MCP4017T-103E/LT [MICROCHIP]

7-Bit Single I2C? Digital POT with Volatile Memory in SC70; 7位单I2C ?数字电位器在SC70易失性存储器
MCP4017T-103E/LT
型号: MCP4017T-103E/LT
厂家: MICROCHIP    MICROCHIP
描述:

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
7位单I2C ?数字电位器在SC70易失性存储器

电位器 存储
文件: 总66页 (文件大小:2760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP4017/18/19  
7-Bit Single I2C™ Digital POT with Volatile Memory in  
SC70  
Package Types  
Features  
Potentiometer  
MCP4018  
SC70-6  
Rheostat  
• Potentiometer or Rheostat configuration options  
MCP4017  
SC70-6  
• 7-bit: Resistor Network Resolution  
-
127 Resistors (128 Steps)  
W
V
1
2
3
6
5
4
DD  
A
V
A
1
2
3
6
5
4
DD  
• Zero Scale to Full Scale Wiper operation  
• RAB Resistances: 5 kΩ, 10 kΩ, 50 kΩ, or 100 kΩ  
• Low Wiper Resistance: 100Ω (typical)  
• Low Tempco:  
W
A
V
B
SS  
V
W
SS  
B
W
B
SCL  
SDA  
SCL  
SDA  
MCP4019  
- Absolute (Rheostat): 50 ppm typical  
(0°C to 70°C)  
SC70-5  
W
V
1
2
3
5
DD  
W
- Ratiometric (Potentiometer): 10 ppm typical  
• Simple I2C Protocol with read & write commands  
• Brown-out reset protection (1.5V typical)  
• Power-on Default Wiper Setting (Mid-scale)  
• Low-Power Operation:  
V
SS  
B
A
SCL  
SDA  
4
• Wide Bandwidth (-3 dB) Operation:  
- 2 MHz (typical) for 5.0 kΩ device  
- 2.5 µA Static Current (typical)  
• Extended temperature range (-40°C to +125°C)  
• Very small package (SC70)  
• Wide Operating Voltage Range:  
- 2.7V to 5.5V - Device Characteristics  
Specified  
• Lead free (Pb-free) package  
- 1.8V to 5.5V - Device Operation  
Device Features  
Resistance (typical)  
VDD  
Wiper  
Configuration  
Wiper Operating  
(Ω)  
Device  
Options (kΩ)  
Range (1)  
Package  
MCP4017  
MCP4018  
MCP4019  
I2C 128  
I2C 128 Potentiometer RAM  
I2C 128  
Rheostat RAM  
Rheostat  
RAM  
5.0, 10.0, 50.0, 100.0  
5.0, 10.0, 50.0, 100.0  
5.0, 10.0, 50.0, 100.0  
75  
75  
75  
1.8V to 5.5V SC70-6  
1.8V to 5.5V SC70-6  
1.8V to 5.5V SC70-5  
Note 1: Analog characteristics only tested from 2.7V to 5.5V  
© 2009 Microchip Technology Inc.  
DS22147A-page 1  
MCP4017/18/19  
Device Block Diagram  
A (2)  
VDD  
VSS  
Power-up/  
Brown-out  
Control  
W
I2C Serial  
Interface  
Module,  
Control  
Logic, &  
Memory  
SCL  
SDA  
Resistor  
Network 0  
(Pot 0)  
B (1, 2)  
Note 1: Some configurations will have this  
signal internally connected to ground.  
2: In some configurations, this signal  
may not be connected externally  
Note 1  
(internally floating or grounded).  
Comparison of Similar Microchip Devices (1)  
Resistance (typical)  
VDD  
Wiper  
Configuration  
Operating  
Device  
Options (kΩ)  
Range (2)  
Package  
MCP4017  
MCP4012  
MCP4022  
MCP4132  
MCP4142  
MCP4152  
MCP4162  
MCP4532  
MCP4542  
MCP4552  
MCP4562  
MCP4018  
MCP4013  
MCP4023  
MCP4019  
MCP4014  
MCP4024  
I2C 128  
U/D 64  
U/D 64  
SPI 129  
SPI 129  
SPI 257  
SPI 257  
I2C 129  
I2C 129  
I2C 257  
I2C 257  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
Rheostat  
RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V  
No  
No SC70-6  
No SOT-23-6  
Yes SOT-23-6  
No PDIP-8,  
RAM  
EE  
2.1, 5.0, 10.0, 50.0  
2.1, 5.0, 10.0, 50.0  
1.8V to 5.5V Yes  
2.7V to 5.5V Yes  
RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V Yes  
EE 5.0, 10.0, 50.0, 100.0 2.7V to 5.5V Yes  
RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V Yes  
EE 5.0, 10.0, 50.0, 100.0 2.7V to 5.5V Yes  
RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V Yes  
EE 5.0, 10.0, 50.0, 100.0 2.7V to 5.5V Yes  
RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V Yes  
EE 5.0, 10.0, 50.0, 100.0 2.7V to 5.5V Yes  
SOIC-8,  
Yes  
MSOP-8,  
No  
DFN-8  
Yes  
No MSOP-8,  
DFN-8  
Yes  
No  
Yes  
I2C 128 Potentiometer RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V  
No  
No SC70-6  
No SOT-23-6  
Yes SOT-23-6  
No SC70-5  
No SOT-23-5  
Yes SOT-23-5  
U/D 64 Potentiometer RAM  
U/D 64 Potentiometer EE  
I2C 128  
U/D 64  
U/D 64  
2.1, 5.0, 10.0, 50.0  
2.1, 5.0, 10.0, 50.0  
1.8V to 5.5V Yes  
2.7V to 5.5V Yes  
Rheostat  
Rheostat  
Rheostat  
RAM 5.0, 10.0, 50.0, 100.0 1.8V to 5.5V  
No  
RAM  
EE  
2.1, 5.0, 10.0, 50.0  
2.1, 5.0, 10.0, 50.0  
1.8V to 5.5V Yes  
2.7V to 5.5V Yes  
Note 1: This table is broken into three groups by a thick line (and color coding). The unshaded devices in this table  
are the devices described in this data sheet, while the shaded devices offer a comparable resistor network  
configuration.  
2: Analog characteristics only tested from 2.7V to 5.5V  
DS22147A-page 2  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Voltage on VDD with respect to VSS ..... -0.6V to +7.0V  
Voltage on SCL, and SDA with respect to VSS  
-0.6V to 12.5V  
.............................................................................  
Voltage on all other pins (A, W, and B)  
with respect to VSS ............................ -0.3V to VDD + 0.3V  
Input clamp current, IIK  
(VI < 0, VI > VDD, VI > VPP ON HV pins)...........±20 mA  
Output clamp current, IOK  
(VO < 0 or VO > VDD) .......................................±20 mA  
Maximum output current sunk by any Output pin  
...........................................................................25 mA  
Maximum output current sourced by any Output pin  
...........................................................................25 mA  
Maximum current out of VSS pin ......................100 mA  
Maximum current into VDD pin .........................100 mA  
Maximum current into A, W and B pins...........±2.5 mA  
Package power dissipation (TA = +50°C, TJ = +150°C)  
SC70-5............................................................302 mW  
SC70-6.................................................................. TBD  
Storage temperature ..........................-65°C to +150°C  
Ambient temperature with power applied  
...........................................................-40°C to +125°C  
ESD protection on all pins ........................≥ 4 kV (HBM)  
........................................................................≥ 400V (MM)  
Maximum Junction Temperature (TJ) .............. +150°C  
© 2009 Microchip Technology Inc.  
DS22147A-page 3  
MCP4017/18/19  
AC/DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
2.7  
1.8  
5.5  
5.5  
V
V
V
Analog Characteristics specified  
Digital Characteristics specified  
RAM retention voltage (VRAM) < VBOR  
VDD Start Voltage  
to ensure Wiper  
Reset  
VBOR  
VDDRR  
TBORD  
1.65  
VDD Rise Rate to  
ensure Power-on  
Reset  
(Note 7)  
V/ms  
µS  
Delay after device  
exits the reset  
state  
10  
20  
(VDD > VBOR  
)
Supply Current  
(Note 8)  
IDD  
45  
80  
5
µA  
µA  
Serial Interface Active,  
Write all 0’s to Volatile Wiper  
VDD = 5.5V, FSCL = 400 kHz  
2.5  
Serial Interface Inactive,  
(Stop condition, SCL = SDA = VIH),  
Wiper = 0, VDD = 5.5V  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
3: MCP4018 device only, includes VWZSE and VWFSE  
.
.
4: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
5: This specification by design.  
6: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
7: POR/BOR is not rate dependent.  
8: Supply current is independent of current through the resistor network  
DS22147A-page 4  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
-502 devices (Note 1)  
Resistance  
(± 20%)  
RAB  
4.0  
8.0  
5
10  
6.0  
12.0  
60.0  
120.0  
kΩ  
kΩ  
kΩ  
kΩ  
-103 devices (Note 1)  
-503 devices (Note 1)  
-104 devices (Note 1)  
40.0  
80.0  
50  
100  
128  
RAB  
Resolution  
N
Taps No Missing Codes  
Step Resistance  
RS  
/
Ω
Note 5  
(127)  
100  
155  
50  
Wiper Resistance  
RW  
170  
325  
Ω
Ω
VDD = 5.5 V, IW = 2.0 mA, code = 00h  
VDD = 2.7 V, IW = 2.0 mA, code = 00h  
Nominal  
Resistance  
Tempco  
ΔRAB/ΔT  
ppm/°C TA = -20°C to +70°C  
ppm/°C TA = -40°C to +85°C  
ppm/°C TA = -40°C to +125°C  
ppm/°C Code = Midscale (3Fh)  
100  
150  
15  
Ratiometeric  
Tempco  
ΔVWB/ΔT  
Resistor Terminal  
Input Voltage  
VA,VW,VB  
Vss  
VDD  
V
Note 4, Note 5  
Range (Terminals  
A, B and W)  
IAW, W = Full Scale (FS)  
IBW, W = Zero Scale (ZS)  
IAW or IBW, W = FS or ZS  
IAB, VB = 0V, VA = 5.5V,  
Maximum current  
through Terminal  
(A, W or B)  
IT  
2.5  
2.5  
mA  
mA  
mA  
mA  
Terminal A  
Terminal B  
Terminal W  
2.5  
Note 5  
1.38  
R
AB(MIN) = 4000  
IAB, VB = 0V, VA = 5.5V,  
AB(MIN) = 8000  
IAB, VB = 0V, VA = 5.5V,  
AB(MIN) = 40000  
IAB, VB = 0V, VA = 5.5V,  
AB(MIN) = 80000  
0.688  
0.138  
0.069  
mA  
mA  
mA  
Terminal A  
and  
Terminal B  
R
R
R
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
3: MCP4018 device only, includes VWZSE and VWFSE  
.
.
4: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
5: This specification by design.  
6: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
7: POR/BOR is not rate dependent.  
8: Supply current is independent of current through the resistor network  
© 2009 Microchip Technology Inc.  
DS22147A-page 5  
MCP4017/18/19  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Full Scale Error  
(MCP4018 only)  
(code = 7Fh)  
VWFSE  
-3.0  
-2.0  
-0.5  
-0.5  
-0.1  
-0.1  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
5 kΩ  
2.7V VDD 5.5V  
10 kΩ 2.7V VDD 5.5V  
50 kΩ 2.7V VDD 5.5V  
100 kΩ 2.7V VDD 5.5V  
-0.1  
-0.1  
Zero Scale Error  
(MCP4018 only)  
(code = 00h)  
VWZSE  
+0.1  
+0.1  
+0.1  
+0.1  
±0.25  
+3.0  
+2.0  
+0.5  
+0.5  
+0.5  
5 kΩ  
2.7V VDD 5.5V  
10 kΩ 2.7V VDD 5.5V  
50 kΩ 2.7V VDD 5.5V  
100 kΩ 2.7V VDD 5.5V  
Potentiometer  
Integral  
Non-linearity  
INL  
DNL  
BW  
-0.5  
2.7V VDD 5.5V  
MCP4018 device only (Note 2)  
Potentiometer  
Differential Non-  
linearity  
-0.25  
±0.125 +0.25  
LSb  
2.7V VDD 5.5V  
MCP4018 device only (Note 2)  
Bandwidth -3 dB  
(See Figure 2-83,  
load = 30 pF)  
2
MHz 5 kΩ  
Code = 3Fh  
1
MHz 10 kΩ Code = 3Fh  
260  
100  
kHz  
kHz  
50 kΩ Code = 3Fh  
100 kΩ Code = 3Fh  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
3: MCP4018 device only, includes VWZSE and VWFSE  
.
