MCP6024T-E/SLVAO [MICROCHIP]

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14;
MCP6024T-E/SLVAO
型号: MCP6024T-E/SLVAO
厂家: MICROCHIP    MICROCHIP
描述:

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14

光电二极管
文件: 总54页 (文件大小:1416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6021/1R/2/3/4  
Rail-to-Rail Input/Output, 10 MHz Op Amps  
Description  
Features  
• Rail-to-Rail Input/Output  
The MCP6021, MCP6021R, MCP6022, MCP6023 and  
MCP6024 from Microchip Technology Inc. are rail-to-  
rail input and output operational amplifiers with high  
performance. Key specifications include: wide band-  
width (10 MHz), low noise (8.7 nV/Hz), low input offset  
voltage and low distortion (0.00053% THD+N). The  
MCP6023 also offers a Chip Select pin (CS) that gives  
power savings when the part is not in use.  
• Wide Bandwidth: 10 MHz (typical)  
• Low Noise: 8.7 nV/Hz at 10 kHz (typical)  
• Low Offset Voltage:  
- Industrial Temperature: ±500 µV (max.)  
- Extended Temperature: ±250 µV (max.)  
• Mid-Supply V  
: MCP6021 and MCP6023  
REF  
• Low Supply Current: 1 mA (typical)  
Total Harmonic Distortion:  
- 0.00053% (typical, G = 1 V/V)  
• Unity Gain Stable  
The single MCP6021 and MCP6021R are available in  
SOT-23-5 packages. The single MCP6021, single  
MCP6023 and dual MCP6022 are available in 8-lead  
PDIP, SOIC and TSSOP packages. The Extended  
Temperature single MCP6021 is available in 8-lead  
MSOP. The quad MCP6024 is offered in 14-lead PDIP,  
SOIC and TSSOP packages.  
• Power Supply Range: 2.5V to 5.5V  
Temperature Range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
The MCP6021/1R/2/3/4 family is available in Industrial  
and Extended temperature ranges. It has a power  
supply range of 2.5V to 5.5V.  
Applications  
Package Types  
• Automotive  
MCP6021  
SOT-23-5  
MCP6022  
PDIP, SOIC, TSSOP  
• Multi-Pole Active Filters  
• Audio Processing  
• DAC Buffer  
VDD VOUTA  
VDD  
VOUT  
VSS  
5
4
1
2
3
4
8
7
6
5
1
Test Equipment  
• Medical Instrumentation  
VINA  
-
VOUTB  
2
3
VINA+  
VIN-  
VINB  
-
VIN+  
VSS  
VINB  
+
MCP6021R  
SOT-23-5  
Design Aids  
MCP6023  
PDIP, SOIC, TSSOP  
• SPICE Macro Models  
VSS  
VIN-  
VOUT  
VDD  
®
5
1
2
3
• FilterLab Software  
®
NC  
VIN-  
VIN+  
VSS  
1
2
3
4
8 CS  
• MPLAB Mindi™ Analog Simulator  
VDD  
7
6
5
VIN+  
4
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
VOUT  
VREF  
MCP6021  
PDIP, SOIC,  
MSOP, TSSOP  
MCP6024  
PDIP, SOIC, TSSOP  
Typical Application  
NC  
NC  
VIN-  
VIN+  
VSS  
8
7
6
5
1
2
3
4
5.6 pF  
Photo  
Detector  
VOUTA  
V
V
V
V
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTD  
VDD  
VINA  
-
-
100 k  
IND  
VOUT  
VREF  
VINA  
VDD  
VINB  
VINB  
+
+
IND  
100 pF  
SS  
MCP6021  
+
+
INC  
VDD/2  
-
VINC  
-
Transimpedance Amplifier  
VOUTB  
VOUTC  
8
2001-2017 Microchip Technology Inc.  
DS20001685E-page 1  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 2  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
– V ........................................................................7.0V  
SS  
DD  
Current Analog Input Pins (V +, V -)..........................±2 mA  
IN  
IN  
†† See Section 4.1.2, Input Voltage Limits.  
Analog Inputs (V +, V -) †......... V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs.......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
SS  
DD  
Output Short-Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ....................................-65°C to +150°C  
Maximum Junction Temperature.................................+150°C  
ESD Protection on All Pins (HBM; MM)  2 kV; 200V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2  
A
DD  
SS  
CM  
DD  
OUT DD  
and R = 10 kto V /2.  
L
DD  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset  
Input Offset Voltage:  
Industrial Temperature Parts  
Extended Temperature Parts  
Extended Temperature Parts  
V
V
V
-500  
-250  
-2.5  
+500  
+250  
+2.5  
µV  
µV  
V
V
V
= 0V  
OS  
OS  
OS  
CM  
CM  
CM  
= 0V, V = 5.0V  
DD  
mV  
= 0V, V = 5.0V,  
DD  
T = -40°C to +125°C  
A
Input Offset Voltage Temperature Drift V /T  
±3.5  
90  
µV/°C T = -40°C to +125°C  
A
OS  
A
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current:  
PSRR  
74  
dB  
V
= 0V  
CM  
I
I
I
1
150  
5,000  
pA  
pA  
B
B
B
Industrial Temperature Parts  
Extended Temperature Parts  
Input Offset Current  
30  
T = +85°C  
A
640  
±1  
pA  
T = +125°C  
A
I
pA  
OS  
13  
Common-Mode Input Impedance  
Differential Input Impedance  
Common-Mode  
Z
10 ||6  
||pF  
||pF  
CM  
13  
Z
10 ||3  
DIFF  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
V
V
– 0.3  
90  
85  
90  
V
+ 0.3  
V
CMR  
SS  
DD  
CMRR  
CMRR  
CMRR  
74  
70  
74  
dB  
dB  
dB  
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= -0.3V to 5.3V  
DD  
DD  
DD  
CM  
CM  
CM  
= 3.0V to 5.3V  
= -0.3V to 3.0V  
Voltage Reference (MCP6021 and MCP6023 only)  
V
V
Accuracy (V  
– V /2)  
V
REF_ACC  
-50  
+50  
mV  
REF  
REF  
REF  
DD  
Temperature Drift  
V  
/T  
±100  
µV/°C T = -40°C to +125°C  
A
REF  
A
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
A
90  
110  
dB  
V
V
= 0V,  
CM  
OL  
= V + 0.3V to V – 0.3V  
OUT  
SS  
DD  
Output  
Maximum Output Voltage Swing  
Output Short Circuit Current  
V
, V  
V
+ 15  
V – 20  
DD  
mV  
mA  
mA  
0.5V input overdrive  
OL  
OH  
SS  
I
I
±30  
±22  
V
V
= 2.5V  
= 5.5V  
SC  
SC  
DD  
DD  
Power Supply  
Supply Voltage  
V
2.5  
0.5  
5.5  
V
DD  
Quiescent Current per Amplifier  
I
1.0  
1.35  
mA  
I = 0  
O
Q
2001-2017 Microchip Technology Inc.  
DS20001685E-page 3  
MCP6021/1R/2/3/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
OUT DD  
A
DD  
SS  
CM  
DD  
R
= 10 kto V /2 and C = 60 pF.  
