MCP4341-104E/ST [MICROCHIP]

QUAD 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 129 POSITIONS, PDSO20, 4.40 MM, LEAD FREE, PLASTIC, TSSOP-20;
MCP4341-104E/ST
型号: MCP4341-104E/ST
厂家: MICROCHIP    MICROCHIP
描述:

QUAD 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 129 POSITIONS, PDSO20, 4.40 MM, LEAD FREE, PLASTIC, TSSOP-20

光电二极管 转换器 电阻器
文件: 总80页 (文件大小:1638K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP434X/436X  
7/8-Bit Quad SPI Digital POT with  
Non-Volatile Memory  
Package Types (Top View)  
Features  
• Quad Resistor Network  
MCP43X1 Quad Potentiometers  
• Potentiometer or Rheostat configuration options  
• Resistor Network Resolution  
- 7-bit: 128 Resistors (129 Taps)  
- 8-bit: 256 Resistors (257 Taps)  
• RAB Resistances options of:  
- 5 kΩ  
- 10 kΩ  
- 50 kΩ  
- 100 kΩ  
P2A  
P2W  
P2B  
VDD  
SDO  
P3A  
P3W  
P3B  
CS  
SCK  
SDI  
20  
19  
18  
17  
16  
1
2
3
4
5
6
7
8
9
10  
15 RESET  
14 WP  
VSS  
P0B  
12  
P1B  
P1W  
P1A  
P0W  
P0A  
12  
11  
• Zero Scale to Full Scale Wiper operation  
• Low Wiper Resistance: 75 Ω (typical)  
• Low Tempco:  
TSSOP  
- Absolute (Rheostat): 50 ppm typical  
(0°C to 70°C)  
- Ratiometric (Potentiometer): 15 ppm typical  
• Non-volatile Memory  
- Automatic Recall of Saved Wiper Setting  
- WiperLock™ Technology  
• SPI serial interface (10 MHz, modes 0,0 & 1,1)  
- High-Speed Read/Writes to wiper registers  
- Read/Write to Data EEPROM registers  
- Serially enabled EEPROM write protect  
17 16  
18  
19  
20  
15 VDD  
P3B  
1
2
3
4
5
SDO  
RESET  
WP  
14  
13  
12  
CS  
SCK  
SDI  
EP  
21  
P0B  
11  
VSS  
8
9 10  
6
7
• Resistor Network Terminal Disconnect Feature  
via Terminal Control (TCON) Register  
• Reset input pin  
4x4 QFN  
MCP43X2 Quad Rheostat  
• Write Protect Feature:  
- Hardware Write Protect (WP) Control pin  
- Software Write Protect (WP) Configuration bit  
• Brown-out reset protection (1.5V typical)  
• Serial Interface Inactive current (2.5 uA typical)  
• High-Voltage Tolerant Digital Inputs: Up to 12.5V  
• Supports Split Rail Applications  
• Internal weak pull-up on all digital inputs  
• Wide Operating Voltage:  
- 2.7V to 5.5V - Device Characteristics  
Specified  
P2W  
P2B  
VDD  
SDO  
P0B  
P0W  
P1W  
P3W  
P3B  
CS  
SCK  
SDI  
VSS  
P1B  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
TSSOP  
- 1.8V to 5.5V - Device Operation  
• Wide Bandwidth (-3 dB) Operation:  
- 2 MHz (typical) for 5.0 kΩ device  
• Extended temperature range (-40°C to +125°C)  
© 2009 Microchip Technology Inc.  
DS22233A-page 1  
MCP434X/436X  
Device Block Diagram  
VDD  
VSS  
Power-up/  
Brown-out  
Control  
P0A  
Resistor  
Network 0  
(Pot 0)  
P0W  
Wiper 0  
CS  
SCK  
SDI  
SPI Serial  
Interface  
Module &  
Control  
Logic  
(WiperLock™  
Technology)  
& TCON0  
Register  
P0B  
P1A  
SDO  
Resistor  
Network 1  
(Pot 1)  
WP  
RESET  
P1W  
Wiper 1  
& TCON0  
Register  
Memory (16x9)  
Wiper0 (V & NV)  
Wiper1 (V & NV)  
Wiper2 (V & NV)  
Wiper3 (V & NV)  
P1B  
P2A  
Resistor  
Network 2  
(Pot 2)  
TCON0  
TCON1  
STATUS  
P2W  
Wiper 2  
& TCON1  
Register  
Data EEPROM  
(5 x 9-bits)  
P2B  
P3A  
Resistor  
Network 3  
(Pot 3)  
P3W  
P3B  
Wiper 3  
& TCON1  
Register  
Device Features  
Resistance (typical)  
Wiper  
VDD  
Wiper  
Configuration  
Device  
Operating  
Range (2)  
RAB Options (kΩ)  
- RW  
(Ω)  
MCP4331 (3)  
MCP4332 (3)  
MCP4341  
4
4
4
4
4
4
4
4
Potentiometer(1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) SPI  
Rheostat SPI  
75  
75  
75  
75  
75  
75  
75  
75  
129 1.8V to 5.5V  
129 1.8V to 5.5V  
129 2.7V to 5.5V  
129 2.7V to 5.5V  
257 1.8V to 5.5V  
257 1.8V to 5.5V  
257 2.7V to 5.5V  
257 2.7V to 5.5V  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4342  
MCP4351 (3)  
MCP4352 (3)  
MCP4361  
Potentiometer(1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) SPI  
Rheostat SPI  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4362  
Note 1: Floating either terminal (A or B) allows the device to be used as a Rheostat (variable resistor).  
2: Analog characteristics only tested from 2.7V to 5.5V unless otherwise noted.  
3: Please check Microchip web site for device release and availability.  
DS22233A-page 2  
© 2009 Microchip Technology Inc.  
 
 
 
 
MCP434X/436X  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Voltage on VDD with respect to VSS ................ -0.6V to +7.0V  
Voltage on CS, SCK, SDI, SDI/SDO, WP, and  
RESET with respect to VSS ................................... -0.6V to 12.5V  
Voltage on all other pins (PxA, PxW, PxB, and  
SDO) with respect to VSS ............................ -0.3V to VDD + 0.3V  
Input clamp current, IIK  
(VI < 0, VI > VDD, VI > VPP ON HV pins)......................±20 mA  
Output clamp current, IOK  
(VO < 0 or VO > VDD) ..................................................±20 mA  
Maximum output current sunk by any Output pin  
......................................................................................25 mA  
Maximum output current sourced by any Output pin  
......................................................................................25 mA  
Maximum current out of VSS pin .................................100 mA  
Maximum current into VDD pin ....................................100 mA  
Maximum current into PXA, PXW & PXB pins ............±2.5 mA  
Storage temperature ....................................-65°C to +150°C  
Ambient temperature with power applied  
.....................................................................-40°C to +125°C  
Package power dissipation (TA = +50°C, TJ = +150°C)  
TSSOP-14................................................................1000 mW  
TSSOP-20................................................................ 1110 mW  
QFN-20 (4x4)...........................................................2320 mW  
Soldering temperature of leads (10 seconds).............+300°C  
ESD protection on all pins ................................... ≥ 4 kV (HBM),  
.......................................................................... 300V (MM)  
Maximum Junction Temperature (TJ) .........................+150°C  
© 2009 Microchip Technology Inc.  
DS22233A-page 3  
MCP434X/436X  
AC/DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
2.7  
1.8  
5.5  
2.7  
V
V
V
Serial Interface only.  
CS, SDI, SDO,  
VHV  
VSS  
12.5V  
VDD  
4.5V  
The CS pin will be at one  
of three input levels  
SCK, WP, RESET  
pin Voltage Range  
(VIL, VIH or VIHH). (Note 6)  
VSS  
VDD  
8.0V  
+
V
V
VDD  
4.5V  
<
VDD Start Voltage  
to ensure Wiper  
Reset  
VBOR  
VDDRR  
TBORD  
1.65  
RAM retention voltage (VRAM) < VBOR  
VDD Rise Rate to  
ensure Power-on  
Reset  
(Note 9)  
V/ms  
µs  
Delay after device  
exits the reset  
state  
10  
20  
450  
1
(VDD > VBOR  
)
Supply Current  
(Note 10)  
IDD  
µA  
Serial Interface Active,  
VDD = 5.5V, CS = VIL, SCK @ 5 MHz,  
write all 0’s to volatile Wiper 0 (address  
0h)  
mA  
EE Write Current,  
VDD = 5.5V, CS = VIL, SCK @ 5 MHz,  
write all 0’s to non-volatile Wiper 0  
(address 2h)  
2.5  
5
1
µA  
Serial Interface Inactive,  
CS = VIH, VDD = 5.5V  
0.55  
mA  
Serial Interface Active,  
VDD = 5.5V, CS = VIHH  
,
SCK @ 5 MHz,  
decrement non-volatile Wiper 0  
(address 2h)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22233A-page 4  
© 2009 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
 
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
-502 devices (Note 1)  
Resistance  
(± 20%)  
RAB  
4.0  
8.0  
5
10  
6.0  
12.0  
60.0  
120.0  
kΩ  
kΩ  
kΩ  
kΩ  
-103 devices (Note 1)  
-503 devices (Note 1)  
-104 devices (Note 1)  
40.0  
80.0  
50  
100  
257  
129  
RAB  
Resolution  
N
Taps 8-bit  
Taps 7-bit  
No Missing Codes  
No Missing Codes  
Note 6  
Step Resistance  
RS  
/
Ω
8-bit  
(256)  
RAB  
/
Ω
7-bit  
Note 6  
(128)  
Nominal  
(| RABWC  
-
0.2  
1.50  
1.25  
1.0  
%
%
%
%
%
%
%
%
Ω
MCP43X1 devices only  
Resistance Match RABMEAN |) /  
RABMEAN  
0.2  
0.2  
0.2  
1.0  
(| RBWWC  
RBWMEAN |) /  
RBWMEAN  
-
0.25  
0.25  
0.25  
0.25  
75  
1.75  
1.50  
1.25  
1.25  
160  
300  
Code = Full Scale  
Wiper Resistance  
(Note 3, Note 4)  
RW  
VDD = 5.5 V, IW = 2.0 mA, code = 00h  
VDD = 2.7 V, IW = 2.0 mA, code = 00h  
75  
Ω
Nominal  
Resistance  
Tempco  
ΔRAB/ΔT  
50  
ppm/°C TA = -20°C to +70°C  
ppm/°C TA = -40°C to +85°C  
ppm/°C TA = -40°C to +125°C  
ppm/°C Code = Midscale (80h or 40h)  
100  
150  
15  
Ratiometeric  
Tempco  
ΔVWB/ΔT  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2009 Microchip Technology Inc.  
DS22233A-page 5  
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
Parameters  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Note 5, Note 6  
Resistor Terminal  
Input Voltage  
VA,VW,VB  
Vss  
VDD  
V
Range (Terminals  
A, B and W)  
Maximum current  
through A, W or B  
IW  
2.5  
mA  
Note 6, Worst case current through  
wiper when wiper is either Full Scale or  
Zero Scale.  
Leakage current  
into A, W or B  
IWL  
100  
100  
nA  
nA  
MCP43X1 PxA = PxW = PxB = VSS  
MCP43X2 PxB = PxW = VSS  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22233A-page 6  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Full Scale Error  
(MCP43X1 only)  
(8-bit code = 100h,  
7-bit code = 80h)  
VWFSE  
-6.0  
-4.0  
-3.5  
-2.0  
-0.8  
-0.5  
-0.5  
-0.5  
-0.1  
-0.1  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
5 kΩ  
8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
10 kΩ 8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
-0.1  
50 kΩ 8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
-0.1  
100 kΩ 8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
Zero Scale Error  
(MCP43X1 only)  
(8-bit code = 00h,  
7-bit code = 00h)  
VWZSE  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
±0.5  
±0.25  
+6.0  
+3.0  
+3.5  
+2.0  
+0.8  
+0.5  
+0.5  
+0.5  
+1  
5 kΩ  
8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
10 kΩ 8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
50 kΩ 8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
100 kΩ 8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
Potentiometer  
Integral  
Non-linearity  
INL  
DNL  
BW  
-1  
8-bit  
7-bit  
3.0V VDD 5.5V  
MCP43X1 devices only  
(Note 2)  
-0.5  
+0.5  
Potentiometer  
Differential  
Non-linearity  
-0.5  
±0.25  
+0.5  
LSb  
LSb  
8-bit  
7-bit  
3.0V VDD 5.5V  
MCP43X1 devices only  
(Note 2)  
-0.25  
±0.125  
+0.25  
Bandwidth -3 dB  
(See Figure 2-54,  
load = 30 pF)  
2
2
MHz 5 kΩ  
8-bit Code = 80h  
7-bit Code = 40h  
MHz  
1
MHz 10 kΩ 8-bit Code = 80h  
1
MHz  
kHz  
kHz  
kHz  
kHz  
7-bit Code = 40h  
50 kΩ 8-bit Code = 80h  
7-bit Code = 40h  
200  
200  
100  
100  
100 kΩ 8-bit Code = 80h  
7-bit Code = 40h  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2009 Microchip Technology Inc.  
DS22233A-page 7  
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
Parameters  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rheostat Integral  
Non-linearity  
MCP43X1  
(Note 4, Note 8)  
MCP43X2devices  
only (Note 4)  
R-INL  
-1.5  
±0.5  
+4.5  
+1.5  
LSb  
LSb  
5 kΩ  
8-bit 5.5V, IW = 900 µA  
-8.25  
+8.25  
3.0V, IW = 480 µA  
(Note 7)  
-1.125  
-6.0  
±0.5  
+4.5  
+1.125  
+6.0  
LSb  
LSb  
7-bit 5.5V, IW = 900 µA  
3.0V, IW = 480 µA  
(Note 7)  
-1.5  
-5.5  
±0.5  
+2.5  
+1.5  
+5.5  
LSb  
LSb  
10 kΩ 8-bit 5.5V, IW = 450 µA  
3.0V, IW = 240 µA  
(Note 7)  
-1.125  
-4.0  
±0.5  
+2.5  
+1.125  
+4.0  
LSb  
LSb  
7-bit 5.5V, IW = 450 µA  
3.0V, IW = 240 µA  
(Note 7)  
-1.5  
-2.0  
±0.5  
+1  
+1.5  
+2.0  
LSb  
LSb  
50 kΩ 8-bit 5.5V, IW = 90 µA  
3.0V, IW = 48 µA  
(Note 7)  
-1.125  
-1.5  
±0.5  
+1  
+1.125  
+1.5  
LSb  
LSb  
7-bit 5.5V, IW = 90 µA  
3.0V, IW = 48 µA  
(Note 7)  
-1.0  
-1.5  
±0.5  
+1.0  
+1.5  
LSb  
LSb  
100 kΩ 8-bit 5.5V, IW = 45 µA  
+0.25  
3.0V, IW = 24 µA  
(Note 7)  
-0.8  
±0.5  
+0.8  
LSb  
LSb  
7-bit 5.5V, IW = 45 µA  
-1.125  
+0.25  
+1.125  
3.0V, IW = 24 µA  
(Note 7)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22233A-page 8  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rheostat  
R-DNL  
-0.5  
-1.0  
±0.25  
+0.5  
+0.5  
+1.0  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
pF  
5 kΩ  
8-bit 5.5V, IW = 900 µA  
3.0V (Note 7)  
Differential  
Non-linearity  
MCP43X1  
(Note 4, Note 8)  
MCP43X2devices  
only  
-0.375  
-0.75  
-0.5  
±0.25  
+0.5  
+0.375  
+0.75  
+0.5  
7-bit 5.5V, IW = 900 µA  
3.0V (Note 7)  
±0.25  
+0.25  
±0.25  
+0.5  
10 kΩ 8-bit 5.5V, IW = 450 µA  
3.0V (Note 7)  
-1.0  
+1.0  
(Note 4)  
-0.375  
-0.75  
-0.5  
+0.375  
+0.75  
+0.5  
7-bit 5.5V, IW = 450 µA  
3.0V (Note 7)  
±0.25  
±0.25  
±0.25  
±0.25  
±0.25  
±0.25  
±0.25  
±0.25  
75  
50 kΩ 8-bit 5.5V, IW = 90 µA  
3.0V (Note 7)  
-0.5  
+0.5  
-0.375  
-0.375  
-0.5  
+0.375  
+0.375  
+0.5  
7-bit 5.5V, IW = 90 µA  
3.0V (Note 7)  
100 kΩ 8-bit 5.5V, IW = 45 µA  
3.0V (Note 7)  
-0.5  
+0.5  
-0.375  
-0.375  
+0.375  
+0.375  
7-bit 5.5V, IW = 45 µA  
3.0V (Note 7)  
Capacitance (PA)  
Capacitance (Pw)  
Capacitance (PB)  
CAW  
CW  
f =1 MHz, Code = Full Scale  
f =1 MHz, Code = Full Scale  
f =1 MHz, Code = Full Scale  
120  
pF  
CBW  
75  
pF  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2009 Microchip Technology Inc.  
DS22233A-page 9  
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
Parameters  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Digital Inputs/Outputs (CS, SDI, SDO, SCK, WP, RESET)  
Schmitt Trigger  
High Input  
Threshold  
VIH  
0.45 VDD  
V
2.7V VDD 5.5V  
(Allows 2.7V Digital VDD with  
5V Analog VDD  
)
0.5 VDD  
V
V
1.8V VDD 2.7V  
Schmitt Trigger  
Low Input  
VIL  
0.2VDD  
Threshold  
Hysteresis of  
Schmitt Trigger  
Inputs  
VHYS  
0.1VDD  
V
High Voltage Input  
Entry Voltage  
VIHH  
VIHH  
8.5  
12.5 (6)  
V
V
Threshold for WiperLock™ Technology  
High Voltage Input  
Exit Voltage  
VDD +  
0.8V  
12.5 (6)  
0.3VDD  
0.3VDD  
VDD  
High Voltage Limit  
VMAX  
VOL  
V
V
V
V
V
Pin can tolerate VMAX or less.  
IOL = 5 mA, VDD = 5.5V  
IOL = 1 mA, VDD = 1.8V  
IOH = -2.5 mA, VDD = 5.5V  
IOL = -1 mA, VDD = 1.8V  
Output Low  
Voltage (SDO)  
VSS  
VSS  
Output High  
Voltage (SDO)  
VOH  
0.7VDD  
0.7VDD  
VDD  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22233A-page 10  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Weak Pull-up  
Current  
IPU  
1.75  
mA  
Internal VDD pull-up, VIHH pull-down,  
VDD = 5.5V, VCS = 12.5V  
170  
16  
µA  
CS pin, VDD = 5.5V, VCS = 3V  
VDD = 5.5V, VCS = 3V  
CS Pull-up /  
Pull-down  
RCS  
kΩ  
Resistance  
RESET Pull-up  
Resistance  
RRESET  
IIL  
-1  
16  
10  
1
kΩ  
µA  
pF  
VDD = 5.5V, VRESET = 0V  
Input Leakage  
Current  
VIN = VDD (all pins) and  
VIN = VSS (all pins except RESET)  
Pin Capacitance  
CIN, COUT  
fC = 20 MHz  
RAM (Wiper, TCON) Value  
Value Range  
N
0h  
0h  
1FFh  
1FFh  
hex  
hex  
hex  
8-bit device  
7-bit device  
TCON POR/BOR  
Setting  
1FF  
All Terminals connected  
EEPROM  
Endurance  
Endurance  
1M  
Cycles  
hex  
EEPROM Range  
N
N
0h  
1FFh  
Initial NV Wiper  
POR/BOR Setting  
080h  
040h  
000h  
hex  
8-bit  
7-bit  
WiperLock Technology = Off  
WiperLock Technology = Off  
hex  
Initial EEPROM  
N
hex  
POR/BOR Setting  
EEPROM  
tWC  
3
10  
ms  
Programming  
Write Cycle Time  
Power Requirements  
Power Supply  
Sensitivity  
(MCP43X1)  
PSS  
0.0015 0.0035  
0.0015 0.0035  
%/% 8-bit  
%/% 7-bit  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 80h  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 40h  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP43X1 only.  
4: MCP43X2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP43X1 is externally connected to match the configurations of the MCP43X2, and then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2009 Microchip Technology Inc.  
DS22233A-page 11  
MCP434X/436X  
1.1  
SPI Mode Timing Waveforms and Requirements  
RESET  
tRSTD  
tRST  
SCK  
Wx  
FIGURE 1-1:  
RESET Waveforms.  
RESET TIMING  
TABLE 1-1:  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
Timing Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
RESET pulse width  
tRST  
50  
ns  
ns  
RESET rising edge  
normal mode (Wiper  
driving and SPI  
tRSTD  
20  
interface operational)  
DS22233A-page 12  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
VIHH  
VIH  
VIH  
84  
CS  
VIL  
70  
72  
SCK  
83  
71  
80  
78  
79  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
FIGURE 1-2:  
SPI Timing Waveform (Mode = 11).  
TABLE 1-2:  
#
SPI REQUIREMENTS (MODE = 11)  
Characteristic  
Symbol  
Min  
Max Units  
Conditions  
SCK Input Frequency  
FSCK  
10  
1
MHz VDD = 2.7V to 5.5V  
MHz VDD = 1.8V to 2.7V  
ns  
70 CS Active (VIL or VIHH) to SCKinput  
71 SCK input high time  
TcsA2scH  
TscH  
60  
45  
500  
45  
500  
10  
20  
20  
50  
70  
170  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
72 SCK input low time  
TscL  
73 Setup time of SDI input to SCKedge  
TDIV2scH  
74 Hold time of SDI input from SCKedge  
77 CS Inactive (VIH) to SDO output hi-impedance  
80 SDO data output valid after SCKedge  
TscH2DIL  
TcsH2DOZ  
TscL2DOV  
ns Note 1  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ms VDD = 1.8V to 2.7V  
ns  
83 CS Inactive (VIH) after SCKedge  
TscH2csI  
TcsA2csI  
100  
1
84 Hold time of CS Inactive (VIH) to  
50  
CS Active (VIL or VIHH  
)
Note 1: This specification by design.  
© 2009 Microchip Technology Inc.  
DS22233A-page 13  
 
