  
MHz  
ns  
-3dB  
Aperture Delay  
(Note 1)  
2.5  
Time delay between CNVST rising  
edge and when input is sampled  
Leakage Current at Analog Input Pin  
I
±2  
±200  
nA  
During input acquisition (t  
)
ACQ  
LEAK_AN_INPUT  
System Performance  
Sample Rate  
(Throughput rate)  
f
±2  
1
500  
Msps  
kSPS  
Bits  
MCP331x1D-10  
MCP331x1D-05  
s
Resolution  
(No Missing Codes)  
16  
14  
12  
-6  
MCP33131D-10 and MCP33131D-05  
MCP33121D-10 and MCP33121D-05  
MCP33111D-10 and MCP33111D-05  
MCP33131D-10 and MCP33131D-05  
MCP33121D-10 and MCP33121D-05  
MCP33111D-10 and MCP33111D-05  
MCP33131D-10 and MCP33131D-05  
MCP33121D-10 and MCP33121D-05  
MCP33111D-10 and MCP33111D-05  
MCP33131D-10 and MCP33131D-05  
MCP33121D-10 and MCP33121D-05  
MCP33111D-10 and MCP33111D-05  
Bits  
Bits  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
+6  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
mV  
-1.5  
±0.5  
±0.12  
±0.8  
±0.25  
±0.06  
±0.1  
±0.125  
±0.8  
±0.8  
±2  
+1.5  
DNL  
-0.98  
-0.8  
+1.8  
+0.8  
+0.3  
±2.3  
±3  
-0.3  
mV  
±3.66  
mV  
o
Offset Error Drift with Temperature  
Gain Error  
V/ C  
G
LSB  
LSB  
LSB  
MCP33131D-10 and MCP33131D-05  
MCP33121D-10 and MCP33121D-05  
MCP33111D-10 and MCP33111D-05  
ER  
±0.5  
±0.1  
±0.35  
84  
o
Gain Error Drift with temperature  
Input common-mode rejection ratio  
Power Supply Rejection Ratio  
V/ C  
CMRR  
PSRR  
dB  
dB  
70  
(Note 5)  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AV pin: 1 F ceramic capacitor, (b) DV pin: 0.1 F ceramic capacitor, (c) V pin: 10 F tantalum capacitor.  
REF  
DD  
IO  
4: Differential Input Full-Scale Range (FSR) = 2 x V  
REF  
5: PSRR (dB) = -20 log (D  
/AV ), where D  
= change in conversion result.  
VOUT  
VOUT  
DD  
6: ENOB = (SINAD - 1.76)/6.02  
DS20005947B-page 4  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF  
IN  
IN  
LOAD_SDO  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Dynamic Performance  
Signal-to-Noise Ratio  
SNR  
MCP33131D-10 and MCP33131D-05: 16-bit ADC  
91.6  
86.6  
91.3  
86.6  
dBFS  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
88.7  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
MCP33121D-10 and MCP33121D-05: 14-bit ADC  
85.2  
83.5  
85.1  
83.5  
dBFS  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
81.7  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
MCP33111D-10 and MCP33111D-05: 12-bit ADC  
73.9  
73.8  
73.9  
73.8  
dBFS  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
71.1  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
Signal-to-Noise and Distortion Ratio  
SINAD  
MCP33131D-10 and MCP33131D-05: 16-bit ADC  
(Note 6)  
91.5  
86.6  
91  
dBFS  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
86.2  
= 2.5V, f = 10 kHz  
IN  
MCP33121D-10 and MCP33121D-05: 14-bit ADC  
85.2  
83.5  
85  
dBFS  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
83.3  
= 2.5V, f = 10 kHz  
IN  
MCP33111D-10 and MCP33111D-05: 12-bit ADC  
73.9  
73.8  
73.9  
73.8  
dBFS  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AV pin: 1 F ceramic capacitor, (b) DV pin: 0.1 F ceramic capacitor, (c) V pin: 10 F tantalum capacitor.  
REF  
DD  
IO  
4: Differential Input Full-Scale Range (FSR) = 2 x V  
REF  
5: PSRR (dB) = -20 log (D  
/AV ), where D  
= change in conversion result.  
VOUT  
VOUT  
DD  
6: ENOB = (SINAD - 1.76)/6.02  
2018 Microchip Technology Inc.  
DS20005947B-page 5  
MCP33131D/MCP33121D/MCP33111D-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF  
IN  
IN  
LOAD_SDO  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Spurious Free Dynamic Range  
SFDR  
MCP33131D-10 and MCP33131D-05: 16-bit ADC  
103.7  
98  
dBc  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
103.5  
97.5  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
MCP33121D-10 and MCP33121D-05: 14-bit ADC  
103.6  
98  
dBc  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
103.5  
97.4  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
MCP33111D-10 and MCP33111D-05: 12-bit ADC  
99.3  
97.7  
99.3  
97.2  
dBc  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
Total Harmonic Distortion  
(first five harmonics)  
THD  
MCP33131D-10 and MCP33131D-05: 16-bit ADC  
-100.4  
-95.4  
-99.3  
-95.4  
dBc  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
MCP33121D-10 and MCP33121D-05: 14-bit ADC  
-100.1  
-95.3  
-99.2  
-95.3  
dBc  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
MCP33111D-10 and MCP33111D-05: 12-bit ADC  
-97.5  
-94.4  
-96.7  
-94.4  
dBc  
V
V
V
V
= 5V, f = 1 kHz  
IN  
REF  
REF  
REF  
REF  
= 2.5V, f = 1 kHz  
IN  
= 5V, f = 10 kHz  
IN  
= 2.5V, f = 10 kHz  
IN  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AV pin: 1 F ceramic capacitor, (b) DV pin: 0.1 F ceramic capacitor, (c) V pin: 10 F tantalum capacitor.  
REF  
DD  
IO  
4: Differential Input Full-Scale Range (FSR) = 2 x V  
REF  
5: PSRR (dB) = -20 log (D  
/AV ), where D  
= change in conversion result.  
VOUT  
VOUT  
DD  
6: ENOB = (SINAD - 1.76)/6.02  
DS20005947B-page 6  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF  
IN  
IN  
LOAD_SDO  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
System Self-Calibration  
Self-Calibration Time  
t
500  
650  
ms  
(Note 2)  
Includes clocks for data bits  
CAL  
Number of SCLK Clocks for  
Recalibrate Command  
ReCal  
1024  
clocks  
NSCLK  
Serial Interface Timing Information: See Table 1-2  
Digital Inputs/Outputs  
High-level Input voltage  
Low-level input voltage  
V
0.7 * DV  
0.9 * DV  
-0.3  
DV + 0.3  
V
V
DV 2.3V  
IO  
IH  
IO  
IO  
DV + 0.3  
DV < 2.3V  
IO  
IO  
IO  
V
0.3 * DV  
0.2 * DV  
V
DV 2.3V  
IO  
IL  
IO  
IO  
-0.3  
V
DV < 2.3V  
IO  
Hysteresis of Schmitt Trigger Inputs  
Low-level output voltage  
High-level output voltage  
Input leakage current  
V
0.2 * DV  
V
All digital inputs  
HYST  
IO  
V
0.2 * DV  
V
I
= 500 µA (sink)  
OL  
IO  
OL  
OL  
V
I
0.8 * DV  
V
I
= - 500 µA (source)  
OH  
IO  
I
±1  
µA  
µA  
CNVST/SDI/SCLK = GND or DV  
Output is high-Z, SDO = GND or  
LI  
IO  
Output leakage current  
±1  
LO  
DV  
IO  
Internal capacitance  
C
7
pF  
T
= 25°C (Note 1)  
INT  
A
(all digital inputs and outputs)  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AV pin: 1 F ceramic capacitor, (b) DV pin: 0.1 F ceramic capacitor, (c) V  
pin: 10 F tantalum capacitor.  
DD  
IO  
REF  
4: Differential Input Full-Scale Range (FSR) = 2 x V  
REF  
5: PSRR (dB) = -20 log (D  
/AV ), where D  
= change in conversion result.  
VOUT  
VOUT  
DD  
6: ENOB = (SINAD - 1.76)/6.02  
2018 Microchip Technology Inc.  
DS20005947B-page 7  
MCP33131D/MCP33121D/MCP33111D-XX  
TABLE 1-2:  
SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF. +25°C is applied for typical value. All timings are  
IN  
IN  
LOAD_SDO  
measured at 50%. See Figure 1-1 for timing diagram.  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Serial Clock frequency  
SCLK Period  
f
10  
12  
16  
3
100  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See t  
specification  
SCLK  
SCLK  
SCLK  
t
DV 3.3V, f  
= 100 MHz (Max)  
= 83.3 MHz (Max)  
= 62.5 MHz (Max)  
IO  
SCLK  
SCLK  
SCLK  
DV 2.3V, f  
IO  
DV 1.7V, f  
IO  
SCLK Low Time  
t
DV 2.3V  
SCLK_L  
IO  
4.5  
3
DV 1.7V  
IO  
SCLK High Time  
t
DV 2.3V  
SCLK_H  
IO  
4.5  
10  
DV 1.7V  
IO  
Output Valid from SCLK Low  
t
9.5  
12  
16  
DV 3.3V  
IO  
DO  
DV 2.3V  
IO  
DV 1.7V  
IO  
Quiet time  
t
(Note 2)  
QUIET  
3-Wire Operation:  
SDI Valid Setup time  
CNVST Pulse Width High Time  
Output Enable Time  
t
5
10  
15  
15  
ns  
ns  
ns  
ns  
ns  
SDI High to CNVST Rising Edge  
SU_SDIH_CNV  
t
10  
CNVH  
t
DV 2.3V  
IO  
EN  
DV 1.7V  
IO  
Output Disable Time  
MCP331x1D-10  
Sample Rate  
t
(Note 2)  
DIS  
f
1
Msps Throughput rate  
s
Input Acquisition Time  
(Note 2)  
t
290  
250  
300  
ns  
ns  
µs  
-40°C T 85°C  
A
ACQ  
85°C < T 125°C  
A
Data Conversion Time  
t
700  
710  
750  
-40°C T 85°C  
A
CNV  
CYC  
85°C < T 125°C  
A
Time between Conversions  
MCP331x1D-05  
t
1
t
= t  
+ t  
, f = 1 Msps  
CYC  
ACQ  
CNV S  
Sample Rate  
f
700  
800  
1200  
500  
kSPS Throughput rate  
s
Input Acquisition Time (Note 2)  
Data Conversion Time  
Time between Conversions  
t
ns  
ns  
µs  
-40°C T 125°C  
A
ACQ  
t
1300  
-40°C T 125°C  
A
CNV  
CYC  
t
2
t
= t  
+ t  
, f = 500 kSPS  
CYC  
ACQ  
CNV S  
Note 1:  
2:  
This parameter is ensured by design and not 100% tested.  
This parameter is ensured by characterization and not 100% tested.  
TABLE 1-3:  
TEMPERATURE CHARACTERISTICS  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, MSOP-10  
Thermal Resistance, TDFN-10  
T
-40  
-65  
+125  
+150  
°C  
°C  
(Note 1)  
(Note 1)  
A
T
A
202  
68  
°C/W  
°C/W  
JA  
JA  
o
Note 1:  
The internal junction temperature (T ) must not exceed the absolute maximum specification of +150 C.  
j
DS20005947B-page 8  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
tCYC  
= 1/fS  
SDI = “High”  
t
CNVH  
t
SU_SDIH_CNV  
CNVST  
t
SCLK  
(Note 1)  
1
n
3
n-1  
2
SCLK  
t
t
DO  
QUIET  
t
t
SCLK_L  
SCLK_H  
t
DIS  
Hi-Z  
(MAX)  
D
(MSB)  
Hi-Z  
n-1  
SDO  
D
1
D
0
D
D
n-2  
n-3  
t
CNV  
t
EN  
(Note 2)  
(Note 3)  
t
EN  
ADC State  
Input Acquisition  
Conversion  
Input Acquisition  
(t  
)
(t  
)
(t  
)
ACQ  
CNV  
ACQ  
Note 1: n = 16 for 16-bit, 14 for 14-bit device, and 12 for 12-bit device.  
2: t when CNVST is lowered after t (MAX).  
EN  
CNV  
3: t when CNVST is lowered before t  
(MAX).  
EN  
CNV  
FIGURE 1-1:  
Interface Timing Diagram. CNVST is used as chip select. See Figure 7-2 for more  
details.  
2018 Microchip Technology Inc.  
DS20005947B-page 9  
MCP33131D/MCP33121D/MCP33111D-XX  
NOTES:  
DS20005947B-page 10  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
2.0  
TYPICAL PERFORMANCE CURVES FOR 16-BIT DEVICES (MCP33131D-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
2
1
3
V
= 5V  
V
= 2.5V  
REF  
REF  
2
1
0
0
-1  
-2  
-3  
-1  
-2  
0
16,384  
32,768  
Code  
49,152  
65,536  
0
16,384  
32,768  
Code  
49,152  
65,536  
FIGURE 2-1:  
INL vs. Output Code.  
FIGURE 2-4:  
INL vs. Output Code.  
1
0.5  
0
1
0.5  
0
V
= 2.5V  
V
= 5V  
REF  
REF  
-0.5  
-0.5  
-1  
0
-1  
0
16,384  
32,768  
Code  
49,152  
65,536  
16,384  
32,768  
Code  
49,152  
65,536  
FIGURE 2-2:  
DNL vs. Output Code.  
FIGURE 2-5:  
DNL vs. Output Code.  
1
0.5  
0
3
2
Max DNL (LSB)  
Max INL (LSB)  
1
V
= 5V  
V
= 5V  
0
REF  
REF  
-1  
-2  
-0.5  
Min INL (LSB)  
Min DNL (LSB)  
-1  
-3  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-3:  
INL vs. Temperature.  
FIGURE 2-6:  
DNL vs. Temperature.  