DD L  
L
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
10  
65  
MHz  
°
G = +1 V/V  
Settling Time, 0.2%  
Slew Rate  
t
250  
7.0  
ns  
G = +1 V/V, V  
= 100 mV  
OUT p-p  
SETTLE  
SR  
V/µs  
Total Harmonic Distortion Plus Noise  
f = 1 kHz, G = +1 V/V  
THD + N  
0.00053  
0.00064  
%
%
V
= 0.25V to 3.25V (1.75V ± 1.50V ),  
OUT PK  
V
= 5.0V, BW = 22 kHz  
DD  
f = 1 kHz, G = +1 V/V, R = 600THD + N  
V
V
= 0.25V to 3.25V (1.75V ± 1.50V ),  
L
OUT  
PK  
= 5.0V, BW = 22 kHz  
DD  
f = 1 kHz, G = +1 V/V  
f = 1 kHz, G = +10 V/V  
f = 1 kHz, G = +100 V/V  
Noise  
THD + N  
THD + N  
THD + N  
0.0014  
0.0009  
0.005  
%
%
%
V
V
V
= 4V , V = 5.0V, BW = 22 kHz  
P-P DD  
OUT  
OUT  
OUT  
= 4V , V = 5.0V, BW = 22 kHz  
P-P DD  
= 4V , V = 5.0V, BW = 22 kHz  
P-P DD  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
E
e
2.9  
8.7  
3
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
ni  
ni  
i
fA/Hz f = 1 kHz  
ni  
MCP6023 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, R = 10 kto V /2 and C = 60 pF.  
OUT  
DD  
L
DD  
L
Parameters  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
GND Current  
V
V
0.2 V  
V
IL  
SS  
DD  
I
-1.0  
0.01  
µA CS = V  
CSL  
SS  
V
0.8 V  
V
DD  
V
IH  
DD  
I
0.01  
-0.05  
0.01  
2.0  
µA CS = V  
µA CS = V  
µA CS = V  
CSH  
DD  
DD  
DD  
I
-2  
SS  
O(LEAK)  
Amplifier Output Leakage  
CS Dynamic Specifications  
I
CS Low to Amplifier Output Turn-on Time  
CS High to Amplifier Output High-Z Time  
Hysteresis  
t
2
10  
µs  
µs  
V
G = +1, V = V  
,
SS  
ON  
IN  
CS = 0.2 V to V  
= 0.45 V time  
DD  
DD  
OUT  
t
0.01  
0.6  
G = +1, V = V  
,
SS  
OFF  
IN  
CS = 0.8 V to V  
= 0.05 V time  
DD  
DD  
OUT  
V
V
= 5.0V, internal switch  
HYST  
DD  
DS20001685E-page 4  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, V = +2.5V to +5.5V and V = GND.  
DD  
SS  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
T
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
A
T
+125  
+125  
+150  
A
T
(Note 1)  
A
T
A
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
163  
206  
124  
70  
120  
100  
Note 1: The industrial temperature devices operate over this Extended temperature range, but with reduced performance. In any  
case, the internal Junction Temperature (T ) must not exceed the absolute maximum specification of +150°C.  
J
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-3. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.7 “Supply Bypass”.  
CS  
t
t
ON  
OFF  
Amplifier On  
High-Z  
High-Z  
V
OUT  
VDD  
1 µF  
-1 mA  
0.1 µF  
RN  
VIN  
-50 nA  
I
(typical)  
-50 nA  
SS  
(typical)  
(typical)  
CB1 CB2  
VOUT  
1 k:  
I
MCP6021  
CS  
10 nA  
(typical)  
10 nA  
(typical)  
10 nA  
(typical)  
CL  
60 pF  
RL  
10 k:  
RG  
RF  
VDD/2  
VL  
FIGURE 1-1:  
Pin on the MCP6023.  
Timing Diagram for the CS  
2 k:  
2 k:  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
V
DD  
1 µF  
0.1 µF  
R
/2  
N
V
DD  
C
C
B1 B2  
V
OUT  
1 k:  
MCP6021  
C
60 pF  
R
L
L
10 k:  
R
R
F
V
G
IN  
V
L
2 k:  
2 k:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
FIGURE 1-3:  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 5  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 6  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
16%  
14%  
12%  
10%  
8%  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
1192 Samples  
VCM = 0V  
I-Temp  
Parts  
1192 Samples  
VCM = 0V  
TA = -40°C to +85°C  
I-Temp  
Parts  
TA = +25°C  
6%  
4%  
6%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage Drift (µV/°C)  
Input Offset Voltage (µV)  
FIGURE 2-1:  
Input Offset Voltage  
FIGURE 2-4:  
Input Offset Voltage Drift  
(Industrial Temperature Parts).  
(Industrial Temperature Parts).  
24%  
22%  
24%  
438 Samples  
VCM = 0V  
E-Temp  
22%  
438 Samples  
VDD = 5.0V  
VCM = 0V  
E-Temp  
20%  
Parts  
Parts  
20%  
TA = -40°C to +125°C  
18%  
16%  
14%  
12%  
10%  
8%  
18%  
16%  
14%  
12%  
10%  
8%  
TA = +25°C  
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage  
FIGURE 2-5:  
Input Offset Voltage Drift  
(Extended Temperature Parts).  
(Extended Temperature Parts).  
500  
500  
400  
300  
200  
100  
0
-40°C  
VDD = 2.5V  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
VDD = 5.5V  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-100  
-200  
-300  
-400  
-500  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common-Mode Input Voltage with VDD = 2.5V.  
Common-Mode Input Voltage with VDD = 5.5V.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 7  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
100  
50  
200  
150  
100  
50  
VCM = VDD/2  
0
VDD = 5.5V  
-50  
-100  
-150  
-200  
-250  
-300  
0
VDD = 2.5V  
-50  
-100  
-150  
-200  
VDD = 5.0V  
VCM = 0V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Offset Voltage vs.  
Temperature.  
Output Voltage.  
1,000  
100  
10  
24  
VDD = 5.0V  
22  
20  
18  
16  
14  
12  
10  
8
f = 1 kHz  
f = 10 kHz  
6
4
2
0
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1
0.1  
1
10  
100  
1k  
10k 100k 1M  
Common Mode Input Voltage (V)  
Frequency (Hz)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common-Mode Input Voltage.  
110  
105  
100  
90  
80  
70  
60  
50  
40  
30  
PSRR+  
PSRR-  
CMRR  
100  
95  
90  
PSRR (VCM = 0V)  
85  
CMRR  
80  
75  
70  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
20  
100  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
CMRR, PSRR vs.  
Frequency.  
Temperature.  
DS20001685E-page 8  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
10,000  
1,000  
100  
10  
10,000  
1,000  
100  
10  
VDD = 5.5V  
IB, TA = +125°C  
VCM = VDD  
VDD = 5.5V  
IOS, TA = +125°C  
IB, TA = +85°C  
IB  
IOS  
IOS, TA = +85°C  
1
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
FIGURE 2-13:  
Input Bias, Offset Currents  
FIGURE 2-16:  
Input Bias, Offset Currents  
vs. Common-Mode Input Voltage.  
vs. Temperature.  
1.2  
1.1  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 5.5V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 2.5V  
+125°C  
+85°C  
+25°C  
-40°C  
VCM = VDD - 0.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Quiescent Current vs.  
Supply Voltage.  
Temperature.  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
35  
30  
25  
20  
15  
10  
5
-15  
-30  
-45  
-60  
-75  
Phase  
-90  
-105  
-120  
-135  
-150  
-165  
-180  
-195  
-210  
+125°C  
+85°C  
+25°C  
-40°C  
Gain  
-10  
0
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
-20  
1
10 100 1k 10k 100k 1M 10M 100M  
Frequency (Hz)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
FIGURE 2-15:  
vs. Supply Voltage.  
Output Short-Circuit Current  
FIGURE 2-18:  
Frequency.  
Open-Loop Gain, Phase vs.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 9  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT  
DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
120  
115  
110  
105  
100  
95  
130  
120  
110  
100  
90  
VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 2.5V  
1.E+02  
1.E+04  
80  
90  
1k  
100k  
10k  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Load Resistance (ΩΩ)  
Ambient Temperature (°C)  
FIGURE 2-19:  
DC Open-Loop Gain vs.  
FIGURE 2-22:  
DC Open-Loop Gain vs.  
Load Resistance.  