.
4: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
5: This specification by design.  
6: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
7: POR/BOR is not rate dependent.  
8: Supply current is independent of current through the resistor network  
DS22147A-page 6  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rheostat Integral  
Non-linearity  
MCP4018  
R-INL  
-2.0  
-5.0  
±0.5  
+3.5  
+2.0  
+5.0  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
pF  
5 kΩ  
5.5V, IW = 900 µA  
2.7V, IW = 430 µA (Note 6)  
1.8V (Note 6)  
See Section 2.0  
(Note 3)  
-2.0  
-4.0  
±0.5  
+2.5  
+2.0  
+4.0  
10 kΩ 5.5V, IW = 450 µA  
2.7V, IW = 215 µA (Note 6)  
MCP4017 and  
MCP4019 devices  
only (Note 3)  
See Section 2.0  
1.8V (Note 6)  
-1.125  
-1.5  
±0.5  
+1  
+1.125  
+1.5  
50 kΩ 5.5V, IW = 90 µA  
2.7V, IW = 43 µA (Note 6)  
See Section 2.0  
1.8V (Note 6)  
-0.8  
-1.125  
±0.5  
+0.8  
100 kΩ 5.5V, IW = 45 µA  
+0.25 +1.125  
2.7V, IW = 21.5 µA (Note 6)  
See Section 2.0  
1.8V (Note 6)  
Rheostat  
Differential Non-  
linearity  
MCP4018  
(Note 3)  
MCP4017 and  
MCP4019 devices  
only (Note 3)  
R-DNL  
-0.5  
±0.25  
+0.5  
+0.5  
5 kΩ  
5.5V, IW = 900 mA  
2.7V, IW = 430 µA (Note 6)  
1.8V (Note 6)  
-0.75  
+0.75  
See Section 2.0  
-0.5  
-0.75  
±0.25  
+0.5  
+0.5  
+0.75  
10 kΩ 5.5V, IW = 450 µA  
2.7V, IW = 215 µA (Note 6)  
See Section 2.0  
1.8V (Note 6)  
-0.375  
±0.25 +0.375  
±0.25 +0.375  
50 kΩ 5.5V, IW = 90 µA  
-0.375  
2.7V, IW = 43 µA (Note 6)  
See Section 2.0  
1.8V (Note 6)  
-0.375  
-0.375  
±0.25 +0.375  
±0.25 +0.375  
100 kΩ 5.5V, IW = 45 µA  
2.7V, IW = 21.5 µA (Note 6)  
See Section 2.0  
1.8V (Note 6)  
Capacitance (PA)  
Capacitance (Pw)  
Capacitance (PB)  
CAW  
CW  
75  
120  
75  
f =1 MHz, Code = Full Scale  
f =1 MHz, Code = Full Scale  
f =1 MHz, Code = Full Scale  
pF  
CBW  
pF  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
3: MCP4018 device only, includes VWZSE and VWFSE  
.
.
4: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
5: This specification by design.  
6: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
7: POR/BOR is not rate dependent.  
8: Supply current is independent of current through the resistor network  
© 2009 Microchip Technology Inc.  
DS22147A-page 7  
MCP4017/18/19  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Digital Inputs/Outputs (SDA, SCK)  
Schmitt Trigger  
High Input  
VIH  
0.7 VDD  
V
1.8V VDD 5.5V  
Threshold  
Schmitt Trigger  
Low Input  
VIL  
-0.5  
0.3VDD  
V
Threshold  
Hysteresis of  
Schmitt Trigger  
Inputs (Note 5)  
VHYS  
N.A.  
0.1VDD  
V
V
All inputs except SDA and SCL  
V
DD < 2.0V  
100 kHz  
400 kHz  
SDA  
and  
SCL  
N.A.  
V
VDD 2.0V  
VDD < 2.0V  
VDD 2.0V  
0.1 VDD  
0.05 VDD  
VSS  
V
V
Output Low  
Voltage (SDA)  
VOL  
0.2VDD  
0.4  
1
V
VDD < 2.0V, IOL = 1 mA  
VDD 2.0V, IOL = 3 mA  
VIN = VDD and VIN = VSS  
VSS  
V
Input Leakage  
Current  
IIL  
-1  
µA  
Pin Capacitance  
RAM (Wiper) Value  
Value Range  
CIN, COUT  
10  
pF  
fC = 400 kHz  
N
0h  
7Fh  
hex  
hex  
Wiper POR/BOR  
Value  
NPOR/BOR  
3Fh  
Power Requirements  
Power Supply  
Sensitivity  
PSS  
0.0005 0.0035  
%/%  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 3Fh  
(MCP4018 only)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
3: MCP4018 device only, includes VWZSE and VWFSE  
.
.
4: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
5: This specification by design.  
6: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
7: POR/BOR is not rate dependent.  
8: Supply current is independent of current through the resistor network  
DS22147A-page 8  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
1.1  
I2C Mode Timing Waveforms and Requirements  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
2
FIGURE 1-1:  
I C Bus Start/Stop Bits Timing Waveforms.  
2
TABLE 1-1:  
I C BUS START/STOP BITS REQUIREMENTS  
I2C AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (Extended)  
Operating Voltage VDD range is described in Section 2.0 “Typical  
Performance Curves”  
Param.  
Symbol  
No.  
Characteristic  
Standard Mode  
Min  
Max  
Units  
Conditions  
FSCL  
0
100  
400  
400  
400  
kHz Cb = 400 pF, 1.8V - 5.5V  
Fast Mode  
0
kHz Cb = 400 pF, 2.7V - 5.5V  
D102  
90  
Cb  
Bus capacitive  
loading  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
pF  
pF  
TSU:STA START condition  
Setup time  
4700  
600  
4000  
600  
4000  
600  
4000  
600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Only relevant for repeated  
START condition  
91  
THD:STA START condition  
Hold time  
After this period the first  
clock pulse is generated  
92  
TSU:STO STOP condition  
Setup time  
93  
THD:STO STOP condition  
Hold time  
103  
102  
100  
106  
101  
109  
SCL  
90  
91  
92  
107  
SDA  
In  
110  
109  
SDA  
Out  
Note 1: Refer to specification D102 (Cb) for load conditions.  
2
FIGURE 1-2:  
I C Bus Data Timing.  
© 2009 Microchip Technology Inc.  
DS22147A-page 9  
MCP4017/18/19  
2
TABLE 1-2:  
I C BUS DATA REQUIREMENTS (SLAVE MODE)  
I2C AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (Extended)  
Operating Voltage VDD range is described in AC/DC characteristics  
Parame-  
ter No.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
100  
THIGH  
Clockhightime 100 kHz mode  
400 kHz mode  
4000  
ns  
1.8V-5.5V  
600  
ns  
ns  
2.7V-5.5V  
101  
TLOW  
Clock low time  
100 kHz mode  
4700  
1.8V-5.5V  
2.7V-5.5V  
400 kHz mode  
100 kHz mode  
1300  
ns  
ns  
102A (5)  
102B (5)  
103A (5)  
103B (5)  
106  
TRSCL SCL rise time  
TRSDA SDA rise time  
TFSCL SCL fall time  
TFSDA SDA fall time  
1000  
Cb is specified to be from  
10 to 400 pF  
400 kHz mode  
100 kHz mode  
20 + 0.1Cb  
300  
ns  
ns  
1000  
Cb is specified to be from  
10 to 400 pF  
400 kHz mode  
100 kHz mode  
20 + 0.1Cb  
300  
300  
ns  
ns  
Cb is specified to be from  
10 to 400 pF  
400 kHz mode  
100 kHz mode  
20 + 0.1Cb  
40  
ns  
ns  
300  
Cb is specified to be from  
10 to 400 pF  
20 + 0.1Cb (4)  
0
400 kHz mode  
300  
ns  
ns  
THD:DAT Data input hold 100 kHz mode  
1.8V-5.5V, Note 6  
2.7V-5.5V, Note 6  
(2)  
time  
400 kHz mode  
0
ns  
ns  
107  
TSU:DAT Data input  
setup time  
100 kHz mode  
250  
400 kHz mode  
100 kHz mode  
100  
ns  
ns  
(1)  
109  
TAA  
Output valid  
from clock  
3450  
400 kHz mode  
100 kHz mode  
900  
ns  
ns  
110  
TBUF  
Bus free time  
4700  
Time the bus must be free  
before a new transmission  
can start  
400 kHz mode  
1300  
ns  
TSP  
Input filter spike 100 kHz mode  
50  
50  
ns  
ns  
Philips Spec states N.A.  
suppression  
400 kHz mode  
(SDA and SCL)  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the  
requirement tsu; DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it  
must output the next data bit to the SDA line  
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before  
the SCL line is released.  
3: The MCP4018/MCP4019 device must provide a data hold time to bridge the undefined part between VIH  
and VIL of the falling edge of the SCL signal. This specification is not a part of the I2C specification, but must  
be tested in order to guarantee that the output data will meet the setup and hold specifications for the receiv-  
ing device.  
4: Use Cb in pF for the calculations.  
5: Not Tested.  
6: A Master Transmitter must provide a delay to ensure that difference between SDA and SCL fall times do not  
unintentionally create a Start or Stop condition.  
DS22147A-page 10  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Thermal Resistance, 5L-SC70  
(Note 1)  
θJA  
θJA  
331  
°C/W  
°C/W  
Thermal Resistance, 6L-SC70  
TBD  
Note 1: Package Power Dissipation (PDIS) is calculated as follows:  
DIS = (TJ - TA) / θJA  
where: TJ = Junction Temperature, TA = Ambient Temperature.  
P
,
© 2009 Microchip Technology Inc.  
DS22147A-page 11  
MCP4017/18/19  
NOTES:  
DS22147A-page 12  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
2
1.8  
1.6  
1.4  
1.2  
1
60  
50  
5.5V  
40  
400 kHz, 5.5V  
30  
0.8  
0.6  
0.4  
0.2  
0
20  
100 kHz, 5.5V  
100 kHz, 2.7V  
400 kHz, 2.7V  
2.7V  
10  
0
-40  
0
40  
Temperature (°C)  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-1:  
Interface Active Current  
) and Temperature  
FIGURE 2-2:  
(I ) vs. Temperature and V .  
DD  
Interface Inactive Current  
(I ) vs. SCL Frequency (f  
DD  
SCL  
SHDN  
(V = 1.8V, 2.7V and 5.5V).  
(V = 1.8V, 2.7V and 5.5V).  
DD  
DD  
© 2009 Microchip Technology Inc.  
DS22147A-page 13  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
85°C  
DNL  
125°C  
85°C  
125°C  
INL  
60  
60  
25°C  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
RW  
DNL  
25°C  
32  
-40°C  
RW  
-40°C  
40  
40  
INL  
20  
20  
0
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-3:  
5.0 kΩ : Pot Mode – R (Ω),  
FIGURE 2-6:  
5.0 kΩ : Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 5.5V). (A = V , B = V ).  