MCP434X/436X  
VIHH  
VIH  
VIH  
84  
82  
CS  
VIL  
70  
SCK  
83  
80  
71  
72  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
73  
MSb IN  
74  
LSb IN  
FIGURE 1-3:  
SPI Timing Waveform (Mode = 00).  
SPI REQUIREMENTS (MODE = 00)  
TABLE 1-3:  
#
Characteristic  
Symbol  
Min  
Max Units  
Conditions  
SCK Input Frequency  
FSCK  
10  
1
MHz VDD = 2.7V to 5.5V  
MHz VDD = 1.8V to 2.7V  
ns  
70 CS Active (VIL or VIHH) to SCKinput  
71 SCK input high time  
TcsA2scH  
TscH  
60  
45  
500  
45  
500  
10  
20  
50  
70  
170  
85  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
72 SCK input low time  
TscL  
73 Setup time of SDI input to SCKedge  
74 Hold time of SDI input from SCKedge  
77 CS Inactive (VIH) to SDO output hi-impedance  
80 SDO data output valid after SCKedge  
TDIV2scH  
TscH2DIL  
TcsH2DOZ  
TscL2DOV  
ns  
ns Note 1  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
82 SDO data output valid after  
TssL2doV  
TscH2csI  
CS Active (VIL or VIHH  
)
83 CS Inactive (VIH) after SCKedge  
100  
1
ns VDD = 2.7V to 5.5V  
ms VDD = 1.8V to 2.7V  
ns  
84 Hold time of CS Inactive (VIH) to  
TcsA2csI  
50  
CS Active (VIL or VIHH  
)
Note 1: This specification by design.  
DS22233A-page 14  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 14L-TSSOP  
Thermal Resistance, 20L-QFN  
Thermal Resistance, 20L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
θJA  
100  
43  
°C/W  
°C/W  
°C/W  
90  
© 2009 Microchip Technology Inc.  
DS22233A-page 15  
MCP434X/436X  
NOTES:  
DS22233A-page 16  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
700  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
2.7V -40°C  
650  
2.7V 25°C  
600  
2.7V 85°C  
550  
2.7V 125°C  
5.5V -40°C  
5.5V 25°C  
5.5V 85°C  
5.5V 125°C  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
ICS  
-200  
-400  
-600  
-800  
-1000  
RCS  
0
0
0.00  
2.00  
4.00  
6.00  
fSCK (MHz)  
8.00 10.00 12.00  
2
3
4
5
6
7
8
9
10  
VCS (V)  
FIGURE 2-1:  
Frequency (f  
Device Current (I ) vs. SPI  
) and Ambient Temperature  
FIGURE 2-4:  
Resistance (R ) and Current (I ) vs. CS Input  
CS Pull-up/Pull-down  
DD  
SCK  
CS  
CS  
(V = 2.7V and 5.5V).  
Voltage (V ) (V = 5.5V).  
DD  
CS DD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12  
10  
8
5.5V Entry  
5.5V Exit  
5.5V  
2.7V Entry  
6
4
2.7V Exit  
2.7V  
2
0
-40  
25  
85  
125  
-40 -20  
0
20  
40  
60  
80 100 120  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Device Current (I  
) and  
FIGURE 2-5:  
CS High Input Entry/Exit  
SHDN  
V
. (CS = V ) vs. Ambient Temperature.  
Threshold vs. Ambient Temperature and V  
.
DD  
DD  
DD  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
5.5V  
2.7V  
-40  
25  
85  
125  
Ambient Temperature (°C)  
FIGURE 2-3:  
Write Current (I  
) vs.  
WRITE  
Ambient Temperature and V  
.
DD  
© 2009 Microchip Technology Inc.  
DS22233A-page 17  
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
DNL  
-40°C  
40  
40  
-40°C 25°C  
RW  
25°C  
85°C  
85°C  
RW  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-6:  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-9:  
5 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
6
260  
220  
180  
140  
100  
60  
260  
220  
180  
140  
100  
60  
INL  
INL  
4
DNL  
2
RW  
RW  
125°C  
-0.1  
-0.2  
-0.3  
0
-40°C  
85°C  
25°C  
25°C  
DNL  
-40°C  
125°C 85°C  
20  
20  
-2  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-7:  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-10:  
5 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
Ambient Temperature (V = 3.0V).  
DD  
DD  
5300  
5250  
5200  
5150  
5100  
5050  
6000  
5000  
4000  
3000  
2000  
1000  
0
2.7V  
5.5V  
-40°C  
25°C  
85°C  
125°C  
-40  
0
40  
80  
120  
0
32  
64  
96  
128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-8:  
5 kΩ – Nominal Resistance  
FIGURE 2-11:  
5 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
DS22233A-page 18  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-12:  
5 kΩ – Low-Voltage  
FIGURE 2-15:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-13:  
5 kΩ – Low-Voltage  
FIGURE 2-16:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-14:  
5 kΩ – Power-Up Wiper  
Response Time (20 ms/Div).  
© 2009 Microchip Technology Inc.  
DS22233A-page 19  
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.5  
0
INL  
INL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.5  
-1  
DNL  
40  
-40°C  
40  
-40°C  
RW  
25°C  
85°C  
85°C 25°C  
RW  
125°C  
125°C  
20  
20  
0
25 50 75 100 125150175200225 250  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-17:  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-20:  
10 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
4
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
260  
220  
180  
140  
100  
60  
3
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
2
1
0
-0.1  
-0.2  
-0.3  
RW  
DNL RW  
-40°C  
-1  
-2  
-40°C  
25°C  
85°C 25°C  
85°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
25 50 75 100 125 150 175 200 225 250  
Wiper Setting (decimal)  
FIGURE 2-18:  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-21:  
10 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
Ambient Temperature (V = 3.0V).  
DD  
DD  
10250  
10200  
12000  
10000  
8000  
6000  
4000  
2000  
0
10150  
2.7V  
10100  
-40°C  
25°C  
85°C  
125°C  
5.5V  
10050  
10000  
-40  
0
40  
80  
120  
0
32  
64  
96 128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-19:  
10 kΩ – Nominal Resistance  
FIGURE 2-22:  
10 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
DS22233A-page 20  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-23:  
10 kΩ – Low-Voltage  
FIGURE 2-25:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-24:  
10 kΩ – Low-Voltage  
FIGURE 2-26:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
© 2009 Microchip Technology Inc.  
DS22233A-page 21  
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-40°C  
40  
40  
-40°C  
RW  
25°C  
85°C  
25°C  
85°C  
RW  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-27:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-30:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.75  
0.5  
0.25  
0
260  
220  
180  
140  
100  
60  
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
DNL  
-0.25  
-0.5  
-0.75  
-1  
RW  
-0.1  
-0.2  
-0.3  
RW  
-40°C  
-40°C  
25°C  
25°C  
85°C  
85°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-28:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-31:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
Ambient Temperature (V = 3.0V).  
DD  
DD  
50800  
50600  
50400  
60000  
50000  
40000  
30000  
20000  
10000  
0
50200  
2.7V  
50000  
5.5V  
-40°C  
25°C  
85°C  
49800  
49600  
49400  
125°C  
-40  
0
40  
80  
120  
0
32  
64  
96 128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-29:  
50 kΩ – Nominal Resistance  
FIGURE 2-32:  
50 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
DS22233A-page 22  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-33:  
50 kΩ – Low-Voltage  
FIGURE 2-35:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-34:  
50 kΩ – Low-Voltage  
FIGURE 2-36:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
© 2009 Microchip Technology Inc.  
DS22233A-page 23  
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
40  
40  
-40°C  
-40°C  
RW  
25°C  
85°C  
RW  
85°C 25°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-37:  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-40:  
100 kΩ Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
0.6  
0.4  
0.2  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.2  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
260  
220  
180  
140  
100  
60  
0.15  
0.1  
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
DNL  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.2  
-0.4  
-0.6  
RW  
RW  
-40°C  
-40°C  
85°C 25°C  
85°C  
25°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-38:  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-41:  
100 kΩ Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
Ambient Temperature (V = 3.0V).  
DD  
DD  
101500  
101000  
120000  
100000  
80000  
60000  
40000  
20000  
0
100500  
2.7V  
100000  
-40°C  
25°C  
85°C  
5.5V  
99500  
125°C  
99000  
0
32 64  
96 128 160 192 224 256  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-39:  
100 kΩ – Nominal  
FIGURE 2-42:  
100 kΩ – R  
(Ω) vs. Wiper  
WB  
Resistance (Ω) vs. Ambient Temperature and  
Setting and Ambient Temperature.  
V
.
DD  
DS22233A-page 24  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-43:  
100 kΩ – Low-Voltage  
FIGURE 2-45:  
100 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-44:  
100 kΩ – Low-Voltage  
FIGURE 2-46:  
100 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
© 2009 Microchip Technology Inc.  
DS22233A-page 25  
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
2.4  
2.2  
0
-5  
5.5V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
2
2.7V  
1.8  
1.6  
5.5V  
1.4  
2.7V  
1.2  
1
-40  
0
40  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
Temperature (°C)  
FIGURE 2-47:  
V
(SDI, SCK, CS, and  
FIGURE 2-49:  
I
(SDO) vs. V and  
IH  
OH  
DD  
RESET) vs. V and Temperature.  
Temperature.  
DD  
1.4  
1.3  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
5.5V  
5.5V  
1.2  
1.1  
1
0.9  
2.7V  
2.7V  
0.8  
0.7  
0.6  
0
-40  
0
40  
Temperature (°C)  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-48:  
V
(SDI, SCK, CS, and  
FIGURE 2-50:  
I
(SDO) vs. V and  
IL  
OL DD  
RESET) vs. V and Temperature.  
Temperature.  
DD  
DS22233A-page 26  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
4.0  
3.5  
3.0  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
5.5V  
2.7V  
2.7V  
2.5  
2.0  
5.5V  
1.5  
1.0  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-51:  
Nominal EEPROM Write  
FIGURE 2-53:  
SCK Input Frequency vs.  
Cycle Time vs. V and Temperature.  
Voltage and Temperature.  
DD  
2.1  
Test Circuits  
2
1.6  
1.2  
0.8  
0.4  
0
+5V  
A
B
V
IN  
W
V
+
-
OUT  
Offset  
GND  
-40  
0
40  
80  
120  
Temperature (°C)  
2.5V DC  
FIGURE 2-52:  
POR/BOR Trip point vs. V  
DD  
and Temperature.  
FIGURE 2-54:  
-3 db Gain vs. Frequency  
Test.  
© 2009 Microchip Technology Inc.  
DS22233A-page 27  
MCP434X/436X  
NOTES:  
DS22233A-page 28  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
Additional descriptions of the device pins follows.  
TABLE 3-1:  
PINOUT DESCRIPTION FOR THE MCP434X/436X  
Pin  
Weak  
Pull-up/  
down  
TSSOP  
QFN  
20L  
Standard Function  
Buffer  
Type  
Symbol  
I/O  
(Note 1)  
14L  
20L  
P3A  
P3W  
P3B  
CS  
A
A
A
I
Analog  
Analog  
Analog  
No  
No  
No  
1
1
2
19  
20  
1
Potentiometer 3 Terminal A  
Potentiometer 3 Wiper Terminal  
Potentiometer 3 Terminal B  
SPI Chip Select Input  
2
3
HV w/ST “smart”  
HV w/ST “smart”  
HV w/ST “smart”  
3
4
2
SCK  
SDI  
I
4
5
3
SPI Clock Input  
I
5
6
4
SPI Serial Data Input  
VSS  
A
A
A
A
A
A
I
P
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
I
No  
6
7
5
Ground  
P1B  
P1W  
P1A  
P0A  
P0W  
P0B  
WP  
7
8
6
Potentiometer 1 Terminal B  
Potentiometer 1 Wiper Terminal  
Potentiometer 1 Terminal A  
Potentiometer 0 Terminal A  
Potentiometer 0 Wiper Terminal  
Potentiometer 0 Terminal B  
Hardware EEPROM Write Protect  
Hardware Reset Pin  
No  
8
9
7
No  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
No  
9
No  
10  
11  
12  
13  
14  
15  
16  
17  
18  
21  
No  
10  
11  
12  
13  
14  
“smart”  
Yes  
No  
RESET  
SDO  
VDD  
P2B  
P2W  
P2A  
EP  
I
HV w/ST  
O
O
A
A
A
SPI Serial Data Output  
P
Positive Power Supply Input  
Potentiometer 2 Terminal B  
Potentiometer 2 Wiper Terminal  
Potentiometer 2 Terminal A  
Exposed Pad. (Note 2)  
Analog  
Analog  
Analog  
No  
No  
No  
Legend:  
HV w/ST = High Voltage tolerant input (with Schmidtt trigger input)  
A = Analog pins (Potentiometer terminals)  
O = digital output  
I = digital input (high Z)  
I/O = Input / Output  
P = Power  
Note 1: The pin’s “smart” pull-up shuts off while the pin is forced low. This is done to reduce the standby and  
shut-down current.  
2: The QFN package has a contact on the bottom of the package. This contact is conductively connected to  
the die substrate, and therefore should be unconnected or connected to the same ground as the device’s  
VSS pin.  
© 2009 Microchip Technology Inc.  
DS22233A-page 29  
 