Temperature.  
14  
105  
90  
120  
VCM = VDD/2  
Gain Bandwidth Product  
12  
10  
8
110  
100  
90  
75  
VDD = 5.5V  
60  
Phase Margin, G = +1  
45  
6
VDD = 2.5V  
4
30  
15  
0
80  
2
VDD = 5.0V  
70  
0.00  
0.05  
Output Voltage Headroom (V);  
DD - VOH or VOL - VSS  
0.10  
0.15  
0.20  
0.25  
0.30  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
V
FIGURE 2-20:  
Small Signal DC Open-Loop  
FIGURE 2-23:  
Gain Bandwidth Product,  
Gain vs. Output Voltage Headroom.  
Phase Margin vs. Common-Mode Input Voltage.  
14  
12  
10  
8
105  
90  
75  
60  
45  
30  
15  
0
10  
9
8
7
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain Bandwidth Product  
Phase Margin, G = +1  
5
6
GBWP, VDD = 5.5V  
4
GBWP, VDD = 2.5V  
PM, VDD = 2.5V  
PM, VDD = 5.5V  
3
2
1
0
4
VDD = 5.0V  
VCM = VDD/2  
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (V)  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
FIGURE 2-21:  
Gain Bandwidth Product,  
FIGURE 2-24:  
Gain Bandwidth Product,  
Phase Margin vs. Temperature.  
Phase Margin vs. Output Voltage.  
DS20001685E-page 10  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT  
DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
11  
10  
9
8
7
6
5
10  
Falling, VDD = 5.5V  
Rising, VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
1
4
3
Falling, VDD = 2.5V  
Rising, VDD = 2.5V  
2
1
0
1.E+04  
1.E+05  
1.E+06  
1.E+07  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Ambient Temperature (°C)  
FIGURE 2-25:  
Slew Rate vs. Temperature.  
FIGURE 2-28:  
Maximum Output Voltage  
Swing vs. Frequency.  
0.1000%  
0.0100%  
0.1000%  
f = 1 kHz  
G = +100 V/V  
BWMeas = 22 kHz  
VDD = 5.0V  
G = +10 V/V  
0.0100%  
G = +100 V/V  
G = +10 V/V  
G = +1 V/V  
0.0010%  
0.0010%  
0.0001%  
f = 20 kHz  
BWMeas = 80 kHz  
VDD = 5.0V  
G = +1 V/V  
0.0001%  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (VP-P  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
)
Output Voltage (VP-P  
)
FIGURE 2-26:  
Total Harmonic Distortion  
FIGURE 2-29:  
Total Harmonic Distortion  
plus Noise vs. Output Voltage with f = 1 kHz.  
plus Noise vs. Output Voltage with f = 20 kHz.  
6
135  
130  
125  
120  
115  
VDD = 5.0V  
VOUT  
G = +2 V/V  
5
4
VIN  
3
2
1
110  
G = +1 V/V  
0
1.E+03  
1.E+04  
1.E+05  
1.E+06  
105  
1k  
10k  
100k  
1M  
-1  
Frequency (Hz)  
Time (10 µs/div)  
10 20 30 40 50 60 70 80 90 100  
0
FIGURE 2-27:  
The MCP6021/1R/2/3/4  
FIGURE 2-30:  
Channel-to-Channel  
Family Shows No Phase Reversal Under  
Overdrive.  
Separation vs. Frequency (MCP6022 and  
MCP6024 only).  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 11  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
1,000  
100  
10  
10  
9
8
7
6
5
4
3
2
1
0
VOL – VSS  
VDD – VOH  
VOL – VSS  
VDD – VOH  
1
0.01  
0.1  
1
10  
-50  
-25  
0
25  
50  
75  
100 125  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-31:  
Output Voltage Headroom  
FIGURE 2-34:  
Output Voltage Headroom  
vs. Output Current.  
vs. Temperature.  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
G = +1 V/V  
G = -1 V/V  
RF = 1 kΩ  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
Time (200 ns/div)  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
Time (200 ns/div)  
FIGURE 2-32:  
Small Signal Non-Inverting  
FIGURE 2-35:  
Small Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1 V/V  
G = -1 V/V  
RF = 1 kΩ  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.0  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.0  
Time (500 ns/div)  
Time (500 ns/div)  
FIGURE 2-33:  
Large Signal Non-Inverting  
FIGURE 2-36:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
DS20001685E-page 12  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2,  
A
DD  
SS  
CM  
DD  
OUT DD  
R = 10 kto V /2 and C = 60 pF.  
L
DD  
L
50  
40  
30  
50  
40  
30  
Representative Part  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
VDD = 5.5V  
VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-37:  
VREF Accuracy vs. Supply  
FIGURE 2-40:  
VREF Accuracy vs.  
Voltage (MCP6021 and MCP6023 only).  
Temperature (MCP6021 and MCP6023 only).  
1.6  
1.6  
Op Amp  
Op Amp  
Op Amp  
Op Amp  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
shuts off here  
turns on here  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
shuts off here  
turns on here  
Hysteresis  
CS swept  
Hysteresis  
high to low  
CS swept  
high to low  
CS swept  
CS swept  
low to high  
VDD = 2.5V  
G = +1 V/V  
VIN = 1.25V  
low to high  
VDD = 5.5V  
G = +1 V/V  
VIN = 2.75V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Chip Select Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
FIGURE 2-38:  
Chip Select (CS) Hysteresis  
FIGURE 2-41:  
Chip Select (CS) Hysteresis  
(MCP6023 only) with VDD = 2.5V.  
(MCP6023 only) with VDD = 5.5V.  
5.5  
5.0  
10m  
VDD = 5.0V  
G = +1 V/V  
VIN = VSS  
1.E-02  
1m  
CS Voltage  
4.5  
1.E-03  
100µ  
4.0  
3.5  
1.E-04  
10µ  
1.E-05  
VOUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
1µ  
1.E-06  
100n  
1.E-07  
10n  
1.E-08  
Output  
on  
Output High-Z  
Output  
on  
+125°C  
+85°C  
+25°C  
-40°C  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
0.0E+00  
5.0E-06  
1.0E-05  
1.5E-05  
2.0E-05  
2.5E-05  
3.0E-05  
3.5E-05  
1p  
1.E-12  
Time (5 µs/div)  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-39:  
Amplifier Output Response Time (MCP6023  
Only).  
Chip Select (CS) to  
FIGURE 2-42:  
Input Voltage (Below VSS  
Measured Input Current vs.  
)
2001-2017 Microchip Technology Inc.  
DS20001685E-page 13  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 14  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6021  
MCP6021  
MCP6022  
MCP6023  
MCP6024  
PDIP, SOIC,  
MSOP,  
TSSOP  
Symbol  
Description  
PDIP, SOIC, PDIP, SOIC, PDIP, SOIC,  
(2)  
SOT-23-5  
SOT-23-5  
TSSOP  
TSSOP  
TSSOP  
(1)  
6
2
1
1
1
2
6
2
1
2
V
, V  
Analog Output (Op Amp A)  
Inverting Input (Op Amp A)  
Non-Inverting Input (Op Amp A)  
Positive Power Supply  
OUT OUTA  
4
4
V
-, V  
-
IN  
INA  
INA  
3
3
3
3
3
3
V
+, V  
+
IN  
7
5
2
8
7
4
V
DD  
4
2
5
5
4
5
V
+
Non-Inverting Input (Op Amp B)  
Inverting Input (Op Amp B)  
Analog Output (Op Amp B)  
Analog Output (Op Amp C)  
Inverting Input (Op Amp C)  
Non-Inverting Input (Op Amp C)  
Negative Power Supply  
INB  
INB  
6
6
V
7
7
V
V
OUTB  
OUTC  
4
8
9
V
V
+
INC  
INC  
10  
11  
12  
13  
14  
V
SS  
5
5
V
V
+
Non-Inverting Input (Op Amp D)  
Inverting Input (Op Amp D)  
Analog Output (Op Amp D)  
Reference Voltage  
IND  
IND  
V
OUTD  
V
REF  
1, 8  
8
CS  
Chip Select  
1
NC  
No Internal Connection  
Note 1: The MCP6021 in the 8-pin TSSOP package is only available for I-temp (Industrial Temperature) parts.  