2017 Microchip Technology Inc.  
DS20005947B-page 11  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
4
3
1
Max INL (LSB)  
Max DNL (LSB)  
0.5  
2
1
0
0
-1  
-2  
-3  
-0.5  
Min DNL (LSB)  
Min INL (LSB)  
-4  
2
-1  
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 2-7:  
INL vs. Reference Voltage.  
FIGURE 2-10:  
DNL vs. Reference Voltage.  
MCP33131D-10  
MCP33131D-10  
0
0
V
= 5V  
V
= 2.5V  
REF  
REF  
-20  
-40  
f = 1 Msps  
s
-20  
-40  
f = 1 Msps  
s
SNR = 91.5 dBFS  
SINAD = 91.3 dBFS  
SFDR = 108.5 dBc  
THD = -102.2 dBc  
Offset = 1 LSB  
SNR = 86.7 dBFS  
SINAD = 86.2 dBFS  
SFDR = 97.4 dBc  
THD = -95.6 dBc  
Offset = -2 LSB  
-60  
-60  
-80  
-80  
Resolution = 16-bit  
Resolution = 16-bit  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-8:  
FFT for 10 kHz Input Signal:  
= 5V.  
FIGURE 2-11:  
FFT for 10 kHz Input Signal:  
= 2.5V.  
f = 1 Msps, V = -1 dBFS, V  
f = 1 Msps, V = -1 dBFS, V  
S
IN  
REF  
S
IN  
REF  
MCP33131D-05  
MCP33131D-05  
0
-20  
0
-20  
V
= 5V  
V
= 2.5V  
REF  
REF  
f
= 0.5 Msps  
f
= 0.5 Msps  
s
s
SNR = 91.5 dBFS  
SINAD = 91.3 dBFS  
SFDR = 108.0 dBc  
THD = -102.5 dBc  
Offset = 1 LSB  
SNR = 86.9 dBFS  
SINAD = 86.5 dBFS  
SFDR = 97.2 dBc  
THD = -95.6 dBc  
Offset = -2 LSB  
-40  
-40  
-60  
-60  
-80  
-80  
Resolution = 16-bit  
Resolution = 16-bit  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-9:  
FFT for 10 kHz Input Signal:  
= 5V.  
FIGURE 2-12:  
f = 500 kSPS, V = -1 dBFS, V  
REF  
FFT for 10 kHz Input Signal:  
f = 500 kSPS, V = -1 dBFS, V  
= 2.5V.  
S
IN  
REF  
S
IN  
DS20005947B-page 12  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
95  
92.5  
90  
15.5  
14.5  
13.5  
12.5  
-92  
-95  
107  
102  
97  
THD (dB)  
87.5  
85  
SFDR (dB)  
-98  
ENOB  
82.5  
SNR (dB)  
SINAD (dB)  
80  
2
-101  
92  
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 2-13:  
SNR/SINAD/ENOB vs. VREF  
FIGURE 2-16:  
SFDR/THD vs. V  
REF  
87  
86  
85  
84  
90.6  
90.4  
90.2  
90  
V
= 2.5V  
V
= 5V  
REF  
REF  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
89.8  
SINAD (dB)  
83  
89.6  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-17:  
Temperature: V  
SNR/SINAD vs.  
= 2.5V.  
FIGURE 2-14:  
Temperature: V  
SNR/SINAD vs.  
= 5V.  
REF  
REF  
90  
89  
88  
87  
86  
85  
84  
83  
95  
93  
91  
89  
V
= 2.5V  
V
= 5V  
REF  
REF  
SNR (dBFS)  
SINAD(dBFS)  
SNR (dBFS)  
SINAD(dBFS)  
82  
81  
80  
87  
85  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 2-18:  
SNR/SINAD vs. Input  
FIGURE 2-15:  
SNR/SINAD vs. Input  
Amplitude: F = 10 kHz.  
Amplitude: F = 10 kHz.  
IN  
IN  
2017 Microchip Technology Inc.  
DS20005947B-page 13  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
95  
90  
85  
80  
75  
70  
95  
V
= 5V  
V
= 2.5V  
REF  
REF  
90  
85  
80  
75  
70  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-19:  
SNR/SINAD vs.Input  
FIGURE 2-22:  
SNR/SINAD vs.Input  
Frequency: V = -1 dBFS.  
Frequency: V = -1 dBFS.  
IN  
IN  
-92  
100  
-92  
106  
THD (dB)  
THD (dB)  
SFDR (dB)  
SFDR (dB)  
-93  
99  
98  
97  
96  
95  
94  
-94  
-96  
104  
102  
100  
98  
-94  
V
= 2.5V  
V
= 5V  
-95  
-96  
-97  
-98  
REF  
REF  
-98  
-100  
-102  
96  
-40 -20  
0
20 40 60 80 100 120 140  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
Temperature (oC)  
FIGURE 2-20:  
THD/SFDR vs.  
FIGURE 2-23:  
THD/SFDR vs.  
Temperature: V  
= 5V.  
Temperature: V  
= 2.5V.  
REF  
REF  
-75  
-80  
110  
105  
100  
95  
-75  
-80  
110  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-85  
-85  
-90  
-90  
-95  
90  
-95  
90  
-100  
-105  
85  
-100  
-105  
85  
80  
80  
V
= 5V  
V
= 2.5V  
REF  
REF  
-110  
100  
75  
-110  
100  
75  
101  
102  
103  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-21:  
THD/SFDR vs. Input  
= 5V.  
FIGURE 2-24:  
THD/SFDR vs. Input  
= 2.5V.  
Frequency: V  
Frequency: V  
REF  
REF  
DS20005947B-page 14  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-65  
-70  
110  
105  
100  
95  
-65  
-70  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-75  
-75  
-80  
-80  
90  
V
= 5V  
V
= 2.5V  
-85  
90  
-85  
85  
REF  
REF  
-90  
85  
-90  
80  
-95  
80  
-95  
75  
-100  
-105  
75  
-100  
-105  
70  
65  
70  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 2-25:  
THD/SFDR vs. Input  
= 5V.  
FIGURE 2-28:  
Amplitude: V  
THD/SFDR vs. Input  
= 2.5V.  
REF  
Amplitude: V  
REF  
105  
105  
8
6
V
= 2.5V  
665631  
REF  
V
= 5V  
485575  
REF  
5
4
3
2
1
0
6
4
2
0
242712  
83720  
125959  
165598  
134228  
63608  
13523  
73  
32905  
490  
41867  
33  
41102  
117  
10  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0  
Output Code  
1 2 3 4 5 6  
Output Code  
FIGURE 2-26:  
= 5V.  
Shorted Input Histogram:  
FIGURE 2-29:  
V = 2.5V.  
REF  
Shorted Input Histogram:  
V
REF  
600  
3.9  
3.3  
2.6  
400  
5.2  
3.9  
2.6  
1.3  
0
500  
400  
300  
200  
100  
0
300  
200  
100  
0
Gain Error  
2
1.3  
0.66  
0
Gain Error  
-100  
-200  
-300  
-1.3  
Offset Error  
V
= 5V  
V
= 2.5V  
-2.6  
REF  
REF  
Offset Error  
-100  
-0.66  
-3.9  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-27:  
Offset and Gain Error vs.  
FIGURE 2-30:  
Offset and Gain Error vs.  
Temperature: V  
= 5V.  
Temperature: V  
= 2.5V.  
REF  
REF  
2017 Microchip Technology Inc.  
DS20005947B-page 15  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
76  
8
16  
12  
8
VREF = 5V  
6
Total Power Consumption  
4
IIO_STBY (DVIO = 3.3V)  
2
4
IREF_STBY (VREF = 5V)  
0
0
74  
10-3  
10-2  
10-1  
Input Frequency (kHz)  
100  
101  
102  
103  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-31:  
= 5V.  
CMRR vs. Input Frequency:  
FIGURE 2-34:  
Temperature during Shutdown.  
Power Consumption vs.  
V
REF  
2
8
6
4
2
0
2
8
6
4
2
0
MCP331x1D-05  
MCP331x1D-10  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
Sample Rate (Msps)  
FIGURE 2-32:  
Sample Rate: C  
Power Consumption vs.  
= 20 pF.  
FIGURE 2-35:  
Sample Rate: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
LOAD_SDO  
2.5  
10  
8
2
8
6
4
2
0
MCP331x1D-10  
MCP331x1D-05  
2
1.5  
1
1.5  
1
6
4
IREF (VREF = 5V)  
0.5  
2
0.5  
IREF (VREF = 5V)  
IIO_DATA (DVIO = 3.3V)  
IIO_DATA (DVIO = 3.3V)  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-33:  
Temperature: C  
Power Consumption vs.  
FIGURE 2-36:  
Temperature: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
= 20 pF.  
LOAD_SDO  
DS20005947B-page 16  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
3.0  
TYPICAL PERFORMANCE CURVES FOR 14-BIT DEVICES (MCP33121D-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
1
0.5  
0
1
V
= 5V  
V
= 2.5V  
REF  
REF  
0.5  
0
-0.5  
-0.5  
-1  
-1  
0
4,096  
8,192  
Code  
12,288  
16,384  
0
4,096  
8,192  
Code  
12,288  
16,384  
FIGURE 3-1:  
INL vs. Output Code.  
FIGURE 3-4:  
INL vs. Output Code.  
1
0.5  
0
1
0.5  
0
V
= 5V  
V
= 2.5V  
REF  
REF  
-0.5  
-0.5  
-1  
0
-1  
0
4,096  
8,192  
Code  
12,288  
16,384  
4,096  
8,192  
Code  
12,288  
16,384  
FIGURE 3-2:  
DNL vs. Output Code.  
FIGURE 3-5:  
DNL vs. Output Code.  
1
0.5  
0
1
0.5  
0
Max INL (LSB)  
Max DNL (LSB)  
V
= 5V  
V
= 5V  
REF  
REF  
-0.5  
-0.5  
Min INL (LSB)  
Min DNL (LSB)  
-1  
-1  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 3-3:  
INL vs. Temperature.  
FIGURE 3-6:  
DNL vs. Temperature.  
2017 Microchip Technology Inc.  
DS20005947B-page 17  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
1
1
0.5  
0
Max INL (LSB)  
0.5  
0
Max DNL (LSB)  
-0.5  
-1  
-0.5  
-1  
Min DNL (LSB)  
Min INL (LSB)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 3-7:  
INL vs. Reference Voltage.  
FIGURE 3-10:  
DNL vs. Reference Voltage.  
MCP33121D-10  
MCP33121D-10  
0
0
V
= 2.5V  
V
= 5V  
REF  
REF  
f = 1 Msps  
s
-20  
-40  
f = 1 Msps  
s
-20  
-40  
SNR = 83.4 dBFS  
SINAD = 83.2 dBFS  
SFDR = 96.9 dBc  
THD = -95.4 dBc  
Offset = -1 LSB  
SNR = 85.2 dBFS  
SINAD = 85.2 dBFS  
SFDR = 106.9 dBc  
THD = -100.2 dBc  
Offset = 0 LSB  
-60  
-60  
-80  
-80  
Resolution = 14-bit  
Resolution = 14-bit  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 3-8:  
FFT for 10 kHz Input Signal:  
= 5V.  
FIGURE 3-11:  
FFT for 10 kHz Input Signal:  
= 2.5V.  
f = 1 Msps, V = -1 dBFS, V  
f = 1 Msps, V = -1 dBFS, V  
S
IN  
REF  
S
IN  
REF  
MCP33121D-05  
MCP33121D-05  
0
-20  
0
-20  
V
= 2.5V  
V
= 5V  
REF  
REF  
f
= 0.5 Msps  
f
= 0.5 Msps  
s
s
SNR = 83.6 dBFS  
SINAD = 83.4 dBFS  
SFDR = 97.3 dBc  
THD = -95.5 dBc  
Offset = -1 LSB  
SNR = 85.1 dBFS  
SINAD = 85.1 dBFS  
SFDR = 107.9 dBc  
THD = -102.1 dBc  
Offset = 0 LSB  
-40  
-40  
-60  
-60  
-80  
-80  
Resolution = 14-bit  
Resolution = 14-bit  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 3-9:  
FFT for 10 kHz Input Signal:  
= 5V.  
FIGURE 3-12:  
f = 500 kSPS, V = -1 dBFS, V  
REF  
FFT for 10 kHz Input Signal:  
f = 500 kSPS, V = -1 dBFS, V  
= 2.5V.  
S
IN  
REF  
S
IN  
DS20005947B-page 18  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-92  
-95  
107  
102  
97  
86  
85  
84  
83  
82  
81  
14.5  
13.5  
12.5  
11.5  
THD (dB)  
SFDR (dB)  
-98  
ENOB  
SNR (dB)  
SINAD (dB)  
-101  
92  
80  
2
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 3-13:  
SNR/SINAD/ENOB vs. VREF  
FIGURE 3-16:  
SFDR/THD vs. V  
REF  
83  
82.5  
82  
84.6  
84.4  
84.2  
84  
V
= 2.5V  
V
= 5V  
REF  
REF  
SNR (dB)  
81.5  
SNR (dB)  
SINAD (dB)  
83.8  
SINAD (dB)  
81  
83.6  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 3-17:  
Temperature: V  
SNR/SINAD vs.  
= 2.5V.  
FIGURE 3-14:  
Temperature: V  
SNR/SINAD vs.  
= 5V.  
REF  
REF  
88  
86  
84  
82  
88  
86  
84  
82  
V
= 5V  
V
= 2.5V  
REF  
REF  
SNR (dBFS)  
SINAD(dBFS)  
SNR (dBFS)  
SINAD(dBFS)  
80  
78  
80  
78  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-18:  
SNR/SINAD vs. Input  
FIGURE 3-15:  
SNR/SINAD vs. Input  
Amplitude: F = 10 kHz.  
Amplitude: F = 10 kHz.  
IN  
IN  
2017 Microchip Technology Inc.  
DS20005947B-page 19  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
90  
85  
80  
75  
70  
65  
90  
V
= 5V  
V
= 2.5V  
REF  
REF  
85  
80  
75  
70  
65  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 3-19:  
SNR/SINAD vs.Input  
FIGURE 3-22:  
SNR/SINAD vs.Input  
Frequency: V = -1 dBFS.  
Frequency: V = -1 dBFS.  
IN  
IN  
-92  
106  
104  
102  
100  
98  
-92  
100  
98  
SFDR (dB)  
THD (dB)  
THD (dB)  
SFDR (dB)  
-94  
-96  
-94  
V
= 5V  
V
= 2.5V  
REF  
REF  
-98  
-96  
96  
-100  
-102  
96  
-98  
94  
-40 -20  
0
20 40 60 80 100 120 140  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
o