 
 
MCP434X/436X  
3.1  
Chip Select (CS)  
3.6  
Potentiometer Terminal A  
The CS pin is the serial interface’s chip select input.  
Forcing the CS pin to VIL enables the serial commands.  
Forcing the CS pin to VIHH enables the high-voltage  
serial commands.  
The terminal A pin is available on the MCP43X1  
devices, and is connected to the internal  
potentiometer’s terminal A.  
The potentiometer’s terminal A is the fixed connection  
to the Full Scale wiper value of the digital  
potentiometer. This corresponds to a wiper value of  
0x100 for 8-bit devices or 0x80 for 7-bit devices.  
3.2  
Serial Data In (SDI)  
The SDI pin is the serial interfaces Serial Data In pin.  
This pin is connected to the Host Controllers SDO pin.  
The terminal A pin does not have a polarity relative to  
the terminal W or B pins. The terminal A pin can  
support both positive and negative current. The voltage  
3.3  
Ground (VSS)  
on terminal A must be between VSS and VDD  
.
The VSS pin is the device ground reference.  
The terminal A pin is not available on the MCP43X2  
devices, and the internally terminal A signal is floating.  
3.4  
Potentiometer Terminal B  
MCP43X1 devices have four terminal A pins, one for  
each resistor network.  
The terminal B pin is connected to the internal  
potentiometer’s terminal B.  
3.7  
Write Protect (WP)  
The potentiometer’s terminal B is the fixed connection  
to the Zero Scale wiper value of the digital  
potentiometer. This corresponds to a wiper value of  
0x00 for both 7-bit and 8-bit devices.  
The WP pin is used to force the non-volatile memory to  
be write protected.  
The terminal B pin does not have a polarity relative to  
the terminal W or A pins. The terminal B pin can  
support both positive and negative current. The voltage  
3.8  
Reset (RESET)  
The RESET pin is used to force the device into the  
POR/BOR state.  
on terminal B must be between VSS and VDD  
.
MCP43XX devices have four terminal B pins, one for  
each resistor network.  
3.9  
Serial Data Out (SDO)  
The SDO pin is the serial interfaces Serial Data Out pin.  
This pin is connected to the Host Controllers SDI pin.  
3.5  
Potentiometer Wiper (W) Terminal  
This pin allows the Host Controller to read the digital  
potentiometers registers, or monitor the state of the  
command error bit.  
The terminal W pin is connected to the internal  
potentiometer’s terminal W (the wiper). The wiper  
terminal is the adjustable terminal of the digital  
potentiometer. The terminal W pin does not have a  
polarity relative to terminals A or B pins. The terminal  
W pin can support both positive and negative current.  
The voltage on terminal W must be between VSS and  
3.10 Positive Power Supply Input (VDD  
)
The VDD pin is the device’s positive power supply input.  
The input power supply is relative to VSS  
.
VDD  
.
While the device VDD < Vmin (2.7V), the electrical  
performance of the device may not meet the data sheet  
specifications.  
MCP43XX devices have four terminal W pins, one for  
each resistor network.  
3.11 Exposed Pad (EP)  
This pad is conductively connected to the device's  
substrate. This pad should be tied to the same potential  
as the VSS pin (or left unconnected). This pad could be  
used to assist as a heat sink for the device when  
connected to a PCB heat sink.  
DS22233A-page 30  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
4.1.2  
BROWN-OUT RESET  
4.0  
FUNCTIONAL OVERVIEW  
When the device powers down, the device VDD will  
cross the VPOR/VBOR voltage.  
This Data Sheet covers a family of four non-volatile  
Digital Potentiometer and Rheostat devices that will be  
referred to as MCP43XX. The MCP43X1 devices are  
the Potentiometer configuration, while the MCP43X2  
devices are the Rheostat configuration.  
Once the VDD voltage decreases below the VPOR/VBOR  
voltage the following happens:  
• Serial Interface is disabled  
As the Device Block Diagram shows, there are four  
main functional blocks. These are:  
• EEPROM Writes are disabled  
If the VDD voltage decreases below the VRAM voltage,  
the following happens:  
POR/BOR and RESET Operation  
Memory Map  
• Volatile wiper registers may become corrupted  
• TCON registers may become corrupted  
Resistor Network  
Serial Interface (SPI)  
As the voltage recovers above the VPOR/VBOR voltage  
The POR/BOR operation and the Memory Map are  
discussed in this section and the Resistor Network and  
SPI operation are described in their own sections. The  
Device Commands commands are discussed in  
Section 7.0.  
see Section 4.1.1 “Power-on Reset”.  
Serial commands not completed due to a brown-out  
condition may cause the memory location (volatile and  
non-volatile) to become corrupted.  
4.1.3  
RESET PIN  
4.1  
POR/BOR and RESET Operation  
The RESET pin can be used to force the device into  
the POR/BOR state of the device. When the RESET  
pin is forced Low, the device is forced into the reset  
state. This means that the TCON and STATUS  
registers are forced to their default values and the  
volatile wiper registers are loaded with the value in the  
corresponding Non-Volatile wiper register. Also the  
SPI interface is disabled. Any non-volatile write cycle  
is not interrupted, and allowed to complete.  
The Power-on Reset is the case where the device is  
having power applied to it from VSS. The Brown-out  
Reset occurs when a device had power applied to it,  
and that power (voltage) drops below the specified  
range.  
The devices RAM retention voltage (VRAM) is lower  
than the POR/BOR voltage trip point (VPOR/VBOR). The  
maximum VPOR/VBOR voltage is less then 1.8V.  
This feature allows a hardware method for all registers  
to be updated at the same time.  
When VPOR/VBOR < VDD < 2.7V, the electrical  
performance may not meet the data sheet  
specifications. In this region, the device is capable of  
reading and writing to its EEPROM and incrementing,  
decrementing, reading and writing to its volatile  
memory if the proper serial command is executed.  
4.1.4  
INTERACTION OF RESET PIN AND BOR/  
POR CIRCUITRY  
Figure 4-1 shows how the RESET pin signal and the  
POR/BOR signal interact to control the hardware reset  
state of the device.  
When VDD < VPOR/VBOR or the RESET pin is Low, the  
pin weak pull-ups are enabled.  
4.1.1  
POWER-ON RESET  
RESET (from pin)  
Device reset  
When the device powers up, the device VDD will cross  
the VPOR/VBOR voltage. Once the VDD voltage crosses  
the VPOR/VBOR voltage, the following happens:  
POR/BOR signal  
FIGURE 4-1:  
RESET Pin Interaction.  
POR/BOR Signal and  
• Volatile wiper register is loaded with value in the  
corresponding non-volatile wiper register  
• The TCON registers are loaded their default value  
• The device is capable of digital operation  
© 2009 Microchip Technology Inc.  
DS22233A-page 31  
 
 
 
MCP434X/436X  
4.2  
Memory Map  
The device memory is 16 locations that are 9-bits wide  
(16x9 bits). This memory space contains both volatile  
and non-volatile locations (see Table 4-1).  
TABLE 4-1:  
Address  
MEMORY MAP AND THE SUPPORTED COMMANDS  
Memory  
Type  
Factory  
Initialization  
Function  
Allowed Commands Disallowed Commands (2)  
00h  
01h  
02h  
Volatile Wiper 0  
Volatile Wiper 1  
RAM  
Read, Write,  
Increment, Decrement  
RAM  
Read, Write,  
Increment, Decrement  
Non-Volatile Wiper 0 EEPROM  
Non-Volatile Wiper 1 EEPROM  
Read, Write (1)  
Increment, Decrement  
8-bit  
7-bit  
8-bit  
7-bit  
80h  
40h  
80h  
03h  
04h  
Read, Write (1)  
Increment, Decrement  
Increment, Decrement  
40h  
Volatile  
TCON0 Register  
RAM  
Read, Write  
Read  
05h  
06h  
Status Register  
Volatile Wiper 2  
RAM  
RAM  
Write, Increment, Decrement  
Read, Write,  
Increment, Decrement  
07h  
08h  
Volatile Wiper 3  
RAM  
Read, Write,  
Increment, Decrement  
Non-Volatile Wiper 2 EEPROM  
Non-Volatile Wiper 3 EEPROM  
Read, Write (1)  
Read, Write (1)  
Read, Write  
Increment, Decrement  
8-bit  
7-bit  
8-bit  
7-bit  
80h  
40h  
80h  
09h  
0Ah  
Increment, Decrement  
Increment, Decrement  
40h  
Volatile  
RAM  
TCON1 Register  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Read, Write (1)  
Read, Write (1)  
Read, Write (1)  
Read, Write (1)  
Read, Write (1)  
Increment, Decrement  
Increment, Decrement  
Increment, Decrement  
Increment, Decrement  
Increment, Decrement  
000h  
000h  
000h  
000h  
000h  
Note 1: When an EEPROM write is active, these are invalid commands and will generate an error condition. The  
user should use a read of the Status register to determine when the write cycle has completed. To exit the  
error condition, the user must take the CS pin to the VIH level and then back to the active state (VIL or  
VIHH).  
2: This command on this address will generate an error condition. To exit the error condition, the user must  
take the CS pin to the VIH level and then back to the active state (VIL or VIHH).  
DS22233A-page 32  
© 2009 Microchip Technology Inc.  
 
 
 
MCP434X/436X  
4.2.1  
NON-VOLATILE MEMORY  
(EEPROM)  
4.2.1.4  
Special Features  
There are 5 non-volatile bits that are not directly  
mapped into the address space. These bits control the  
following functions:  
This memory can be grouped into two uses of  
non-volatile memory. These are:  
• EEPROM Write Protect  
General Purpose Registers  
Non-Volatile Wiper Registers  
• WiperLock Technology for Non-Volatile Wiper 0  
• WiperLock Technology for Non-Volatile Wiper 1  
• WiperLock Technology for Non-Volatile Wiper 2  
• WiperLock Technology for Non-Volatile Wiper 3  
The non-volatile wipers starts functioning below the  
devices VPOR/VBOR trip point.  
4.2.1.1  
General Purpose Registers  
The operation of WiperLock Technology is discussed in  
Section 5.3. The state of the WL0, WL1, WL2, WL3,  
and WP bits is reflected in the STATUS register (see  
Register 4-1).  
These locations allow the user to store up to 5 (9-bit)  
locations worth of information.  
4.2.1.2  
Non-Volatile Wiper Registers  
These locations contain the wiper values that are  
loaded into the corresponding volatile wiper register  
whenever the device has a POR/BOR event. There are  
four registers, one for each resistor network.  
EEPROM Write Protect  
All internal EEPROM memory can be Write Protected.  
When EEPROM memory is Write Protected, Write  
commands to the internal EEPROM are prevented.  
The non-volatile wiper register enables stand-alone  
operation of the device (without Microcontroller control)  
after being programmed to the desired value.  
Write Protect (WP) can be enabled/disabled by two  
methods. These are:  
• External WP Hardware pin (MCP43X1 devices  
only)  
4.2.1.3  
Factory Initialization of Non-Volatile  
Memory (EEPROM)  
• Non-Volatile configuration bit (WP)  
The Non-Volatile Wiper values will be initialized to  
mid-scale value. This is shown in Table 4-2.  
High Voltage commands are required to enable and  
disable the non-volatile WP bit. These commands are  
shown in Section 7.9 “Modify Write Protect or  
WiperLock Technology (High Voltage)”.  
The General purpose EEPROM memory will be  
programmed to a default value of 0x000.  
It is good practice in the manufacturing flow to  
configure the device to your desired settings.  
To write to EEPROM, both the external WP pin and the  
internal WP EEPROM bit must be disabled. Write  
Protect does not block commands to the volatile  
registers.  
TABLE 4-2:  
DEFAULT FACTORY  
SETTINGS SELECTION  
4.2.2  
VOLATILE MEMORY (RAM)  
Wiper  
Code  
There are seven Volatile Memory locations. These are:  
• Volatile Wiper 0  
• Volatile Wiper 1  
• Volatile Wiper 2  
8-bit 7-bit  
• Volatile Wiper 3  
• Status Register  
Terminal Control (TCON0) Register 0  
Terminal Control (TCON)1 Register 1  
-502  
5.0 kΩ Mid scale 80h 40h Disabled  
-103 10.0 kΩ Mid scale 80h 40h Disabled  
-503 50.0 kΩ Mid scale 80h 40h Disabled  
-104 100.0 kΩ Mid scale 80h 40h Disabled  
The volatile memory starts functioning at the RAM  
retention voltage (VRAM).  
© 2009 Microchip Technology Inc.  
DS22233A-page 33  
 
 
 