2: The MCP6021R is only available in the 5-pin SOT-23 package and for E-temp (Extended Temperature) parts.  
3.1  
Analog Outputs  
3.4  
Chip Select Digital Input (CS)  
The operational amplifier output pins are low-impedance  
voltage sources.  
This is a CMOS, Schmitt triggered input that places the  
part into a Low-Power mode of operation.  
3.2  
Analog Inputs  
3.5  
Power Supply (V and V  
)
SS  
DD  
The operational amplifier non-inverting and inverting  
inputs are high-impedance CMOS inputs with low bias  
currents.  
The positive power supply pin (V ) is 2.5V to 5.5V  
DD  
higher than the negative power supply pin (V ). For  
SS  
normal operation, the other pins are at voltages  
between V and V  
.
SS  
DD  
3.3  
Reference Voltage (V  
)
Typically, these parts are used in a single (positive)  
REF  
supply configuration. In this case, V is connected to  
MCP6021 and MCP6023  
SS  
ground and V  
is connected to the supply. V  
will  
DD  
DD  
Mid-supply reference voltage is provided by the single  
operational amplifiers (except in the SOT-23-5  
package). This is an unbuffered, resistor voltage divider  
internal to the part.  
need a bypass capacitor.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 15  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 16  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.0  
APPLICATIONS INFORMATION  
V
DD  
The MCP6021/1R/2/3/4 family of operational amplifiers  
is fabricated on Microchip’s state-of-the-art CMOS  
process. The amplifiers are unity-gain stable and suitable  
for a wide range of general purpose applications.  
U
D
D
2
1
1
V
V
1
V
MCP602X  
OUT  
4.1  
Rail-to-Rail Input  
2
4.1.1  
PHASE REVERSAL  
The MCP6021/1R/2/3/4 operational amplifiers are  
designed to prevent phase reversal when the input pins  
exceed the supply voltages. Figure 2-42 shows the  
input voltage exceeding the supply voltage without any  
phase reversal.  
FIGURE 4-2:  
Protecting the Analog Inputs.  
4.1.3 INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins. See the Absolute Maximum Ratings†  
section. Figure 4-3 shows one approach to protecting  
4.1.2  
INPUT VOLTAGE LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins. See the Absolute Maximum Ratings†  
section.  
these inputs. The resistors, R and R , limit the pos-  
1
2
sible currents in or out of the input pins (and the ESD  
diodes, D and D ). The diode currents will go through  
1
2
either V or V  
.
DD  
SS  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors and to minimize Input Bias  
V
DD  
(I ) current.  
B
D
D
2
U
1
1
V
Bond  
Pad  
1
VDD  
V
OUT  
R
R
1
MCP602X  
V
2
2
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN  
VIN+  
V
– min (V ,V )  
SS  
1
2
min(R ,R ) >  
1
2
2 mA  
max(V ,V ) – V  
1
2
DD  
min(R ,R ) >  
1
2
2 mA  
Bond  
Pad  
VSS  
FIGURE 4-3:  
Protecting the Analog Inputs.  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
4.1.4 NORMAL OPERATION  
The input stage of the MCP6021/1R/2/3/4 operational  
amplifiers uses two differential CMOS input stages in  
parallel. One operates at a low Common-Mode Voltage  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below V . They also  
SS  
clamp any voltages that go well above V . Their  
DD  
(V ) input, while the other operates at high V . With  
CM  
CM  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
this topology, the device operates with V  
up to 0.3V  
CM  
above V and 0.3V below V  
.
DD  
SS  
overvoltage (beyond V ) events. Very fast ESD  
DD  
events (that meet the specifications) are limited so that  
damage does not occur. In some applications, it may  
be necessary to prevent excessive voltages from  
reaching the operational amplifier inputs. Figure 4-2  
shows one approach to protecting these inputs.  
4.2  
Rail-to-Rail Output  
The maximum output voltage swing is the maximum  
swing possible under a particular output load. According  
to the specification table, the output can reach within  
20 mV of either supply rail when R = 10 k. See  
Figure 2-31 and Figure 2-34 for more information  
concerning typical performance.  
A significant amount of current can flow out of the  
L
inputs when the Common-Mode Voltage (V ) is below  
CM  
ground (V ). See Figure 2-42.  
SS  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 17  
MCP6021/1R/2/3/4  
4.3  
Capacitive Loads  
4.4  
Gain Peaking  
Driving large capacitive loads can cause stability  
problems for voltage feedback operational amplifiers.  
As the load capacitance increases, the feedback loop’s  
phase margin decreases and the closed loop  
bandwidth is reduced. This produces gain peaking in  
the frequency response, with overshoot and ringing in  
the step response.  
Figure 2-35 and Figure 2-36 use R = 1 kto avoid  
(frequency response) gain peaking and (step response)  
overshoot. The capacitance to ground at the inverting  
F
input (C ) is the op amp’s Common-mode input capaci-  
G
tance plus board parasitic capacitance. C is in parallel  
G
with R , which causes an increase in gain at high frequen-  
G
cies for non-inverting gains greater than 1 V/V (unity  
gain). C also reduces the phase margin of the feedback  
loop for both non-inverting and inverting gains.  
G
When driving large capacitive loads with these opera-  
tional amplifiers (e.g., > 60 pF when G = +1), a small  
series resistor at the output (R  
in Figure 4-4)  
ISO  
improves the feedback loop’s phase margin (stability)  
by making the load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
V
IN  
V
OUT  
R
F
C
G
V
R
IN  
G
R
ISO  
V
MCP602X  
OUT  
C
L
FIGURE 4-6:  
Non-Inverting Gain Circuit  
with Parasitic Capacitance.  
The largest value of R in Figure 4-6 that should be  
F
FIGURE 4-4:  
Stabilizes Large Capacitive Loads.  
Output Resistor, RISO,  
used is a function of noise gain (see G in Section 4.3  
N
“Capacitive Loads”) and C . Figure 4-7 shows results  
G
Figure 4-5 gives recommended  
R
values for  
for various conditions. Other compensation techniques  
may be used, but they tend to be more complicated to  
design.  
ISO  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (C /G ), where G is the  
L
N
N
circuit’s noise gain. For non-inverting gains, G and the  
N
Signal Gain are equal. For inverting gains, G is  
1.E+05  
100k  
N
GN > +1 V/V  
1+|Signal Gain| (e.g., -1 V/V gives G = +2 V/V).  
N
CG = 7 pF  
CG = 20 pF  
1,000  
1.E+04  
10k  
G
N +1  
1k  
1.E+03  
CG = 50 pF  
100  
10  
CG = 100 pF  
1.E+10020  
1
10  
Noise Gain; GN (V/V)  
FIGURE 4-7:  
with Parasitic Capacitance.  
Non-Inverting Gain Circuit  
10  
100  
1,000  
10,000  
Normalized Capacitance; CL/GN (pF)  
4.5  
MCP6023 Chip Select (CS)  
FIGURE 4-5:  
Recommended RISO Values  
for Capacitive Loads.  