Temperature ( C)  
FIGURE 3-20:  
THD/SFDR vs.  
FIGURE 3-23:  
THD/SFDR vs.  
Temperature: V  
= 5V.  
Temperature: V  
= 2.5V.  
REF  
REF  
-75  
-80  
110  
105  
100  
95  
-75  
-80  
110  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-85  
-85  
-90  
-90  
-95  
90  
-95  
90  
-100  
-105  
85  
-100  
-105  
85  
80  
80  
V
= 2.5V  
V
= 5V  
REF  
REF  
-110  
100  
75  
-110  
100  
75  
101  
102  
103  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 3-21:  
THD/SFDR vs. Input  
= 5V.  
FIGURE 3-24:  
THD/SFDR vs. Input  
= 2.5V.  
Frequency: V  
Frequency: V  
REF  
REF  
DS20005947B-page 20  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-65  
-70  
110  
105  
100  
95  
-65  
-70  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-75  
-75  
-80  
-80  
90  
V
= 5V  
V
= 2.5V  
-85  
90  
-85  
85  
REF  
REF  
-90  
85  
-90  
80  
-95  
80  
-95  
75  
-100  
-105  
75  
-100  
-105  
70  
70  
65  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-25:  
THD/SFDR vs. Input  
= 5V.  
FIGURE 3-28:  
Amplitude: V  
THD/SFDR vs. Input  
= 2.5V.  
REF  
Amplitude: V  
REF  
105  
105  
10  
10  
872448  
V
= 5V  
V
= 2.5V  
844912  
REF  
REF  
8
6
4
2
8
6
4
2
0
203163  
176128  
501  
0
-3  
-2  
-1  
0
1
2
3
-4  
-3  
-2  
-1  
0
1
2
3
Output Code  
Output Code  
FIGURE 3-26:  
= 5V.  
Shorted Input Histogram:  
FIGURE 3-29:  
V = 2.5V.  
REF  
Shorted Input Histogram:  
V
REF  
300  
0.98  
0.66  
0.33  
0
500  
0.82  
0.66  
0.49  
200  
100  
0
400  
300  
200  
100  
0
Gain Error  
0.33  
0.16  
0
Gain Error  
-100  
-200  
-300  
-400  
-0.33  
-0.66  
-0.98  
-1.3  
Offset Error  
Offset Error  
V
= 2.5V  
REF  
V
= 5V  
-100  
-200  
-0.16  
-0.33  
REF  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 3-30:  
Temperature: V  
Offset and Gain Error vs.  
= 2.5V.  
FIGURE 3-27:  
Temperature: V  
Offset and Gain Error vs.  
= 5V.  
REF  
REF  
2017 Microchip Technology Inc.  
DS20005947B-page 21  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
76  
8
16  
12  
8
VREF = 5V  
6
Total Power Consumption  
4
IIO_STBY (DVIO = 3.3V)  
2
4
IREF_STBY (VREF = 5V)  
74  
0
0
10-3  
10-2  
10-1  
100  
101  
102  
103  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Input Frequency (kHz)  
Temperature (°C)  
FIGURE 3-31:  
= 5V.  
CMRR vs. Input Frequency:  
FIGURE 3-34:  
Temperature during Shutdown.  
Power Consumption vs.  
V
REF  
2
8
6
4
2
0
2
8
6
4
2
0
MCP331x1D-10  
MCP331x1D-05  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
0.1  
0.2  
0.3  
0.4  
0.5  
Sample Rate (Msps)  
FIGURE 3-32:  
Sample Rate: C  
Power Consumption vs.  
= 20 pF.  
FIGURE 3-35:  
Sample Rate: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
LOAD_SDO  
2.5  
10  
8
2
8
6
4
2
0
MCP331x1D-10  
MCP331x1D-05  
2
1.5  
1
1.5  
1
6
4
IREF (VREF = 5V)  
0.5  
2
0.5  
IREF (VREF = 5V)  
IIO_DATA (DVIO = 3.3V)  
IIO_DATA (DVIO = 3.3V)  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 3-33:  
Temperature: C  
Power Consumption vs.  
FIGURE 3-36:  
Power Consumption vs.  
= 20 pF.  
LOAD_SDO  
DS20005947B-page 22  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
4.0  
TYPICAL PERFORMANCE CURVES FOR 12-BIT DEVICES (MCP33111D-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
0.5  
0.3  
0.5  
V
= 5V  
V
= 2.5V  
REF  
REF  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
0
1,024  
2,048  
Code  
3,072  
4,096  
0
1,024  
2,048  
Code  
3,072  
4,096  
FIGURE 4-1:  
INL vs. Output Code.  
FIGURE 4-4:  
INL vs. Output Code.  
0.5  
0.3  
0.5  
0.3  
V
= 2.5V  
V
= 5V  
REF  
REF  
0.1  
0.1  
-0.1  
-0.3  
-0.1  
-0.3  
-0.5  
0
-0.5  
0
1,024  
2,048  
Code  
3,072  
4,096  
1,024  
2,048  
Code  
3,072  
4,096  
FIGURE 4-2:  
DNL vs. Output Code.  
FIGURE 4-5:  
DNL vs. Output Code.  
0.2  
0.15  
0.1  
0.2  
0.15  
0.1  
Max INL (LSB)  
Max DNL (LSB)  
0.05  
0
0.05  
0
V
= 5V  
V
= 5V  
REF  
REF  
-0.05  
-0.1  
-0.15  
-0.05  
-0.1  
-0.15  
Min DNL (LSB)  
Min INL (LSB)  
-0.2  
-0.2  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-3:  
INL vs. Temperature.  
FIGURE 4-6:  
DNL vs. Temperature.  
2017 Microchip Technology Inc.  
DS20005947B-page 23  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
Max INL (LSB)  
0.2  
Max DNL (LSB)  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.1  
Min INL (LSB)  
-0.2  
-0.3  
-0.4  
Min DNL (LSB)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 4-7:  
INL vs. Reference Voltage.  
FIGURE 4-10:  
DNL vs. Reference Voltage.  
MCP33111D-10  
MCP33111D-10  
0
0
V
= 5V  
V
= 2.5V  
REF  
REF  
f
= 1 Msps  
f
= 1 Msps  
s
s
-20  
-40  
-20  
-40  
SNR = 73.9 dBFS  
SINAD = 73.9 dBFS  
SFDR = 99.8 dBc  
THD = -96.5 dBc  
Offset = 0 LSB  
SNR = 73.8 dBFS  
SINAD = 73.7 dBFS  
SFDR = 97.0 dBc  
THD = -95.6 dBc  
Offset = -1 LSB  
-60  
-60  
Resolution = 12-bit  
Resolution = 12-bit  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 4-8:  
FFT for 10 kHz Input Signal:  
= 5V.  
FIGURE 4-11:  
FFT for 10 kHz Input Signal:  
= 2.5V.  
f = 1 Msps, V = -1 dBFS, V  
f = 1 Msps, V = -1 dBFS, V  
S
IN  
REF  
S
IN  
REF  
MCP33111D-05  
MCP33111D-05  
0
-20  
0
-20  
V
= 5V  
V
= 2.5V  
REF  
REF  
f
= 0.5 Msps  
f
= 0.5 Msps  
s
s
SNR = 74.0 dBFS  
SINAD = 73.9 dBFS  
SFDR = 99.5 dBc  
THD = -95.1 dBc  
Offset = 0 LSB  
SNR = 73.8 dBFS  
SINAD = 73.8 dBFS  
SFDR = 96.2 dBc  
THD = -94.3 dBc  
Offset = -1 LSB  
-40  
-40  
-60  
-60  
Resolution = 12-bit  
Resolution = 12-bit  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 4-9:  
FFT for 10 kHz Input Signal:  
= 5V.  
FIGURE 4-12:  
f = 500 kSPS, V = -1 dBFS, V  
REF  
FFT for 10 kHz Input Signal:  
f = 500 kSPS, V = -1 dBFS, V  
= 2.5V.  
S
IN  
REF  
S
IN  
DS20005947B-page 24  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
73.2  
73  
13  
12  
11  
10  
-91  
-94  
105  
100  
95  
THD (dB)  
SFDR (dB)  
-97  
72.8  
72.6  
ENOB  
SNR (dB)  
SINAD (dB)  
-100  
90  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 4-13:  
SNR/SINAD/ENOB vs. VREF  
FIGURE 4-16:  
SFDR/THD vs. V  
REF  
72.9  
72.85  
72.8  
72.98  
72.97  
72.96  
72.95  
72.94  
72.93  
V
= 2.5V  
V
= 5V  
REF  
REF  
72.75  
72.7  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
72.65  
72.92  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-14:  
Temperature: V  
SNR/SINAD vs.  
= 5V.  
FIGURE 4-17:  
Temperature: V  
SNR/SINAD vs.  
= 2.5V.  
REF  
REF  
75  
74  
73  
72  
75  
74  
73  
72  
V
= 5V  
V
= 2.5V  
REF  
REF  
SNR (dBFS)  
SINAD(dBFS)  
SNR (dBFS)  
SINAD(dBFS)  
71  
70  
71  
70  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 4-15:  
SNR/SINAD vs. Input  
FIGURE 4-18:  
SNR/SINAD vs. Input  
Amplitude: F = 10 kHz.  
Amplitude: F = 10 kHz.  
IN  
IN  
2017 Microchip Technology Inc.  
DS20005947B-page 25  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
80  
75  
70  
65  
60  
80  
V
= 5V  
V
= 2.5V  
REF  
REF  
75  
70  
65  
60  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 4-19:  
SNR/SINAD vs. Input  
FIGURE 4-22:  
SNR/SINAD vs. Input  
Frequency: V = -1 dBFS  
Frequency: V = -1 dBFS.  
IN  
IN  
-91  
99  
98  
97  
96  
95  
94  
-92  
102  
100  
98  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-93  
-94  
-95  
-96  
-97  
-98  
-92  
-93  
-94  
-95  
-96  
V
= 2.5V  
V
= 5V  
REF  
REF  
96  
94  
-40 -20  
0
20 40 60 80 100 120 140  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
Temperature (oC)  
FIGURE 4-20:  
THD/SFDR vs.  
FIGURE 4-23:  
THD/SFDR vs.  
Temperature: V  
= 5V.  
Temperature: V  
= 2.5V.  
REF  
REF  
-75  
-80  
110  
105  
100  
95  
-75  
-80  
110  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-85  
-85  
-90  
-90  
-95  
90  
-95  
90  
-100  
-105  
85  
-100  
-105  
85  
80  
80  
V
= 2.5V  
V
= 5V  
REF  
REF  
-110  
100  
75  
-110  
100  
75  
101  
102  
103  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 4-21:  
THD/SFDR vs. Input  
= 5V.  
FIGURE 4-24:  
THD/SFDR vs. Input  
= 2.5V.  
Frequency: V  
Frequency: V  
REF  
REF  
DS20005947B-page 26  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-60  
-65  
105  
100  
95  
-60  
-65  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
THD (dB)  
THD (dB)  
SFDR (dB)  
SFDR (dB)  
-70  
-70  
-75  
90  
-75  
-80  
85  
-80  
V
= 5V  
V
= 2.5V  
REF  
REF  
-85  
80  
-85  
-90  
75  
-90  
-95  
70  
-95  
-100  
-105  
65  
-100  
-105  
60  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 4-25:  
THD/SFDR vs. Input  
= 5V.  
FIGURE 4-28:  
THD/SFDR vs. Input  
= 2.5V.  
Amplitude: V  
Amplitude: V  
REF  
REF  
105  
105  
10  
10  
872448  
V
= 5V  
V
= 2.5V  
845413  
REF  
REF  
8
6
4
2
0
8
6
4
2
203163  
176128  
0
-3  
-2  
-1  
0
1
2
-3  
-2  
-1  
0
1
2
3
Output Code  
Output Code  
FIGURE 4-26:  
= 5V.  
Shorted Input Histogram:  
FIGURE 4-29:  
Shorted Input Histogram:  
V
V
= 2.5V.  
REF  
REF  
400  
0.16  
0
0
200  
0
0.082  
Gain Error  
Gain Error  
-200  
-0.16  
-0.33  
-0.49  
-0.66  
0
-200  
-400  
-600  
-800  
-1000  
-0.082  
-0.16  
-0.25  
-0.33  
-0.41  
-400  
-600  
-800  
Offset Error  
Offset Error  
V
= 2.5V  
V
= 5V  
REF  
REF  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-27:  
Temperature: V  
Offset and Gain Error vs.  
= 5V.  
FIGURE 4-30:  
Temperature: V  
Offset and Gain Error vs.  
= 2.5V.  
REF  
REF  
2017 Microchip Technology Inc.  
DS20005947B-page 27  
MCP33131D/MCP33121D/MCP33111D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
76  
8
16  
12  
8
VREF = 5V  
6
Total Power Consumption  
4
IIO_STBY (DVIO = 3.3V)  
2
4
IREF_STBY (VREF = 5V)  
0
0
74  
10-3  
10-2  
10-1  
Input Frequency (kHz)  
100  
101  
102  
103  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 4-31:  
= 5V.  
CMRR vs. Input Frequency:  
FIGURE 4-34:  
Temperature during Shutdown.  
Power Consumption vs.  
V
REF  
2
8
6
4
2
0
2
8
6
4
2
0
MCP331x1D-05  
MCP331x1D-10  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
0.1  
0.2  
0.3  
0.4  
0.5  
Sample Rate (Msps)  
FIGURE 4-32:  
Sample Rate: C  
Power Consumption vs.  
= 20 pF.  
FIGURE 4-35:  
Sample Rate: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
LOAD_SDO  
MCP331x1D-10  
2
8
6
4
2
0
2.5  
10  
8
MCP331x1D-05  
MCP331x1D-10  
2
1.5  
1
1.5  
1
6
4
IREF (VREF = 5V)  
0.5  
0.5  
2
IREF (VREF = 5V)  
IIO_DATA (DVIO = 3.3V)  
IIO_DATA (DVIO = 3.3V)  
0
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 4-33:  
Power Consumption vs.  
FIGURE 4-36:  
Power Consumption vs.  
Temperature: C  
= 20 pF.  
Temperature: CLOAD_SDO = 20 pF.  
LOAD_SDO  
DS20005947B-page 28  
2017 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
5.0  
PIN FUNCTION DESCRIPTIONS  