Temperature (V = 5.5V).(I = 1.4mA, B = V  
)
DD  
DD  
SS  
DD  
W
SS  
300  
260  
220  
180  
140  
100  
60  
3
-40C Rw  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
260  
220  
180  
140  
100  
60  
0.3  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
-40C INL  
125C INL  
-40C DNL  
125C DNL  
0.2  
0.1  
0
INL  
125°C  
2
125°C  
85°C  
25°C  
85°  
INL  
1
RW  
-0.1  
-0.2  
-0.3  
RW  
0
25°C  
-40°C  
DNL  
DNL  
-40°C  
20  
20  
-1  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-4:  
5.0 kΩ : Pot Mode – R (Ω),  
FIGURE 2-7:  
5.0 kΩ : Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 2.7V). (A = V , B = V  
)
Temperature (V = 2.7V).(I = 450uA, B = V  
)
SS  
DD  
DD  
SS  
DD  
W
2500  
2000  
1500  
1000  
500  
44  
39  
34  
29  
24  
19  
14  
9
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.35  
2500  
2000  
1500  
1000  
500  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.25  
0.15  
0.05  
-0.05  
-0.15  
-0.25  
-0.35  
INL  
RW  
INL  
DNL  
DNL  
RW  
4
0
0
-1  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-5:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V). (A = V , B = V  
5.0 kΩ : Pot Mode – R (Ω),  
FIGURE 2-8:  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V). (I = TBD, B = V  
5.0 kΩ : Rheo Mode – R  
W
W
)
)
SS  
DD  
DD  
SS  
DD  
W
DS22147A-page 14  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
200  
180  
160  
140  
120  
100  
80  
2.7V  
5.5V  
-1.0  
-1.2  
2.7  
60  
-1.4  
40  
5.5V  
1.8V  
-1.6  
20  
-1.8  
0
-40  
0
40  
80  
120  
0
32  
64  
96  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-9:  
5.0 kΩ : Full Scale Error  
FIGURE 2-12:  
5.0 kΩ : R  
Tempco  
BW  
(FSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
ΔR / ΔT vs. Code.  
DD  
WB  
1.8  
1.6  
1.4  
1.2  
1.8V  
1.0  
2.7  
0.8  
0.6  
0.4  
5.5V  
0.2  
0.0  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-10:  
5.0 kΩ : Zero Scale Error  
FIGURE 2-13:  
5.0 kΩ : Power-Up Wiper  
(ZSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
Response Time.  
DD  
5200  
5180  
5160  
5140  
5120  
5100  
Wiper  
VDD  
1.8V  
5080  
2.7V  
5060  
5040  
5020  
5.5V  
5000  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-11:  
5.0 kΩ : Nominal Resistance  
FIGURE 2-14:  
5.0 kΩ : Digital Feedthrough  
(Ω) vs. Temperature and V  
.
(SCL signal coupling to Wiper pin).  
DD  
© 2009 Microchip Technology Inc.  
DS22147A-page 15  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-15:  
5.0 kΩ : Write Wiper (40h →  
FIGURE 2-18:  
5.0 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =5.5V).  
00h) Settling Time (V =5.5V).  
DD  
DD  
FIGURE 2-16:  
5.0 kΩ : Write Wiper (40h  
FIGURE 2-19:  
5.0 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =2.7V).  
00h) Settling Time (V =2.7V).  
DD  
DD  
FIGURE 2-17:  
5.0 kΩ : Write Wiper (40h →  
FIGURE 2-20:  
5.0 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =1.8V).  
00h) Settling Time (V =1.8V).  
DD  
DD  
DS22147A-page 16  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.2  
0.1  
0
DNL  
125°C  
85°C  
125°C  
85°C  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-40°C  
RW  
RW  
-40°C  
DNL  
25°C  
25°C  
64  
INL  
40  
40  
INL  
20  
20  
0
32  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-21:  
10 kΩ Pot Mode : R (Ω),  
FIGURE 2-24:  
10 kΩ Rheo Mode : R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 5.5V). (A = V , B = V  
)
Temperature (V = 5.5V).(I = 450uA, B = V  
)
SS  
DD  
DD  
SS  
DD  
W
300  
260  
220  
180  
140  
100  
60  
3
-40C Rw  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
260  
220  
180  
140  
100  
60  
0.3  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
-40C INL  
125C INL  
-40C DNL  
125C DNL  
0.2  
0.1  
0
85°C  
INL  
2
125°C  
125°C  
RW  
85°  
25°C  
1
-0.1  
-0.2  
-0.3  
DNL  
RW  
0
25°C  
32  
INL  
-40°C  
-40°C  
DNL  
20  
20  
-1  
0
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-22:  
10 kΩ Pot Mode : R (Ω),  
FIGURE 2-25:  
10 kΩ Rheo Mode : R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 2.7V). (A = V , B = V  
)
Temperature (V = 2.7V).(I = 210uA, B = V  
)
SS  
DD  
DD  
SS  
DD  
W
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
39  
34  
29  
24  
19  
14  
9
0.35  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
3000  
2000  
1000  
0
0.25  
0.15  
0.05  
-0.05  
-0.15  
-0.25  
-0.35  
3000  
2000  
1000  
0
DNL  
INL  
INL  
RW  
RW  
DNL  
4
-1  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-23:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V). (A = V , B = V  
10 kΩ Pot Mode : R (Ω),  
FIGURE 2-26:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V). (I = TBD, B = V  
10 kΩ Rheo Mode : R (Ω),  
W
W
)
)
SS  
DD  
DD  
SS  
DD  
W
© 2009 Microchip Technology Inc.  
DS22147A-page 17  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
100  
80  
60  
40  
20  
0
2.7V  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
5.5V  
2.7  
5.5V  
64  
1.8V  
0
32  
96  
-40  
0
40  
80  
120  
Wiper Setting (decimal)  
Ambient Temperature (°C)  
FIGURE 2-30:  
10 kΩ : R  
Tempco  
BW  
FIGURE 2-27:  
(FSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
10 kΩ : Full Scale Error  
ΔR / ΔT vs. Code.  
WB  
DD  
0.9  
0.8  
0.7  
0.6  
1.8V  
0.5  
2.7  
0.4  
0.3  
0.2  
0.1  
0.0  
5.5V  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-31:  
Response Time.  
10 kΩ : Power-Up Wiper  
FIGURE 2-28:  
(ZSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
10 kΩ : Zero Scale Error  
DD  
10200  
10150  
10100  
Wiper  
VDD  
1.8V  
10050  
10000  
2.7  
9950  
5.5V  
9900  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-32:  
(SCL signal coupling to Wiper pin).  
10 kΩ : Digital Feedthrough  
FIGURE 2-29:  
(Ω) vs. Temperature and V  
10 kΩ : Nominal Resistance  
.
DD  
DS22147A-page 18  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-33:  
10 kΩ : Write Wiper (40h →  
FIGURE 2-36:  
10 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =5.5V).  
00h) Settling Time (V =5.5V).  
DD  
DD  
FIGURE 2-34:  
10 kΩ : Write Wiper (40h →  
FIGURE 2-37:  
10 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =2.7V).  
00h) Settling Time (V =2.7V).  
DD  
DD  
FIGURE 2-35:  
10 kΩ : Write Wiper (40h →  
FIGURE 2-38:  
10 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =1.8V).  
00h) Settling Time (V =1.8V).  
DD  
DD  
© 2009 Microchip Technology Inc.  
DS22147A-page 19  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
85°C  
125°C  
85°C  
125°C  
60  
60  
INL  
DNL  
DNL  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
INL  
-40°C  
RW  
-40°C  
RW  
25°C  
40  
40  
25°C  
20  
20  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-39:  
50 kΩ Pot Mode : R (Ω),  
FIGURE 2-42:  
50 kΩ Rheo Mode : R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 5.5V).  
Temperature (V = 5.5V).(I = 90uA, B = V  
)
SS  
DD  
DD  
W
300  
260  
220  
180  
140  
100  
60  
0.3  
0.2  
0.1  
0
-40C Rw  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C INL  
-40C DNL  
260  
220  
180  
140  
100  
60  
125°C  
85°C  
INL  
125°C  
85°  
25°C  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
INL  
DNL  
RW  
DNL  
RW  
25°C  
-40°C  
-40°C  
20  
20  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-40:  
50 kΩ Pot Mode : R (Ω),  
FIGURE 2-43:  
50 kΩ Rheo Mode : R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 2.7V).  
Temperature (V = 2.7V).(I = 45uA, B = V  
)
SS  
DD  
DD  
W
10000  
8000  
6000  
4000  
2000  
0
23  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
0.35  
0.25  
0.15  
0.05  
-0.05  
-0.15  
-0.25  
-0.35  
10000  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
125C INL 21  
125C DNL  
19  
17  
15  
13  
11  
9
7
5
3
1
8000  
6000  
4000  
2000  
0
RW  
DNL  
INL  
INL  
DNL  
RW  
-1  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-41:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V).  
50 kΩ Pot Mode : R (Ω),  
FIGURE 2-44:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V). (I = TBD, B = V )  
SS  
50 kΩ Rheo Mode : R (Ω),  
W
W
DD  
DD  
W
DS22147A-page 20  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
0.00  
-0.04  
-0.08  
100  
80  
60  
40  
20  
0
2.7V  
2.7  
5.5V  
5.5V  
-0.12  
-0.16  
1.8V  
0
-40  
40  
80  
120  
0
32  
64  
96  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-45:  
50 kΩ : Full Scale Error  
FIGURE 2-48:  
50 kΩ : R  
Tempco  
BW  
(FSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
ΔR / ΔT vs. Code.  
DD  
WB  
0.20  
0.16  
1.8V  
0.12  
2.7  
0.08  
0.04  
5.5V  
0.00  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-46:  
50 kΩ : Zero Scale Error  
FIGURE 2-49:  
50 kΩ : Power-Up Wiper  
(ZSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
Response Time.  
DD  
49800  
49600  
49400  
Wiper  
VDD  
49200  
49000  
48800  
1.8V  
2.7V  
5.5V  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-47:  
50 kΩ : Nominal Resistance  
FIGURE 2-50:  
50 kΩ : Digital Feedthrough  
(Ω) vs. Temperature and V  
.
(SCL signal coupling to Wiper pin).  
DD  
© 2009 Microchip Technology Inc.  
DS22147A-page 21  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-51:  
50 kΩ : Write Wiper (40h →  
FIGURE 2-54:  
50 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =5.5V).  
00h) Settling Time (V =5.5V).  
DD  
DD  
FIGURE 2-52:  
50 kΩ : Write Wiper (40h →  
FIGURE 2-55:  
50 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =2.7V).  
00h) Settling Time (V =2.7V).  
DD  
DD  
FIGURE 2-53:  
50 kΩ : Write Wiper (40h →  
FIGURE 2-56:  
50 kΩ : Write Wiper (FFh →  
3Fh) Settling Time (V =1.8V).  
00h) Settling Time (V =1.8V).  
DD  
DD  
DS22147A-page 22  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.2  
0.1  
0
DNL  
125°C  
125°C  
DNL  
85°C  
85°C  
60  
60  
INL  
25°C  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
RW  
-40°C  
RW  
-40°C  
40  
40  
25°C  
INL  
20  
20  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-57:  
100 kΩ Pot Mode : R (Ω),  
FIGURE 2-60:  
100 kΩ Rheo Mode : R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 5.5V).  
Temperature (V = 5.5V). (I = 45uA, B = V  
)
SS  
DD  
DD  
W
300  
260  
220  
180  
140  
100  
60  
0.3  
0.2  
0.1  
0
-40C Rw  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C INL  
-40C DNL  
260  
220  
180  
140  
100  
60  
125°C  
85°C  
DNL  
INL  
85°  
125°C  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
DNL  
RW  
RW  
INL  
25°C  
32  
25°C  
-40°C  
-40°C  
20  
20  
0
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
FIGURE 2-58:  
100 kΩ Pot Mode : R (Ω),  
FIGURE 2-61:  
100 kΩ Rheo Mode : R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 2.7V).  
Temperature (V = 2.7V). (I = 21uA, B = V  
)
SS  
DD  
DD  
W
15000  
12500  
10000  
7500  
5000  
2500  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.35  
0.25  
0.15  
0.05  
-0.05  
-0.15  
-0.25  
-0.35  
15000  
19  
17  
15  
13  
11  
9
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
12500  
10000  
7500  
5000  
2500  
0
RW  
DNL  
INL  
7
5
DNL  
3
INL  
RW  
1
-1  
0
32  
64  
96  
0
32  
64  
96  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-59:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V).  
100 kΩ Pot Mode : R (Ω),  
FIGURE 2-62:  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Temperature (V = 1.8V). (I = TBD, B = V  
100 kΩ Rheo Mode : R  
W
W
)
SS  
DD  
DD  
W
© 2009 Microchip Technology Inc.  