The MCP6023 is a single amplifier with Chip Select  
(CS). When CS is pulled high, the supply current drops  
After selecting R  
for your circuit, double-check the  
ISO  
to 10 nA (typical) and flows through the CS pin to V  
.
resulting frequency response peaking and step  
SS  
When this happens, the amplifier output is put into a  
high-impedance state. By pulling CS low, the amplifier  
is enabled. The CS pin has an internal 5 M(typical)  
response overshoot. Modify R ’s value until the  
ISO  
response is reasonable. Evaluation on the bench and  
simulations with the MCP6021/1R/2/3/4 Spice macro  
model are helpful.  
pull-down resistor connected to V , so it will go low if  
SS  
the CS pin is left floating. Figure 1-1 and Figure 2-39  
show the output voltage and supply current response to  
a CS pulse.  
DS20001685E-page 18  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.6  
MCP6021 and MCP6023 Reference  
Voltage  
R
R
G
F
V
V
OUT  
IN  
The single operational amplifiers (MCP6021 and  
MCP6023), not in the SOT-23-5 package, have an  
internal mid-supply reference voltage connected to the  
V
pin (see Figure 4-8). The MCP6021 has CS inter-  
V
REF  
REF  
nally tied to V , which always keeps the operational  
SS  
amplifier on and always provides a mid-supply refer-  
ence. With the MCP6023, taking the CS pin high  
conserves power by shutting down both the operational  
C
B
amplifier and the V  
circuitry. Taking the CS pin low  
REF  
turns on the operational amplifier and V  
circuitry.  
FIGURE 4-10:  
Inverting Gain Circuit Using  
REF  
V
REF (MCP6021 and MCP6023 only).  
V
DD  
If you don’t need the mid-supply reference, leave the  
pin open.  
V
REF  
50 k  
50 k  
4.7  
Supply Bypass  
V
REF  
With this family of operational amplifiers, the power  
supply pin (V for single supply) should have a local  
DD  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good, high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with nearby analog parts.  
CS  
5 M  
4.8  
Unused Operational Amplifiers  
An unused operational amplifier in a quad package  
(MCP6024) should be configured as shown in  
Figure 4-11. These circuits prevent the output from tog-  
gling and causing crosstalk. Circuit A sets the opera-  
tional amplifier at its minimum noise gain. The resistor  
divider produces any desired reference voltage within  
the output voltage range of the operational amplifier.  
The operational amplifier buffers that reference  
voltage. Circuit B uses the minimum number of compo-  
nents and operates as a comparator, but it may draw  
more current.  
V
SS  
(CS tied internally to V for MCP6021)  
SS  
FIGURE 4-8:  
Simplified Internal VREF  
Circuit (MCP6021 and MCP6023 only).  
See Figure 4-9 for a non-inverting gain circuit using the  
internal mid-supply reference. The DC Blocking  
Capacitor (C ) also reduces noise by coupling the  
B
operational amplifier input to the source.  
¼ MCP6024 (A)  
¼ MCP6024 (B)  
R
R
F
G
V
V
DD  
DD  
V
DD  
R
V
1
OUT  
C
B
V
REF  
V
REF  
V
R
IN  
2
FIGURE 4-9:  
Using VREF (MCP6021 and MCP6023 only).  
Non-Inverting Gain Circuit  
R
2
V
= V  
+ --------------------  
REF  
DD  
R
+ R  
1
2
To use the internal mid-supply reference for an  
inverting gain circuit, connect the V  
non-inverting input, as shown in Figure 4-10. The  
pin to the  
REF  
FIGURE 4-11:  
Amplifiers.  
Unused Operational  
capacitor, C , helps reduce power supply noise on the  
B
output.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 19  
MCP6021/1R/2/3/4  
Use a solid ground plane and connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
4.9  
PCB Surface Leakage  
In applications where low input bias current is critical,  
PCB (Printed Circuit Board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
Separate digital from analog, low speed from high  
speed and low power from high power. This will reduce  
interference.  
12  
between nearby traces is 10 . A 5V difference would  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high-frequency (low rise time)  
signals.  
cause 5 pA of current to flow, which is greater than the  
MCP6021/1R/2/3/4 family’s bias current at +25°C  
(1 pA, typical).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
Figure 4-12 shows an example of this type of layout.  
Sometimes it helps to place guard traces next to victim  
traces. They should be on both sides of the victim trace  
and as close as possible. Connect the guard trace to  
the ground plane at both ends and in the middle for long  
traces.  
Guard Ring  
V - V +  
IN IN  
Use coax cables (or low-inductance wiring) to route  
signal and power to and from the PCB.  
4.11 Typical Applications  
4.11.1  
A/D CONVERTER DRIVER AND  
ANTI-ALIASING FILTER  
FIGURE 4-12:  
Example Guard Ring Layout.  
Figure 4-13 shows a third-order Butterworth filter that  
can be used as an A/D Converter driver. It has a band-  
width of 20 kHz and a reasonable step response. It will  
work well for conversion rates of 80 ksps and greater (it  
has 29 dB attenuation at 60 kHz).  
1. Non-Inverting Gain and Unity Gain Buffer.  
a) Connect the guard ring to the inverting input  
pin (V -); this biases the guard ring to the  
IN  
Common-mode input voltage.  
b) Connect the non-inverting pin (V +) to the  
IN  
input with a wire that does not touch the  
PCB surface.  
1.0 nF  
MCP602X  
33.2 k  
8.45 k14.7 k  
2. Inverting (Figure 4-12) and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors).  
100 pF  
1.2 nF  
a) Connect the guard ring to the non-inverting  
input pin (V +). This biases the guard ring  
IN  
to the same reference voltage as the  
FIGURE 4-13:  
Anti-Aliasing Filter with a 20 kHz Cutoff  
Frequency.  
A/D Converter Driver and  
operational amplifier’s input (e.g., V /2 or  
DD  
ground).  
b) Connect the inverting pin (V -) to the input  
IN  
This filter can easily be adjusted to another bandwidth  
by multiplying all capacitors by the same factor.  
Alternatively, the resistors can all be scaled by another  
common factor to adjust the bandwidth.  
with a wire that does not touch the PCB  
surface.  
4.10 High-Speed PCB Layout  
Due to their speed capabilities, a little extra care in the  
PCB (Printed Circuit Board) layout can make a signifi-  
cant difference in the performance of these operational  
amplifiers. Good PC board layout techniques will help  
you achieve the performance shown in Section 1.0  
“Electrical Characteristics” and Section 2.0 “Typical  
Performance Curves”, while also helping you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
DS20001685E-page 20  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.11.2  
OPTICAL DETECTOR AMPLIFIER  
5.6 pF  
Photo  
Detector  
Figure 4-14 shows the MCP6021 operational amplifier  
used as a transimpedance amplifier in a photo detector  
circuit. The photo detector looks like a capacitive  
current source, so the 100 kresistor gains the input  
signal to a reasonable level. The 5.6 pF capacitor  
stabilizes this circuit and produces a flat frequency  
response with a bandwidth of 370 kHz.  
100 k  
100 pF  
MCP6021  
V
/2  
DD  
FIGURE 4-14:  
Transimpedance Amplifier  
for an Optical Detector.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 21  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 22  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6021/1R/2/3/4 family of operational amplifiers.  
Microchip offers a broad spectrum of analog demon-  
stration and evaluation boards that are designed to  
help you achieve faster time to market. For a complete  
listing of these boards, and their corresponding user’s  
guides and technical information, visit the Microchip  
web site at www.microchip.com/analogtools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model available for the  
MCP6021/1R/2/3/4 operational amplifiers is on  
Microchip’s web site at www.microchip.com. This  
model is intended as an initial design tool that works  
well in the operational amplifier’s linear region of oper-  
ation at room temperature. There is information on its  
capabilities within the macro model file.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N: SOIC8EV  
14-Pin SOIC/TSSOP/DIP Evaluation Board,  
P/N: SOIC14EV  
®
5.2  
FilterLab Software  
®
Microchip’s FilterLab software is an innovative software  
tool that simplifies analog active filter (using operational  
amplifiers) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams of  
the filter circuit with component values. It also outputs  
the filter circuit in SPICE format, which can be used with  
the macro model to simulate actual filter performance.  