TABLE 5-1:  
Pin Number  
1
PIN FUNCTION TABLE  
Pin Name  
Function  
VREF  
Reference voltage input (2.5V - 5.1V).  
This pin should be decoupled with a 10 F tantalum capacitor.  
2
AVDD  
DC supply voltage input for analog section (1.8V).  
This pin should be decoupled with a 1 F ceramic capacitor.  
3
4
5
AIN+  
AIN-  
Differential positive analog input.  
Differential negative analog input.  
GND  
Power supply ground reference. This pin is a common ground for both the analog  
power supply (AVDD) and digital I/O supply (DVIO).  
6
CNVST  
Conversion-start control and active-low SPI chip-select digital input.  
A new conversion is started on the rising edge of CNVST.  
When the conversion is complete, output data is available at SDO by lowering CNVST.  
7
8
SDO  
SPI-compatible serial digital data output: ADC conversion data is shifted out by SCLK  
clock, with MSB first.  
SCLK  
SPI-compatible serial data clock digital input.  
The ADC output is synchronously shifted out by this clock.  
9
SDI  
SPI-compatible serial data digital input. Tie to DVIO for normal operation.  
10  
DVIO  
DC supply voltage for digital input/output interface (1.7V - 5.5V).  
This pin should be decoupled with a 0.1 F ceramic capacitor.  
5.1  
Supply Voltages and Reference  
Voltage  
Note:  
During the initial power-up sequence, the  
reference voltage (VREF must be  
provided prior to supplying AVDD or within  
about 64 ms after supplying AVDD  
Otherwise, it is strongly recommended to  
send recalibrate command. See  
)
The device has two power supply pins:  
a) Analog power supply (AVDD): 1.8V  
.
b) Digital input/output interface power supply  
(DVIO): 1.7V to 5.5V.  
a
Section 7.1 “Recalibrate Command” for  
more details.  
The large supply voltage range of DVIO allows the  
device to interface with various host devices that are  
5.2.1  
VOLTAGE REFERENCE  
SELECTION  
y
operating with different supply voltages. See Table 1-2  
for timing specifications for I/O interface signal param-  
eters depending on DVIO voltage.  
The performance of the voltage reference has a large  
impact on the accuracy of high-precision data  
acquisition systems. The voltage reference should  
have high-accuracy, low-noise, and low-temperature  
drift. A ±0.1% output accuracy of the reference directly  
corresponds to ±0.1% absolute accuracy of the ADC  
output. The RMS output noise voltage of the reference  
should be less than 1/2 LSB of the ADC.  
Note:  
Proper decoupling capacitors (1 F to  
AVDD, 0.1 F to DVIO) should be mounted  
as close as possible to the respective  
pins.  
5.2  
Reference Voltage (VREF)  
The device requires a single-ended external reference  
voltage (VREF). The external input reference range is  
from 2.5V to 5.1V. This reference voltage sets the  
input full-scale range from 0V to VREF. See Figure 6-2  
to Figure 6-8 for example application circuits and  
reference voltage settings.  
Note:  
The reference pin needs a tantalum  
decoupling capacitor (10 F, 10V rating).  
Additional multiple ceramic capacitors can  
be added in parallel to decouple  
high-frequency noises.  
2018 Microchip Technology Inc.  
DS20005947B-page 29  
MCP33131D/MCP33121D/MCP33111D-XX  
6.0  
DEVICE OVERVIEW  
When the MCP33131D/MCP33121D/MCP33111D-XX  
is first powered-up, it performs a self-calibration and  
enters a low current input acquisition mode (Standby)  
by itself.  
MCP331x1D-XX  
VREF  
V
= 0.6V  
T
Sample VIN  
+
D
SW1+  
R
SON  
+
The external reference voltage (VREF) ranging from  
2.5V to 5.1V sets the differential input full-scale range  
A +  
IN  
CS  
SW2+  
1
CPIN  
(200 )  
(31 pF)  
(FSR) from -VREF to +VREF  
.
D
2
I
LEAKAGE  
(~ ±1 nA)  
The differential input signal needs an appropriate input  
common-mode voltage from 0V to VREF, depending on  
the input signal condition. VREF/2 is typically used for a  
symmetric differential input.  
VREF  
V
= 0.6V  
T
Sample VIN  
-
D
1
SW1-  
-
During input acquisition (Standby), the internal input  
sampling capacitors are connected to the input signal,  
while most of the internal analog circuits are shutdown  
to save power. During this input acquisition time  
(tACQ), the device consumes less than 1 A.  
CS  
A
-
R
SW2-  
SON  
IN  
CPIN  
(200 )  
(31 pF)  
D
2
I
LEAKAGE  
(~ ±1 nA)  
The user can operate the device with an easy-to-use  
SPI-compatible 3-wire interface.  
where:  
The device initiates data conversion on the rising edge  
of the conversion-start control (CNVST). The data con-  
version time (tCNV) is set by the internal clock. Once  
the conversion is complete and the host lowers  
CNVST, the output data is available on SDO and the  
device starts the next input acquisition by itself. During  
this input acquisition time (tACQ), the user can clock  
out the output data by providing the SPI-compatible  
serial clock (SCLK).  
+
-
C
, C  
S
S
= Input sample and hold capacitor 31 pF.  
R
SON  
= On-resistance of the sampling switch 200   
= Package pin + ESD capacitor 2 pF.  
CPIN  
FIGURE 6-1:  
Analog Input Circuit.  
Simplified Equivalent  
6.1.1  
ABSOLUTE MAXIMUM INPUT  
VOLTAGE RANGE  
The input voltage at each input pin (AIN+ and AIN-)  
must meet the following absolute maximum input  
voltage limits:  
The device provides conversion data with no missing  
codes. This ADC device family has a large input  
full-scale range, high precision, high throughput with  
no output latency, and is an ideal choice for various  
ADC applications.  
• (VIN+, VIN-) < VREF + 0.1V  
• (VIN+, VIN-) > GND - 0.1V  
6.1  
Analog Inputs  
Note:  
The ESD diodes at the analog input pins  
are biased from VREF. Any input voltage  
outside the absolute maximum range can  
turn on the input ESD protection diodes  
and results in input leakage current which  
may cause conversion errors and  
permanent damage to the device. Care  
must be taken in setting the input voltage  
ranges so that the input voltage does not  
exceed the absolute maximum input  
voltage range.  
Figure 6-1 shows a simplified equivalent circuit of the  
differential input architecture with a switched capacitor  
input stage. The input sampling capacitors  
(CS+ and CS ) are about 31 pF each. The back-to-back  
-
diodes (D1 - D2) at each input are ESD protection  
diodes. Note that these ESD diodes are tied to VREF, so  
that each input signal can swing from 0V to +VREF and  
from -VREF to +VREF differentially.  
During input acquisition (Standby), the sampling  
switches are closed and each input sees the sampling  
capacitor (31 pF) in series with the on-resistance of  
the sampling switch, RSON (200).  
For high-precision data conversion applications, the  
input voltage needs to be fully settled within 1/2 LSB  
during the input acquisition period (tACQ). The settling  
time is directly related to the source impedance: A  
lower impedance source results in faster input settling  
time. Although the device can be driven directly with a  
low impedance source, using a low noise input driver is  
highly recommended.  
DS20005947B-page 30  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Figure 6-2 is the reference circuit that is used to collect  
most of the linearity performance data shown in  
Table 1-1.  
6.1.2  
INPUT VOLTAGE RANGE  
The differential input (VIN) and common-mode voltage  
(VCM) at the input pins are defined by:  
The differential input driver shown in Figure 6-2 can be  
replaced with a low noise dual-channel op-amp. See  
Section 6.3 “ADC Input Driver Selection” for the  
driver selection.  
EQUATION 6-1:  
DIFFERENTIAL INPUT  
VIN = VIN+ VIN  
-
VIN+ + VIN  
-
6.2.2  
ARBITRARY WAVEFORM INPUT  
SIGNALS  
VCM = ----------------------------  
2
The MCP33131D/MCP33121D/MCP33111D-XX can  
convert input signals with arbitrary waveforms at the  
inputs AIN+ and AIN-. These inputs can be symmetric,  
non-symmetric or independent with respect to each  
other.  
where VIN+ is the input at the AIN+ pin and VIN- is the  
input at AIN- pin. The input signal swings around an  
input common-mode voltage (VCM), typically centered  
at VREF/2 for the best performance.  
The absolute value of the differential input (VIN) needs  
to be less than the reference voltage. The device will  
output saturated output codes (all 0s or all 1s except  
sign bit) if the absolute value of the input (VIN) is greater  
than the reference voltage.  
In the arbitrary input configuration, each ADC analog  
input is connected to a single ended source ranging  
from 0V to VREF. In this case, the ADC converts the  
voltage difference between the two input signals.  
Figure 6-4 shows the configuration example for the  
arbitrary input signals.  
The differential input full-scale voltage range (FSR) is  
given by the external reference voltage (VREF) setting:  
6.2.3  
SINGLE-ENDED INPUT SIGNALS  
EQUATION 6-2:  
FSR AND INPUT RANGE  
= 2VREF  
Although the MCP33131D/MCP33121D/MCP33111D-XX  
is a fully-differential input device, it can also convert  
single-ended input signals. The most commonly  
recommended single-ended configurations are:  
Input Full-Scale Range (FSR)  
Input Range:  
VREF VIN  VREF 1LSB  
(a) pseudo-differential bipolar configuration and  
(b) pseudo-differential unipolar configuration.  
6.2  
Analog Input Conditioning  
Circuits  
6.2.3.1  
Pseudo-Differential Bipolar  
Configuration  
The  
MCP33131D/MCP33121D/MCP33111D-XX  
supports various input types, such as: (a)  
fully-differential inputs, (b) arbitrary waveform inputs  
and (c) single-ended inputs.  
In the pseudo-differential bipolar configuration, one of  
the ADC analog inputs (typically AIN-) is driven with a  
fixed DC voltage (typically VREF/2), while the other  
(AIN+) is connected to a single-ended signal in the  
6.2.1  
FULLY-DIFFERENTIAL INPUT  
SIGNALS  
range 0V to VREF  
.
In this case, the ADC converts the voltage difference  
between the single-ended signal and the DC voltage.  
Figure 6-5 shows the configuration example and  
Figure 6-6 shows its transfer function.  
The  
MCP33131D/MCP33121D/MCP33111D-XX  
provides the best linearity performance with  
fully-differential inputs. Figure 6-2 shows an example  
of a fully-differential input conditioning circuit with a  
differential input driver followed by an RC anti-aliasing  
filter. Figure 6-3 shows its transfer function.  
6.2.3.2  
Pseudo-Differential Unipolar  
Configuration  
The differential input (VIN) between the two differential  
In the pseudo-differential unipolar input configuration,  
one of the ADC analog inputs (typically AIN-) is  
connected to ground, while the other (AIN+) is  