 
MCP434X/436X  
4.2.2.1  
Status (STATUS) Register  
This register contains 7 status bits. These bits show the  
state of the WiperLock bits, the Write Protect bit, and if  
an EEPROM write cycle is active. The STATUS register  
can be accessed via the READ commands.  
Register 4-1 describes each STATUS register bit.  
The STATUS register is placed at Address 05h.  
REGISTER 4-1:  
STATUS REGISTER  
R-1 R-1  
R-1  
D8:D7  
bit 7  
R-1  
R-0  
R-x  
R-x  
R-1  
R-x  
WP (1)  
(1)  
(1)  
(1)  
(1)  
WL3  
WL2  
EEWA  
WL1  
WL0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 8-7  
bit 6  
D8:D7: Reserved. Forced to “1”  
WL3: WiperLock Status bit for Resistor Network 3 (Refer to Section 5.3 “WiperLock™ Technology”  
for further information)  
The WiperLock Technology bit (WL3) prevents the Volatile and Non-Volatile Wiper 3 addresses and the  
TCON1 register bits R3HW, R3A, R3W, and R3B from being written to. High Voltage commands are  
required to enable and disable WiperLock Technology.  
1= Wiper and TCON1 register bits R3HW, R3A, R3W, and R3B of Resistor Network 3 (Pot 3) are  
“Locked” (Write Protected)  
0= Wiper and TCON1 of Resistor Network 3 (Pot 3) can be modified  
Note:  
The WL3 bit always reflects the result of the last programming cycle to the non-volatile WL3  
bit. After a POR/BOR or RESET pin event, the WL3 bit is loaded with the non-volatile WL3  
bit value.  
bit 5  
WL2: WiperLock Status bit for Resistor Network 2 (Refer to Section 5.3 “WiperLock™ Technology”  
for further information)  
The WiperLock Technology bit (WL2) prevents the Volatile and Non-Volatile Wiper 2 addresses and the  
TCON1 register bits R2HW, R2A, R2W, and R2B from being written to. High Voltage commands are  
required to enable and disable WiperLock Technology.  
1= Wiper and TCON1 register bits R2HW, R2A, R2W, and R2B of Resistor Network 2 (Pot 2) are  
“Locked” (Write Protected)  
0= Wiper and TCON1 of Resistor Network 2 (Pot 2) can be modified  
Note:  
The WL0 bit always reflects the result of the last programming cycle to the non-volatile WL0  
bit. After a POR/BOR or RESET pin event, the WL0 bit is loaded with the non-volatile WL0  
bit value.  
bit 4  
EEWA: EEPROM Write Active Status bit  
This bit indicates if the EEPROM Write Cycle is occurring.  
1= An EEPROM Write cycle is currently occurring. Only serial commands to the Volatile memory  
locations are allowed (addresses 00h, 01h, 04h, and 05h)  
0= An EEPROM Write cycle is NOT currently occurring  
Note 1: Requires a High Voltage command to modify the state of this bit (for Non-Volatile devices only). This bit is  
Not directly written, but reflects the system state (for this feature).  
DS22233A-page 34  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
REGISTER 4-1:  
bit 3  
STATUS REGISTER (CONTINUED)  
WL1: WiperLock Status bit for Resistor Network 1 (Refer to Section 5.3 “WiperLock™ Technology”  
for further information)  
The WiperLock Technology bit (WL1) prevents the Volatile and Non-Volatile Wiper 1 addresses and the  
TCON0 register bits R1HW, R1A, R1W, and R1B from being written to. High Voltage commands are  
required to enable and disable WiperLock Technology.  
1= Wiper and TCON0 register bits R1HW, R1A, R1W, and R1B of Resistor Network 1 (Pot 1) are  
“Locked” (Write Protected)  
0= Wiper and TCON0 of Resistor Network 1 (Pot 1) can be modified  
Note:  
The WL1 bit always reflects the result of the last programming cycle to the non-volatile WL1  
bit. After a POR/BOR or RESET pin event, the WL1 bit is loaded with the non-volatile WL1  
bit value.  
bit 2  
WL0: WiperLock Status bit for Resistor Network 0 (Refer to Section 5.3 “WiperLock™ Technology”  
for further information)  
The WiperLock Technology bit (WL0) prevents the Volatile and Non-Volatile Wiper 0 addresses and the  
TCON0 register bits R0HW, R0A, R0W, and R0B from being written to. High Voltage commands are  
required to enable and disable WiperLock Technology.  
1= Wiper and TCON0 register bits R0HW, R0A, R0W, and R0B of Resistor Network 0 (Pot 0) are  
“Locked” (Write Protected)  
0= Wiper and TCON0 of Resistor Network 0 (Pot 0) can be modified  
Note:  
The WL0 bit always reflects the result of the last programming cycle to the non-volatile WL0  
bit. After a POR/BOR or RESET pin event, the WL0 bit is loaded with the non-volatile WL0  
bit value.  
bit 1  
bit 0  
Reserved: Forced to “1”  
WP: EEPROM Write Protect Status bit (Refer to Section “EEPROM Write Protect” for further  
information)  
This bit indicates the status of the write protection on the EEPROM memory. When Write Protect is  
enabled, writes to all non-volatile memory are prevented. This includes the General Purpose EEPROM  
memory, and the non-volatile Wiper registers. Write Protect does not block modification of the volatile  
wiper register values or the volatile TCON0 and TCON1 register values (via Increment, Decrement, or  
Write commands).  
This status bit is an OR of the devices Write Protect pin (WP) and the internal non-volatile WP bit. High  
Voltage commands are required to enable and disable the internal WP EEPROM bit.  
1= EEPROM memory is Write Protected  
0= EEPROM memory can be written  
Note 1: Requires a High Voltage command to modify the state of this bit (for Non-Volatile devices only). This bit is  
Not directly written, but reflects the system state (for this feature).  
© 2009 Microchip Technology Inc.  
DS22233A-page 35  
MCP434X/436X  
The value that is written to the specified TCON register  
will appear on the appropriate resistor network  
terminals when the serial command has completed.  
4.2.2.2  
Terminal Control (TCON) Registers  
There are two Terminal Control (TCON) Registers.  
These are called TCON0 and TCON1. Each register  
contains 8 control bits. Four bits for each Wiper.  
Register 4-2 describes each bit of the TCON0 register,  
while Register 4-3 describes each bit of the TCON1  
register.  
When the WL1 bit is enabled, writes to the TCON0  
register bits R1HW, R1A, R1W, and R1B are inhibited.  
When the WL0 bit is enabled, writes to the TCON0  
register bits R0HW, R0A, R0W, and R0B are inhibited.  
The state of each resistor network terminal connection  
is individually controlled. That is, each terminal  
connection (A, B and W) can be individually connected/  
disconnected from the resistor network. This allows the  
system to minimize the currents through the digital  
potentiometer.  
When the WL3 bit is enabled, writes to the TCON1  
register bits R3HW, R3A, R3W, and R3B are inhibited.  
When the WL2 bit is enabled, writes to the TCON1  
register bits R2HW, R2A, R2W, and R2B are inhibited.  
On a POR/BOR these registers are loaded with  
1FFh (9-bits), for all terminals connected. The Host  
Controller needs to detect the POR/BOR event and  
then update the Volatile TCON register values.  
DS22233A-page 36  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
(1)  
REGISTER 4-2:  
TCON0 BITS  
R-1  
D8  
R/W-1  
R1HW  
R/W-1  
R/W-1  
R1W  
R/W-1  
R1B  
R/W-1  
R0HW  
R/W-1  
R0A  
R/W-1  
R0W  
R/W-1  
R0B  
R1A  
bit 8  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8  
bit 7  
D8: Reserved. Forced to “1”  
R1HW: Resistor 1 Hardware Configuration Control bit  
This bit forces Resistor 1 into the “shutdown” configuration of the Hardware pin  
1= Resistor 1 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 1 is forced to the hardware pin “shutdown” configuration  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
R1A: Resistor 1 Terminal A (P1A pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Terminal A to the Resistor 1 Network  
1= P1A pin is connected to the Resistor 1 Network  
0= P1A pin is disconnected from the Resistor 1 Network  
R1W: Resistor 1 Wiper (P1W pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Wiper to the Resistor 1 Network  
1= P1W pin is connected to the Resistor 1 Network  
0= P1W pin is disconnected from the Resistor 1 Network  
R1B: Resistor 1 Terminal B (P1B pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Terminal B to the Resistor 1 Network  
1= P1B pin is connected to the Resistor 1 Network  
0= P1B pin is disconnected from the Resistor 1 Network  
R0HW: Resistor 0 Hardware Configuration Control bit  
This bit forces Resistor 0 into the “shutdown” configuration of the Hardware pin  
1= Resistor 0 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 0 is forced to the hardware pin “shutdown” configuration  
R0A: Resistor 0 Terminal A (P0A pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Terminal A to the Resistor 0 Network  
1= P0A pin is connected to the Resistor 0 Network  
0= P0A pin is disconnected from the Resistor 0 Network  
R0W: Resistor 0 Wiper (P0W pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Wiper to the Resistor 0 Network  
1= P0W pin is connected to the Resistor 0 Network  
0= P0W pin is disconnected from the Resistor 0 Network  
R0B: Resistor 0 Terminal B (P0B pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Terminal B to the Resistor 0 Network  
1= P0B pin is connected to the Resistor 0 Network  
0= P0B pin is disconnected from the Resistor 0 Network  
Note 1: These bits do not affect the wiper register values.  
© 2009 Microchip Technology Inc.  
DS22233A-page 37  
 
 
MCP434X/436X  
(1)  
REGISTER 4-3:  
TCON1 BITS  
R-1  
D8  
R/W-1  
R3HW  
R/W-1  
R/W-1  
R3W  
R/W-1  
R3B  
R/W-1  
R2HW  
R/W-1  
R2A  
R/W-1  
R2W  
R/W-1  
R2B  
R3A  
bit 8  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8  
bit 7  
D8: Reserved. Forced to “1”  
R3HW: Resistor 3 Hardware Configuration Control bit  
This bit forces Resistor 3 into the “shutdown” configuration of the Hardware pin  
1= Resistor 3 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 3 is forced to the hardware pin “shutdown” configuration  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
R3A: Resistor 3 Terminal A (P3A pin) Connect Control bit  
This bit connects/disconnects the Resistor 3 Terminal A to the Resistor 3 Network  
1= P3A pin is connected to the Resistor 3 Network  
0= P3A pin is disconnected from the Resistor 3 Network  
R3W: Resistor 3 Wiper (P3W pin) Connect Control bit  
This bit connects/disconnects the Resistor 3 Wiper to the Resistor 3 Network  
1= P3W pin is connected to the Resistor 3 Network  
0= P3W pin is disconnected from the Resistor 3 Network  
R3B: Resistor 3 Terminal B (P3B pin) Connect Control bit  
This bit connects/disconnects the Resistor 3 Terminal B to the Resistor 3 Network  
1= P3B pin is connected to the Resistor 3 Network  
0= P3B pin is disconnected from the Resistor 3 Network  
R2HW: Resistor 2 Hardware Configuration Control bit  
This bit forces Resistor 2 into the “shutdown” configuration of the Hardware pin  
1= Resistor 2 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 2 is forced to the hardware pin “shutdown” configuration  
R2A: Resistor 2 Terminal A (P0A pin) Connect Control bit  
This bit connects/disconnects the Resistor 2 Terminal A to the Resistor 2 Network  
1= P2A pin is connected to the Resistor 2 Network  
0= P2A pin is disconnected from the Resistor 2 Network  
R2W: Resistor 2 Wiper (P0W pin) Connect Control bit  
This bit connects/disconnects the Resistor 2 Wiper to the Resistor 2 Network  
1= P2W pin is connected to the Resistor 2 Network  
0= P2W pin is disconnected from the Resistor 2 Network  
R2B: Resistor 2 Terminal B (P2B pin) Connect Control bit  
This bit connects/disconnects the Resistor 2 Terminal B to the Resistor 2 Network  
1= P2B pin is connected to the Resistor 2 Network  
0= P2B pin is disconnected from the Resistor 2 Network  
Note 1: These bits do not affect the wiper register values.  
DS22233A-page 38  
© 2009 Microchip Technology Inc.  
 
 
MCP434X/436X  
5.1  
Resistor Ladder Module  
5.0  
RESISTOR NETWORK  
The resistor ladder is a series of equal value resistors  
(RS) with a connection point (tap) between the two  
resistors. The total number of resistors in the series  
(ladder) determines the RAB resistance (see  
Figure 5-1). The end points of the resistor ladder are  
connected to analog switches which are connected to  
the device Terminal A and Terminal B pins. The RAB  
(and RS) resistance has small variations over voltage  
and temperature.  
The Resistor Network has either 7-bit or 8-bit  
resolution. Each Resistor Network allows zero scale to  
full scale connections. Figure 5-1 shows a block  
diagram for the resistive network of a device.  
The Resistor Network is made up of several parts.  
These include:  
• Resistor Ladder  
• Wiper  
• Shutdown (Terminal Connections)  
For an 8-bit device, there are 256 resistors in a string  
between terminal A and terminal B. The wiper can be  
set to tap onto any of these 256 resistors thus providing  
257 possible settings (including terminal A and terminal  
B).  
Devices have either four resistor networks. These are  
referred to as Pot 0, Pot 1 Pot 2, and Pot 3.  
A
For a 7-bit device, there are 128 resistors in a string  
between terminal A and terminal B. The wiper can be  
set to tap onto any of these 128 resistors thus providing  
129 possible settings (including terminal A and terminal  
B).  
8-Bit  
N =  
257  
7-Bit  
N =  
128  
(100h)  
(80h)  
(1)  
RW  
RS  
RS  
RS  
Equation 5-1 shows the calculation for the step  
resistance.  
256  
(FFh)  
127  
(7Fh)  
(1)  
(1)  
RW  
RW  
EQUATION 5-1:  
R CALCULATION  
S
255  
(FEh)  
126  
(7Eh)  
RAB  
RS = -------------  
8-bit Device  
RAB  
(256)  
W
RAB  
RS = -------------  
(128)  
7-bit Device  
1
1
(01h)  
(01h)  
(1)  
(1)  
RW  
RW  
RS  
0
0
(00h)  
(00h)  
Analog Mux  
B
Note 1: The wiper resistance is dependent on  
several factors including, wiper code,  
device VDD, Terminal voltages (on A, B,  
and W), and temperature.  
Also for the same conditions, each tap  
selection resistance has a small variation.  
This RW variation has greater effects on  
some specifications (such as INL) for the  
smaller resistance devices (5.0 kΩ)  
compared to larger resistance devices  
(100.0 kΩ).  
FIGURE 5-1:  
Resistor Block Diagram.  
© 2009 Microchip Technology Inc.  
DS22233A-page 39  
 
 
MCP434X/436X  
5.2  
Wiper  
5.3  
WiperLock™ Technology  
Each tap point (between the RS resistors) is a  
connection point for an analog switch. The opposite  
side of the analog switch is connected to a common  
signal which is connected to the Terminal W (Wiper)  
pin.  
The MCP43XX device’s WiperLock technology allows  
application-specific calibration settings to be secured in  
the EEPROM without requiring the use of an additional  
write-protect pin. There are four WiperLock Technology  
configuration bits (WL0, WL1, WL2, and WL3). These  
bits prevent the Non-Volatile and Volatile addresses  
and bits for the specified resistor network from being  
written.  
A value in the volatile wiper register selects which  
analog switch to close, connecting the W terminal to  
the selected node of the resistor ladder.  
The WiperLock technology prevents the serial  
commands from doing the following:  
The wiper can connect directly to Terminal B or to  
Terminal A. A zero scale connections, connects the  
Terminal W (wiper) to Terminal B (wiper setting of  
000h). A full scale connections, connects the Terminal  
W (wiper) to Terminal A (wiper setting of 100h or 80h).  
In these configurations the only resistance between the  
Terminal W and the other Terminal (A or B) is that of the  
analog switches.  
• Changing a volatile wiper value  
• Writing to the specified non-volatile wiper memory  
location  
• Changing the related volatile TCON register bits  
For either Resistor Network 0, Resistor Network 1,  
Resistor Network 2, or Resistor Network 3 (Potx), the  
WLx bit controls the following:  
A wiper setting value greater than full scale (wiper  
setting of 100h for 8-bit device or 80h for 7-bit devices)  
will also be a Full Scale setting (Terminal W (wiper)  
connected to Terminal A). Table 5-1 illustrates the full  
wiper setting map.  
• Non-Volatile Wiper Register  
• Volatile Wiper Register  
• Volatile TCON register bits RxHW, RxA, RxW, and  
RxB  
Equation 5-2 illustrates the calculation used to  
determine the resistance between the wiper and  
terminal B.  
High Voltage commands are required to enable and  
disable WiperLock. Please refer to the Modify Write  
Protect or WiperLock Technology (High Voltage)  
command for operation.  
EQUATION 5-2:  
R
CALCULATION  
WB  
5.3.1  
POR/BOR OPERATION WHEN  
WIPERLOCK TECHNOLOGY  
ENABLED  
RAB  
N
RWB = ------------- + RW  
8-bit Device  
(256)  
N = 0 to 256 (decimal)  
The WiperLock Technology state is not affected by a  
POR/BOR event. A POR/BOR event will load the  
Volatile Wiper register value with the Non-Volatile  
Wiper register value, refer to Section 4.1.  
RAB  
N
7-bit Device  
RWB = ------------- + RW  
(128)  
N = 0 to 128 (decimal)  
TABLE 5-1:  
Wiper Setting  
VOLATILE WIPER VALUE VS.  
WIPER POSITION MAP  
Properties  
7-bit  
8-bit  
3FFh – 3FFh – Reserved (Full Scale (W = A)),  
081h  
101h Increment and Decrement  
commands ignored  
080h  
100h Full Scale (W = A),  
Increment commands ignored  
07Fh – 0FFh – W = N  
041h  
081h  
040h  
080h W = N (Mid Scale)  
03Fh – 07Fh – W = N  
001h  
001h  
000h  
000h Zero Scale (W = B)  
Decrement command ignored  
DS22233A-page 40  
© 2009 Microchip Technology Inc.  
 