5.6  
Application Notes  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
• ADN003, “Select the Right Operational Amplifier  
for your Filtering Circuits” (DS21821)  
• AN722, “Operational Amplifier Topologies and DC  
Specifications” (DS00722)  
®
5.3  
MPLAB Mindi™ Analog  
Simulator  
• AN723, “Operational Amplifier AC Specifications  
and Applications” (DS00723)  
Microchip’s Mindi™ circuit designer and simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power management applications. It is a  
free online circuit designer and simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer and simulator enables  
designers to quickly generate circuit diagrams and  
simulate circuits. Circuits developed using the MPLAB  
Mindi analog simulator can be downloaded to a  
personal computer or workstation.  
• AN884, “Driving Capacitive Loads With Op Amps”  
(DS00884)  
• AN990, “Analog Sensor Conditioning Circuits –  
An Overview” (DS00990)  
• AN1177, “Op Amp Precision Design: DC Errors”  
(DS01177)  
• AN1228, “Op Amp Precision Design: Random  
Noise” (DS01228)  
These application notes and others are listed in the  
design guide: “Signal Chain Design Guide” (DS21825).  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps semiconductor pro-  
fessionals efficiently identify Microchip devices that fit a  
particular design requirement. Available at no cost from  
the Microchip web site at www.microchip.com/maps,  
the MAPS is an overall selection tool for Microchip’s  
product portfolio, that includes analog, memory, MCUs  
and DSCs. Using this tool you can define a filter to sort  
features for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for data sheets, purchasing and  
sampling of Microchip parts.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 23  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 24  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23 (MCP6021/MCP6021R)  
Example:  
Device  
E-Temp Code  
MCP6021  
EYNN  
EZNN  
EY25  
MCP6021R  
Note:  
Applies to 5-Lead SOT-23.  
8-Lead PDIP (300 mil)  
Example:  
MCP6021  
MCP6021  
I/P256  
1603  
OR  
e
3
256  
E/P  
1603  
8-Lead SOIC (150 mil)  
Example:  
MCP6021E  
SN 1603  
MCP6021  
I/SN1603  
256  
OR  
e
3
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
®
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 25  
MCP6021/1R/2/3/4  
Package Marking Information (Continued)  
8-Lead MSOP  
Example:  
6021E  
903256  
8-Lead TSSOP  
Example:  
6021  
E903  
256  
14-Lead PDIP (300 mil) (MCP6024)  
Example:  
MCP6024-I/P  
0903256  
OR  
e
3
MCP6024-E/P  
0903256  
DS20001685E-page 26  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Package Marking Information (Continued)  
14-Lead SOIC (150 mil) (MCP6024)  
Example:  
MCP6024-I/SL  
1603256  
OR  
MCP6024  
e
3
E/SL  
1603256  
14-Lead TSSOP (MCP6024)  
Example:  
6024E  
1603  
256  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 27  
MCP6021/1R/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 C 2X  
D
e1  
A
D
N
E/2  
E1/2  
E1  
E
(DATUM D)  
(DATUM A-B)  
0.15 C D  
2X  
NOTE 1  
1
2
e
B
NX b  
0.20  
C A-B D  
TOP VIEW  
A
A2  
A1  
A
0.20 C  
SEATING PLANE  
A
SEE SHEET 2  
C
SIDE VIEW  
Microchip Technology Drawing C04-028D [OT] Sheet 1 ofꢁꢂ  
DS20001685E-page 28  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
c
T
L
L1  
VIEW A-A  
SHEET 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
-
-
-
-
1.45  
1.30  
0.15  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.30  
-
0.60  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
0.60 REF  
I
0°  
0.08  
0.20  
-
-
-
10°  
0.26  
0.51  
c
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-091D [OT] Sheet 2 ofꢁꢂ  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 29  
MCP6021/1R/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X
SILK SCREEN  
5
Y
Z
C
G
1
2
E
GX  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
C
X
0.95 BSC  
2.80  
Contact Pad Spacing  
Contact Pad Width (X5)  
Contact Pad Length (X5)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
0.60  
1.10  
Y
G
GX  
Z
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2091A [OT]  
DS20001685E-page 30  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 31  
MCP6021/1R/2/3/4  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
DS20001685E-page 32  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 33  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001685E-page 34  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 35  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001685E-page 36  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 37  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001685E-page 38  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢥꢦꢋꢑꢆꢍꢦꢖꢋꢑꢧꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢥꢔꢆꢕꢆꢨꢛꢨꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢥꢍꢍꢏꢇꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
@ꢈꢌꢄ"  
ꢎꢙAAꢙꢎ8ꢗ8ꢘꢏ  
ꢓꢌ!ꢆꢈ"ꢌꢁꢈꢃAꢌ!ꢌꢄ"  
ꢎꢙE  
EGꢎ  
ꢎꢕH  
E#!7ꢆꢂꢃꢁ)ꢃ(ꢌꢈ"  
(ꢌꢄꢇꢅ  
E
ꢔꢐJ;ꢃ>ꢏ?  
G3ꢆꢂꢊꢍꢍꢃKꢆꢌꢋꢅꢄ  
ꢎꢁꢍ%ꢆ%ꢃ(ꢊꢇ$ꢊꢋꢆꢃꢗꢅꢌꢇ$ꢈꢆ""  
ꢏꢄꢊꢈ%ꢁ))ꢃ  
ꢔꢐꢚꢔ  
ꢔꢐꢔ;  
1ꢐꢔꢔ  
1ꢐꢒꢔ  
1ꢐꢔ;  
ꢔꢐ1;  
ꢕꢒ  
ꢕ1  
8
G3ꢆꢂꢊꢍꢍꢃNꢌ%ꢄꢅ  
Jꢐꢖꢔꢃ>ꢏ?  