connected to a single ended signal in the range 0V to  
ADC analog input pins (AIN+, AIN-) swings from -VREF  
-
to +VREF centered at the input common-mode voltage  
(VOCM).  
VREF  
.
The front-end differential driver provides a low output  
impedance, which provides fast settling of the analog  
inputs during the acquisition phase and provides  
isolation between the signal source and the ADC. The  
RC low-pass anti-aliasing filter band-limits the output  
noise of the input driver and attenuates the kick-back  
noise spikes from the ADC during conversion.  
In this case, the ADC converts the voltage difference  
between the single ended signal and ground.  
Figure 6-7 shows the configuration example and  
Figure 6-8 shows its transfer function.  
2018 Microchip Technology Inc.  
DS20005947B-page 31  
MCP33131D/MCP33121D/MCP33111D-XX  
V
REF  
Voltage  
Reference  
V
DC  
C
R
(Note 2)  
10 F  
1.8V to 5.5V  
1.8V  
R
F1  
VREF  
Differential Inputs  
V
/2  
REF  
0V  
R
R
V
+
DV  
IO  
AV  
G1  
R1  
REF  
DD  
VREF  
A
IN  
+
(22 ±0.1%  
)
0V  
C1  
V
/2  
SDI  
CNVST  
SCLK  
SDO  
REF  
(1.7nF, NPO)  
Host Device  
VOCM  
MCP331x1D-XX  
R1  
(PIC32MZ)  
G2  
VREF  
0V  
A
-
IN  
-
(22 ±0.1%  
)
VREF  
V
GND  
C1  
/2  
R
REF  
(1.7nF, NPO)  
F2  
0V  
Input Driver  
(Note 1)  
1
fC  
=
2R C  
1
1
Note 1: Contact Microchip Technology Inc. for availability of the differential input driver amplifiers.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 6-2:  
Input Conditional Circuit for Fully-Differential Input.  
Digital Output Code (Two’s Complement)  
n
2 /2 - 1  
-V  
REF  
+V  
- 1 LSB  
REF  
V
IN  
0
Differential Input Voltage  
n
- 2 /2  
Available V range  
IN  
FIGURE 6-3:  
Transfer Function for Figure 6-2.  
DS20005947B-page 32  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
V
REF  
Voltage  
Reference  
V
DC  
C
R
(Note 2)  
10 F  
1.8V to 5.5V  
1.8V  
Arbitrary Waveform Differential Inputs  
V
+
DV  
IO  
R1  
R1  
AV  
REF  
DD  
VREF  
A
IN  
C1  
C1  
SDI  
0V  
Host Device  
MCP331x1D-XX  
CNVST  
SCLK  
SDO  
(PIC32MZ)  
VREF  
A
-
IN  
GND  
1
0V  
fC  
=
2R C  
1
1
Low Noise Input Buffer  
(Note 1)  
Note 1: Contact Microchip Technology Inc. for availability of the low-noise input driver amplifiers.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 6-4:  
Input Configuration for Arbitrary Waveform Input Signals.  
V
REF  
Voltage  
Reference  
V
DC  
C
R
(Note 2)  
10 F  
1.8V to 5.5V  
1.8V  
AV  
Low Noise Input Buffer  
(Note 1)  
VREF  
Single-Ended Input  
V
/2  
REF  
R1  
(22 ±0.1%  
V
+
DV  
IO  
REF  
DD  
0V  
VREF  
A
IN  
V
/2  
)
REF  
C1  
0V  
SDI  
CNVST  
SCLK  
(1.7nF, NPO)  
Host Device  
MCP331x1D-XX  
R1  
(PIC32MZ)  
V
/2  
REF  
A
-
IN  
SDO  
(22 ±0.1%  
)
V
/2  
GND  
REF  
C1  
1 F  
(1.7nF, NPO)  
1
fC  
=
2R C  
1
1
Note 1: Contact Microchip Technology Inc. for availability of the low-noise input driver amplifiers.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 6-5:  
Pseudo-Differential Bipolar-Input Configuration for Single-Ended Input Signal.  
Digital Output Code (Two’s Complement)  
n
2 /2 - 1  
n
2 /4  
-V  
/2  
-V  
REF  
REF  
V
IN  
+V  
- 1 LSB  
0
REF  
+V  
/2  
REF  
Analog Input Voltage  
n
- 2 /4  
Available V range  
IN  
n
- 2 /2  
FIGURE 6-6:  
Transfer Function for Figure 6-5.  
2018 Microchip Technology Inc.  
DS20005947B-page 33  
MCP33131D/MCP33121D/MCP33111D-XX  
V
REF  
Voltage  
Reference  
V
DC  
C
R
(Note 2)  
10 F  
1.8V to 5.5V  
1.8V  
VREF  
V
/2  
REF  
0V  
Single-Ended Input  
R1  
(22 ±0.1%  
V
+
DV  
IO  
AV  
REF  
DD  
A
IN  
VREF  
)
C1  
V
/2  
REF  
0V  
(1.7nF, NPO)  
SDI  
CNVST  
SCLK  
Host Device  
Low Noise Input Buffer  
(Note 1)  
MCP331x1D-XX  
R1  
(PIC32MZ)  
A
-
IN  
SDO  
(22 ±0.1%  
C1  
(1.7nF, NPO)  
)
GND  
Note 1: Contact Microchip Technology Inc. for availability of the low-noise input driver amplifiers.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 6-7:  
Pseudo-Differential Unipolar-Input Configuration for Single-Ended Input Signal.  
Digital Output Code (Two’s Complement)  
n
2 /2 - 1  
n
2 /4  
-V  
/2  
-V  
REF  
REF  
V
IN  
0
+V  
/2 +V  
REF  
REF  
Analog Input Voltage  
Available V range  
IN  
n
- 2 /4  
n
- 2 /2  
FIGURE 6-8:  
Transfer Function for Figure 6-7.  
DS20005947B-page 34  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
EQUATION 6-5:  
VN_ADC Input-Referred Noise  
FSR  
ADC INPUT-REFERRED  
NOISE  
6.3  
ADC Input Driver Selection  
The noise and distortion of the ADC input driver can  
degrade the dynamic performance (SNR, SFDR, and  
THD) of the overall ADC application system. Therefore,  
the ADC input driver needs better performance  
specifications than the ADC itself. The data sheet of the  
driver typically shows the output noise voltage and  
harmonic distortion parameters.  
SNR  
-----------  
20  
(V)  
-----------  
=
=
=
10  
2
2
SNR  
-----------  
.
VREF  
--------------  
2
20  
for differential input  
10  
10  
SNR  
Figure 6-9 shows  
presentation block diagram for the front-end driver and  
ADC.  
a
simplified system noise  
----------  
VREF  
20  
for single-ended input  
--------------  
2
2
where FSR is the input full-scale range of ADC.  
Front-End Driver  
R
Noise Contribution from the Front-End Driver:  
The noise from the input driver can degrade the ADC’s  
SNR performance. Therefore, the selected input driver  
should have the lowest possible broadband noise  
density and 1/f noise. When an anti-aliasing filter is  
used after the input driver, the output noise density of  
the input driver is integrated over the -3 dB bandwidth  
of the filter.  
- +  
- +  
ADC  
C
VN_RMS_Driver Noise  
VN_ADC Input-Referred Noise  
FIGURE 6-9:  
Simplified System Noise  
Representation.  
Equation 6-6 shows the RMS output noise voltage  
calculation using the RC filter’s bandwidth and noise  
density (eN) of the input driver. GN in Equation 6-6 is  
the noise gain of the driver amplifier and becomes 1 for  
a unity gain buffer driver.  
• Unity-Gain Bandwidth:  
An input driver with higher bandwidth usually results in  
better overall linearity performance. Typically, the driver  
should have the unity-gain bandwidth greater than 5  
times the -3 dB cutoff frequency of the anti-aliasing  
filter:  
EQUATION 6-6:  
NOISE FROM FRONT-END  
DRIVER AMPLIFIER  
EQUATION 6-3:  
BANDWIDTH  
REQUIREMENT FOR ADC  
INPUT DRIVER  
eN  
VN_RMS_Driver Noise  
------  
2
(V)  
GN  
f  
B
BW  
where eN is the broadband noise density (V/Hz) of the  
front-end driver amplifier and is typically given in its  
data sheet. In Equation 6-6, 1/f noise (eNFlicker) is  
ignored assuming it is very small compared to the  
broadband noise (eN).  
Input Driver  
5 x f  
(Hz)  
B
5
--------------  
for a single-pole RC filter  
2RC  
where, fB = -3 dB bandwidth of RC anti-aliasing filter as  
shown in Figure 6-9.  
For high precision ADC applications, the noise  
contribution from the front-end input driver amplifier is  
typically constrained to be less than about 20% (or 1/5  
times) of the ADC input-referred noise as shown in  
Equation 6-7:  
Distortion:  
The nonlinearity characteristics of the input driver  
cause distortions in the ADC output. Therefore, the  
input driver should have less distortion than the ADC  
itself. The recommended total harmonic distortion  
(THD) of the driver is at least 10 dB less than that of the  
ADC:  
EQUATION 6-7:  
RECOMMENDED ADC  
INPUT DRIVER NOISE  
1
5
VN_RMS_Driver Noise  
V
--  
N_ADC Input-Referred Noise  
EQUATION 6-4:  
RECOMMENDED THD  
FOR ADC INPUT DRIVER  
Using Equation 6-5 to Equation 6-7, the recommended  
noise voltage density (eN) limit of the ADC input driver  
is expressed in Equation 6-8:  
THDInput Driver THDADC -10  
(dB)  
• ADC Input-Referred Noise:  
When the ADC is operating with a full-scale input  
range, the ADC input-referred RMS noise is  
approximated as shown in Equation 6-5.  
2018 Microchip Technology Inc.  
DS20005947B-page 35  
MCP33131D/MCP33121D/MCP33111D-XX  
EQUATION 6-8:  
NOISE DENSITY FOR ADC  
INPUT DRIVER  
TABLE 6-2:  
Noise Voltage Density (eN) of  
Input Driver for MCP33121D-XX  
ADC  
(Note 1)  
RC  
ADC Input Driver  
eN  
1
--  
Filter Amplifier (G = 1)  
------  
N
GN  
f  
VN_ADC Input-Referred Noise  
B
5
2
ADC  
SNR  
Noise Voltage  
f
B
V
Input-Referred  
Noise  
REF  
(a) eN for differential input ADC:  
(dBFS)  
(Note 2)  
Density (e )  
N
SNR  
20  
-----------  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
10.3 nV/Hz  
8.9 nV/Hz  
8 nV/Hz  
1
1
V
------------------  
---------------  
eN  
VREF 10  
2.5V  
3.3V  
5V  
84  
84.5  
85  
111.5V  
139 V  
----------  
5 GN  
f  
Hz  
B
12.8 nV/Hz  
11.1 nV/Hz  
9.9 nV/Hz  
18.3 nV/Hz  
15.9 nV/Hz  
14.2 nV/Hz  
(b) eN for single-ended input ADC:  
SNR  
-----------  
1
20  
V
1
----------  
--------------------- ---------------  
eN  
VREF 10  
10 GN  
Hz  
f  
198.8 V  
B
Note 1:  
2:  
See Equation 6-5 for the ADC input-referred noise  
calculation for differential input.  
Using Equation 6-8, the recommended maximum  
noise voltage density limit for unity gain input driver for  
differential input ADC can be estimated. Table 6-1 to  
Table 6-3 show a few example results with GN = 1. The  
user may use these tables as a reference when  
selecting the ADC input driver amplifier.  
f
is -3dB bandwidth of the RC anti-aliasing filter.  
B
TABLE 6-3:  
Noise Voltage Density (eN) of  
Input Driver for MCP33111D-XX  
RC  
Filter  
ADC Input Driver  
ADC  
(Note 1)  
Amplifier (G = 1)  
N
TABLE 6-1:  
Noise Voltage Density (eN) of  
Input Driver for MCP33131D-XX  
ADC  
Input-Referred  
Noise  
SNR  
(dBFS)  
Noise Voltage  
f
B
V
REF  
(Note 2)  
Density (e )  
RC  
Filter  
ADC Input Driver  
ADC  
(Note 1)  
N
Amplifier (G = 1)  
N
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
33.3 nV/Hz  
28.8 nV/Hz  
25.8 nV/Hz  
43.4 nV/Hz  
37.6 nV/Hz  
33.6 nV/Hz  
65 nV/Hz  
ADC  
Input-Referred  
Noise  
2.5V  
3.3V  
5V  
73.8  
73.9  
74  
360.9V  
471 V  
SNR  
(dBFS)  
Noise Voltage  
f
B
V
REF  
(Table 2)  
Density (e )  
N
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
7.3 nV/Hz  
6.3 nV/Hz  
5.6 nV/Hz  
7.6 nV/Hz  
6.6 nV/Hz  
5.9 nV/Hz  
8.2 nV/Hz  
7.1 nV/Hz  
6.3 nV/Hz  
2.5V  
3.3V  
5V  
87  
89  
92  
79.1V  
82.8 V  
88.8 V  
705.4 V  
56.3 nV/Hz  
50.3 nV/Hz  
Note 1:  
2:  
See Equation 6-5 for the ADC input-referred noise cal-  
culation for differential input.  
is -3dB bandwidth of the RC anti-aliasing filter.  
f
B
Note 1:  
2:  
See Equation 6-5 for the ADC input-referred noise  
calculation for differential input.  
f
is -3dB bandwidth of the RC anti-aliasing filter.  