 
MCP434X/436X  
The RxHW bit does NOT corrupt the values in the  
Volatile Wiper Registers nor the TCON register. When  
the Shutdown mode is exited (RxHW bit = “1”):  
5.4  
Shutdown  
Shutdown is used to minimize the device’s current  
consumption. The MCP43XX has one method to  
achieve this. This is:  
• The device returns to the Wiper setting specified  
by the Volatile Wiper value  
• The TCON register bits return to controlling the  
terminal connection state  
Terminal Control Register (TCON)  
This is different from the MCP42XXX devices in that the  
Hardware Shutdown Pin (SHDN) has been replaced by  
a RESET pin. The Hardware Shutdown Pin function is  
still available via software commands to the TCON  
register.  
A
W
5.4.1  
TERMINAL CONTROL REGISTER  
(TCON)  
The Terminal Control (TCON) register is a volatile  
register used to configure the connection of each  
resistor network terminal pin (A, B, and W) to the  
Resistor Network. These registers are shown in  
Register 4-2 and Register 4-3.  
B
FIGURE 5-2:  
Resistor Network Shutdown  
State (RxHW = ‘0’).  
The RxHW bits forces the selected resistor network  
into the same state as the MCP42X1’s SHDN pin.  
Alternate low power configurations may be achieved  
with the RxA, RxW, and RxB bits.  
When the RxHW bit is “0”:  
• The P0A, P1A, P2A, and P3A terminals are  
disconnected  
• The P0W, P1W, P2W, and P3W terminals are  
simultaneously connect to the P0B, P1B, P2B,  
and P3B terminals, respectively (see Figure 5-2)  
Note:  
When the RxHW bit forces the resistor  
network into the hardware SHDN state,  
the state of the TCON0 or TCON1  
register’s RxA, RxW, and RxB bits is  
overridden (ignored). When the state of  
the RxHW bit no longer forces the resistor  
network into the hardware SHDN state,  
the TCON0 or TCON1 register’s RxA,  
RxW, and RxB bits return to controlling the  
terminal connection state. In other words,  
the RxHW bit does not corrupt the state of  
the RxA, RxW, and RxB bits.  
© 2009 Microchip Technology Inc.  
DS22233A-page 41  
 
 
MCP434X/436X  
NOTES:  
DS22233A-page 42  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
Typical SPI Interface is shown in Figure 6-1. In the SPI  
interface, the Master’s Output pin is connected to the  
Slave’s Input pin and the Master’s Input pin is  
connected to the Slave’s Output pin.  
6.0  
SERIAL INTERFACE (SPI)  
The MCP43XX devices support the SPI serial protocol.  
This SPI operates in the slave mode (does not  
generate the serial clock).  
The MCP4XXX SPI’s module supports two (of the four)  
standard SPI modes. These are Mode 0,0 and 1,1.  
The SPI mode is determined by the state of the SCK  
pin (VIH or VIL) on the when the CS pin transitions from  
inactive (VIH) to active (VIL or VIHH).  
The SPI interface uses up to four pins. These are:  
• CS - Chip Select  
• SCK - Serial Clock  
• SDI - Serial Data In  
• SDO - Serial Data Out  
All SPI interface signals are high-voltage tolerant.  
Typical SPI Interface Connections  
Host  
MCP4XXX  
Controller  
(Master Out - Slave In (MOSI))  
(Master In - Slave Out (MISO))  
SDI  
SDO  
SCK  
CS  
SDO  
SDI  
SCK  
(1)  
I/O  
Note 1: If High voltage commands are desired, some type of external circuitry needs to be implemented.  
FIGURE 6-1: Typical SPI Interface Block Diagram.  
© 2009 Microchip Technology Inc.  
DS22233A-page 43  
 
MCP434X/436X  
6.1.4  
THE CS SIGNAL  
6.1  
SDI, SDO, SCK, and CS Operation  
The Chip Select (CS) signal is used to select the device  
and frame a command sequence. To start a command,  
or sequence of commands, the CS signal must  
transition from the inactive state (VIH) to an active state  
(VIL or VIHH).  
The operation of the four SPI interface pins are  
discussed in this section. These pins are:  
• SDI (Serial Data In)  
• SDO (Serial Data Out)  
• SCK (Serial Clock)  
• CS (Chip Select)  
After the CS signal has gone active, the SDO pin is  
driven and the clock bit counter is reset.  
The serial interface works on either 8-bit or 16-bit  
boundaries depending on the selected command. The  
Chip Select (CS) pin frames the SPI commands.  
Note:  
There is a required delay after the CS pin  
goes active to the 1st edge of the SCK pin.  
6.1.1  
SERIAL DATA IN (SDI)  
If an error condition occurs for an SPI command, then  
the Command byte’s Command Error (CMDERR) bit  
(on the SDO pin) will be driven low (VIL). To exit the  
error condition, the user must take the CS pin to the VIH  
level.  
The Serial Data In (SDI) signal is the data signal into  
the device. The value on this pin is latched on the rising  
edge of the SCK signal.  
6.1.2  
SERIAL DATA OUT (SDO)  
When the CS pin returns to the inactive state (VIH) the  
SPI module resets (including the address pointer).  
While the CS pin is in the inactive state (VIH), the serial  
interface is ignored. This allows the Host Controller to  
interface to other SPI devices using the same SDI,  
SDO, and SCK signals.  
The Serial Data Out (SDO) signal is the data signal out  
of the device. The value on this pin is driven on the  
falling edge of the SCK signal.  
Once the CS pin is forced to the active level (VIL or  
VIHH), the SDO pin will be driven. The state of the SDO  
pin is determined by the serial bit’s position in the  
command, the command selected, and if there is a  
command error state (CMDERR).  
The CS pin has an internal pull-up resistor. The resistor  
is disabled when the voltage on the CS pin is at the VIL  
level. This means that when the CS pin is not driven,  
the internal pull-up resistor will pull this signal to the VIH  
level. When the CS pin is driven low (VIL), the  
resistance becomes very large to reduce the device  
current consumption.  
6.1.3  
SERIAL CLOCK (SCK)  
(SPI FREQUENCY OF OPERATION)  
The SPI interface is specified to operate up to 10 MHz.  
The actual clock rate depends on the configuration of  
the system and the serial command used. Table 6-1  
shows the SCK frequency for different configurations.  
The high voltage capability of the CS pin allows High  
Voltage commands. High Voltage commands allow the  
device’s WiperLock Technology and write protect  
features to be enabled and disabled.  
TABLE 6-1:  
SCK FREQUENCY  
Command  
Write,  
Memory Type Access  
Read  
Increment,  
Decrement  
Non-Volatile SDI, SDO  
Memory  
10 MHz  
10 MHz  
10 MHz (1, 2)  
Volatile  
SDI, SDO  
10 MHz  
Memory  
Note 1: Non-Volatile memory does not support the  
Increment or Decrement command.  
2: After a Write command, the internal write  
cycle must complete before the next SPI  
command is received.  
3: This is the maximum clock frequency  
without an external pull-up resistor.  
DS22233A-page 44  
© 2009 Microchip Technology Inc.  
 
 
 
MCP434X/436X  
6.2.2  
MODE 1,1  
6.2  
The SPI Modes  
In Mode 1,1: SCK idle state = high (VIH), data is  
clocked in on the SDI pin on the rising edge of SCK and  
clocked out on the SDO pin on the falling edge of SCK.  
The SPI module supports two (of the four) standard SPI  
modes. These are Mode 0,0 and 1,1. The mode is  
determined by the state of the SDI pin on the rising  
edge of the 1st clock bit (of the 8-bit byte).  
6.3  
SPI Waveforms  
6.2.1  
MODE 0,0  
Figure 6-2 through Figure 6-5 show the different SPI  
command waveforms. Figure 6-2 and Figure 6-3 are  
read and write commands. Figure 6-4 and Figure 6-5  
are increment and decrement commands. The high  
voltage increment and decrement commands are used  
to enable and disable WiperLock Technology and Write  
Protect.  
In Mode 0,0: SCK idle state = low (VIL), data is clocked  
in on the SDI pin on the rising edge of SCK and clocked  
out on the SDO pin on the falling edge of SCK.  
V
IHH  
V
IH  
CS  
V
IL  
SCK  
Write to  
SSPBUF  
CMDERR bit  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5  
SDO  
bit4 bit3 bit2 bit1  
bit0  
AD3 AD2 AD1 AD0  
bit15 bit14 bit13 bit12  
X
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
C1  
C0  
Input  
Sample  
FIGURE 6-2:  
16-Bit Commands (Write, Read) - SPI Waveform (Mode 1,1).  
V
IHH  
V
IH  
CS  
V
IL  
SCK  
Write to  
SSPBUF  
CMDERR bit  
SDO  
bit15 bit14 bit13 bit12 bit11 bit10 bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
AD3 AD2 AD1 AD0  
bit15 bit14 bit13 bit12  
X
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
C1  
C0  
Input  
Sample  
FIGURE 6-3:  
16-Bit Commands (Write, Read) - SPI Waveform (Mode 0,0).  
© 2009 Microchip Technology Inc.  
DS22233A-page 45  
 
 
MCP434X/436X  
V
V
IHH  
IL  
V
IH  
CS  
SCK  
Write to  
SSPBUF  
CMDERR bit  
“1” = Valid Command  
“0” = Invalid Command  
SDO  
SDI  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
bit7  
bit3  
AD1  
AD2  
X
AD0  
C0  
AD3  
bit7  
C1  
X
bit0  
Input  
Sample  
FIGURE 6-4:  
8-Bit Commands (Increment, Decrement, Modify Write Protect or WiperLock  
Technology) - SPI Waveform with PIC MCU (Mode 1,1).  
V
IHH  
V
IH  
CS  
V
IL  
SCK  
Write to  
SSPBUF  
CMDERR bit  
“1” = Valid Command  
“0” = Invalid Command  
bit6  
AD2  
bit2  
C0  
bit5  
bit4  
AD0  
bit1  
bit0  
SDO  
SDI  
bit7  
bit3  
C1  
AD1  
X
AD3  
bit7  
X
bit0  
Input  
Sample  
FIGURE 6-5:  
8-Bit Commands (Increment, Decrement, Modify Write Protect or WiperLock  
Technology) - SPI Waveform with PIC MCU (Mode 0,0).  
DS22233A-page 46  
© 2009 Microchip Technology Inc.  
 
 
MCP434X/436X  
7.1  
Command Byte  
7.0  
DEVICE COMMANDS  
The Command Byte has three fields, the Address, the  
Command, and 2 Data bits, see Figure 7-1. Currently  
only one of the data bits is defined (D8). This is for the  
Write command.  
The MCP43XX’s SPI command format supports 16  
memory address locations and four commands. Each  
command has two modes. These are:  
• Normal Serial Commands  
The device memory is accessed when the master  
sends a proper Command Byte to select the desired  
operation. The memory location getting accessed is  
contained in the Command Byte’s AD3:AD0 bits. The  
action desired is contained in the Command Byte’s  
C1:C0 bits, see Table 7-1. C1:C0 determines if the  
desired memory location will be read, written,  
Incremented (wiper setting +1) or Decremented (wiper  
setting -1). The Increment and Decrement commands  
are only valid on the volatile wiper registers, and in  
High Voltage commands to enable/disable WiperLock  
Technology and Software Write Protect.  
• High-Voltage Serial Commands  
Normal serial commands are those where the CS pin is  
driven to VIL. With High-Voltage Serial Commands, the  
CS pin is driven to VIHH. In each mode, there are four  
possible commands. These commands are shown in  
Table 7-1.  
The 8-bit commands (Increment Wiper and  
Decrement Wiper commands) contain a Command  
Byte, see Figure 7-1, while 16-bit commands (Read  
Data and Write Data commands) contain a Command  
Byte and a Data Byte. The Command Byte contains  
two data bits, see Figure 7-1.  
As the Command Byte is being loaded into the device  
(on the SDI pin), the device’s SDO pin is driving. The  
SDO pin will output high bits for the first six bits of that  
command. On the 7th bit, the SDO pin will output the  
CMDERR bit state (see Section 7.3 “Error  
Condition”). The 8th bit state depends on the  
command selected.  
Table 7-2 shows the supported commands for each  
memory location and the corresponding values on the  
SDI and SDO pins.  
Table 7-3 shows an overview of all the SPI commands  
and their interaction with other device features.  
TABLE 7-1:  
C1:C0  
COMMAND BIT OVERVIEW  
Operates on  
# of  
Bits  
Volatile/  
Non-Volatile  
memory  
Bit  
Command  
States  
11  
00  
01  
10  
Read Data  
16-Bits Both  
Write Data  
16-Bits Both  
Increment (1)  
Decrement (1)  
8-Bits Volatile Only  
8-Bits Volatile Only  
Note 1: High Voltage Increment and Decrement  
commands on select non-volatile memory  
locations  
enable/disable  
WiperLock  
Technology and the software Write  
Protect feature.  
16-bit Command  
Data Byte  
8-bit Command  
Command Byte  
Command Byte  
A A A A C C D D D D D D D D D D  
D D D D 1 0 9 8 7 6 5 4 3 2 1 0  
3 2 1 0  
A A A A C C D D  
D D D D 1 0 9 8  
3 2 1 0  
Command  
Bits  
C C  
1 0  
Data  
Bits  
0 0 = Write Data  
0 1 = INCR  
Data  
Bits  
Memory  
Address  
Memory  
Address  
1 0 = DECR  
1 1 = Read Data  
Command  
Bits  
Command  
Bits  
FIGURE 7-1:  
General SPI Command Formats.  
© 2009 Microchip Technology Inc.  
DS22233A-page 47  
 
 
 
MCP434X/436X  
TABLE 7-2:  
MEMORY MAP AND THE SUPPORTED COMMANDS  
Address  
SPI String (Binary)  
Data  
Command  
(10-bits) (1)  
Value  
Function  
MOSI (SDI pin)  
MISO (SDO pin) (2)  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
Write Data  
nn nnnn nnnn  
nn nnnn nnnn  
0000 00nn nnnn nnnn  
0000 11nn nnnn nnnn  
0000 0100  
00h  
Volatile Wiper 0  
Read Data  
Increment Wiper  
Decrement Wiper  
Write Data  
0000 1000  
1111 1111  
nn nnnn nnnn  
nn nnnn nnnn  
0001 00nn nnnn nnnn  
0001 11nn nnnn nnnn  
0001 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
01h  
02h  
03h  
Volatile Wiper 1  
NV Wiper 0  
Read Data  
Increment Wiper  
Decrement Wiper  
Write Data  
0001 1000  
1111 1111  
nn nnnn nnnn  
nn nnnn nnnn  
0010 00nn nnnn nnnn  
0010 11nn nnnn nnnn  
0010 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
Read Data  
(3)  
(4)  
HV Inc. (WL0 DIS)  
HV Dec. (WL0 EN)  
Write Data  
0010 1000  
1111 1111  
nn nnnn nnnn  
nn nnnn nnnn  
0011 00nn nnnn nnnn  
0011 11nn nnnn nnnn  
0011 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
NV Wiper 1  
Read Data  
(3)  
(4)  
HV Inc. (WL1 DIS)  
HV Dec. (WL1 EN)  
Write Data  
0011 1000  
1111 1111  
04h (5) Volatile  
TCON 0 Register  
05h (5) Status Register  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
0100 00nn nnnn nnnn  
0100 11nn nnnn nnnn  
0101 11nn nnnn nnnn  
0110 00nn nnnn nnnn  
0110 11nn nnnn nnnn  
0110 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 111n nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
Read Data  
Read Data  
Write Data  
06h  
07h  
08h  
09h  
Volatile Wiper 2  
Volatile Wiper 3  
NV Wiper 2  
Read Data  
Increment Wiper  
Decrement Wiper  
Write Data  
0110 1000  
1111 1111  
nn nnnn nnnn  
nn nnnn nnnn  
0111 00nn nnnn nnnn  
0111 11nn nnnn nnnn  
0111 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
Read Data  
Increment Wiper  
Decrement Wiper  
Write Data  
0111 1000  
1111 1111  
nn nnnn nnnn  
nn nnnn nnnn  
1000 00nn nnnn nnnn  
1000 11nn nnnn nnnn  
1000 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
Read Data  
(3)  
(4)  
HV Inc. (WL2 DIS)  
HV Dec. (WL2 EN)  
Write Data  
1000 1000  
1111 1111  
nn nnnn nnnn  
nn nnnn nnnn  
1001 00nn nnnn nnnn  
1001 11nn nnnn nnnn  
1001 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
NV Wiper 3  
Read Data  
(3)  
(4)  
HV Inc. (WL3 DIS)  
HV Dec. (WL3 EN)  
Write Data  
1001 1000  
1111 1111  
0Ah (5) Volatile  
TCON 1 Register  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
1010 00nn nnnn nnnn  
1010 11nn nnnn nnnn  
1011 00nn nnnn nnnn  
1011 11nn nnnn nnnn  
1100 00nn nnnn nnnn  
1100 11nn nnnn nnnn  
1101 00nn nnnn nnnn  
1101 11nn nnnn nnnn  
1110 00nn nnnn nnnn  
1110 11nn nnnn nnnn  
1111 00nn nnnn nnnn  
1111 11nn nnnn nnnn  
1111 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
Read Data  
0Bh (5) Data EEPROM  
0Ch (5) Data EEPROM  
0Dh (5) Data EEPROM  
0Eh (5) Data EEPROM  
Write Data  
Read Data  
Write Data  
Read Data  
Write Data  
Read Data  
Write Data  
Read Data  
Write Data  
0Fh  
Data EEPROM  
Read Data  
(3)  
HV Inc. (WP DIS)  
HV Dec. (WP EN)  
(4)  
1111 1000  
1111 1111  
Note 1:  
2:  
The Data Memory is only 9-bits wide, so the MSb is ignored by the device.  
All these Address/Command combinations are valid, so the CMDERR bit is set. Any other Address/Command combination is a  
command error state and the CMDERR bit will be clear.  
3:  
4:  
5:  
Disables WiperLock Technology for wiper 0, wiper 1, wiper 2, wiper3, or disables Write Protect.  
Enables WiperLock Technology for wiper 0, wiper 1, wiper 2, wiper3, or enables Write Protect.  
Increment or Decrement commands are invalid for these addresses.  
DS22233A-page 48  
© 2009 Microchip Technology Inc.  
 