ꢎꢁꢍ%ꢆ%ꢃ(ꢊꢇ$ꢊꢋꢆꢃNꢌ%ꢄꢅ  
ꢎꢁꢍ%ꢆ%ꢃ(ꢊꢇ$ꢊꢋꢆꢃAꢆꢈꢋꢄꢅ  
ꢀꢁꢁꢄꢃAꢆꢈꢋꢄꢅ  
81  
A
ꢖꢐ<ꢔ  
ꢒꢐꢜꢔ  
ꢔꢐꢖ;  
ꢖꢐꢖꢔ  
<ꢐꢔꢔ  
ꢔꢐJꢔ  
ꢖꢐ;ꢔ  
<ꢐ1ꢔ  
ꢔꢐꢝ;  
ꢀꢁꢁꢄꢉꢂꢌꢈꢄ  
ꢀꢁꢁꢄꢃꢕꢈꢋꢍꢆ  
Aꢆꢊ%ꢃꢗꢅꢌꢇ$ꢈꢆ""  
Aꢆꢊ%ꢃNꢌ%ꢄꢅ  
A1  
1ꢐꢔꢔꢃꢘ8ꢀ  
ꢔꢞ  
ꢔꢐꢔꢜ  
ꢔꢐ1ꢜ  
ꢚꢞ  
7
ꢔꢐꢒꢔ  
ꢔꢐ<ꢔ  
ꢓꢗꢊꢃꢉꢤ  
1ꢐ (ꢌꢈꢃ1ꢃ3ꢌ"#ꢊꢍꢃꢌꢈ%ꢆ6ꢃ)ꢆꢊꢄ#ꢂꢆꢃ!ꢊꢑꢃ3ꢊꢂꢑ'ꢃ7#ꢄꢃ!#"ꢄꢃ7ꢆꢃꢍꢁꢇꢊꢄꢆ%ꢃ&ꢌꢄꢅꢌꢈꢃꢄꢅꢆꢃꢅꢊꢄꢇꢅꢆ%ꢃꢊꢂꢆꢊꢐ  
ꢒꢐ ꢓꢌ!ꢆꢈ"ꢌꢁꢈ"ꢃꢓꢃꢊꢈ%ꢃ81ꢃ%ꢁꢃꢈꢁꢄꢃꢌꢈꢇꢍ#%ꢆꢃ!ꢁꢍ%ꢃ)ꢍꢊ"ꢅꢃꢁꢂꢃꢉꢂꢁꢄꢂ#"ꢌꢁꢈ"ꢐꢃꢎꢁꢍ%ꢃ)ꢍꢊ"ꢅꢃꢁꢂꢃꢉꢂꢁꢄꢂ#"ꢌꢁꢈ"ꢃ"ꢅꢊꢍꢍꢃꢈꢁꢄꢃꢆ6ꢇꢆꢆ%ꢃꢔꢐ1;ꢃ!!ꢃꢉꢆꢂꢃ"ꢌ%ꢆꢐ  
<ꢐ ꢓꢌ!ꢆꢈ"ꢌꢁꢈꢌꢈꢋꢃꢊꢈ%ꢃꢄꢁꢍꢆꢂꢊꢈꢇꢌꢈꢋꢃꢉꢆꢂꢃꢕꢏꢎ8ꢃ=1ꢖꢐ;ꢎꢐ  
>ꢏ?* >ꢊ"ꢌꢇꢃꢓꢌ!ꢆꢈ"ꢌꢁꢈꢐꢃꢗꢅꢆꢁꢂꢆꢄꢌꢇꢊꢍꢍꢑꢃꢆ6ꢊꢇꢄꢃ3ꢊꢍ#ꢆꢃ"ꢅꢁ&ꢈꢃ&ꢌꢄꢅꢁ#ꢄꢃꢄꢁꢍꢆꢂꢊꢈꢇꢆ"ꢐ  
ꢘ8ꢀ* ꢘꢆ)ꢆꢂꢆꢈꢇꢆꢃꢓꢌ!ꢆꢈ"ꢌꢁꢈ'ꢃ#"#ꢊꢍꢍꢑꢃ&ꢌꢄꢅꢁ#ꢄꢃꢄꢁꢍꢆꢂꢊꢈꢇꢆ'ꢃ)ꢁꢂꢃꢌꢈ)ꢁꢂ!ꢊꢄꢌꢁꢈꢃꢉ#ꢂꢉꢁ"ꢆ"ꢃꢁꢈꢍꢑꢐ  
ꢎꢌꢇꢂꢁꢇꢅꢌꢉ ꢇꢅꢈꢁꢍꢁꢋꢑ ꢓꢂꢊ&ꢌꢈꢋ ?ꢔꢖꢟꢔꢚJ>  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 39  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001685E-page 40  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
ꢩꢨꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢪꢐꢄꢈꢆꢡꢑꢁꢂꢋꢑꢃꢆꢒꢇꢔꢆꢕꢆꢚꢝꢝꢆꢎꢋꢈꢆꢞꢗꢅꢟꢆꢠꢇꢪꢡꢇꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
@ꢈꢌꢄ"  
ꢓꢌ!ꢆꢈ"ꢌꢁꢈꢃAꢌ!ꢌꢄ"  
ꢙE?K8ꢏ  
EGꢎ  
1ꢖ  
ꢐ1ꢔꢔꢃ>ꢏ?  
ꢎꢙE  
ꢎꢕH  
E#!7ꢆꢂꢃꢁ)ꢃ(ꢌꢈ"  
(ꢌꢄꢇꢅ  
E
ꢉꢃꢄꢁꢃꢏꢆꢊꢄꢌꢈꢋꢃ(ꢍꢊꢈꢆ  
ꢐꢒ1ꢔ  
ꢐ1ꢜ;  
ꢎꢁꢍ%ꢆ%ꢃ(ꢊꢇ$ꢊꢋꢆꢃꢗꢅꢌꢇ$ꢈꢆ""  
>ꢊ"ꢆꢃꢄꢁꢃꢏꢆꢊꢄꢌꢈꢋꢃ(ꢍꢊꢈꢆ  
ꢏꢅꢁ#ꢍ%ꢆꢂꢃꢄꢁꢃꢏꢅꢁ#ꢍ%ꢆꢂꢃNꢌ%ꢄꢅ  
ꢎꢁꢍ%ꢆ%ꢃ(ꢊꢇ$ꢊꢋꢆꢃNꢌ%ꢄꢅ  
G3ꢆꢂꢊꢍꢍꢃAꢆꢈꢋꢄꢅ  
ꢗꢌꢉꢃꢄꢁꢃꢏꢆꢊꢄꢌꢈꢋꢃ(ꢍꢊꢈꢆ  
Aꢆꢊ%ꢃꢗꢅꢌꢇ$ꢈꢆ""  
@ꢉꢉꢆꢂꢃAꢆꢊ%ꢃNꢌ%ꢄꢅ  
ꢕꢒ  
ꢕ1  
8
81  
A
71  
7
ꢆ>  
ꢐ11;  
ꢐꢔ1;  
ꢐꢒꢜꢔ  
ꢐꢒꢖꢔ  
ꢐꢝ<;  
ꢐ11;  
ꢐꢔꢔꢚ  
ꢐꢔꢖ;  
ꢐꢔ1ꢖ  
ꢐ1<ꢔ  
ꢐ<1ꢔ  
ꢐꢒ;ꢔ  
ꢐꢝ;ꢔ  
ꢐ1<ꢔ  
ꢐꢔ1ꢔ  
ꢐꢔJꢔ  
ꢐꢔ1ꢚ  
ꢐ<ꢒ;  
ꢐꢒꢚꢔ  
ꢐꢝꢝ;  
ꢐ1;ꢔ  
ꢐꢔ1;  
ꢐꢔꢝꢔ  
ꢐꢔꢒꢒ  
ꢐꢖ<ꢔ  
Aꢁ&ꢆꢂꢃAꢆꢊ%ꢃNꢌ%ꢄꢅ  
G3ꢆꢂꢊꢍꢍꢃꢘꢁ&ꢃꢏꢉꢊꢇꢌꢈꢋꢃꢃꢠ  
ꢓꢗꢊꢃꢉꢤ  
1ꢐ (ꢌꢈꢃ1ꢃ3ꢌ"#ꢊꢍꢃꢌꢈ%ꢆ6ꢃ)ꢆꢊꢄ#ꢂꢆꢃ!ꢊꢑꢃ3ꢊꢂꢑ'ꢃ7#ꢄꢃ!#"ꢄꢃ7ꢆꢃꢍꢁꢇꢊꢄꢆ%ꢃ&ꢌꢄꢅꢃꢄꢅꢆꢃꢅꢊꢄꢇꢅꢆ%ꢃꢊꢂꢆꢊꢐ  
ꢒꢐ ꢠꢃꢏꢌꢋꢈꢌ)ꢌꢇꢊꢈꢄꢃ?ꢅꢊꢂꢊꢇꢄꢆꢂꢌ"ꢄꢌꢇꢐ  
<ꢐ ꢓꢌ!ꢆꢈ"ꢌꢁꢈ"ꢃꢓꢃꢊꢈ%ꢃ81ꢃ%ꢁꢃꢈꢁꢄꢃꢌꢈꢇꢍ#%ꢆꢃ!ꢁꢍ%ꢃ)ꢍꢊ"ꢅꢃꢁꢂꢃꢉꢂꢁꢄꢂ#"ꢌꢁꢈ"ꢐꢃꢎꢁꢍ%ꢃ)ꢍꢊ"ꢅꢃꢁꢂꢃꢉꢂꢁꢄꢂ#"ꢌꢁꢈ"ꢃ"ꢅꢊꢍꢍꢃꢈꢁꢄꢃꢆ6ꢇꢆꢆ%ꢃꢐꢔ1ꢔRꢃꢉꢆꢂꢃ"ꢌ%ꢆꢐ  
ꢖꢐ ꢓꢌ!ꢆꢈ"ꢌꢁꢈꢌꢈꢋꢃꢊꢈ%ꢃꢄꢁꢍꢆꢂꢊꢈꢇꢌꢈꢋꢃꢉꢆꢂꢃꢕꢏꢎ8ꢃ=1ꢖꢐ;ꢎꢐ  
>ꢏ?*ꢃ>ꢊ"ꢌꢇꢃꢓꢌ!ꢆꢈ"ꢌꢁꢈꢐꢃꢗꢅꢆꢁꢂꢆꢄꢌꢇꢊꢍꢍꢑꢃꢆ6ꢊꢇꢄꢃ3ꢊꢍ#ꢆꢃ"ꢅꢁ&ꢈꢃ&ꢌꢄꢅꢁ#ꢄꢃꢄꢁꢍꢆꢂꢊꢈꢇꢆ"ꢐ  
ꢎꢌꢇꢂꢁꢇꢅꢌꢉ ꢇꢅꢈꢁꢍꢁꢋꢑ ꢓꢂꢊ&ꢌꢈꢋ ?ꢔꢖꢟꢔꢔ;>  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 41  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001685E-page 42  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 43  
MCP6021/1R/2/3/4  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
DS20001685E-page 44  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 45  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001685E-page 46  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 47  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 48  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Revision B (November 2003)  
APPENDIX A: REVISION HISTORY  
Revision E (January 2017)  
• Second Release of this Document  
Revision A (November 2001)  
The following is the list of modifications:  