B
DS20005947B-page 36  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
6.4.2  
DATA CONVERSION PHASE  
6.4  
Device Operation  
The start of the conversion is controlled by CNVST. On  
the rising edge of CNVST, the sampled charge is  
locked (sample switches are opened) and the ADC  
performs the conversion. Once a conversion is started,  
it will not stop until the current conversion is complete.  
When the MCP33131D/MCP33121D/MCP33111D-XX  
is first powered-up, it self-calibrates internal systems  
and enters input acquisition mode by itself. The device  
operates in two phases: (a) Input Acquisition (Standby)  
and (b) Data Conversion. Figure 6-10 shows the ADC  
operating sequence.  
The data conversion time (tCNV) is not user  
controllable. After the conversion is complete and the  
host lowers CNVST, the output data is presented on  
SDO.  
6.4.1  
INPUT ACQUISITION PHASE  
(STANDBY)  
Any noise injection during the conversion phase may  
affect the accuracy of the conversion. To reduce  
external environment noise, minimize I/O events and  
running clocks during the conversion time.  
During the input acquisition phase (tACQ), also called  
+
Standby, the two input sampling capacitors, CS and  
-
CS , are connected to the AIN+ and AIN- pins,  
respectively. The input voltage is sampled until a rising  
edge on CNVST is detected. The input voltage should  
The output data is clocked out MSB first. While the  
output data is being transferred, the device enters the  
next input acquisition phase.  
be fully settled within 1/2 LSB during tACQ  
During this input acquisition time (tACQ), the ADC  
consumes less than 1 A. The acquisition time (tACQ  
.
)
Note:  
Transferring output data during the  
acquisition phase can disturb the next  
input sample. It is highly recommended to  
allow at least tQUIET (10 ns, typical)  
between the last edge on the SPI interface  
and the rising edge on CNVST. See  
is user-controllable. The system designer can increase  
the acquisition time (tACQ) as long as needed for  
additional power savings.  
Figure 1-1 for tQUIET  
.
tCYC = 1/fS  
Input Acquisition  
Input Acquisition  
(Standby)  
Data Conversion  
tCNV  
(Standby)  
Operating  
Condition  
tACQ  
tACQ  
MCP331x1D-10: 300 ns (typical)  
MCP331x1D-05: 800 ns (typical)  
MCP331x1D-10: 700 ns (typical)  
MCP331x1D-05: 1200 ns (typical)  
MCP331x1D-10: 300 ns (typical)  
MCP331x1D-05: 800 ns (typical)  
(a) At the falling edge of CNVST,  
ADC output is available at SDO.  
(a) ADC acquires input sample #1. (a) Conversion is initiated at the rising edge of CNVST.  
(b) No ADC output is available yet.  
(b) All circuits are turned-on.  
(b) ADC output can be clocked out  
by providing clocks.  
(c) Most analog circuits are  
turned off.  
(c) ADC output is not available yet.  
(c) ADC acquires input sample #2.  
MCP331x1D-10: ~1.6 mA  
MCP331x1D-05: ~1.4 mA  
(d) Most analog circuits are turned off.  
IDDAN  
I
~ 0.8 A  
Off  
(a) Device is first powered-up and  
(b) Performs a power-up self-calibration.  
Output Data  
SDO  
FIGURE 6-10:  
Device Operating Sequence.  
2018 Microchip Technology Inc.  
DS20005947B-page 37  
MCP33131D/MCP33121D/MCP33111D-XX  
the input acquisition time (tACQ). For the continuous  
sampling rate (fS), the minimum SPI clock frequency  
requirement is determined by the following equation:  
6.4.3  
SAMPLE (THROUGHPUT) RATE  
The device completes data conversion within the  
maximum specification of the data conversion time  
(tCNV). The continuous input sample rate is the inverse  
of the sum of input acquisition time (tACQ) and data  
conversion time (tCNV). Equation 6-9 shows the  
continuous sample rate calculation using the minimum  
and maximum specifications of the input acquisition  
time (tACQ) and data conversion time (tCNV).  
EQUATION 6-10: SPI CLOCK FREQUENCY  
REQUIREMENT  
tACQ = N TSCLK + tQUIET + tEN  
1
N
---------------  
-----------------------------------------------------  
tACQ tQUIET + tEN  
fSCLK  
=
=
TSCLK  
where N is the number of output data bits, given by  
EQUATION 6-9:  
SAMPLE RATE  
N = 16-bit for MCP33131D-XX  
= 14-bit for MCP33121D-XX  
= 12-bit for MCP33111D-XX  
1
----------------------------------  
Sample Rate =  
tACQ + tCNV  
TSCLK = Period of SPI clock  
N x TSCLK = Output data window  
(a) MCP331x1D-10:  
---------------------------------------- = 1 Msps  
1
Sample Rate =  
tQUIET = Quiet time between the last output bit and  
beginning of the next conversion start.  
= 10 ns (min)  
290ns + 710ns  
(b) MCP331x1D-05:  
Sample Rate =  
1
------------------------------------------- = 500 kSPS  
t
EN = Output enable time = 10 ns (max),  
700ns + 1300ns  
with DVIO 2.3V  
Note: See Figure 1-1 for interface timing diagram.  
6.4.4  
SERIAL SPI CLOCK FREQUENCY  
REQUIREMENT  
where fSCLK is the minimum SPI serial clock frequency  
required to transfer all N-bits of the output data during  
input acquisition time (tACQ).  
The ADC output is collected during the input acquisition  
time (tACQ). For continuous input sampling and data  
conversion sequence, the SPI clock frequency should  
be fast enough to clock out all output data bits during  
Table 6-4 and Table 6-5 show the examples of  
calculated minimum SPI clock (fSCLK) requirements for  
various input acquisition times for 1 Msps and 500 kSPS  
family devices, respectively.  
TABLE 6-4:  
SPI CLOCK SPEED VS. INPUT ACQUISITION TIME (T  
) FOR MCP331X1D-10  
ACQ  
SPI Clock (fSCLK) Speed Requirement  
Input  
Acquisition Time:  
(Note 1), (Note 2)  
Data Conversion  
Time (nS)  
Sample Rate:  
Conditions  
fS (Msps)  
t
(nS)  
MCP33131D-10  
(16-bit)  
MCP33121D-10  
(14-bit)  
MCP33111D-10  
(12-bit)  
ACQ  
250  
69.57 MHz  
64 MHz  
60.87 MHz  
56 MHz  
52.17 MHz  
48 MHz  
1
85°C < T 125°C  
A
270  
280  
0.98  
0.97  
1
750  
(Note 3)  
61.54 MHz  
59.26 MHz  
57.15 MHz  
53.33 MHz  
42.11 MHz  
30.77 MHz  
22.86 MHz  
17.2 MHz  
12.6 MHz  
9.04 MHz  
6.15 MHz  
3.75 MHz  
1.73 MHz  
53.85 MHz  
51.85 MHz  
50 MHz  
46.15 MHz  
44.44 MHz  
42.86 MHz  
40 MHz  
290  
300  
0.99  
0.97  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
-40°C T 85°C  
A
320  
46.67 MHz  
36.84 MHz  
26.92 MHz  
20 MHz  
400  
30 MHz  
540  
23.08 MHz  
17.14 MHz  
12.9 MHz  
9.45 MHz  
6.78 MHz  
4.62 MHz  
2.81 MHz  
1.3 MHz  
710  
720  
720  
15.05MHz  
11.02 MHz  
7.91 MHz  
5.39 MHz  
3.28 MHz  
1.51 MHz  
1290  
1750  
2620  
4290  
9290  
Note 1:  
This is the minimum SPI clock speed requirement to collect all N-bits of the ADC output during the input acquisition time (t  
), when  
ACQ  
the ADC is operating in continuous input sampling mode.  
2:  
3:  
See Equation 6-10 for the calculation of the SPI clock speed requirement.  
In extended temperature range, the device takes longer data conversion time (t  
: 750 nS, max). Using a shorter input acquisition time  
CNV  
is recommended (t  
: 250 nS) for 1 Msps throughput rate.  
ACQ  
DS20005947B-page 38  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
TABLE 6-5:  
SPI CLOCK SPEED VS. INPUT ACQUISITION TIME (T  
) FOR MCP331X1D-05  
ACQ  
SPI Clock (fSCLK) Speed Requirement  
Input  
Acquisition Time:  
(Note 1), (Note 2)  
Data Conversion  
Sample Rate:  
Conditions  
Time (nS)  
f
S (kSPS)  
t
(nS)  
MCP33131D-05  
(16-bit)  
MCP33121D-05  
(14-bit)  
MCP33111D-05  
ACQ  
(12-bit)  
700  
23.53MHz  
22.22 MHz  
20.78 MHz  
17.58 MHz  
13.56 MHz  
10.39 MHz  
7.96 MHz  
5.97 MHz  
4.35 MHz  
2.99 MHz  
1.84 MHz  
20.59 MHz  
19.44 MHz  
18.18 MHz  
15.39 MHz  
11.86 MHz  
9.09 MHz  
6.97 MHz  
5.22MHz  
17.65 MHz  
16.67 MHz  
15.58 MHz  
13.19 MHz  
10.17 MHz  
7.79 MHz  
5.97 MHz  
4.48 MHz  
3.26 MHz  
2.25 MHz  
1.38 MHz  
500  
490  
480  
450  
400  
350  
300  
250  
200  
150  
100  
740  
790  
-40°C T 125°C  
A
930  
1300  
1200  
1560  
2030  
2700  
3700  
5370  
8700  
3.8 MHz  
2.62 MHz  
1.61 MHz  
Note 1:  
2:  
This is the minimum SPI clock speed requirement to collect all N-bits of the ADC output during the input acquisition time (t  
ADC is operating in continuous input sampling mode.  
See Equation 6-10 for the calculation of the SPI clock speed requirement.  
), when the  
ACQ  
6.5  
Transfer Function  
Digital Output Code (Two’s Complement)  
The differential analog input is  
VIN = (VIN+) - (VIN-).  
011 ...111  
011 ...110  
The LSB size is given by Equation 6-11. and an  
example of LSB size vs. reference voltage is  
summarized in Table 6-6.  
000 ...000  
EQUATION 6-11: LSB SIZE - EXAMPLE  
2VREF  
LSB = ---------------  
2N  
where N is the resolution of the ADC in bits.  
100 ...001  
100 ...000  
TABLE 6-6:  
LSB SIZE VS. REFERENCE  
0V  
LSB Size  
Reference  
Voltage  
-V  
+ 1 LSB  
REF  
+V  
- 1.5 LSB  
+V  
-V  
+ 0.5 LSB  
MCP33131D-XX MCP33121D-XX MCP33111D-XX  
REF  
REF  
(VREF  
)
-V  
- 1 LSB  
(16-bit)  
(14-bit)  
(12-bit)  
REF  
REF  
Differential Analog Input Voltage  
2.5V  
2.7V  
3V  
76.3 V  
82.4 V  
305.2 V  
329.6 V  
366.2 V  
402.8 V  
427.3 V  
488.3 V  
549.3 V  
610.4 V  
622.6 V  
1.2207 mV  
1.3184 mV  
1.4648 mV  
1.6113 mV  
1.7090 mV  
1.9531 mV  
2.1973 mV  
2.4414 mV  
2.4902 mV  
FIGURE 6-11:  
Ideal Transfer Function for  
Fully-Differential Input Signal.  
91.6 V  
3.3V  
3.5V  
4V  
100.7 V  
106.8 V  
122.1 V  
137.3 V  
152.6 V  
155.6 V  
4.5V  
5V  
5.1V  
Figure 6-11 shows the ideal transfer function and  
Table 6-7 shows the digital output codes for the  
MCP33131D/MCP33121D/MCP33111D-XX.  
2018 Microchip Technology Inc.  
DS20005947B-page 39  
MCP33131D/MCP33121D/MCP33111D-XX  
6.6  
Digital Output Code  
The digital output code is proportional to the input  
voltage. The output data is in binary two’s complement  
format. With this coding scheme the MSB can be  
considered a sign indicator. When the MSB is a logic  
0’, the input is positive. When the MSB is a logic ‘1’, the  
input is negative. The following is an example of the  
output code:  
(a) for a negative full-scale input:  
Analog Input: (VIN+) - (VIN-) = -VREF  
Output Code: 1000...0000  
(b) for a zero differential input:  
Analog Input: (VIN+) - (VIN-) = 0V  
Output Code: 0000...0000  
(c) for a positive full-scale input:  
Analog Input: (VIN+) - (VIN-) = +VREF  
Output Code: 0111...1111  
The MSB (sign bit) is always transmitted first through  
the SDO pin.  
The code will be locked at 0111...11 for all voltages  
greater than (VREF - 1 LSB) and 1000...00 for  
voltages less than -VREF. Table 6-7 shows an example  
of output codes of various input levels.  
TABLE 6-7:  
DIGITAL OUTPUT CODE  
Digital Output Codes  
Input Voltage (V)  
MCP33131D-XX  