DS22147A-page 23  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
0.00  
100  
80  
60  
40  
20  
0
-0.02  
5.5V  
-0.04  
2.7V  
2.7  
-0.06  
5.5V  
1.8V  
-0.08  
-40  
0
40  
80  
120  
0
32  
64  
96  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-63:  
100 kΩ : Full Scale Error  
FIGURE 2-66:  
100 kΩ : R  
Tempco  
BW  
(FSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
ΔR / ΔT vs. Code.  
DD  
WB  
0.12  
0.08  
1.8V  
2.7  
0.04  
5.5V  
0.00  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-64:  
100 kΩ : Zero Scale Error  
FIGURE 2-67:  
100 kΩ : Power-Up Wiper  
(ZSE) vs. Temperature (V = 5.5V, 2.7V, 1.8V).  
Response Time.  
DD  
99800  
99600  
99400  
99200  
99000  
Wiper  
VDD  
1.8V  
98800  
2.7V  
98600  
98400  
98200  
98000  
97800  
5.5V  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
FIGURE 2-65:  
100 kΩ : Nominal  
FIGURE 2-68:  
100 kΩ : Digital  
Resistance (Ω) vs. Temperature and V  
.
Feedthrough (SCL signal coupling to Wiper pin).  
DD  
DS22147A-page 24  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-69:  
100 kΩ : Write Wiper (40h  
FIGURE 2-72:  
100 kΩ : Write Wiper (FFh  
3Fh) Settling Time (V = 5.5V).  
00h) Settling Time (V = 5.5V).  
DD  
DD  
FIGURE 2-70:  
100 kΩ : Write Wiper (40h  
FIGURE 2-73:  
100 kΩ : Write Wiper (FFh  
3Fh) Settling Time (V = 2.7V).  
00h) Settling Time (V = 2.7V).  
DD  
DD  
FIGURE 2-71:  
100 kΩ : Write Wiper (40h  
FIGURE 2-74:  
100 kΩ : Write Wiper (FFh  
3Fh) Settling Time (V = 1.8V).  
00h) Settling Time (V = 1.8V).  
DD  
DD  
© 2009 Microchip Technology Inc.  
DS22147A-page 25  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
4
0.3  
0.25  
0.2  
3.5  
5.5V  
3
2.7V (@ 3mA)  
5.5V (@ 3mA)  
2.5  
2.7V  
2
0.15  
0.1  
1.5  
1
1.8V (@ 1mA)  
0.05  
0
0.5  
1.8V  
0
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-75:  
V
(SCL, SDA) vs. V and  
FIGURE 2-77:  
V
(SDA) vs. V and  
IH  
DD  
OL  
DD  
Temperature.  
Temperature.  
2
1.5  
1
1.2  
1
5.5  
5.5V  
2.7V  
0.8  
0.6  
0.4  
0.2  
2.7V  
0.5  
1.8V  
0
0
-40  
0
40  
Temperature (°C)  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-76:  
V
(SCL, SDA) vs. V and  
FIGURE 2-78:  
POR/BOR Trip point vs. V  
DD  
IL  
DD  
Temperature.  
and Temperature.  
DS22147A-page 26  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
10  
10  
0
Code = 7Fh  
Code = 7Fh  
0
Code = 3Fh  
Code = 3Fh  
Code = 1Fh  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
Code = 0Fh  
Code = 0Fh  
Code = 1Fh  
Code = 01h  
-30  
Code = 01h  
-40  
-50  
100  
1,000  
10,000  
100  
1,000  
10,000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-79:  
5 kΩ – Gain vs. Frequency  
FIGURE 2-82:  
100 kΩ – Gain vs.  
(-3dB).  
Frequency (-3dB).  
2.1  
Test Circuits  
10  
0
Code = 7Fh  
Code = 3Fh  
+5V  
-10  
-20  
-30  
+5V  
Code = 0Fh  
Code = 01h  
A
B
Code = 1Fh  
V
IN  
W
V
+
-
OUT  
-40  
-50  
-60  
100  
1,000  
10,000  
Frequency (kHz)  
FIGURE 2-80:  
10 kΩ – Gain vs. Frequency  
(-3dB).  
FIGURE 2-83:  
Gain vs. Frequency Test  
(-3dB).  
10  
0
Code = 7Fh  
Code = 3Fh  
Code = 1Fh  
-10  
-20  
-30  
-40  
-50  
Code = 0Fh  
Code = 01h  
-60  
100  
1,000  
Frequency (kHz)  
10,000  
FIGURE 2-81:  
50 kΩ – Gain vs. Frequency  
(-3dB).  
© 2009 Microchip Technology Inc.  
DS22147A-page 27  
MCP4017/18/19  
NOTES:  
DS22147A-page 28  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
Additional descriptions of the device pins follow.  
TABLE 3-1:  
PINOUT DESCRIPTION FOR THE MCP4017/18/19  
Pin Number  
Pin  
Name  
Pin  
Type  
Buffer  
Type  
Function  
MCP4017 MCP4018 MCP4019  
(SC70-6) (SC70-6) (SC70-5)  
VDD  
VSS  
SCL  
SDA  
B
1
2
1
2
1
2
P
Positive Power Supply Input  
Ground  
P
3
3
3
I/O  
I/O  
I/O  
I/O  
I/O  
ST (OD) I2C Serial Clock pin  
ST (OD) I2C Serial Data pin  
4
4
4
5
5
5
A
A
A
Potentiometer Terminal B  
Potentiometer Wiper Terminal  
Potentiometer Terminal A  
W
6
A
6
Legend: A = Analog input  
ST (OD) = Schmitt Trigger with Open Drain  
O = Output I/O = Input/Output  
I = Input  
P = Power  
© 2009 Microchip Technology Inc.  
DS22147A-page 29  
MCP4017/18/19  
W pin can support both positive and negative current.  
The voltage on terminal W must be between VSS and  
3.1  
Positive Power Supply Input (VDD)  
The VDD pin is the device’s positive power supply input.  
The input power supply is relative to VSS and can range  
from 1.8V to 5.5V. A de-coupling capacitor on VDD (to  
VDD  
.
3.7  
Potentiometer Terminal A  
VSS  
)
is recommended to achieve maximum  
performance.  
The terminal A pin (available on some devices) is  
connected to the internal potentiometer’s terminal A.  
While the device’s voltage is in the range of 1.8V VDD  
< 2.7V, the Resistor Network’s electrical performance  
of the device may not meet the data sheet  
specifications.  
The potentiometer’s terminal A is the fixed connection  
to the Full Scale (0x7F tap) wiper value of the digital  
potentiometer.  
The terminal A pin is available on the MCP4018  
devices. The terminal A pin does not have a polarity  
relative to the terminal W pin. The terminal A pin can  
support both positive and negative current. The voltage  
3.2  
Ground (VSS)  
The VSS pin is the device ground reference.  
on Terminal A must be between VSS and VDD  
.
3.3  
I2C Serial Clock (SCL)  
The terminal A pin is not available on the MCP4017  
and MCP4019 devices. For these devices, the  
potentiometer’s terminal A is internally floating.  
The SCL pin is the serial clock pin of the I2C interface.  
The MCP401X acts only as a slave and the SCL pin  
accepts only external serial clocks. The SCL pin is an  
open-drain output. Refer to Section 5.0 “Serial  
Interface - I2C Module” for more details of I2C Serial  
Interface communication.  
3.4  
I2C Serial Data (SDA)  
The SDA pin is the serial data pin of the I2C interface.  
The SDA pin has a Schmitt trigger input and an  
open-drain output. Refer to Section 5.0 “Serial  
Interface - I2C Module” for more details of I2C Serial  
Interface communication.  
3.5  
Potentiometer Terminal B  
The terminal B pin (available on some devices) is  
connected to the internal potentiometer’s terminal B.  
The potentiometer’s terminal B is the fixed connection  
to the Zero Scale (0x00 tap) wiper value of the digital  
potentiometer.  
The terminal B pin is available on the MCP4017 device.  
The terminal B pin does not have a polarity relative to  
the terminal W pin. The terminal B pin can support both  
positive and negative current. The voltage on terminal  
B must be between VSS and VDD  
.
The terminal B pin is not available on the MCP4018  
and MCP4019 devices. For these devices, the  
potentiometer’s terminal B is internally connected to  
VSS  
.
3.6  
Potentiometer Wiper (W) Terminal  
The terminal W pin is connected to the internal  
potentiometer’s terminal W (the wiper). The wiper  
terminal is the adjustable terminal of the digital  
potentiometer. The terminal W pin does not have a  
polarity relative to terminals A or B pins. The terminal  
DS22147A-page 30  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
4.1.2  
BROWN-OUT RESET  
4.0  
GENERAL OVERVIEW  
When the device powers down, the device VDD will  
cross the VPOR/VBOR voltage. Once the VDD voltage  
decreases below the VPOR/VBOR voltage the following  
happens:  
The MCP4017/18/19 devices are general purpose  
digital potentiometers intended to be used in  
applications where a programmable resistance with  
moderate bandwidth is desired.  
• Serial Interface is disabled  
This Data Sheet covers a family of three Digital  
Potentiometer and Rheostat devices. The MCP4018  
device is the Potentiometer configuration, while the  
MCP4017 and MCP4019 devices are the Rheostat  
configuration.  
If the VDD voltage decreases below the VRAM voltage  
the following happens:  
• Volatile wiper registers may become corrupted  
As the voltage recovers above the VPOR/VBOR voltage  
see Section 4.1.1 “Power-on Reset”.  
Applications generally suited for the MCP401X devices  
include:  
Serial commands not completed due to a Brown-out  
condition may cause the memory location to become  
corrupted.  
• Set point or offset trimming  
• Sensor calibration  
• Selectable gain and offset amplifier designs  
• Cost-sensitive mechanical trim pot replacement  
4.1.3  
WIPER REGISTER (RAM)  
The Wiper Register is volatile memory that starts  
functioning at the RAM retention voltage (VRAM). The  
Wiper Register will be loaded with the default wiper  
value when VDD will rise above the VPOR/VBOR voltage.  
As the Device Block Diagram shows, there are four  
main functional blocks. These are:  
POR/BOR Operation  
Serial Interface - I2C Module  
Resistor Network  
4.1.4  
DEVICE CURRENTS  
The current of the device can be classified into two  
modes of the device operation. These are:  
The POR/BOR operation and the Memory Map are  
discussed in this section and the I2C and Resistor  
Network operation are described in their own sections.  
The Serial Commands commands are discussed in  
Section 5.4.  
• Serial Interface Inactive (Static Operation)  
• Serial Interface Active  
Static Operation occurs when a Stop condition is  
received. Static Operation is exited when a Start  
condition is received.  
4.1  
POR/BOR Operation  
The Power-on Reset is the case where the device is  
having power applied to it from VSS. The Brown-out  
Reset occurs when a device had power applied to it,  
and that power (voltage) drops below the specified  
range.  
The devices RAM retention voltage (VRAM) is lower  
than the POR/BOR voltage trip point (VPOR/VBOR). The  
maximum VPOR/VBOR voltage is less then 1.8V.  
When VPOR/VBOR < VDD < 2.7V, the Resistor Network’s  
electrical performance may not meet the data sheet  
specifications. In this region, the device is capable of  
reading and writing to its volatile memory if the proper  
serial command is executed.  
Table 4-1 shows the digital pot’s level of functionality  
across the entire VDD range, while Figure 4-1 illustrates  
the Power-up and Brown-out functionality.  
4.1.1  
POWER-ON RESET  
When the device powers up, the device VDD will cross  
the VPOR/VBOR voltage. Once the VDD voltage crosses  
the VPOR/VBOR voltage, the following happens:  
• Volatile wiper register is loaded with the default  
wiper value (3Fh)  
• The device is capable of digital operation  
© 2009 Microchip Technology Inc.  