1. Updated the AC Electrical Characteristics table.  
• Original Release of this Document  
2. Added Section 4.1.2, Input Voltage Limits and  
Section 4.1.3, Input Current Limits.  
3. Added package information for 8-pin TSSOP.  
4. Various typographical edits.  
Revision D (February 2009)  
The following is the list of modifications:  
1. Changed all references to 6.0V back to 5.5V  
throughout document.  
2. Design Aids: Name change for Mindi Simulation  
Tool.  
3. Section 1.0, Electrical Characteristics, Section  
“”: Corrected “Maximum Output Voltage Swing”  
condition from 0.9V Input Overdrive to 0.5V  
Input Overdrive.  
4. Section 1.0, Electrical Characteristics, Section  
“AC Electrical Characteristics”: Changed  
Phase Margin condition from G = +1 to G= +1 V/V.  
5. Section 1.0, Electrical Characteristics, Section  
“AC Electrical Characteristics”: Changed  
Settling Time, 0.2% condition from G = +1 to  
G = +1 V/V.  
6. Section 1.0, Electrical Characteristics: Added  
Section 1.1, Test Circuits  
7. Section 5.0, Design Aids: Name change for  
Mindi Simulation Tool. Added new boards to  
Section 5.5, Analog Demonstration and Evalua-  
tion Boards and new application notes to  
Section 5.6, Application Notes.  
8. Updates Appendix A: “Revision History”  
Revision C (December 2005)  
The following is the list of modifications:  
1. Added SOT-23-5 package option for single op  
amps MCP6021 and MCP6021R (E-temp only).  
2. Added MSOP-8 package option for E-temp  
single op amp (MCP6021).  
3. Corrected package drawing on front page for  
dual op amp (MCP6022).  
4. Clarified spec conditions (I , PM and THD+N)  
SC  
in Section 2.0, Typical Performance Curves.  
5. Added Section 3.0, Pin Descriptions.  
6. Updated Section 4.0, Applications Information  
for THD+N, unused op amps, and gain peaking  
discussions.  
7. Corrected and updated package marking infor-  
mation in Section 6.0, Packaging Information.  
8. Added Appendix A: “Revision History”.  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 49  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 50  
2001-2017 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office  
.
(1)  
Examples:  
a) MCP6021T-E/OT: Tape and Reel,  
X
/XX  
PART NO.  
Device  
[X]  
Temperature Package  
Range  
Tape and Reel  
Option  
Extended temperature,  
5LD SOT-23.  
b) MCP6021-E/P:  
Extended temperature,  
8LD PDIP.  
c) MCP6021-E/SN: Extended temperature,  
8LD SOIC.  
Device:  
MCP6021  
MCP6021T Single Op Amp  
(Tape and Reel for SOT-23, SOIC, TSSOP,  
MSOP)  
MCP6021R Single Op Amp  
MCP6021RT Single Op Amp  
Single Op Amp  
a) MCP6021RT-E/OT: Tape and Reel,  
Extended temperature,  
5LD SOT-23.  
a) MCP6022-I/P:  
b) MCP6022-E/P:  
Industrial temperature,  
8LD PDIP.  
Extended temperature,  
8LD PDIP.  
(Tape and Reel for SOT-23)  
Dual Op Amp  
MCP6022T Dual Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Single Op Amp w/CS  
MCP6023T Single Op Amp w/CS  
(Tape and Reel for SOIC and TSSOP)  
Quad Op Amp  
MCP6024T Quad Op Amp  
(Tape and Reel for SOIC and TSSOP)  
MCP6022  
c) MCP6022T-E/ST: Tape and Reel,  
Extended temperature,  
MCP6023  
8LD TSSOP.  
a) MCP6023-I/P:  
b) MCP6023-E/P:  
Industrial temperature,  
8LD PDIP.  
Extended temperature,  
8LD PDIP.  
MCP6024  
c) MCP6023-E/SN: Extended temperature,  
8LD SOIC.  
Tape and Reel  
Option:  
Blank = Standard packaging (tube or tray)  
T
= Tape and Reel(1)  
a) MCP6024-I/SL:  
Industrial temperature,  
14LD SOIC.  
b) MCP6024-E/SL: Extended temperature,  
14LD SOIC.  
c) MCP6024T-E/ST: Tape and Reel,  
Extended temperature,  
14LD TSSOP.  
Temperature  
Range:  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
Package:  
OT  
= Plastic Small Outline Transistor (SOT-23), 5-Lead  
(MCP6021, E-Temp; MCP6021R, E-Temp)  
MS = Plastic MSOP, 8-Lead (MCP6021, E-Temp)  
Note 1: Tape and Reel identifier only appears in the  
catalog part number description. This identi-  
fier is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
P
= Plastic DIP (300 mil Body), 8-Lead, 14-Lead  
= Plastic SOIC (150 mil Body), 8-Lead  
= Plastic SOIC (150 mil Body), 14-Lead  
= Plastic TSSOP, 8-Lead (MCP6021, I-Temp; MCP6022,  
I-Temp, E-Temp; MCP6023, I-Temp, E-Temp)  
= Plastic TSSOP, 14-Lead  
SN  
SL  
ST  
availability with the Tape and Reel option.  
ST  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 51  
MCP6021/1R/2/3/4  
NOTES:  
DS20001685E-page 52  
2001-2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEE  
LOQ,  
K
EEL  
OQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
are for its PIC® MCUs and dsPIC® DSCs, KEE OQ® code hopping  
L
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2001-2017, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-1278-6  
== ISO/TS 16949 ==  
2001-2017 Microchip Technology Inc.  
DS20001685E-page 53  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20001685E-page 54  
2001-2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MCP6024T-E/SN

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/ST

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/STVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-I/MS

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/OT

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/P

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/SL

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/SLVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-I/SN

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/ST

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/STVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP602I-P

2.7V to 6.0V Single Supply CMOS Op Amps
MICROCHIP