 
 
 
 
 
MCP434X/436X  
7.3.1  
ABORTING A TRANSMISSION  
7.2  
Data Byte  
All SPI transmissions must have the correct number of  
SCK pulses to be executed. The command is not  
executed until the complete number of clocks have  
been received. Some commands also require the CS  
pin to be forced inactive (VIH). If the CS pin is forced to  
the inactive state (VIH) the serial interface is reset.  
Partial commands are not executed.  
Only the Read Command and the Write Command use  
the Data Byte, see Figure 7-1. These commands  
concatenate the 8 bits of the Data Byte with the one  
data bit (D8) contained in the Command Byte to form  
9-bits of data (D8:D0). The Command Byte format  
supports up to 9-bits of data so that the 8-bit resistor  
network can be set to Full Scale (100h or greater). This  
allows wiper connections to Terminal A and to  
Terminal B.  
SPI is more susceptible to noise than other bus  
protocols. The most likely case is that this noise  
corrupts the value of the data being clocked into the  
MCP43XX or the SCK pin is injected with extra clock  
pulses. This may cause data to be corrupted in the  
device, or a command error to occur, since the address  
and command bits were not a valid combination. The  
extra SCK pulse will also cause the SPI data (SDI) and  
clock (SCK) to be out of sync. Forcing the CS pin to the  
inactive state (VIH) resets the serial interface. The SPI  
interface will ignore activity on the SDI and SCK pins  
until the CS pin transition to the active state is detected  
(VIH to VIL or VIH to VIHH).  
The D9 bit is currently unused, and corresponds to the  
position on the SDO data of the CMDERR bit.  
7.3  
Error Condition  
The CMDERR bit indicates if the four address bits  
received (AD3:AD0) and the two command bits  
received (C1:C0) are  
a valid combination (see  
Table 4-1). The CMDERR bit is high if the combination  
is valid and low if the combination is invalid.  
The command error bit will also be low if a write to a  
Non-Volatile Address has been specified and another  
SPI command occurs before the CS pin is driven  
inactive (VIH).  
Note 1: When data is not being received by the  
MCP43XX, It is recommended that the  
CS pin be forced to the inactive level (VIL)  
SPI commands that do not have a multiple of 8 clocks  
are ignored.  
2: It is also recommended that long  
continuous command strings should be  
broken down into single commands or  
shorter continuous command strings.  
This reduces the probability of noise on  
the SCK pin corrupting the desired SPI  
commands.  
Once an error condition has occurred, any following  
commands are ignored. All following SDO bits will be  
low until the CMDERR condition is cleared by forcing  
the CS pin to the inactive state (VIH).  
© 2009 Microchip Technology Inc.  
DS22233A-page 49  
MCP434X/436X  
7.4  
Continuous Commands  
Note 1: It is recommended that while the CS pin is  
active, only one type of command should  
be issued. When changing commands, it  
is recommended to take the CS pin  
inactive then force it back to the active  
state.  
The device supports the ability to execute commands  
continuously. While the CS pin is in the active state (VIL  
or VIHH). Any sequence of valid commands may be  
received.  
The following example is a valid sequence of events:  
2: It is also recommended that long  
command strings should be broken down  
into shorter command strings. This  
reduces the probability of noise on the  
SCK pin corrupting the desired SPI  
command string.  
1. CS pin driven active (VIL or VIHH).  
2. Read Command.  
3. Increment Command (Wiper 0).  
4. Increment Command (Wiper 0).  
5. Decrement Command (Wiper 1).  
6. Write Command (Volatile memory).  
7. Write Command (Non-Volatile memory).  
8. CS pin driven inactive (VIH).  
DS22233A-page 50  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
TABLE 7-3:  
COMMANDS  
Operates on  
Volatile/  
Non-Volatile (VIHH) on  
High  
Voltage  
Works  
when  
Wiper is  
“locked”?  
Writes  
Value in  
EEPROM  
Impact on  
WiperLock or  
Write Protect  
# of  
Bits  
Command Name  
memory  
CS pin?  
Write Data  
16-Bits  
16-Bits  
8-Bits  
8-Bits  
16-Bits  
16-Bits  
8-Bits  
8-Bits  
8-Bits  
Yes (1)  
Both  
Both  
unlocked (1)  
unlocked (1)  
unlocked (1)  
unlocked (1)  
unchanged  
unchanged  
unchanged  
unchanged  
No  
No  
No  
No  
No  
Yes  
No  
No  
Yes  
Read Data  
Increment Wiper  
Volatile Only  
Volatile Only  
Both  
Decrement Wiper  
High Voltage Write Data  
High Voltage Read Data  
High Voltage Increment Wiper  
High Voltage Decrement Wiper  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Both  
Volatile Only  
Volatile Only  
(2)  
Modify Write Protect or Wiper-  
Lock Technology (High Voltage) -  
Enable  
Non-Volatile  
Only (2)  
locked/  
protected (2)  
(3)  
Modify Write Protect or Wiper-  
Lock Technology (High Voltage) -  
Disable  
8-Bits  
Non-Volatile  
Only (3)  
Yes  
unlocked/  
unprotected  
Yes  
(3)  
Note 1: This command will only complete if wiper is “unlocked” (WiperLock Technology is Disabled).  
2: If the command is executed using address 02h, 03h, 08h, or 09h then that corresponding wiper is locked or  
if with address 0Fh, then Write Protect is enabled.  
3: If the command is executed using with address 02h, 03h, 08h, or 09h, then that corresponding wiper is  
unlocked or if with address 0Fh, then Write Protect is disabled.  
© 2009 Microchip Technology Inc.  
DS22233A-page 51  
 
 
 
MCP434X/436X  
7.5.2  
SINGLE WRITE TO NON-VOLATILE  
MEMORY  
7.5  
Write Data  
Normal and High Voltage  
The sequence to write to a single non-volatile memory  
location is the same as a single write to volatile memory  
with the exception that after the CS pin is driven  
inactive (VIH), the EEPROM write cycle (tWC) is started.  
A write cycle will not start if the write command isn’t  
exactly 16 clocks pulses. This protects against system  
issues from corrupting the Non-Volatile memory  
locations.  
The Write command is a 16-bit command. The Write  
Command can be issued to both the Volatile and  
Non-Volatile memory locations. The format of the  
command is shown in Figure 7-2.  
A Write command to a Volatile memory location  
changes that location after a properly formatted Write  
Command (16-clock) have been received.  
A Write command to a Non-Volatile memory location  
will only start a write cycle after a properly formatted  
Write Command (16-clock) have been received and the  
CS pin transitions to the inactive state (VIH).  
After the CS pin is driven inactive (VIH), the serial  
interface may immediately be re-enabled by driving the  
CS pin to the active state (VILor VIHH).  
During an EEPROM write cycle, only serial commands  
to Volatile memory (addresses 00h, 01h, 04h, 05h, 06h,  
07h, and 0Ah) are accepted. All other serial commands  
are ignored until the EEPROM write cycle (twc) com-  
pletes. This allows the Host Controller to operate on the  
Volatile Wiper registers and the TCON register, and to  
Read the Status Register. The EEWA bit in the Status  
register indicates the status of an EEPROM Write  
Cycle.  
Note:  
Writes to certain memory locations will be  
dependant on the state of the WiperLock  
Technology bits and the Write Protect bit.  
7.5.1  
SINGLE WRITE TO VOLATILE  
MEMORY  
The write operation requires that the CS pin be in the  
active state (VILor VIHH). Typically, the CS pin will be in  
the inactive state (VIH) and is driven to the active state  
(VIL). The 16-bit Write Command (Command Byte and  
Data Byte) is then clocked in on the SCK and SDI pins.  
Once all 16 bits have been received, the specified  
volatile address is updated. A write will not occur if the  
write command isn’t exactly 16 clocks pulses. This  
protects against system issues from corrupting the  
Non-Volatile memory locations.  
Once a write command to a Non-Volatile memory  
location has been received, NO other SPI commands  
should be received before the CS pin transitions to the  
inactive state (VIH) or the current SPI command will  
have a Command Error (CMDERR) occur.  
Figure 6-2 and Figure 6-3 show possible waveforms  
for a single write.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
0
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid Address/Command combination  
Invalid Address/Command combination (1)  
SDO  
Note 1: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the inactive state).  
FIGURE 7-2:  
Write Command - SDI and SDO States.  
DS22233A-page 52  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
7.5.3  
CONTINUOUS WRITES TO  
VOLATILE MEMORY  
7.5.4  
CONTINUOUS WRITES TO  
NON-VOLATILE MEMORY  
Continuous writes are possible only when writing to the  
volatile memory registers (address 00h, 01h, and 04h).  
Continuous writes to non-volatile memory are not  
allowed, and attempts to do so will result in a command  
error (CMDERR) condition.  
Figure 7-3 shows the sequence for three continuous  
writes. The writes do not need to be to the same volatile  
memory address.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
0
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDI  
1
1
1
1
1
0
1
0
1*  
1
1
1
1
1
1
1
1
1
SDO  
A
D
3
A
D
2
A
D
1
A
D
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
1
1
1
1
1
0
1
0
1*  
1
1
1
1
1
1
1
1
1
A
D
3
A
D
2
A
D
1
A
D
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
1
1
1
1
1
1
1*  
1
1
1
1
1
1
1
1
1
Note 1: If a Command Error (CMDERR) occurs at this bit location (*), then all following SDO bits will be  
driven low until the CS pin is driven inactive (VIH).  
FIGURE 7-3:  
Continuous Write Sequence (Volatile Memory only).  
© 2009 Microchip Technology Inc.  
DS22233A-page 53  
 
MCP434X/436X  
7.6.1  
SINGLE READ  
7.6  
Read Data  
Normal and High Voltage  
The read operation requires that the CS pin be in the  
active state (VILor VIHH). Typically, the CS pin will be in  
the inactive state (VIH) and is driven to the active state  
(VILor VIHH). The 16-bit Read Command (Command  
Byte and Data Byte) is then clocked in on the SCK and  
SDI pins. The SDO pin starts driving data on the 7th bit  
(CMDERR bit) and the addressed data comes out on  
the 8th through 16th clocks. Figure 6-2 through  
Figure 6-3 show possible waveforms for a single read.  
The Read command is a 16-bit command. The Read  
Command can be issued to both the Volatile and  
Non-Volatile memory locations. The format of the  
command is shown in Figure 7-4.  
The first 6 bits of the Read command determine the  
address and the command. The 7th clock will output  
the CMDERR bit on the SDO pin. The remaining  
9-clocks the device will transmit the 9 data bits (D8:D0)  
of the specified address (AD3:AD0).  
Figure 7-4 shows the SDI and SDO information for a  
Read command.  
During a write cycle (Write or High Voltage Write to a  
Non-Volatile memory location) the Read command can  
only read the Volatile memory locations. By reading the  
Status Register (04h), the Host Controller can  
determine when the write cycle has completed (via the  
state of the EEWA bit).  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
1
1
X
X
X
X
X
X
X
X
X
X
SDI  
1
1
1
1
1
1
1
1
1
0
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D Valid Address/Command combination  
0
SDO  
1
1
1
1
0
0
0
0
0
0
0
0
0
Attempted Non-Volatile Memory Read  
during Non-Volatile Memory Write Cycle  
READ DATA  
Read Command - SDI and SDO States.  
FIGURE 7-4:  
DS22233A-page 54  
© 2009 Microchip Technology Inc.  
 
MCP434X/436X  
Figure 7-5 shows the sequence for three continuous  
reads. The reads do not need to be to the same  
memory address.  
7.6.2  
CONTINUOUS READS  
Continuous reads allow the devices memory to be read  
quickly. Continuous reads are possible to all memory  
locations. If a non-volatile memory write cycle is  
occurring, then Read commands may only access the  
volatile memory locations.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
1
1
X
X
X
X
X
X
X
X
X
X
SDI  
1
1
1
1
1
1
1*  
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDO  
A
D
3
A
D
2
A
D
1
A
D
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1*  
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
D
3
A
D
2
A
D
1
A
D
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1*  
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Note 1: If a Command Error (CMDERR) occurs at this bit location (*), then all following SDO bits will be  
driven low until the CS pin is driven inactive (VIH).  
FIGURE 7-5:  
Continuous Read Sequence.  
© 2009 Microchip Technology Inc.  
DS22233A-page 55  
 
MCP434X/436X  
7.7.1  
SINGLE INCREMENT  
7.7  
Increment Wiper  
Normal and High Voltage  
Typically, the CS pin starts at the inactive state (VIH),  
but may be already be in the active state due to the  
completion of another command.  
The Increment Command is an 8-bit command. The  
Increment Command can only be issued to volatile  
memory locations. The format of the command is  
shown in Figure 7-6.  
Figure 6-4 through Figure 6-5 show possible  
waveforms for a single increment. The increment  
operation requires that the CS pin be in the active state  
(VILor VIHH). Typically, the CS pin will be in the inactive  
state (VIH) and is driven to the active state (VILor VIHH).  
The 8-bit Increment Command (Command Byte) is  
then clocked in on the SDI pin by the SCK pins. The  
SDO pin drives the CMDERR bit on the 7th clock.  
An Increment Command to the volatile memory  
location changes that location after  
formatted command (8-clocks) have been received.  
a properly  
Increment commands provide a quick and easy  
method to modify the value of the volatile wiper location  
by +1 with minimal overhead.  
The wiper value will increment up to 100h on 8-bit  
devices and 80h on 7-bit devices. After the wiper value  
has reached Full Scale (8-bit =100h, 7-bit =80h), the  
wiper value will not be incremented further. If the Wiper  
register has a value between 101h and 1FFh, the  
Increment command is disabled. See Table 7-4 for  
additional information on the Increment Command  
versus the current volatile wiper value.  
COMMAND BYTE  
(INCR COMMAND (n+1))  
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
Note 1, 2  
Note 1, 3  
The Increment operations only require the Increment  
SDO  
command byte while the CS pin is active (VILor VIHH  
)
for a single increment.  
Note 1: Only functions when writing the volatile  
After the wiper is incremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
unexpected transitions on the SCK pin do not cause  
the wiper setting to change. Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired increment occurs.  
wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
3: Invalid Address/Command combination  
all following SDO bits will be low until the  
CMDERR condition is cleared.  
(the CS pin is forced to the inactive  
state).  
TABLE 7-4:  
INCREMENT OPERATION VS.  
VOLATILE WIPER VALUE  
4: If a Command Error (CMDERR) occurs  
at this bit location (*), then all following  
SDO bits will be driven low until the CS  
pin is driven inactive (VIH).  
Current Wiper  
Setting  
Increment  
Wiper (W)  
Command  
Properties  
7-bit  
Pot  
8-bit  
Pot  
Operates?  
FIGURE 7-6:  
Increment Command -  
3FFh  
081h  
3FFh Reserved  
101h (Full Scale (W = A))  
No  
No  
SDI and SDO States.  
080h  
100h Full Scale (W = A)  
Note:  
Table 7-2 shows the valid addresses for  
the Increment Wiper command. Other  
addresses are invalid.  
07Fh  
041h  
0FFh W = N  
081  
040h  
080h W = N (Mid Scale)  
Yes  
Yes  
03Fh  
001h  
07Fh W = N  
001  
000h  
000h Zero Scale (W = B)  
DS22233A-page 56  
© 2009 Microchip Technology Inc.  
 
 
 
MCP434X/436X  
Increment commands can be sent repeatedly without  
raising CS until a desired condition is met. The value in  
the Volatile Wiper register can be read using a Read  
Command and written to the corresponding  
Non-Volatile Wiper EEPROM using a Write Command.  
7.7.2  
CONTINUOUS INCREMENTS  
Continuous Increments are possible only when writing  
to the volatile memory registers (address 00h, and  
01h).  
Figure 7-7 shows a Continuous Increment sequence  
for three continuous writes. The writes do not need to  
be to the same volatile memory address.  
When executing a continuous command string, the  
Increment command can be followed by any other valid  
command.  
When executing an continuous Increment commands,  
the selected wiper will be altered from n to n+1 for each  
Increment command received. The wiper value will  
increment up to 100h on 8-bit devices and 80h on 7-bit  
devices. After the wiper value has reached Full Scale  
(8-bit =100h, 7-bit =80h), the wiper value will not be  
incremented further. If the Wiper register has a value  
between 101h and 1FFh, the Increment command is  
disabled.  
The wiper terminal will move after the command has  
been received (8th clock).  
After the wiper is incremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
unexpected transitions (on the SCK pin do not cause  
the wiper setting to change). Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired increment occurs.  
COMMAND BYTE  
COMMAND BYTE  
(INCR COMMAND (n+2))  
COMMAND BYTE  
(INCR COMMAND (n+1))  
(INCR COMMAND (n+3))  
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1*  
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1*  
0
1
0
0
0
Note 1, 2  
Note 3, 4  
Note 3, 4  
Note 3, 4  
SDO  
1
0
0
1
1
0
Note 1: Only functions when writing the volatile wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
3: Invalid Address/Command combination.  
4: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the inactive state).  
FIGURE 7-7:  
Continuous Increment Command - SDI and SDO States.  
© 2009 Microchip Technology Inc.  
DS22233A-page 57  
 
MCP434X/436X  
7.8.1  
SINGLE DECREMENT  
7.8  
Decrement Wiper  
Normal and High Voltage  
Typically, the CS pin starts at the inactive state (VIH),  
but may already be in the active state due to the  
completion of another command.  
The Decrement Command is an 8-bit command. The  
Decrement Command can only be issued to volatile  
memory locations. The format of the command is  
shown in Figure 7-6.  
Figure 6-4 through Figure 6-5 show possible  
waveforms for a single Decrement. The decrement  
operation requires that the CS pin be in the active state  
(VILor VIHH). Typically, the CS pin will be in the inactive  
state (VIH) and is driven to the active state (VILor VIHH).  
Then the 8-bit Decrement Command (Command Byte)  
is clocked in on the SDI pin by the SCK pins. The SDO  
pin drives the CMDERR bit on the 7th clock.  
A Decrement Command to the volatile memory location  
changes that location after a properly formatted  
command (8 clocks) have been received.  
Decrement commands provide a quick and easy  
method to modify the value of the volatile wiper location  
by -1 with minimal overhead.  
The wiper value will decrement from the wiper’s Full  
Scale value (100h on 8-bit devices and 80h on 7-bit  
devices). Above the wiper’s Full Scale value  
(8-bit =101h to 1FFh, 7-bit = 81h to FFh), the  
decrement command is disabled. If the Wiper register  
has a Zero Scale value (000h), then the wiper value will  
not decrement. See Table 7-4 for additional information  
on the Decrement Command vs. the current volatile  
wiper value.  
COMMAND BYTE  
(DECR COMMAND (n+1))  
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
Note 1, 2  
Note 1, 3  
SDO  
The Decrement commands only require the Decrement  
command byte, while the CS pin is active (VILor VIHH  
)
Note 1: Only functions when writing the volatile  
for a single decrement.  
wiper registers (AD3:AD0) 0h and 1h.  
After the wiper is decremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
unexpected transitions on the SCK pin do not cause  
the wiper setting to change. Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired decrement occurs.  
2: Valid Address/Command combination.  
3: Invalid Address/Command combination  
all following SDO bits will be low until the  
CMDERR condition is cleared.  
(the CS pin is forced to the inactive  
state).  
TABLE 7-5:  
DECREMENT OPERATION VS.  
VOLATILE WIPER VALUE  
4: If a Command Error (CMDERR) occurs  
at this bit location (*), then all following  
SDO bits will be driven low until the CS  
pin is driven inactive (VIH).  
Current Wiper  
Setting  
Decrement  
Wiper (W)  
Command  
Properties  
7-bit  
Pot  
8-bit  
Pot  
Operates?  
FIGURE 7-8:  
Decrement Command -  
SDI and SDO States.  
3FFh  
081h  
3FFh Reserved  
101h (Full Scale (W = A))  
No  
Note:  
Table 7-2 shows the valid addresses for  
the Decrement Wiper command. Other  
addresses are invalid.  
080h  
100h Full Scale (W = A)  
Yes  
07Fh  
041h  
0FFh W = N  
081  
040h  
080h W = N (Mid Scale)  
Yes  
No  
03Fh  
001h  
07Fh W = N  
001  
000h  
000h Zero Scale (W = B)  
DS22233A-page 58  
© 2009 Microchip Technology Inc.  
 