DS22147A-page 31  
MCP4017/18/19  
TABLE 4-1:  
VDD Level  
DEVICE FUNCTIONALITY AT EACH V REGION (NOTE 1)  
DD  
Serial  
Potentiometer  
Terminals  
Wiper Setting  
Comment  
Interface  
VDD < VBOR < 1.8V Ignored  
“unknown”  
Unknown  
VBOR VDD < 1.8V “Unknown” Operational with  
Wiper Register loaded  
with POR/BOR value  
reduced electrical  
specs  
1.8V VDD < 2.7V Accepted Operational with  
Wiper Register  
determines Wiper  
Setting  
Electrical performance may not  
meet the data sheet specifications.  
reduced electrical  
specs  
2.7V VDD 5.5V Accepted Operational  
Wiper Register  
determines Wiper  
Setting  
Meets the data sheet specifications  
Note 1: For system voltages below the minimum operating voltage, the customer will be recommended to use a  
voltage supervisor to hold the system in reset. This will ensure that MCP4017/18/19 commands are not  
attempted out of the operating range of the device.  
Normal Operation Range  
Normal Operation Range  
Outside Specified  
VDD  
AC/DC Range  
2.7V  
1.8V  
VPOR/BOR  
VRAM  
VSS  
Analog  
Analog  
Characteristics  
not specified  
Characteristics not specified  
Device’s Serial  
Interface is  
VBOR Delay  
“Not Operational”  
Wiper Forced to Default POR/BOR setting  
FIGURE 4-1:  
Power-up and Brown-out.  
DS22147A-page 32  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
5.1  
I2C I/O Considerations  
5.0  
SERIAL INTERFACE -  
I C MODULE  
2
I2C specifications require active low, passive high  
functionality on devices interfacing to the bus. Since  
devices may be operating on separate power supply  
sources, ESD clamping diodes are not permitted. The  
specification recommends using open drain transistors  
tied to VSS (common) with a pull-up resistor. The  
specification makes some general recommendations  
on the size of this pull-up, but does not specify the  
exact value since bus speeds and bus capacitance  
impacts the pull-up value for optimum system  
performance.  
A 2-wire I2C serial protocol is used to write or read the  
digital potentiometer’s wiper register. The I2C protocol  
utilizes the SCL input pin and SDA input/output pin.  
The I2C serial interface supports the following features.  
• Slave mode of operation  
• 7-bit addressing  
• The following clock rate modes are supported:  
- Standard mode, bit rates up to 100 kb/s  
- Fast mode, bit rates up to 400 kb/s  
• Support Multi-Master Applications  
Common pull-up values range from 1 kΩ to a max of  
~10 kΩ. Power sensitive applications tend to choose  
higher values to minimize current losses during  
communication but these applications also typically  
The serial clock is generated by the Master.  
The I2C Module is compatible with the Phillips I2C  
specification. Phillips only defines the field types, field  
lengths, timings, etc. of a frame. The frame content  
defines the behavior of the device. The frame content  
for the MCP4017, MCP4018, and MCP4019 devices  
are defined in this section of the Data Sheet.  
utilize lower VDD  
.
The SDA and SCL float (are not driving) when the  
device is powered down.  
A "glitch" filter is on the SCL and SDA pins when the pin  
is an input. When these pins are an output, there is a  
slew rate control of the pin that is independent of device  
frequency.  
Figure 5-1 shows a typical I2C bus configurations.  
Single I2C Bus Configuration  
5.1.1  
SLOPE CONTROL  
The device implements slope control on the SDA  
output. The slope control is defined by the fast mode  
specifications.  
Device 1  
Device 2  
Device n  
Device 3  
Host  
Controller  
For Fast (FS) mode, the device has spike suppression  
and Schmidt trigger inputs on the SDA and SCL pins.  
Device 4  
2
FIGURE 5-1:  
Typical Application I C Bus  
Configurations.  
Refer to Section 2.0 “Typical Performance Curves”,  
AC/DC Electrical Characteristics table for detailed input  
threshold and timing specifications.  
© 2009 Microchip Technology Inc.  
DS22147A-page 33  
MCP4017/18/19  
I2C Bit Definitions  
If the Slave Address is not valid, the Slave Device will  
issue a Not A (A). The A bit will have the SDA signal  
high.  
5.2  
I2C bit definitions include:  
Start Bit  
If an error condition occurs (such as an A instead of A)  
then an START bit must be issued to reset the  
command state machine.  
Data Bit  
Acknowledge (A) Bit  
Repeated Start Bit  
Stop Bit  
TABLE 5-1:  
MCP4017/18/19 A / A  
RESPONSES  
Clock Stretching  
Acknowledge  
Bit Response  
Figure 5-8 shows the waveform for these states.  
Event  
Comment  
5.2.1  
START BIT  
General Call  
A
The Start bit (see Figure 5-2) indicates the beginning of  
a data transfer sequence. The Start bit is defined as the  
SDA signal falling when the SCL signal is “High”.  
SlaveAddress A  
valid  
SlaveAddress A  
not valid  
I2C Module Resets,  
or a “Don’t Care” if  
the collision occurs  
on the Masters  
“Start bit”.  
2nd Bit  
1st Bit  
Bus Collision N.A.  
SDA  
SCL  
S
FIGURE 5-2:  
Start Bit.  
5.2.2 DATA BIT  
5.2.4  
REPEATED START BIT  
The SDA signal may change state while the SCL signal  
is Low. While the SCL signal is High, the SDA signal  
MUST be stable (see Figure 5-3).  
The Repeated Start bit (see Figure 5-5) indicates the  
current Master Device wishes to continue  
communicating with the current Slave Device without  
releasing the I2C bus. The Repeated Start condition is  
the same as the Start condition, except that the  
Repeated Start bit follows a Start bit (with the Data bits  
+ A bit) and not a Stop bit.  
2nd Bit  
1st Bit  
SDA  
SCL  
The Start bit is the beginning of a data transfer  
sequence and is defined as the SDA signal falling when  
the SCL signal is “High”.  
S
FIGURE 5-3:  
Data Bit.  
Note 1: A bus collision during the Repeated Start  
5.2.3 ACKNOWLEDGE (A) BIT  
condition occurs if:  
The A bit (see Figure 5-4) is a response from the Slave  
device to the Master device. Depending on the context  
of the transfer sequence, the A bit may indicate  
different things. Typically the Slave device will supply  
an A response after the Start bit and 8 “data” bits have  
been received. The A bit will have the SDA signal low.  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is asserted  
low. This may indicate that another mas-  
ter is attempting to transmit a data "1".  
SDA  
SCL  
D0  
A
1st Bit  
SDA  
SCL  
8
9
FIGURE 5-4:  
Acknowledge Waveform.  
Sr = Repeated Start  
FIGURE 5-5:  
Repeat Start Condition  
Waveform.  
DS22147A-page 34  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
5.2.5  
STOP BIT  
5.2.7  
ABORTING A TRANSMISSION  
The Stop bit (see Figure 5-6) Indicates the end of the  
I2C Data Transfer Sequence. The Stop bit is defined as  
the SDA signal rising when the SCL signal is “High”.  
A Stop bit resets the I2C interface of the other devices.  
If any part of the I2C transmission does not meet the  
command format, it is aborted. This can be intentionally  
accomplished with a START or STOP condition. This is  
done so that noisy transmissions (usually an extra  
START or STOP condition) are aborted before they  
corrupt the device.  
A / A  
SDA  
SCL  
2
5.2.8  
IGNORING AN I C TRANSMISSION  
AND “FALLING OFF” THE BUS  
The MCP4017/18/19 expects to receive entire, valid  
I2C commands and will assume any command not  
defined as a valid command is due to a bus corruption  
and will enter a passive high condition on the SDA  
signal. All signals will be ignored until the next valid  
START condition and CONTROL BYTE are received.  
P
FIGURE 5-6:  
Transmit Mode.  
Stop Condition Receive or  
5.2.6  
CLOCK STRETCHING  
“Clock Stretching” is something that the Secondary  
Device can do, to allow additional time to “respond” to  
the “data” that has been received.  
The MCP4017/18/19 will not strech the clock signal  
(SCL) since memory read accesses occur fast enough.  
SDA  
SCL  
S
1st 2nd 3rd 4th 5th 6th 7th 8th A/A 1st 2nd 3rd 4th 5th 6th 7th 8th A/A  
P
Bit Bit Bit Bit Bit Bit Bit Bit  
Bit Bit Bit Bit Bit Bit Bit Bit  
2
FIGURE 5-7:  
Typical 16-bit I C Waveform Format.  
SDA  
SCL  
Data allowed  
to change  
Data or  
A valid  
STOP  
Condition  
START  
Condition  
2
FIGURE 5-8:  
I C Data States and Bit Sequence.  
© 2009 Microchip Technology Inc.  
DS22147A-page 35  
MCP4017/18/19  
2
2
5.2.9  
I C COMMAND PROTOCOL  
TABLE 5-2:  
Device  
DEVICE I C ADDRESS  
I2C Address  
Comment  
The MCP4017/18/19 is a slave I2C device which  
supports 7-bit slave addressing. The slave address  
contains seven fixed bits. Figure 5-9 shows the control  
byte format.  
MCP4017  
MCP4018  
MCP4019  
0101111’  
0101111’  
0101111’  
5.2.9.1  
Control Byte (Slave Address)  
The Control Byte is always preceded by a START  
condition. The Control Byte contains the slave address  
consisting of seven fixed bits and the R/W bit. Figure 5-  
9 shows the control byte format and Table 5-2 shows  
the I2C address for the devices.  
5.2.9.2  
Hardware Address Pins  
The MCP4017/MCP4018/MCP4019 does not support  
hardware address bits.  
5.2.10  
GENERAL CALL  
The General Call is a method that the Master device  
can communicate with all other Slave devices.  
Slave Address  
S
A6 A5 A4 A3 A2 A1 A0 R/W  
“0” “1” “0” “1” “1” “1” “1”  
A/A  
The MCP4017/18/19 devices do not respond to  
General Call address and commands, and therefore  
the communications are Not Acknowledged.  
Start  
bit  
R/W bit  
R/W = 0 = write  
R/W = 1 = read  
A bit (controlled by slave device)  
A = 0 = Slave Device Acknowledges byte  
A = 1 = Slave Device does not Acknowledge byte  
FIGURE 5-9:  
I C Control Byte.  
Slave Address Bits in the  
2
Second Byte  
S
0
0
0
0
0
0
0
0
A
x
x
x
x
X
x
x
0
A
P
General Call Address  
“7-bit Command”  
Reserved 7-bit Commands (By I2C Specification - Philips # 9398 393 40011, Ver. 2.1 January 2000)  
‘0000 011’b - Reset and write programmable part of slave address by hardware.  
‘0000 010’b - Write programmable part of slave address by hardware.  
‘0000 000’b - NOT Allowed  
The Following is a “Hardware General Call” Format  
Second Byte  
n occurrences of (Data + A / A)  
A x X A P  
S
0
0
0
0
0
0
0
0
A
x
x
x
x
X
x
x
1
x
x
x
X
x
x
General Call Address  
“7-bit Command”  
This indicates a “Hardware General Call”  
MCP4016/7/8/9 will ignore this byte and  
all following bytes (and A), until  
a Stop bit (P) is encountered.  
FIGURE 5-10:  
General Call Formats.  
DS22147A-page 36  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
The Stop bit terminates the current I2C bus activity. The  
MCP4017/18/19 wait to detect the next Start condition.  
This sequence does not effect any other I2C devices  
which may be on the bus, as they should disregard this  
as an invalid command.  
5.3  
Software Reset Sequence  
Note:  
This technique should be supported by  
any I2C compliant device. The 24xxxx I2C  
Serial EEPROM devices support this tech-  
nique, which is documented in AN1028.  
At times it may become necessary to perform a  
Software Reset Sequence to ensure the MCP4017/18/  
19 device is in a correct and known I2C Interface state.  
This only resets the I2C state machine.  
5.4  
Serial Commands  
The MCP4017/18/19 devices support  
commands. These commands are:  
2
serial  
Write Operation  
Read Operations  
This is useful if the MCP4017/18/19 device powers up  
in an incorrect state (due to excessive bus noise, etc),  
or if the Master Device is reset during communication.  
Figure 5-11 shows the communication sequence to  
software reset the device.  
S
‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’  
S
P
Nine bits of ‘1’  
Start bit  
Start  
bit  
Stop bit  
FIGURE 5-11:  
Software Reset Sequence  
Format.  