(16-bit)  
MCP33121D-XX  
(14-bit)  
MCP33111D-XX  
(12-bit)  
VREF  
0111-1111-1111-1111  
0111-1111-1111-1111  
01-1111-1111-1111  
01-1111-1111-1111  
0111-1111-1111  
0111-1111-1111  
V
REF - 1 LSB  
.
.
.
.
.
.
.
.
2 LSB  
1 LSB  
0V  
0000-0000-0000-0010  
0000-0000-0000-0001  
0000-0000-0000-0000  
1111-1111-1111-1111  
1111-1111-1111-1110  
00-0000-0000-0010  
00-0000-0000-0001  
00-0000-0000-0000  
11-1111-1111-1111  
11-1111-1111-1110  
0000-0000-0010  
0000-0000-0001  
0000-0000-0000  
1111-1111-1111  
1111-1111-1110  
-1 LSB  
-2 LSB  
.
.
.
.
.
.
.
.
- VREF  
1000-0000-0000-0000  
1000-0000-0000-0000  
10-0000-0000-0000  
10-0000-0000-0000  
1000-0000-0000  
1000-0000-0000  
< -VREF  
DS20005947B-page 40  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
SDO returns to high-Z state after the last data bit is  
clocked out or when CNVST goes high, whichever  
occurs first.  
7.0  
DIGITAL SERIAL INTERFACE  
The device has  
interface using four digital pins: CNVST, SDI, SDO and  
SCLK.  
a SPI-compatible serial digital  
Figure 7-1 shows the connection diagram with the host  
device and Figure 7-2 shows the SPI-compatible serial  
interface timing diagram.  
CS  
DVIO  
DVIO  
CNVST  
The SDI pin can be tied to the digital I/O interface  
supply voltage (DVIO) or just maintain logic “High” level  
by the host. The CNVST pin is used for both chip select  
(CS) and conversion-start control.  
SDI  
SDO  
SCLK  
SDI  
10 k  
(Note 1)  
A rising edge on CNVST initiates the conversion  
process. Once the conversion is initiated, the device  
will complete the conversion regardless of the state of  
CNVST. This means the CNVST pin can be used for  
other purposes during tCNV.  
SCLK  
(b) Host Device (Master)  
(a) MCP33131D/21D/11D-XX  
Note 1: Adding this pull-up is needed when monitoring  
status of Recalibrate.  
When the conversion is complete, the output is  
available at SDO by lowering CNVST. Data is sent  
MSB-first and changes on the falling edge of SCLK.  
FIGURE 7-1:  
Digital Interface Connection  
Diagram.  
Output data can be sampled on either edge of SCLK.  
However, a digital host capturing data on the falling  
edge of SCLK can achieve a faster read out rate.  
tCYC  
= 1/fS  
SDI = DVIO  
(Note 1)  
t
CNVH  
(a) Exit input acquisition mode and  
(b) Enter new conversion mode  
t
SU_SDIH_CNV  
CNVST  
t
SCLK  
(Note 2)  
4
14  
1
16  
3
15  
2
SCLK  
t
t
DO  
QUIET  
t
t
(Note 5)  
SCLK_L  
SCLK_H  
t
DIS  
Hi-Z  
(MAX)  
D15  
(MSB)  
Hi-Z  
D2  
SDO  
D12  
D1  
D0  
D14  
D13  
t
CNV  
t
EN  
(Note 3)  
t
EN  
(Note 4)  
ADC State  
Input Acquisition  
Conversion  
Input Acquisition  
(t  
)
(t  
)
(t  
)
ACQ  
CNV  
ACQ  
Note 1: SDI must maintain “High” during the entire tCYC  
2: Any SCLK toggling events (dummy clocks) before CNVST is changed to “Low” are ignored.  
3: t when CNVST is lowered after t (Max).  
.
EN  
CNV  
4: t when CNVST is lowered before t  
(Max).  
CNV  
EN  
5: Recommended data detection: Detect SDO on the falling edge of SCLK.  
TM  
FIGURE 7-2:  
SPI Compatible Serial Interface Timing Diagram (16-bit device).  
2018 Microchip Technology Inc.  
DS20005947B-page 41  
MCP33131D/MCP33121D/MCP33111D-XX  
A self-calibration is initiated by sending the recalibrate  
command. The host device sends a recalibrate  
command by transmitting 1024 SCLK pulses (including  
the clocks for data bits) while the device is in the  
acquisition phase (Standby).  
7.1  
Recalibrate Command  
The user may use the recalibrate command in the  
following cases:  
• When the reference voltage was not fully settled  
during the first-power sequence.  
The device drives SDO low during the recalibration  
procedure, and returns to high-Z once completed. The  
status of the recalibration procedure can be monitored  
by placing a pull-up on SDO, so that SDO goes high  
when the recalibration is complete.  
• During operation, to ensure optimum performance  
across varying environment conditions, such as  
reference voltage and temperature.  
Figure 7-3 shows the recalibrate command timing  
diagram. The calibration takes approximately 500 ms  
(tCAL).  
(Note 1)  
SDI = DVIO  
Start recalibration  
Finish recalibration  
Complete data reading  
Device Recalibration  
CNVST  
1024 clocks  
(SPI Recalibrate command)  
TM  
1024  
1
2
3
15 16  
t
CAL  
SCLK  
SDO  
(Note 2)  
“High” with Pull-up  
Hi-Z  
“High” with Pull-up  
Hi-Z  
“Low”  
ADC Output Data Stream  
Hi-Z  
(Note 3)  
ADC State  
(Note 4)  
t
CNV  
Note  
1: SDI must remain “High” during the entire recalibration cycle.  
2: The 1024 clocks include the clocks for data bits.  
3: SDO outputs “Low” during calibration, and Hi-Z when exiting the calibration.  
4: After finishing the recalibration procedure, the device is ready for a new input sampling immediately.  
FIGURE 7-3:  
Note:  
Recalibrate Command Timing Diagram.  
When the device performs a self-calibration, it is important to note that both AVDD and the reference voltage  
(VREF) must be stabilized for a correct calibration. This is also true when the device is first powered-up, the  
reference voltage (VREF) must be stabilized before self-calibration begins. This means the VREF must be  
provided prior to supplying AVDD or within about 64 ms after supplying AVDD  
.
DS20005947B-page 42  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Figure 8-1 and Figure 8-2 show this evaluation tool.  
This evaluation platform allows users to quickly  
evaluate the ADC's performance for their specific  
application requirements.  
8.0  
8.1  
DEVELOPMENT SUPPORT  
Device Evaluation Board  
Microchip offers a high speed/high precision SAR ADC  
evaluation platform which can be used to evaluate  
Microchip’s latest high speed/high resolution SAR ADC  
products. The platform consists of an MCP331x1D-XX  
evaluation board, a data capture board (PIC32MZ EF  
Curiosity Board), and a PC-based Graphical User  
Interface (GUI) software.  
Note:  
Contact Microchip Technology Inc. for the  
PIC32 MCU firmware and the  
MCP331x1D-XX Evaluation Kit.  
(a) MCP331x1D-XX Evaluation Board  
(b) PIC32 MZ EF Curiosity Board  
FIGURE 8-1:  
MCP331x1D-XX Evaluation Kit.  
FIGURE 8-2:  
PC-Based Graphical User Interface Software.  
2018 Microchip Technology Inc.  
DS20005947B-page 43  
MCP33131D/MCP33121D/MCP33111D-XX  
ers are recommended:  
8.2  
PCB Layout Guidelines:  
(a) Top Layer: Most of the noise-sensitive ana-  
log components are populated on the top layer.  
Use all unused surface area as ground planes:  
analog ground plane in analog circuit section  
and digital ground in digital circuit section. These  
ground planes need to be tied to the corre-  
sponding ground planes in the second and bot-  
tom layers using multiple vias.  
Microchip provides the schematics and PCB layout of  
the MCP331x1D-XX Evaluation Board. It is strongly  
recommended that the user references the example  
circuits and PCB layouts.  
A good schematic with low noise PCB layout is critical  
for high performing ADC application system designs. A  
few guidelines are listed below:  
• Use low noise supplies (AVDD, DVIO, and VREF).  
(b) 2nd Layer: Use this layer as the ground  
plane: Analog ground plane under the analog  
circuit section of the top layer and digital ground  
plane under the digital circuit section on the top  
layer. Each ground plane is tied to its corre-  
sponding ground plane of top and bottom layers  
using multiple vias.  
• All supply voltage pins, including reference volt-  
age, need decoupling capacitors. Decoupling  
capacitor requirements for each supply pin are  
shown in Table 5-1.  
• Use NPO or COG type capacitor for the RC anti-  
aliasing filters in the analog input network.  
• Keep the analog circuit section (analog input  
driver amplifiers, filters, voltage reference, ADC,  
etc.) with an analog ground plane, and the digital  
circuit section (MCU, digital I/O interface) with a  
digital ground plane. Keep these sections as  
much apart as possible. This will minimize any  
digital switching noise coupling into the analog  
section.  
(c) 3rd Layer: This layer is used to distribute  
various power supplies of the circuits. Use sep-  
arate trace paths for the power supplies of ana-  
log and digital sections. Do not use the same  
power supply source for both analog and digital  
circuits.  
(d) Bottom Layer: This layer is mostly used as  
a solid ground plane: Analog ground plane  
under the analog circuit section of the top layer  
and digital ground plane under the digital circuit  
section on the top layer. Each ground plane is  
tied to its corresponding ground plane of all lay-  
ers using multiple vias.  
• Connect the analog and digital ground planes at a  
single point (away from the sensitive analog sec-  
tions) with a 0 resistor or with a ferrite bead.  
See Figure 8-3 as an example of separated  
ground planes.  
• Keep the clock and digital output data lines short  
and away from the sensitive analog sections as  
much as possible.  
Figure 8-3 and Figure 8-4 show brief examples  
of the PCB layout. See more details of the sche-  
matics and PCB layout in the MCP331x1D-XX  
Evaluation Board User’s Guide.  
PCB material and Layers: Low loss FR-4 mate-  
rial is most commonly used. The following 4 lay-  
Analog Ground Plane  
(GND)  
MCP331x1D-XX  
Analog Ground Plane  
(GND)  
Note: Analog and digital  
ground planes are  
SCLK  
SDO  
connected via R56.  
R56  
Digital Interface  
Connectors for MCU  
Digital Ground Plane  
(DGND)  
(DGND)  
Digital Ground Plane  
FIGURE 8-3:  
PCB Layout Example: Analog and Digital Ground Planes  
DS20005947B-page 44  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
SDI  
VREF  
VIO  
SCLK  
SDO  
AVDD  
AIN+  
-
AIN  
GND  
MCP331x1D-XX  
CNVST  
(a) PCB layout example  
VREF  
C6  
10uF  
(Tantalum)  
R3  
C7  
VIN  
+
C35  
22R  
100pF  
1.7nF  
(NPO)  
MCP331x1D-XX  
R8  
VIN  
-
22R  
C37  
1.7nF  
(NPO)  
33R  
CNVST  
SDI  
33R  
33R  
SCLK  
SDO  
33R  
R24 = 0 for Single-Ended  
Configuration  
(b) Schematic example from the MCP331x1D-XX Evaluation Board  
PCB Layout Example: See more details in the MCP331x1D-XX EV Kit User’s Guide.  
FIGURE 8-4:  
2018 Microchip Technology Inc.  
DS20005947B-page 45  
MCP33131D/MCP33121D/MCP33111D-XX  
NOTES:  
DS20005947B-page 46  
2018 Microchip Technology Inc.  
---------  
                                                                                                                                                                                                                                                                          