 
MCP434X/436X  
Decrement commands can be sent repeatedly without  
raising CS until a desired condition is met. The value in  
the Volatile Wiper register can be read using a Read  
Command and written to the corresponding  
Non-Volatile Wiper EEPROM using a Write Command.  
7.8.2  
CONTINUOUS DECREMENTS  
Continuous Decrements are possible only when writing  
to the volatile memory registers (address 00h, 01h, and  
04h).  
Figure 7-9 shows a continuous Decrement sequence  
for three continuous writes. The writes do not need to  
be to the same volatile memory address.  
When executing a continuous command string, the  
Decrement command can be followed by any other  
valid command.  
When executing continuous Decrement commands,  
the selected wiper will be altered from n to n-1 for each  
Decrement command received. The wiper value will  
decrement from the wiper’s Full Scale value (100h on  
8-bit devices and 80h on 7-bit devices). Above the  
wiper’s Full Scale value (8-bit =101h to 1FFh,  
7-bit = 81h to FFh), the decrement command is  
disabled. If the Wiper register has a Zero Scale value  
(000h), then the wiper value will not decrement. See  
Table 7-4 for additional information on the Decrement  
Command vs. the current volatile wiper value.  
The wiper terminal will move after the command has  
been received (8th clock).  
After the wiper is decremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
“unexpected” transitions (on the SCK pin do not cause  
the wiper setting to change). Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired decrement occurs.  
COMMAND BYTE  
COMMAND BYTE  
(DECR COMMAND (n-1))  
COMMAND BYTE  
(DECR COMMAND (n-1))  
(DECR COMMAND (n-1))  
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1*  
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1*  
0
1
0
0
0
Note 1, 2  
Note 3, 4  
Note 3, 4  
Note 3, 4  
SDO  
1
0
0
1
1
0
Note 1: Only functions when writing the volatile wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
3: Invalid Address/Command combination.  
4: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the inactive state).  
FIGURE 7-9:  
Continuous Decrement Command - SDI and SDO States.  
© 2009 Microchip Technology Inc.  
DS22233A-page 59  
 
MCP434X/436X  
7.9.1  
SINGLE ENABLE WRITE PROTECT  
OR WIPERLOCK TECHNOLOGY  
(HIGH VOLTAGE)  
7.9  
Modify Write Protect or WiperLock  
Technology (High Voltage)  
Enable and Disable  
Figure 6-4 through Figure 6-5 show possible  
waveforms for a single Modify Write Protect or  
WiperLock Technology command.  
This command is a special case of the High Voltage  
Decrement Wiper and High Voltage Increment Wiper  
commands to the non-volatile memory locations 02h,  
03h, and 0Fh. This command is used to enable or  
disable either the software Write Protect, wiper 0, wiper  
1, wiper 2 and wiper 3 WiperLock Technology.  
Table 7-6 shows the memory addresses, the High  
Voltage command and the result of those commands  
on the non-volatile WP, WL0 WL1, WL2, or WL3 bits.  
The format of the command is shown in Figure 7-8  
(Enable) or Figure 7-6 (Disable).  
A Modify Write Protect or WiperLock Technology  
Command will only start an EEPROM write cycle (twc  
)
after a properly formatted Command (8-clocks) has  
been received and the CS pin transitions to the inactive  
state (VIH).  
After the CS pin is driven inactive (VIH), the serial  
interface may immediately be re-enabled by driving the  
CS pin to the active state (VILor VIHH).  
During an EEPROM write cycle, only serial commands  
to Volatile memory (addresses 00h, 01h, 04h, 05h, 06h,  
07h, and 0Ah) are accepted. All other serial commands  
are ignored until the EEPROM write cycle (twc) com-  
pletes. This allows the Host Controller to operate on the  
Volatile Wiper registers and the TCON register, and to  
Read the Status Register. The EEWA bit in the Status  
register indicates the status of an EEPROM Write  
Cycle.  
TABLE 7-6:  
ADDRESS MAP TO MODIFY WRITE PROTECT AND WIPERLOCK TECHNOLOGY  
Command’s and Result  
Memory  
Address  
High Voltage Decrement Wiper  
High Voltage Increment Wiper  
00h  
01h  
Wiper 0 register is decremented  
Wiper 1 register is decremented  
WL0 is enabled  
Wiper 0 register is incremented  
Wiper 1 register is incremented  
WL0 is disabled  
02h  
03h  
WL1 is enabled  
WL1 is disabled  
04h (1)  
TCON0 register not changed, CMDERR bit is  
set  
TCON0 register not changed, CMDERR bit is  
set  
05h (1)  
STATUS register not changed, CMDERR bit is  
set  
STATUS register not changed, CMDERR bit is  
set  
06h  
07h  
Wiper 2 register is decremented  
Wiper 3 register is decremented  
WL2 is enabled  
Wiper 2 register is incremented  
Wiper 3 register is incremented  
WL2 is disabled  
08h  
09h  
WL3 is enabled  
WL3 is disabled  
0Ah (1)  
TCON1 register not changed, CMDERR bit is  
set  
TCON1 register not changed, CMDERR bit is  
set  
0Bh - 0Eh (1)  
0Fh  
Reserved  
Reserved  
WP is enabled  
WP is disabled  
Note 1: Reserved addresses: Increment or Decrement commands are invalid for these addresses.  
DS22233A-page 60  
© 2009 Microchip Technology Inc.  
 
 
MCP434X/436X  
8.0  
APPLICATIONS EXAMPLES  
5V  
3V  
Voltage  
Non-volatile digital potentiometers have a multitude of  
practical uses in modern electronic circuits. The most  
popular uses include precision calibration of set point  
thresholds, sensor trimming, LCD bias trimming, audio  
attenuation, adjustable power supplies, motor control  
overcurrent trip setting, adjustable gain amplifiers and  
offset trimming. The MCP434X/436X devices can be  
used to replace the common mechanical trim pot in  
applications where the operating and terminal voltages  
are within CMOS process limitations (VDD = 2.7V to  
5.5V).  
Regulator  
MCP4XXX  
PIC MCU  
SDI  
CS  
SCK  
WP  
SDI  
CS  
SCK  
WP  
RESET  
SDO  
I/O  
SDO  
FIGURE 8-1:  
System 1.  
Example Split Rail  
8.1  
Split Rail Applications  
All inputs that would be used to interface to a Host  
Controller support High Voltage on their input pin. This  
allows the MCP43XX device to be used in split power  
rail applications.  
5V  
Voltage  
Regulator  
3V  
An example of this is a battery application where the  
PIC® MCU is directly powered by the battery supply  
(4.8V) and the MCP43XX device is powered by the  
3.3V regulated voltage.  
MCP4XXX  
PIC MCU  
SDI  
CS  
SCK  
WP  
RESET  
SDI  
CS  
SCK  
WP  
I/O  
For SPI applications, these inputs are:  
• CS  
• SCK  
SDO  
SDO  
• SDI (or SDI/SDO)  
• WP  
FIGURE 8-2:  
Example Split Rail  
• RESET  
System 2.  
Figure 8-1 through Figure 8-2 show three example split  
rail systems. In this system, the MCP43XX interface  
input signals need to be able to support the PIC MCU  
output high voltage (VOH).  
TABLE 8-1:  
PIC (1)  
V
- V COMPARISONS  
MCP4XXX (2)  
OH  
IH  
Comment  
In Example #1 (Figure 8-1), the MCP43XX interface  
input signals need to be able to support the PIC MCU  
output high voltage (VOH). If the split rail voltage delta  
becomes too large, then the customer may be required  
to do some level shifting due to MCP43XX VOH levels  
related to Host Controller VIH levels.  
VDD VIH VOH VDD VIH  
VOH  
5.5  
5.0  
4.5  
3.3  
3.0  
2.7  
4.4  
4.0  
3.6  
4.4  
4.0  
3.6  
2.7 1.215 (3)  
(3)  
3.0 1.35  
3.3 1.485 (3)  
2.64 2.64 4.5 2.025 — (3)  
(3)  
2.4  
2.4  
5.0 2.25  
In Example #2 (Figure 8-2), the MCP43XX interface  
input signals need to be able to support the lower  
voltage of the PIC MCU output high voltage level (VOH).  
2.16 2.16 5.5 2.475 — (3)  
Note 1: VOH minimum = 0.8 * VDD  
;
VOL maximum = 0.6V  
VIH minimum = 0.8 * VDD  
VIL maximum = 0.2 * VDD  
Table 8-1 shows an example PIC microcontroller I/O  
;
;
voltage  
specifications  
and  
the  
MCP43XX  
specifications. So this PIC MCU operating at 3.3V will  
drive a VOH at 2.64V, and for the MCP43XX operating  
at 5.5V, the VIH is 2.47V. Therefore, the interface  
signals meet specifications.  
2: VOH minimum (SDA only) =;  
VOL maximum = 0.2 * VDD  
VIH minimum = 0.45 * VDD  
VIL maximum = 0.2 * VDD  
;
3: The only MCP4XXX output pin is SDO,  
which is Open-Drain (or Open-Drain with  
Internal Pull-up) with High Voltage Support  
© 2009 Microchip Technology Inc.  
DS22233A-page 61  
 
 
 
 
 
 
MCP434X/436X  
8.2  
Techniques to Force the CS Pin to  
VIHH  
PIC10F206  
R1  
GP0  
The circuit in Figure 8-3 shows a method using the  
TC1240A doubling charge pump. When the SHDN pin  
is high, the TC1240A is off, and the level on the CS pin  
is controlled by the PIC® microcontrollers (MCUs) IO2  
pin.  
MCP4XXX  
GP2  
CS  
When the SHDN pin is low, the TC1240A is on and the  
VOUT voltage is 2 * VDD. The resistor R1 allows the CS  
pin to go higher than the voltage such that the PIC  
C1  
C2  
FIGURE 8-4:  
MCP4XXX Non-volatile  
MCU’s IO2 pin “clamps” at approximately VDD  
.
Digital Potentiometer Evaluation Board  
(MCP402XEV) implementation to generate the  
TC1240A  
VIN  
V
voltage.  
IHH  
C+  
PIC MCU  
C1  
C-  
SHDN  
8.3  
Using Shutdown Modes  
VOUT  
IO1  
Figure 8-5 shows a possible application circuit where  
the independent terminals could be used.  
Disconnecting the wiper allows the transistor input to  
be taken to the Bias voltage level (disconnecting A and  
or B may be desired to reduce system current).  
Disconnecting Terminal A modifies the transistor input  
by the RBW rheostat value to the Common B.  
Disconnecting Terminal B modifies the transistor input  
by the RAW rheostat value to the Common A. The  
Common A and Common B connections could be  
MCP4XXX  
R1  
CS  
IO2  
C2  
FIGURE 8-3:  
Generate the V  
Using the TC1240A to  
Voltage.  
IHH  
connected to VDD and VSS  
.
The circuit in Figure 8-4 shows the method used on the  
MCP402X Non-volatile Digital Potentiometer  
Evaluation Board (Part Number: MCP402XEV). This  
method requires that the system voltage be  
approximately 5V. This ensures that when the  
PIC10F206 enters a brown-out condition, there is an  
insufficient voltage level on the CS pin to change the  
stored value of the wiper. The MCP402X Non-volatile  
Digital Potentiometer Evaluation Board User’s Guide  
(DS51546) contains a complete schematic.  
Common A  
Input  
A
GP0 is a general purpose I/O pin, while GP2 can either  
be a general purpose I/O pin or it can output the internal  
clock.  
To base  
of Transistor  
(or Amplifier)  
W
For the serial commands, configure the GP2 pin as an  
input (high impedance). The output state of the GP0 pin  
will determine the voltage on the CS pin (VIL or VIH).  
For high-voltage serial commands, force the GP0  
output pin to output a high level (VOH) and configure the  
GP2 pin to output the internal clock. This will form a  
charge pump and increase the voltage on the CS pin  
(when the system voltage is approximately 5V).  
B
Input  
Common B  
Balance  
Bias  
Example Application Circuit  
FIGURE 8-5:  
using Terminal Disconnects.  
DS22233A-page 62  
© 2009 Microchip Technology Inc.  
 
 
 
MCP434X/436X  
8.4.2  
LAYOUT CONSIDERATIONS  
8.4  
Design Considerations  
Several layout considerations may be applicable to  
your application. These may include:  
In the design of a system with the MCP43XX devices,  
the following considerations should be taken into  
account:  
Noise  
Footprint Compatibility  
PCB Area Requirements  
Power Supply Considerations  
Layout Considerations  
8.4.2.1  
Noise  
8.4.1  
POWER SUPPLY  
CONSIDERATIONS  
Inductively-coupled AC transients and digital switching  
noise can degrade the input and output signal integrity,  
potentially masking the MCP43XX’s performance.  
Careful board layout minimizes these effects and  
increases the Signal-to-Noise Ratio (SNR). Multi-layer  
The typical application will require a bypass capacitor  
in order to filter high-frequency noise, which can be  
induced onto the power supply's traces. The bypass  
capacitor helps to minimize the effect of these noise  
sources on signal integrity. Figure 8-6 illustrates an  
appropriate bypass strategy.  
boards utilizing  
a low-inductance ground plane,  
isolated inputs, isolated outputs and proper decoupling  
are critical to achieving the performance that the silicon  
is capable of providing. Particularly harsh  
environments may require shielding of critical signals.  
In this example, the recommended bypass capacitor  
value is 0.1 µF. This capacitor should be placed as  
close (within 4 mm) to the device power pin (VDD) as  
possible.  
If low noise is desired, breadboards and wire-wrapped  
boards are not recommended.  
The power source supplying these devices should be  
as clean as possible. If the application circuit has  
separate digital and analog power supplies, VDD and  
VSS should reside on the analog plane.  
8.4.2.2  
Footprint Compatibility  
The specification of the MCP43XX pinouts was done to  
allow systems to be designed to easily support the use  
of either the dual (MCP42XX) or quad (MCP43XX)  
device.  
VDD  
Figure 8-7 shows how the dual pinout devices fit on the  
quad device footprint. For the Rheostat devices, the  
dual device is in the MSOP package, so the footprints  
would need to be offset from each other.  
0.1 µF  
VDD  
MCP43X1 Quad Potentiometers  
0.1 µF  
P2A  
P2W  
P2B  
VDD  
SDO  
P3A  
P3W  
P3B  
CS  
SCK  
SDI  
20  
19  
18  
17  
16  
1
2
3
4
5
6
7
8
9
10  
15 RESET  
14 WP  
A
W
MCP42X1 Pinout (1)  
VSS  
P0B  
12  
P1B  
P1W  
P1A  
U/D  
P0W  
P0A  
12  
11  
TSSOP  
MCP43X2 Quad Rheostat  
CS  
B
P2W  
P2B  
VDD  
SDO  
P0B  
P0W  
P1W  
P3W  
P3B  
CS  
SCK  
SDI  
VSS  
P1B  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
VSS  
VSS  
MCP42X2 Pinout  
FIGURE 8-6:  
Typical Microcontroller  
8
Connections.  
TSSOP  
Note 1: Pin 15 (RESET) is the Shutdown (SHDN)  
pin on the MCP42x1 device.  
FIGURE 8-7:  
Quad Pinout (TSSOP  
Package) vs. Dual Pinout.  
© 2009 Microchip Technology Inc.  
DS22233A-page 63  
 
 
 
 
 
 
MCP434X/436X  
Figure 8-8 shows possible layout implementations for  
an application to support the quad and dual options on  
the same PCB.  
8.4.2.3  
PCB Area Requirements  
In some applications, PCB area is a criteria for device  
selection. Table 8-2 shows the package dimensions  
and area for the different package options. The table  
also shows the relative area factor compared to the  
smallest area. For space critical applications, the QFN  
package would be the suggested package.  
Potentiometers Devices  
MCP43X1  
(1)  
TABLE 8-2:  
Package  
PACKAGE FOOTPRINT  
Package Footprint  
MCP42X1  
Dimensions  
(mm)  
Type  
Code  
X
Y
Rheostat Devices  
MCP42X2  
14 TSSOP  
ST  
ML  
ST  
5.10 6.40 32.64 2.04  
4.00 4.00 16.00  
6.60 6.40 42.24 2.64  
QFN  
20  
1
TSSOP  
MCP43X2  
Note 1: Does not include recommended land  
pattern dimensions.  
8.4.3  
RESISTOR TEMPCO  
Characterization curves of the resistor temperature  
coefficient (Tempco) are shown in Figure 2-8,  
Figure 2-19, Figure 2-29, and Figure 2-39.  
FIGURE 8-8:  
Dual Devices.  
Layout to support Quad and  
These curves show that the resistor network is  
designed to correct for the change in resistance as  
temperature increases. This technique reduces the  
end to end change is RAB resistance.  
8.4.4  
HIGH VOLTAGE TOLERANT PINS  
High Voltage support (VIHH) on the Serial Interface pins  
supports two features. These are:  
• In-Circuit Accommodation of split rail applications  
and power supply sync issues  
• User configuration of the Non-Volatile EEPROM,  
Write Protect, and WiperLock feature  
Note:  
In many applications, the High Voltage will  
only be present at the manufacturing  
stage so as to “lock” the Non-Volatile wiper  
value (after calibration) and the contents  
of the EEPROM. This ensures that since  
High Voltage is not present under normal  
operating conditions, these values can not  
be modified.  
DS22233A-page 64  
© 2009 Microchip Technology Inc.  
 