The 1st Start bit will cause the device to reset from a  
state in which it is expecting to receive data from the  
Master Device.In this mode, the device is monitoring  
the data bus in Receive mode and can detect the Start  
bit forces an internal Reset.  
The nine bits of ‘1’ are used to force a Reset of those  
devices that could not be reset by the previous Start bit.  
This occurs only if the MCP4017/18/19 is driving an A  
on the I2C bus, or is in output mode (from a Read  
command) and is driving a data bit of ‘0’ onto the I2C  
bus. In both of these cases, the previous Start bit could  
not be generated due to the MCP4017/18/19 holding  
the bus low. By sending out nine ‘1’ bits, it is ensured  
that the device will see a A (the Master Device does not  
drive the I2C bus low to acknowledge the data sent by  
the MCP4017/18/19), which also forces the MCP4017/  
18/19 to reset.  
The 2nd Start bit is sent to address the rare possibility  
of an erroneous write. This could occur if the Master  
Device was reset while sending a Write command to  
the MCP4017/18/19, AND then as the Master Device  
returns to normal operation and issues a Start condition  
while the MCP4017/18/19 is issuing an A. In this case  
if the 2nd Start bit is not sent (and the Stop bit was sent)  
the MCP4017/18/19 could initiate a write cycle.  
Note:  
The potential for this erroneous write  
ONLY occurs if the Master Device is reset  
while sending a Write command to the  
MCP4017/18/19.  
© 2009 Microchip Technology Inc.  
DS22147A-page 37  
MCP4017/18/19  
5.4.1  
WRITE OPERATION  
5.4.2  
READ OPERATIONS  
The read operation requires the START condition,  
Control Byte, Acknowledge, Data Byte, the master  
generating the A and STOP condition. The Control  
Byte requires the R/W bit equal to a logic one (R/W =  
1) to generate a read sequence. The MCP4017/18/19  
will A the Slave Address Byte and A all the Data Bytes.  
The I2C Master will A the Slave Address Byte and the  
last Data Byte. If there are multiple Data Bytes, the I2C  
Master will A all Data Bytes except the last Data Byte  
(which it will A).  
The write operation requires the START condition,  
Control Byte, Acknowledge, Data Byte, Acknowledge  
and STOP (or RESTART) condition. The Control (Slave  
Address) Byte requires the R/W bit equal to a logic zero  
(R/W = “0”) to generate a write sequence. The  
MCP4017/18/19 is responsible for generating the  
Acknowledge (A) bits.  
Data is written to the MCP4017/18/19 after every byte  
transfer (during the A bit). If a STOP or RESTART  
condition is generated during a data transfer (before  
the A bit), the data will not be written to MCP4017/18/  
19.  
The MCP4017/18/19 maintains control of the SDA  
signal until all data bits have been clocked out.  
The command is terminated once a Stop (P) condition  
occurs. Refer to Figure 5-13 for the read command  
sequence. For a single read, the master sends a STOP  
or RESTART condition after the 1st data byte (and A  
bit) is sent from the slave.  
Data bytes may be written after each Acknowledge.  
The command is terminated once a Stop (P) condition  
occurs. Refer to Figure 5-12 for the write sequence.  
For a single byte write, the master sends a STOP or  
RESTART condition after the 1st data byte is sent.  
Figure 5-14 shows the I2C communication behavior of  
the Master Device and the MCP4017/18/19 device and  
the resultant I2C bus values.  
The MSb of each Data Byte is a don’t care, since the  
wiper register is only 7-bits wide.  
Figure 5-14 shows the I2C communication behavior of  
the Master Device and the MCP4017/18/19 device and  
the resultant I2C bus values.  
Fixed  
Address  
Read/Write bit (“0” = Write)  
x D6 D5 D4  
S
0
1
0
1
1
1 1 0 A  
D3 D2 D1 D0 A x D6 D5 D4 D3 D2 D1 D0 A  
Data Byte  
Data Byte  
STOP bit  
Slave Address Byte  
x D6 D5 D4  
P
D3 D2 D1 D0 A x D6 D5 D4 D3 D2 D1 D0 A  
Data Byte  
Data Byte  
Legend  
S = Start Condition  
P = Stop Condition  
A = Acknowledge  
X = Don’t Care  
R/W = Read/Write bit  
D6, D5, D4, D3, D2, D1, D0 = Data bits  
2
FIGURE 5-12:  
I C Write Command Format.  
DS22147A-page 38  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Fixed  
Address  
Read/Write bit (“1” = Read)  
0 D6 D5 D4  
S
0
1
0
1
1
1 1 1 A  
D3 D2 D1 D0 A(1)0 D6 D5 D4 D3 D2 D1 D0 A(1)  
Data Byte  
Data Byte  
STOP bit  
(2)  
Slave Address Byte  
0 D6 D5 D4  
P
D3 D2 D1 D0 A(1)0 D6 D5 D4 D3 D2 D1 D0 A  
Data Byte  
Data Byte  
Legend  
S = Start Condition  
P = Stop Condition  
A = Acknowledge  
X = Don’t Care  
R/W = Read/Write bit  
Note 1 = Data bits  
Note 1: Master Device is responsible for A / A signal. If a A signal occurs, the MCP4017/18/19  
will abort this transfer and release the bus.  
2: The Master Device will A, and the MCP4017/18/19 will release the bus so the Master Device can  
generate a Stop or Repeated Start condition.  
2
FIGURE 5-13:  
I C Read Command Format.  
© 2009 Microchip Technology Inc.  
DS22147A-page 39  
MCP4017/18/19  
Write 1 Byte  
R
/
S Slave Address  
W A Data Byte (1)  
A P  
Master  
S 0 1 0 1 1 1 1 0 1 x d d d d d d d 1 P  
MCP4017/18/19  
0
0
I2C Bus  
S 0 1 0 1 1 1 1 0 0 x d d d d d d d 0 P  
Write 2 Bytes  
R
/
S Slave Address  
S 0 1 0 1 1 1 1 0 1 x d d d d d d d 1 x d d d d d d d 1 P  
W A Data Byte (1)  
A Data Byte (1)  
A P  
Master  
MCP4017/18/19  
0
0
0
I2C Bus  
S 0 1 0 1 1 1 1 0 0 x d d d d d d d 0 x d d d d d d d 1 P  
Read 1 Byte  
R
/
S Slave Address  
W A Data Byte  
A P  
1 P  
Master  
S 0 1 0 1 1 1 1 1 1  
MCP4017/18/19  
0 0 d d d d d d d 1  
I2C Bus  
S 0 1 0 1 1 1 1 1 0 0 d d d d d d d 1 P  
Read 2 Bytes  
R
/
S Slave Address  
W A Data Byte  
A Data Byte  
A P  
Master  
S 0 1 0 1 1 1 1 1 1  
0
1 P  
MCP4017/18/19  
I2C Bus  
0 0 d d d d d d d 1 0 d d d d d d d 1  
S 0 1 0 1 1 1 1 1 0 0 d d d d d d d 0 0 d d d d d d d 1 P  
Note 1: For Write Commands, the MSb of the Data Byte is a don’t care since the wiper register is only 7-bits wide.  
2
FIGURE 5-14:  
I C Communication Behavior.  
DS22147A-page 40  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
6.0  
RESISTOR NETWORK  
A
The Resistor Network is made up of two parts. These  
are:  
7Fh  
RW (1)  
N = 127  
• Resistor Ladder  
• Wiper  
RS  
RS  
RS  
N = 126  
N = 125  
7Eh  
RW (1)  
7Dh  
RW (1)  
Figure 6-1 shows a block diagram for the resistive  
network.  
Digital potentiometer applications can be divided into  
two resistor network categories:  
• Rheostat configuration  
• Potentiometer (or voltage divider) configuration  
W
The MCP4017 is a true rheostat, with terminal B and  
the wiper (W) of the variable resistor available on pins.  
N = 1  
01h  
RW (1)  
The MCP4018 device offers  
a voltage divider  
(potentiometer) with terminal B internally connected to  
ground.  
RS  
N = 0  
00h  
RW (1)  
The MCP4019 device is a Rheostat device with  
terminal A of the resistor floating, terminal B internally  
connected to ground, and the wiper (W) available on  
pin.  
B
Analog  
Mux  
Note 1: The wiper resistance is tap dependent.  
That is, each tap selection resistance  
has a small variation. This variation has  
more effect on devices with smaller RAB  
resistance (5.0 kΩ).  
6.1  
Resistor Ladder Module  
The resistor ladder is a series of equal value resistors  
(RS) with a connection point (tap) between the two  
resistors. The total number of resistors in the series  
(ladder) determines the RAB resistance (see Figure 6-  
1). The end points of the resistor ladder are connected  
to the device Terminal A and Terminal B pins. The RAB  
(and RS) resistance has small variations over voltage  
and temperature.  
FIGURE 6-1:  
Resistor Network Block  
Diagram.  
TABLE 6-1:  
WIPER SETTING MAP  
Wiper Setting Properties  
The Resistor Network has 127 resistors in a string  
between terminal A and terminal B. This gives 7-bits of  
resolution.  
07Fh  
07Eh - 040h  
03Fh  
Full Scale (W = A)  
W = N  
The wiper can be set to tap onto any of these 127  
resistors thus providing 128 possible settings  
(including terminal A and terminal B). This allows zero  
scale to full scale connections.  
W = N (Mid Scale)  
W = N  
03Eh - 001h  
000h  
Zero Scale (W = B)  
A wiper setting of 00h connects the Terminal W (wiper)  
to Terminal B (Zero Scale). A wiper setting of 3Fh is the  
Mid scale setting. A wiper setting of 7Fh connects the  
Terminal W (wiper) to Terminal A (Full Scale). Table 6-  
1 illustrates the full wiper setting map.  
Terminal A and B as well as the wiper W do not have a  
polarity. These terminals can support both positive and  
negative current.  
© 2009 Microchip Technology Inc.  
DS22147A-page 41  
MCP4017/18/19  
Step resistance (RS) is the resistance from one tap  
setting to the next. This value will be dependent on the  
A POR/BOR event will load the Volatile Wiper register  
value with the default value. Table 6-3 shows the  
default values offered.  
RAB value that has been selected. Equation 6-1 shows  
the calculation for the step resistance while Table 6-2  
shows the typical step resistances for each device.  
TABLE 6-3:  
DEFAULT FACTORY  
SETTINGS SELECTION  
EQUATION 6-1:  
R CALCULATION  
S
Default POR Wiper  
Resistance Typical  
RAB  
Code (1)  
Code  
RAB Value  
RS = ---------  
Setting  
127  
-502  
5.0 kΩ  
10.0 kΩ  
50.0 kΩ  
100.0 kΩ  
Mid-scale  
Mid-scale  
Mid-scale  
Mid-scale  
3Fh  
3Fh  
3Fh  
3Fh  
Equation 6-2 illustrates the calculation used to  
determine the resistance between the wiper and  
terminal B.  
-103  
-503  
-104  
Note 1: Custom POR/BOR Wiper Setting options  
are available, contact the local Microchip  
Sales Office for additional information.  
Custom options have minimum volume  
requirements.  
EQUATION 6-2:  
R
CALCULATION  
WB  
RAB  
RWB = ------------- + RW  
127  
N
N = 0 to 127 (decimal)  
The digital potentiometer is available in four nominal  
resistances (RAB) where the nominal resistance is  
defined as the resistance between terminal A and  
terminal B. The four nominal resistances are 5 kΩ,  
10 kΩ, 50 kΩ, and 100 kΩ.  
The total resistance of the device has minimal variation  
due to operating voltage (see Figure 2-11, Figure 2-29,  
Figure 2-47, or Figure 2-65).  
TABLE 6-2:  
STEP RESISTANCES  
Resistance (Ω)  
Part Number  
Total  
(RAB  
Case  
Step (RS)  
)
Min.  
4000  
31.496  
39.370  
47.244  
62.992  
78.740  
94.488  
314.961  
393.701  
472.441  
629.921  
MCP4017/18/19-502E Typical 5000  
Max.  
Min.  