-
------------  
MCP33131D/MCP33121D/MCP33111D-XX  
EQUATION 9-2:  
9.0  
TERMINOLOGY  
P
S
---------------------  
SINAD = 10log  
Analog Input Bandwidth (Full-Power  
Bandwidth)  
P
+ P  
D
N
SNR  
10  
THD  
10  
The analog input frequency at which the spectral power  
of the fundamental frequency (as determined by FFT  
analysis) is reduced by 3 dB.  
= 10log 10  
10  
SINAD is either given in units of dBc (dB to carrier),  
when the absolute power of the fundamental is used as  
the reference, or dBFS (dB to full-scale), when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Aperture Delay or Sampling Delay  
This is the time delay between the rising edge of the  
CNVST input and when the input signal is held for a  
conversion.  
Effective Number of Bits (ENOB)  
Differential Nonlinearity  
(DNL, No Missing Codes)  
The effective number of bits for a sine wave input at a  
given input frequency can be calculated directly from its  
measured SINAD using the following formula:  
An ideal ADC exhibits code transitions that are exactly  
1 LSB apart. DNL is the deviation from this ideal value.  
No missing codes to 16-bit resolution indicates that all  
65,536 codes (16,384 codes for 14-bit, 4096 codes for  
12-bit) must be present over all the operating  
conditions.  
EQUATION 9-3:  
SINAD 1.76  
ENOB = ----------------------------------  
6.02  
Gain Error  
Integral Nonlinearity (INL)  
Gain error is the deviation of the ADC’s actual input  
full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale  
range. Gain error is usually expressed in LSB or as a  
percentage of full-scale range (%FSR).  
INL is the maximum deviation of each individual code  
from an ideal straight line drawn from negative full  
scale through positive full scale.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the power of the fundamental (PS) to  
the noise floor power (PN), below the Nyquist frequency  
and excluding the power at DC and the first nine  
harmonics.  
Offset Error  
The major carry transition should occur for an analog  
value of ½ LSB below AIN+ = AIN. Offset error is  
defined as the deviation of the actual transition from  
that point.  
EQUATION 9-1:  
P
S
Temperature Drift  
-------  
SNR = 10log  
P
N
The temperature drift for offset error and gain error  
specifies the maximum change from the initial (+25°C)  
value to the value at across the TMIN to TMAX range.  
The value is normalized by the reference voltage and  
expressed in V/oC or ppm/oC.  
SNR is either given in units of dBc (dB to carrier), when  
the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale), when the power  
of the fundamental is extrapolated to the converter  
full-scale range.  
Maximum Conversion Rate  
Signal-to-Noise and Distortion (SINAD)  
The maximum clock rate at which parametric testing is  
performed.  
SINAD is the ratio of the power of the fundamental (PS)  
to the power of all the other spectral components  
including noise (PN) and distortion (PD) below the  
Nyquist frequency, but excluding DC:  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the power of the fundamental to the  
highest other spectral component (either spur or  
harmonic). SFDR is typically given in units of dBc (dB  
to carrier) or dBFS.  
2018 Microchip Technology Inc.  
DS20005947B-page 47  
MCP33131D/MCP33121D/MCP33111D-XX  
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS) to  
the summed power of the first 13 harmonics (PD).  
EQUATION 9-4:  
P
S
-------  
THD = 10log  
P
D
THD is typically given in units of dBc (dB to carrier).  
THD is also shown by:  
EQUATION 9-5:  
2
2
2
3
2
4
2
n
V + V + V + + V  
THD = 20log-----------------------------------------------------------------  
2
V
1
Where:  
V1 = RMS amplitude of the  
fundamental frequency  
V1 through Vn = Amplitudes of the second  
through nth harmonics  
Common-Mode Rejection Ratio (CMRR)  
Common-mode rejection is the ability of a device to  
reject a signal that is common to both sides of a  
differential input pair. The common-mode signal can be  
an AC or DC signal or a combination of the two. CMRR  
is measured using the ratio of the differential signal  
gain to the common-mode signal gain and expressed in  
dB with the following equation:  
EQUATION 9-6:  
A
DIFF  
------------------  
CMRR = 20log  
A
CM  
Where:  
ADIFF = Output Code/Differential Voltage  
ADIFF = Output Code/Common-Mode Voltage  
DS20005947B-page 48  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
Example  
10-Lead MSOP (3x3 mm)  
Corresponding Part Number:  
31D-10 = MCP33131D-10  
31D-05 = MCP33131D-05  
21D-10 = MCP33121D-10  
21D-05 = MCP33121D-05  
11D-10 = MCP33111D-10  
11D-05 = MCP33111D-05  
31D-10  
839256  
10-Lead TDFN (3x3x0.9 mm)  
Example  
Corresponding Part Number:  
31D1 = MCP33131D-10  
31D0 = MCP33131D-05  
21D1 = MCP33121D-10  
21D0 = MCP33121D-05  
11D1 = MCP33111D-10  
11D0 = MCP33111D-05  
31D1  
1839  
256  
XXXX  
YYWW  
NNN  
PIN 1  
PIN 1  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2018 Microchip Technology Inc.  
DS20005947B-page 49  
MCP33131D/MCP33121D/MCP33111D-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 H  
D
D
2
A
N
E
2
E1  
2
E1  
E
0.20 H  
0.25 C  
1
2
e
B
8X b  
0.13  
C A B  
TOP VIEW  
H
C
A2  
A
SEATING  
PLANE  
8X  
0.10 C  
A1  
SEE DETAIL A  
SIDE VIEW  
END VIEW  
Microchip Technology Drawing C04-021D Sheet 1 of 2  
DS20005947B-page 50  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
4X Ĭ1  
c
C
SEATING  
PLANE  
Ĭ
L
(L1)  
4X Ĭ1  
DETAIL A  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
10  
0.50 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
A
-
-
1.10  
0.95  
0.15  
A2  
A1  
E
E1  
D
0.75  
0.00  
0.85  
-
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
L
0.40  
0.80  
Footprint  
L1  
0.95 REF  
Mold Draft Angle  
Foot Angle  
Lead Thickness  
Lead Width  
0°  
5°  
0.08  
0.15  
-
-
-
-
8°  
15°  
0.23  
0.33  
Ĭ
Ĭ1  
c
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-021D Sheet 2 of 2  
2018 Microchip Technology Inc.  
DS20005947B-page 51  
MCP33131D/MCP33121D/MCP33111D-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
G
SILK SCREEN  
Z
C
G1  
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.50 BSC  
4.40  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Overall Width  
Contact Pad Width (X10)  
Contact Pad Length (X10)  
Distance Between Pads (X5)  
Distance Between Pads (X8)  
Z
X1  
Y1  
G1  
G
5.80  
0.30  
1.40  
3.00  
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2021B  
DS20005947B-page 52  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2018 Microchip Technology Inc.  
DS20005947B-page 53  
MCP33131D/MCP33121D/MCP33111D-XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005947B-page 54  
2018 Microchip Technology Inc.  
MCP33131D/MCP33121D/MCP33111D-XX  
APPENDIX A: REVISION HISTORY  
Revision B (November 2018)  
• Added TDFN-10 package release  
• Added AEC-Q100 qualification  
• Added 500 kSPS family devices (MCP33131D/  
MCP33121D/MCP33111D-05)  
• Minor typographical corrections  
Revision A (March 2018)  
• Original release of this document  
2018 Microchip Technology Inc.  
DS20005947B-page 55  
MCP33131D/MCP33121D/MCP33111D-XX  
NOTES:  
2018 Microchip Technology Inc.  
DS20005947B-page 56  
MCP33131D/MCP33121D/MCP33111D-XX  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
X  
/XX  
XX  
PART NO.  
Device  
X
Examples:  
a)  
MCP33131D-10-I/MS: 1 Msps, 10LD MSOP,  
Input Type  
Tape  
and  
Reel  
Temperature Package  
Range  
Sample Rate  
16-bit device  
b)  
MCP33131D-10T-I/MS: 1 Msps, 10LD MSOP,  
Tape and Reel,  
16-bit device  
Device:  
MCP33131D-10: 1 Msps 16-Bit Differential Input SAR ADC  
MCP33121D-10: 1 Msps 14-Bit Differential Input SAR ADC  
MCP33111D-10: 1 Msps 12-Bit Differential Input SAR ADC  
c)  
d)  
MCP33131D-10-I/MN: 1 Msps, 10LD TDFN,  
16-bit device  
MCP33131D-10T-I/MN: 1 Msps, 10LD TDFN,  
Tape and Reel,  
MCP33131D-05: 500 kSPS 16-Bit Differential Input SAR ADC  
MCP33121D-05: 500 kSPS 14-Bit Differential Input SAR ADC  
MCP33111D-05: 500 kSPS 12-Bit Differential Input SAR ADC  
16-bit device  
e)  
f)  
MCP33121D-10-I/MS: 1 Msps, 10LD MSOP,  
14-bit device  
MCP33121D-10T-I/MS: 1 Msps, 10LD MSOP,  
Tape and Reel,  
Input Type  
D: Differential Input  
14-bit device  
g)  
h)  
MCP33121D-10-I/MN: 1 Msps, 10LD TDFN,  
14-bit device  
Sample Rate: 10  
= 1 Msps  
= 500 kSPS  
MCP33121D-10T-I/MN: 1 Msps, 10LD TDFN,  
Tape and Reel,  
05  
14-bit device  
i)  
j)  
MCP33111D-10-I/MS: 1 Msps, 10LD MSOP,  
12-bit device  
Tape and  
Reel Option:  
Blank  
=
=
Standard packaging (tube or tray)  
Tape and Reel  
T
MCP33111D-10T-I/MS: 1 Msps, 10LD MSOP,  
Tape and Reel,  
Temperature  
Range:  
E
I
= -40C to +125C (Extended)  
= -40C to +85C (Industrial)  
12-bit device  
k)  
l)  
MCP33111D-10-I/MN: 1 Msps, 10LD TDFN,  
12-bit device  
Package:  
MS  
MN  
=
=
Plastic Micro Small Outline Package (MSOP), 10-Lead  
MCP33111D-10T-I/MN: 1 Msps, 10LD TDFN,  
Tape and Reel,  
Thin Plastic Dual Flat No Lead Package (TDFN),  
10-Lead  
12-bit device  
m) MCP33131D-05-I/MS: 500 kSPS, 10LD MSOP,  
16-bit device  
n)  
MCP33131D-05T-I/MS: 500 kSPS, 10LD MSOP,  
Tape and Reel,  
16-bit device  
Note:  
Tape and Reel identifier appears only in the catalog part number  
description. This identifier is used for ordering purposes and is not  
printed on the device package. Check with your Microchip Sales Office  
for package availability with the Tape and Reel option.  
o)  
p)  
MCP33131D-05-I/MN: 500 kSPS, 10LD TDFN,  
16-bit device  
MCP33131D-05T-I/MN: 500 kSPS, 10LD TDFN,  
Tape and Reel,  
16-bit device  
q)  
r)  
MCP33121D-05-I/MS: 500 kSPS, 10LD MSOP,  
14-bit device  
MCP33121D-05T-I/MS: 500 kSPS, 10LD MSOP,  
Tape and Reel,  
14-bit device  
s)  
t)  
MCP33121D-05-I/MN: 500 kSPS, 10LD TDFN,  
14-bit device  
MCP33121D-05T-I/MN: 500 kSPS, 10LD TDFN,  
Tape and Reel,  
14-bit device  
u)  
v)  
MCP33111D-10-I/MS: 500 kSPS, 10LD MSOP,  
12-bit device  
MCP33111D-10T-I/MS: 500 kSPS, 10LD MSOP,  
Tape and Reel,  
12-bit device  
w)  
x)  
MCP33111D-10-I/MN: 500 kSPS, 10LD TDFN,  
12-bit device  
MCP33111D-10T-I/MN: 500 kSPS, 10LD TDFN,  
Tape and Reel,  
12-bit device  
DS20005947B-page 57  
2018 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,  
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,  
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity,  
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,  
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,  
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2018, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-3863-2  
== ISO/TS16949==  
2018 Microchip Technology Inc.  
DS20005947B-page 58  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20005947B-page 59  
2018 Microchip Technology Inc.  
08/15/18  

相关型号:

MCP33131D-05-I/MN

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-05-I/MS

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-05T-I/MN

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-05T-I/MS

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-10

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-10-I/MN

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-10-I/MS

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-10T-I/MN

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-10T-I/MS

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33131D-XX

1 Msps/500 kSPS 16/14/12-Bit Differential Input SAR ADC
MICROCHIP

MCP33141-05T-E/MS

A/D Converter
MICROCHIP

MCP33141-10-E/MS

A/D Converter
MICROCHIP