 
 
MCP434X/436X  
9.2  
Technical Documentation  
9.0  
9.1  
DEVELOPMENT SUPPORT  
Development Tools  
Several additional technical documents are available to  
assist you in your design and development. These  
technical documents include Application Notes,  
Technical Briefs, and Design Guides. Table 9-2 shows  
some of these documents.  
Several development tools are available to assist in  
your design and evaluation of the MCP43XX devices.  
The currently available tools are shown in Table 9-1.  
These boards may be purchased directly from the  
Microchip web site at www.microchip.com.  
TABLE 9-1:  
Board Name  
DEVELOPMENT TOOLS  
Part #  
Supported Devices  
20-pin TSSOP and SSOP Evaluation Board  
MCP4361 Evaluation Board (1)  
TSSOP20EV  
MCP43XXEV  
MCP43XX  
MCP4361  
MCP42XX  
MCP42XX Digital Potentiometer PICtail Plus Demo MCP42XXDM-PTPLS  
Board  
MCP4XXX Digital Potentiometer Daughter Board (2) MCP4XXXDM-DB  
MCP42XXX, MCP42XX, MCP4021,  
and MCP4011  
Note 1: This Evaluation Board is planned to be available by March 2010. This board uses the TSSOP20EV PCB  
and requires the PICkit Serial Analyzer (see User’s Guide for details). This kit also includes 1 blank  
TSSOP20EV PCB.  
2: Requires the use of a PICDEM Demo board (see User’s Guide for details)  
TABLE 9-2:  
TECHNICAL DOCUMENTATION  
Title  
Application  
Literature #  
Note Number  
AN1080  
AN737  
AN692  
AN691  
AN219  
Understanding Digital Potentiometers Resistor Variations  
Using Digital Potentiometers to Design Low-Pass Adjustable Filters  
Using a Digital Potentiometer to Optimize a Precision Single Supply Photo Detect  
Optimizing the Digital Potentiometer in Precision Circuits  
Comparing Digital Potentiometers to Mechanical Potentiometers  
Digital Potentiometer Design Guide  
DS01080  
DS00737  
DS00692  
DS00691  
DS00219  
DS22017  
DS21825  
Signal Chain Design Guide  
© 2009 Microchip Technology Inc.  
DS22233A-page 65  
 
 
 
 
MCP434X/436X  
NOTES:  
DS22233A-page 66  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
14-Lead TSSOP  
Example  
4362502E  
0940  
XXXXXXXX  
YYWW  
NNN  
256  
20-Lead QFN (4x4)  
Example  
XXXXX  
XXXXXX  
XXXXXX  
YYWWNNN  
4361  
502EML  
e
3
0940  
256  
20-Lead TSSOP  
Example  
XXXXXXXX  
MCP4361  
256  
NNN  
XXXXX  
EST  
e3  
YYWW  
0940  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22233A-page 67  
MCP434X/436X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢏꢒꢌꢐꢓꢇꢑꢔꢅꢉꢉꢇꢕꢖꢋꢉꢌꢐꢄꢇꢗꢑꢎꢘꢇMꢇꢁꢙꢁꢇꢔꢔꢇꢚꢛꢆꢜꢇ ꢎꢑꢑꢕꢈ!  
"ꢛꢋꢄ# 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
5ꢄꢃ&!  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ7  
78ꢑ  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢀꢖ  
ꢒꢁ:,ꢅ/ꢕ0  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅꢗꢍꢃꢌ3ꢄꢈ!!  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅ=ꢃ#&ꢍ  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅ6ꢈꢄꢓ&ꢍ  
2ꢋꢋ&ꢅ6ꢈꢄꢓ&ꢍ  
M
ꢒꢁꢚꢒ  
ꢒꢁꢒ,  
M
ꢀꢁꢒꢒ  
M
:ꢁꢖꢒꢅ/ꢕ0  
ꢖꢁꢖꢒ  
,ꢁꢒꢒ  
ꢒꢁ:ꢒ  
ꢀꢁꢎꢒ  
ꢀꢁꢒ,  
ꢒꢁꢀ,  
ꢔꢎ  
ꢔꢀ  
+
+ꢀ  
ꢖꢁ-ꢒ  
ꢖꢁꢛꢒ  
ꢒꢁꢖ,  
ꢖꢁ,ꢒ  
,ꢁꢀꢒ  
ꢒꢁꢜ,  
6
2ꢋꢋ&ꢐꢉꢃꢄ&  
2ꢋꢋ&ꢅꢔꢄꢓꢇꢈ  
6ꢈꢆ#ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
6ꢈꢆ#ꢅ=ꢃ#&ꢍ  
6ꢀ  
ꢀꢁꢒꢒꢅꢘ+2  
ꢒꢝ  
ꢒꢁꢒꢛ  
ꢒꢁꢀꢛ  
M
M
M
ꢚꢝ  
)
ꢒꢁꢎꢒ  
ꢒꢁ-ꢒ  
"ꢛꢋꢄꢊ#  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢏꢅꢆꢄ#ꢅ+ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢑꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢒꢁꢀ,ꢅ''ꢅꢐꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ.ꢀꢖꢁ,ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢒꢚꢜ/  
DS22233A-page 68  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22233A-page 69  
MCP434X/436X  
$%ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢖꢅꢆꢇ'ꢉꢅꢋ(ꢇ"ꢛꢇꢃꢄꢅꢆꢇꢈꢅꢍꢓꢅ)ꢄꢇꢗ*ꢃꢘꢇMꢇꢁ+ꢁ+%ꢙ,ꢇꢔꢔꢇꢚꢛꢆꢜꢇ &'"!  
"ꢛꢋꢄ# 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D
D2  
EXPOSED  
PAD  
e
E2  
E
2
1
b
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
5ꢄꢃ&!  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
78ꢑ  
ꢑꢙ7  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
0ꢋꢄ&ꢆꢌ&ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
+$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ=ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢓ&ꢍ  
+$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ6ꢈꢄꢓ&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢅ=ꢃ#&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢅ6ꢈꢄꢓ&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ+$ꢐꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢔꢀ  
ꢔ-  
+
+ꢎ  
ꢎꢒ  
ꢒꢁ,ꢒꢅ/ꢕ0  
ꢒꢁꢛꢒ  
ꢒꢁꢚꢒ  
ꢒꢁꢒꢒ  
ꢀꢁꢒꢒ  
ꢒꢁꢒ,  
ꢒꢁꢒꢎ  
ꢒꢁꢎꢒꢅꢘ+2  
ꢖꢁꢒꢒꢅ/ꢕ0  
ꢎꢁꢜꢒ  
ꢖꢁꢒꢒꢅ/ꢕ0  
ꢎꢁꢜꢒ  
ꢒꢁꢎ,  
ꢒꢁꢖꢒ  
M
ꢎꢁ:ꢒ  
ꢎꢁꢚꢒ  
ꢏꢎ  
)
6
ꢎꢁ:ꢒ  
ꢒꢁꢀꢚ  
ꢒꢁ-ꢒ  
ꢒꢁꢎꢒ  
ꢎꢁꢚꢒ  
ꢒꢁ-ꢒ  
ꢒꢁ,ꢒ  
M
?
"ꢛꢋꢄꢊ#  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ3ꢆꢓꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢓ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ.ꢀꢖꢁ,ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢀꢎ:/  
DS22233A-page 70  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
"ꢛꢋꢄ# 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
© 2009 Microchip Technology Inc.  
DS22233A-page 71  
MCP434X/436X  
$%ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢏꢒꢌꢐꢓꢇꢑꢔꢅꢉꢉꢇꢕꢖꢋꢉꢌꢐꢄꢇꢗꢑꢎꢘꢇMꢇꢁꢙꢁꢇꢔꢔꢇꢚꢛꢆꢜꢇ ꢎꢑꢑꢕꢈ!  
"ꢛꢋꢄ# 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
L
A1  
L1  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
5ꢄꢃ&!  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ7  
78ꢑ  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎꢒ  
ꢒꢁ:,ꢅ/ꢕ0  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅꢗꢍꢃꢌ3ꢄꢈ!!  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅ=ꢃ#&ꢍ  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅ6ꢈꢄꢓ&ꢍ  
2ꢋꢋ&ꢅ6ꢈꢄꢓ&ꢍ  
M
ꢒꢁꢚꢒ  
ꢒꢁꢒ,  
M
ꢀꢁꢒꢒ  
M
:ꢁꢖꢒꢅ/ꢕ0  
ꢖꢁꢖꢒ  
:ꢁ,ꢒ  
ꢒꢁ:ꢒ  
ꢀꢁꢎꢒ  
ꢀꢁꢒ,  
ꢒꢁꢀ,  
ꢔꢎ  
ꢔꢀ  
+
+ꢀ  
ꢖꢁ-ꢒ  
:ꢁꢖꢒ  
ꢒꢁꢖ,  
ꢖꢁ,ꢒ  
:ꢁ:ꢒ  
ꢒꢁꢜ,  
6
2ꢋꢋ&ꢐꢉꢃꢄ&  
2ꢋꢋ&ꢅꢔꢄꢓꢇꢈ  
6ꢈꢆ#ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
6ꢈꢆ#ꢅ=ꢃ#&ꢍ  
6ꢀ  
ꢀꢁꢒꢒꢅꢘ+2  
ꢒꢝ  
ꢒꢁꢒꢛ  
ꢒꢁꢀꢛ  
M
M
M
ꢚꢝ  
)
ꢒꢁꢎꢒ  
ꢒꢁ-ꢒ  
"ꢛꢋꢄꢊ#  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢏꢅꢆꢄ#ꢅ+ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢑꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢒꢁꢀ,ꢅ''ꢅꢐꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ.ꢀꢖꢁ,ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢒꢚꢚ/  
DS22233A-page 72  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22233A-page 73  
MCP434X/436X  
NOTES:  
DS22233A-page 74  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
APPENDIX A: REVISION HISTORY  
Revision A (December 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22233A-page 75  
MCP434X/436X  
NOTES:  
DS22233A-page 76  
© 2009 Microchip Technology Inc.  
MCP434X/436X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-XXX  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4341-502E/XX: 5 kΩ, 20-LD Device  
Resistance Temperature  
Version  
Package  
MCP4341T-502E/XX: T/R, 5 kΩ, 20-LD Device  
MCP4341-103E/XX: 10 kΩ, 20-LD Device  
MCP4341T-103E/XX: T/R, 10 kΩ, 20-LD Device  
MCP4341-503E/XX: 50 kΩ, 20-LD Device  
MCP4341T-503E/XX: T/R, 50 kΩ, 20-LD Device  
MCP4341-104E/XX: 100 kΩ, 20-LD Device  
MCP4341T-104E/XX: T/R, 100 kΩ,  
Range  
Device  
MCP4341:  
MCP4341T:  
Quad Non-Volatile 7-bit Potentiometer  
Quad Non-Volatile 7-bit Potentiometer  
(Tape and Reel)  
Quad Non-Volatile 7-bit Rheostat  
Quad Non-Volatile 7-bit Rheostat  
(Tape and Reel)  
Quad Non-Volatile 8-bit Potentiometer  
Quad Non-Volatile 8-bit Potentiometer  
(Tape and Reel)  
Quad Non-Volatile 8-bit Rheostat  
Quad Non-Volatile 8-bit Rheostat  
(Tape and Reel)  
g)  
h)  
MCP4342:  
MCP4342T:  
20-LD Device  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4342-502E/XX: 5 kΩ, 14-LD Device  
MCP4342T-502E/XX: T/R, 5 kΩ, 14-LD Device  
MCP4342-103E/XX: 10 kΩ, 14-LD Device  
MCP4342T-103E/XX: T/R, 10 kΩ, 14-LD Device  
MCP4342-503E/XX: 50 kΩ, 8LD Device  
MCP4342T-503E/XX: T/R, 50 kΩ, 14-LD Device  
MCP4342-104E/XX: 100 kΩ, 14-LD Device  
MCP4342T-104E/XX: T/R, 100 kΩ,  
MCP4361:  
MCP4361T:  
MCP4362:  
MCP4362T:  
g)  
h)  
14-LD Device  
Resistance Version: 502  
=
=
=
=
5 kΩ  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4361-502E/XX: 5 kΩ, 20-LD Device  
MCP4361T-502E/XX: T/R, 5 kΩ, 20-LD Device  
MCP4361-103E/XX: 10 kΩ, 20-LD Device  
MCP4361T-103E/XX: T/R, 10 kΩ, 20-LD Device  
MCP4361-503E/XX: 50 kΩ, 20-LD Device  
MCP4361T-503E/XX: T/R, 50 kΩ, 20-LD Device  
MCP4361-104E/XX: 100 kΩ, 20-LD Device  
MCP4361T-104E/XX: T/R, 100 kΩ,  
103  
503  
104  
10 kΩ  
50 kΩ  
100 kΩ  
Temperature Range  
Package  
E
=
-40°C to +125°C (Extended)  
g)  
h)  
20-LD Device  
ST  
ML  
=
=
Plastic Thin Shrink Small Outline (TSSOP),  
14/20-lead  
Plastic Quad Flat No-lead (4x4 QFN), 20-lead  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4362-502E/XX: 5 kΩ, 14-LD Device  
MCP4362T-502E/XX: T/R, 5 kΩ, 14-LD Device  
MCP4362-103E/XX: 10 kΩ, 14-LD Device  
MCP4362T-103E/XX: T/R, 10 kΩ, 14-LD Device  
MCP4362-503E/XX: 50 kΩ, 14-LD Device  
MCP4362T-503E/XX: T/R, 50 kΩ, 14-LD Device  
MCP4362-104E/XX: 100 kΩ, 14-LD Device  
MCP4362T-104E/XX: T/R, 100 kΩ,  
g)  
h)  
14-LD Device  
XX  
=
=
ST for 14/20-lead TSSOP  
ML for 20-lead QFN  
© 2009 Microchip Technology Inc.  
DS22233A-page 77  
MCP434X/436X  
NOTES:  
DS22233A-page 78  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22233A-page 79  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22233A-page 80  
© 2009 Microchip Technology Inc.  

相关型号:

MCP4341-502E/ML

QUAD 5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 129 POSITIONS, PQCC20, 4 X 4 MM, 0.90 MM HEIGHT, LEAD FREE, PLASTIC, QFN-20
MICROCHIP

MCP4341-502E/ST

QUAD 5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 129 POSITIONS, PDSO20, 4.40 MM, LEAD FREE, PLASTIC, TSSOP-20
MICROCHIP

MCP4341-503E/ML

QUAD 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 129 POSITIONS, PQCC20, 4 X 4 MM, 0.90 MM HEIGHT, LEAD FREE, PLASTIC, QFN-20
MICROCHIP

MCP4341-503E/ST

QUAD 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 129 POSITIONS, PDSO20, 4.40 MM, LEAD FREE, PLASTIC, TSSOP-20
MICROCHIP

MCP4341103E/ML

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341103E/ST

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341104E/ML

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341104E/ST

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341502E/ML

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341502E/ST

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341503E/ML

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP

MCP4341503E/ST

7/8-Bit Quad SPI Digital POT with Non-Volatile Memory
MICROCHIP