6000  
8000  
MCP4017/18/19-103E Typical 10000  
Max.  
Min.  
12000  
40000  
MCP4017/18/19-503E Typical 50000  
Max.  
Min.  
60000  
80000  
MCP4017/18/19-104E Typical 100000 787.402  
Max. 120000 944.882  
DS22147A-page 42  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
6.2.2  
POTENTIOMETER  
CONFIGURATION  
6.2  
Resistor Configurations  
6.2.1  
RHEOSTAT CONFIGURATION  
When used as a potentiometer, all three terminals of  
the device are tied to different nodes in the circuit. This  
allows the potentiometer to output  
proportional to the input voltage. This configuration is  
sometimes called voltage divider mode. The  
potentiometer is used to provide a variable voltage by  
adjusting the wiper position between the two endpoints  
as shown in Figure 6-3. Reversing the polarity of the A  
and B terminals will not affect operation.  
When used as a rheostat, two of the three digital  
potentiometer’s terminals are used as a resistive  
element in the circuit. With terminal W (wiper) and  
either terminal A or terminal B, a variable resistor is  
created. The resistance will depend on the tap setting  
of the wiper (and the wiper’s resistance). The  
resistance is controlled by changing the wiper setting  
a
voltage  
The unused terminal (B or A) should be left floating.  
Figure 6-2 shows the two possible resistors that can be  
used. Reversing the polarity of the A and B terminals  
will not affect operation.  
V1  
A
V3  
W
A
B
RAW  
or  
RBW  
W
V2  
B
FIGURE 6-3:  
Potentiometer  
Configuration.  
Resistor  
Rheostat Configuration.  
The temperature coefficient of the RAB resistors is  
minimal by design. In this configuration, the resistors all  
change uniformly, so minimal variation should be seen.  
FIGURE 6-2:  
This allows the control of the total resistance between  
the two nodes. The total resistance depends on the  
“starting” terminal to the Wiper terminal. So at the code  
00h, the RBW resistance is minimal (RW), but the RAW  
resistance in maximized (RAB + RW). Conversely, at the  
code 3Fh, the RAW resistance is minimal (RW), but the  
RBW resistance in maximized (RAB + RW).  
The Wiper resistor temperature coefficient is different  
to the RAB temperature coefficient. The voltage at node  
V3 (Figure 6-3) is not dependent on this Wiper  
resistance, just the ratio of the RAB resistors, so this  
temperature coefficient in most cases can be ignored.  
Note:  
To avoid damage to the internal wiper  
circuitry in this configuration, care should  
be taken to insure the current flow never  
exceeds 2.5 mA.  
The resistance Step size (RS) equates to one LSb of  
the resistor.  
Note:  
To avoid damage to the internal wiper  
circuitry in this configuration, care should  
be taken to insure the current flow never  
exceeds 2.5 mA.  
The pinout for the rheostat devices is such that as the  
wiper register is incremented, the resistance of the  
resistor will increase (as measured from Terminal B to  
the W Terminal).  
© 2009 Microchip Technology Inc.  
DS22147A-page 43  
MCP4017/18/19  
In a potentiometer configuration, the wiper resistance  
variation does not effect the output voltage seen on the  
W pin.  
6.3  
Wiper Resistance  
Wiper resistance is the series resistance of the analog  
switch that connects the selected resistor ladder node  
to the Wiper Terminal common signal (see Figure 6-1).  
The slope of the resistance has a linear area (at the  
higher voltages) and a non-linear area (at the lower  
voltages). In where resistance increases faster then the  
voltage drop (at low voltages).  
A value in the volatile wiper register selects which  
analog switch to close, connecting the W terminal to  
the selected node of the resistor ladder.  
The resistance is dependent on the voltages on the  
analog switch source, gate, and drain nodes, as well as  
the device’s wiper code, temperature, and the current  
through the switch. As the device voltage decreases,  
the wiper resistance increases (see Figure 6-4 and  
Table 6-4).  
RW  
The wiper can connect directly to Terminal B or to  
Terminal A. A zero scale connections, connects the  
Terminal W (wiper) to Terminal B (wiper setting of  
000h). A full scale connections, connects the Terminal  
W (wiper) to Terminal A (wiper setting of 7Fh). In these  
configurations the only resistance between the  
Terminal W and the other Terminal (A or B) is that of the  
analog switches.  
VDD  
Note: The slope of the resistance has a linear  
area (at the higher voltages) and a  
non-linear area (at the lower voltages).  
The wiper resistance is typically measured when the  
wiper is positioned at either zero scale (00h) or full  
scale (3Fh).  
FIGURE 6-4:  
Resistance (R ) to Voltage.  
Relationship of Wiper  
W
Since there is minimal variation of the total device  
resistance over voltage, at a constant temperature (see  
Figure 2-11, Figure 2-29, Figure 2-47, or Figure 2-65),  
the change in wiper resistance over voltage can have a  
significant impact on the INL and DNL error.  
The wiper resistance in potentiometer-generated  
voltage divider applications is not a significant source  
of error.  
The wiper resistance in rheostat applications can  
create significant nonlinearity as the wiper is moved  
toward zero scale (00h). The lower the nominal  
resistance, the greater the possible error.  
In a rheostat configuration, this change in voltage  
needs to be taken into account. Particularly for the  
lower resistance devices. For the 5.0 kΩ device the  
maximum wiper resistance at 5.5V is approximately  
3.2% of the total resistance, while at 2.7V it is  
approximately 6.5% of the total resistance.  
TABLE 6-4:  
Typical  
TYPICAL STEP RESISTANCES AND RELATIONSHIP TO WIPER RESISTANCE  
Resistance (Ω)  
Wiper (RW)  
Step Max @ Max @  
RW / RS (%) (1)  
RW / RAB (%) (2)  
RW  
Typical  
=
RW = Max RW = Max  
@ 5.5V  
RW  
=
RW = Max RW = Max  
Total  
@ 2.7V  
Typical  
@ 5.5V  
@ 2.7V  
Typical  
(RAB  
)
(RS)  
5.5V  
2.7V  
5000  
39.37  
78.74  
100  
100  
100  
100  
170  
170  
170  
170  
325  
325  
325  
325  
254.00% 431.80%  
825.5%  
2.00%  
1.00%  
0.20%  
0.10%  
3.40%  
1.70%  
0.34%  
0.17%  
6.50%  
3.25%  
0.65%  
0.325%  
10000  
50000  
127.00% 215.90% 412.75%  
393.70  
25.40%  
12.70%  
43.18%  
21.59%  
82.55%  
41.28%  
100000 787.40  
Note 1: RS is the typical value. The variation of this resistance is minimal over voltage.  
2: RAB is the typical value. The variation of this resistance is minimal over voltage.  
DS22147A-page 44  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
6.4.1.2  
Differential Non-linearity (DNL)  
6.4  
Operational Characteristics  
DNL error is the measure of variations in code widths  
from the ideal code width. A DNL error of zero would  
imply that every code is exactly 1 LSb wide.  
Understanding the operational characteristics of the  
device’s resistor components is important to the system  
design.  
6.4.1  
ACCURACY  
111  
6.4.1.1  
Integral Non-linearity (INL)  
INL error for these devices is the maximum deviation  
between an actual code transition point and its  
corresponding ideal transition point after offset and  
gain errors have been removed. These endpoints are  
from 0x00 to 0x7F. Refer to Figure 6-5.  
110  
Actual  
transfer  
101  
function  
Digital  
Input  
Code  
100  
011  
010  
001  
000  
Ideal transfer  
function  
Positive INL means higher resistance than ideal.  
Negative INL means lower resistance than ideal.  
Wide code, > 1 LSb  
INL < 0  
111  
Narrow code < 1 LSb  
Actual  
transfer  
function  
110  
101  
100  
Digital Pot Output  
FIGURE 6-6:  
DNL Accuracy.  
Digital  
Input  
6.4.1.3 Ratiometric temperature coefficient  
Code  
011  
010  
001  
000  
The ratiometric temperature coefficient quantifies the  
error in the ratio RAW/RWB due to temperature drift.  
This is typically the critical error when using a  
potentiometer device (MCP4018) in a voltage divider  
configuration.  
Ideal transfer  
function  
6.4.1.4  
Absolute temperature coefficient  
INL < 0  
The absolute temperature coefficient quantifies the  
error in the end-to-end resistance (Nominal resistance  
RAB) due to temperature drift. This is typically the  
critical error when using a rheostat device (MCP4017  
and MCP4019) in an adjustable resistor configuration.  
Digital Pot Output  
FIGURE 6-5:  
INL Accuracy.  
© 2009 Microchip Technology Inc.  
DS22147A-page 45  
MCP4017/18/19  
6.4.2  
MONOTONIC OPERATION  
Monotonic operation means that the device’s  
resistance increases with every step change (from  
terminal A to terminal B or terminal B to terminal A).  
The wiper resistances difference at each tap location.  
When changing from one tap position to the next (either  
increasing or decreasing), the ΔRW is less then the  
ΔRS. When this change occurs, the device voltage and  
temperature are “the same” for the two tap positions.  
RS63  
0x3F  
0x3E  
RS62  
0x3D  
RS3  
0x03  
RS1  
0x02  
RS0  
0x01  
0x00  
RW  
n = ?  
(@ tap)  
RBW  
=
RSn + RW(@ Tap n)  
n = 0  
Resistance (RBW  
)
FIGURE 6-7:  
R
.
BW  
DS22147A-page 46  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
7.2  
Layout Considerations  
7.0  
DESIGN CONSIDERATIONS  
Inductively-coupled AC transients and digital switching  
noise can degrade the input and output signal integrity,  
In the design of a system with the MCP4017/18/19  
devices, the following considerations should be taken  
into account. These are:  
potentially  
masking  
the  
MCP4017/18/19’s  
performance. Careful board layout will minimize these  
effects and increase the Signal-to-Noise Ratio (SNR).  
Bench testing has shown that a multi-layer board  
utilizing a low-inductance ground plane, isolated inputs,  
isolated outputs and proper decoupling are critical to  
achieving the performance that the silicon is capable of  
providing. Particularly harsh environments may require  
shielding of critical signals.  
• The Power Supply  
• The Layout  
In the design of a system with the MCP4017/18/19  
devices, the following considerations should be taken  
into account:  
Power Supply Considerations  
Layout Considerations  
If low noise is desired, breadboards and wire-wrapped  
boards are not recommended.  
7.1  
Power Supply Considerations  
7.2.1  
RESISTOR TEMPCO  
The typical application will require a bypass capacitor  
in order to filter high-frequency noise, which can be  
induced onto the power supply's traces. The bypass  
capacitor helps to minimize the effect of these noise  
sources on signal integrity. Figure 7-1 illustrates an  
appropriate bypass strategy.  
Characterization curves of the resistor temperature  
coefficient (Tempco) are shown in Figure 2-11,  
Figure 2-29, Figure 2-47, and Figure 2-65.  
These curves show that the resistor network is  
designed to correct for the change in resistance as  
temperature increases. This technique reduces the  
end to end change is RAB resistance.  
In this example, the recommended bypass capacitor  
value is 0.1 µF. This capacitor should be placed as  
close to the device power pin (VDD) as possible (within  
4 mm).  
The power source supplying these devices should be  
as clean as possible. If the application circuit has  
separate digital and analog power supplies, VDD and  
VSS should reside on the analog plane.  
VDD  
0.1 µF  
VDD  
0.1 µF  
A
W
SCL  
SDA  
B
VSS  
VSS  
FIGURE 7-1:  
Typical Microcontroller  
Connections.  
© 2009 Microchip Technology Inc.  
DS22147A-page 47  
MCP4017/18/19  
NOTES:  
DS22147A-page 48  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
8.0  
APPLICATIONS EXAMPLES  
VDD  
R1  
Digital potentiometers have a multitude of practical  
uses in modern electronic circuits. The most popular  
uses include precision calibration of set point  
thresholds, sensor trimming, LCD bias trimming, audio  
attenuation, adjustable power supplies, motor control  
overcurrent trip setting, adjustable gain amplifiers and  
offset trimming. The MCP4017/18/19 devices can be  
used to replace the common mechanical trim pot in  
applications where the operating and terminal voltages  
are within CMOS process limitations (VDD = 2.7V to  
5.5V).  
MCP4018  
A
SDA  
SCL  
W
VOUT  
B
FIGURE 8-1:  
Using the Digital  
Potentiometer to Set a Precise Output Voltage.  
8.1  
Set Point Threshold Trimming  
8.1.1  
TRIMMING A THRESHOLD FOR AN  
OPTICAL SENSOR  
Applications that need accurate detection of an input  
threshold event often need several sources of error  
eliminated. Use of comparators and operational  
amplifiers (op amps) with low offset and gain error can  
help achieve the desired accuracy, but in many  
applications, the input source variation is beyond the  
designer’s control. If the entire system can be  
calibrated after assembly in a controlled environment  
(like factory test), these sources of error are minimized  
if not entirely eliminated.  
If the application has to calibrate the threshold of a  
diode, transistor or resistor, a variation range of 0.1V is  
common. Often, the desired a resolution of 2 mV or  
better is adequate to accurately detect the presence of  
a precise signal. A “windowed” voltage divider, utilizing  
the MCP4018, would be a potential solution. Figure 8-  
2 illustrates this example application.  
Figure 8-1 illustrates a common digital potentiometer  
configuration. This configuration is often referred to as  
a “windowed voltage divider”. Note that R1 is not  
necessary to create the voltage divider, but its  
presence is useful when the desired threshold has  
limited range. It is “windowed” because R1 can narrow  
the adjustable range of VTRIP to a value much less than  
VDD – VSS. If the output range is reduced, the  
magnitude of each output step is reduced. This  
effectively increases the trimming resolution for a fixed  
digital potentiometer resolution. This technique may  
allow a lower-cost digital potentiometer to be utilized  
(64 steps instead of 256 steps).  
VDD  
VDD  
VCC+  
Rsense  
R1  
MCP4018  
Comparator  
A
B
VTRIP  
SDA  
SCL  
W
MCP6021  
VCC–  
The MCP4018’s low DNL performance is critical to  
meeting calibration accuracy in production without  
having to use a higher precision digital potentiometer.  
0.1 µF  
EQUATION 8-1:  
CALCULATING THE  
WIPER SETTING FROM  
FIGURE 8-2:  
Calibration.  
Set Point or Threshold  
THE DESIRED V  
TRIP  
RWB  
------------------  
VTRIP = VDD  
R1 + R2  
R
AB = RNominal  
D
127  
RWB = RAB  
VTRIP  
VDD  
D =  
(R1 + RAB  
)
127  
D = Digital Potentiometer Wiper Setting (0-127)  
© 2009 Microchip Technology Inc.  
DS22147A-page 49  
MCP4017/18/19  
8.2  
Operational Amplifier  
Applications  
Figure 8-3 and Figure 8-4 illustrate typical amplifier  
circuits that could replace fixed resistors with the  
MCP4017/18/19 to achieve digitally-adjustable analog  
solutions.  
MCP6291  
VIN  
+
Op Amp  
VDD  
VOUT  
R1  
R3  
A
B
W
MCP4017  
MCP4018  
FIGURE 8-3:  
Trimming Offset and Gain in  
a Non-Inverting Amplifier.  
MCP4018  
R4  
A
B
W
VDD  
Op Amp  
+
R1  
VOUT  
VIN  
MCP6021  
A
B
W
1
fc = -----------------------------  
2π ⋅ R C  
Eq  
MCP4018  
Thevenin  
Equivalent  
||  
REq = (R1 + RAB RWB  
)
(R2 + RWB) + Rw  
FIGURE 8-4:  
Programmable Filter.  
DS22147A-page 50  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
The circuit illustrated by Figure 8-6 utilizes a digital  
potentiometer for trimming the offset error. This  
solution removes RW from the trimming equation along  
with the error associated with RW. R2 is not required,  
but can be utilized to reduce the trimming “window” and  
reduce variation due to the digital pot’s RAB part-to-part  
variability.  
8.3  
Temperature Sensor Applications  
Thermistors are resistors with very predictable  
variation with temperature. Thermistors are a popular  
sensor choice when a low-cost temperature-sensing  
solution is desired. Unfortunately, thermistors have  
non-linear characteristics that are undesirable, typically  
requiring trimming in an application to achieve greater  
accuracy. There are several common solutions to trim  
& linearize thermistors. Figure 8-5 and Figure 8-6 are  
simple methods for linearizing a 3-terminal NTC  
thermistor. Both are simple voltage dividers using a  
Positive Temperature Coefficient (PTC) resistor (R1)  
with a transfer function capable of compensating for the  
linearity error in the Negative Temperature Coefficient  
(NTC) thermistor.  
VDD  
R1  
NTC  
Thermistor  
The circuit, illustrated by Figure 8-5, utilizes a digital  
rheostat for trimming the offset error caused by the  
thermistor’s part-to-part variation. This solution puts the  
digital potentiometer’s RW into the voltage divider  
calculation. The MCP4017/18/19’s RAB temperature  
coefficient is a low 50 ppm (-20°C to +70°C). RW’s error  
is substantially greater than RAB’s error because RW  
varies with VDD, wiper setting and temperature. For the  
50 kΩ devices, the error introduced by RW is, in most  
cases, insignificant as long as the wiper setting is > 6.  
For the 2 kΩ devices, the error introduced by RW is  
VOUT  
MCP4018  
FIGURE 8-6:  
Thermistor Calibration using  
a Digital Potentiometer in a Potentiometer  
Configuration.  
significant because it is a higher percentage of RWB  
.
For these reasons, the circuit illustrated in Figure 8-5 is  
not the most optimum method for “exciting” and  
linearizing a thermistor.  
VDD  
R1  
NTC  
Thermistor  
VOUT  
R2  
MCP4017  
FIGURE 8-5:  
Thermistor Calibration using  
a Digital Potentiometer in a Rheostat  
Configuration.  
© 2009 Microchip Technology Inc.  
DS22147A-page 51  
MCP4017/18/19  
8.4  
Wheatstone Bridge Trimming  
Another common configuration to “excite” a sensor  
(such as a strain gauge, pressure sensor or thermistor)  
is the wheatstone bridge configuration. The  
wheatstone bridge provides  
a differential output  
instead of a single-ended output. Figure 8-7 illustrates  
a wheatstone bridge utilizing one to three digital  
potentiometers. The digital potentiometers in this  
example are used to trim the offset and gain of the  
wheatstone bridge.  
VDD  
5 kΩ  
MCP4017  
VOUT  
MCP4017  
MCP4017  
50 kΩ  
50 kΩ  
FIGURE 8-7:  
Wheatstone Bridge  
Trimming.  
DS22147A-page 52  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
9.2  
Technical Documentation  
9.0  
9.1  
DEVELOPMENT SUPPORT  
Development Tools  
Several additional technical documents are available to  
assist you in your design and development. These  
technical documents include Application Notes,  
Technical Briefs, and Design Guides. Table 9-1 shows  
some of these documents.  
To assist in your design and evaluation of the  
MCP4017/18/19 devices, a Demo board using the  
MCP4017 device is in development. Please check the  
Microchip web site for the release of this board. The  
board part number is tentatively MCP4XXXDM-PGA,  
and is expected to be available in the summer of 2009.  
TABLE 9-1:  
TECHNICAL DOCUMENTATION  
Title  
Application  
Literature #  
Note Number  
AN1080  
AN737  
AN692  
AN691  
AN219  
Understanding Digital Potentiometers Resistor Variations  
Using Digital Potentiometers to Design Low Pass Adjustable Filters  
Using a Digital Potentiometer to Optimize a Precision Single Supply Photo Detect  
Optimizing the Digital Potentiometer in Precision Circuits  
Comparing Digital Potentiometers to Mechanical Potentiometers  
Digital Potentiometer Design Guide  
DS01080  
DS00737  
DS00692  
DS00691  
DS00219  
DS22017  
DS21825  
Signal Chain Design Guide  
© 2009 Microchip Technology Inc.  
DS22147A-page 53  
MCP4017/18/19  
NOTES:  
DS22147A-page 54  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
Example:  
5-Lead SC70  
Part Number  
Code  
MCP4019T-502E/LT  
MCP4019T-103E/LT  
BENN  
BFNN  
XXNN  
BENN  
MCP4019T-503E/LT BGNN  
MCP4019T-104E/LT  
BHNN  
6-Lead SC70  
Example:  
Part Number  
Code  
Part Number  
Code  
MCP4017T-502E/LT  
MCP4017T-103E/LT  
AENN  
AFNN  
MCP4018T-502E/LT  
MCP4018T-103E/LT  
AANN  
ABNN  
ACNN  
ADNN  
XXNN  
AANN  
MCP4017T-503E/LT AGNN MCP4018T-503E/LT  
MCP4017T-104E/LT AHNN MCP4018T-104E/LT  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22147A-page 55  
MCP4017/18/19  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
DS22147A-page 56  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22147A-page 57  
MCP4017/18/19  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22147A-page 58  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22147A-page 59  
MCP4017/18/19  
NOTES:  
DS22147A-page 60  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
APPENDIX A: REVISION HISTORY  
Revision A (March 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22147A-page 61  
MCP4017/18/19  
NOTES:  
DS22147A-page 62  
© 2009 Microchip Technology Inc.  
MCP4017/18/19  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XXX  
X
/XX  
a) MCP4017T-502E/LT: 5 kΩ,  
Resistance Temperature Package  
Version Range  
6-LD SC-70.  
b) MCP4017T-103E/LT: 10 kΩ, 6-LD  
SC-70.  
c) MCP4017T-503E/LT: 50 kΩ,  
6-LD SC-70.  
d) MCP4017T-104E/LT: 100 kΩ,  
6-LD SC-70.  
Device:  
MCP4017: Single Rheostat with I2C  
interface  
MCP4017T: Single Rheostat with I2C  
interface (Tape and Reel)  
MCP4018: Single Potentiometer to GND  
with I2C Interface  
a) MCP4018T-502E/LT: 5 kΩ,  
6-LD SC-70.  
b) MCP4018T-103E/LT: 10 kΩ,  
6-LD SC-70.  
c) MCP4018T-503E/LT: 50 kΩ,  
6-LD SC-70.  
d) MCP4018T-104E/LT: 100 kΩ,  
6-LD SC-70.  
MCP4018T: Single Potentiometer to GND  
with I2C Interface (Tape and  
Reel)  
MCP4019: Single Rheostat to GND with  
I2C Interface  
MCP4019T: Single Rheostat to GND with  
I2C Interface (Tape and Reel)  
Resistance  
Version:  
502 = 5 kΩ  
a) MCP4019T-502E/LT: 5 kΩ,  
5-LD SC-70.  
b) MCP4019T-103E/LT: 10 kΩ,  
5-LD SC-70.  
103 = 10 kΩ  
503 = 50 kΩ  
104 = 100 kΩ  
c) MCP4019T-503E/LT: 50 kΩ,  
5-LD SC-70.  
d) MCP4019T-104E/LT: 100 kΩ,  
5-LD SC-70.  
Temperature  
Range:  
E
= -40°C to +125°C  
Package:  
LT = Plastic Small Outline Transistor  
(SC70), 5-lead, 6-lead  
© 2009 Microchip Technology Inc.  
DS22147A-page 63  
MCP4017/18/19  
NOTES:  
DS22147A-page 64  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,  
PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Total Endurance, TSHARC, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22147A-page 65  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22147A-page 66  
© 2009 Microchip Technology Inc.  

相关型号:

MCP4017T-103E/LTVAO

Digital Potentiometer, 1 Func, 10000ohm, 2-wire Serial Control Interface, 128 Positions, PDSO6
MICROCHIP

MCP4017T-104E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4017T-502E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4017T-503E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018-103E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018-104E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018-502E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018-503E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018T

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018T-103E/LT

7-Bit Single I2C? Digital POT with Volatile Memory in SC70
MICROCHIP

MCP4018T-103E/LTVAO

Digital Potentiometer, 1 Func, 10000ohm, 2-wire Serial Control Interface, 128 Positions, PDSO6
MICROCHIP