MCP6032E/MS [MICROCHIP]

0.9 uA, High Precision Op Amps; 0.9微安,高精密运算放大器
MCP6032E/MS
型号: MCP6032E/MS
厂家: MICROCHIP    MICROCHIP
描述:

0.9 uA, High Precision Op Amps
0.9微安,高精密运算放大器

运算放大器
文件: 总30页 (文件大小:967K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6031/2/3/4  
0.9 µA, High Precision Op Amps  
Features  
Description  
• Rail-to-Rail Input and Output  
The Microchip Technology Inc. MCP6031/2/3/4 family  
of operational amplifiers (op amps) operate with a  
single supply voltage as low as 1.8V, while drawing  
ultra low quiescent current per amplifier (0.9 µA,  
typical). This family also has low input offset voltage  
(±150 µV, maximum) and rail-to-rail input and output  
operation. This combination of features supports  
battery-powered and portable applications.  
• Low Offset Voltage: ±150 µV (maximum)  
• Ultra Low Quiescent Current: 0.9 µA (typical)  
• Wide Power Supply Voltage: 1.8V to 5.5V  
• Gain Bandwidth Product: 10 kHz (typical)  
• Unity Gain Stable  
• Chip Select (CS) capability: MCP6033  
• Extended Temperature Range:  
- -40°C to +125°C  
The MCP6031/2/3/4 family is unity gain stable and has  
a gain bandwidth product of 10 kHz (typical). These  
specs make these op amps appropriate for low fre-  
quency applications, such as battery current  
monitoring and sensor conditioning.  
• No Phase Reversal  
Applications  
The MCP6031/2/3/4 family is offered in single  
(MCP6031), single with power saving Chip Select (CS)  
input (MCP6033), dual (MCP6032), and quad  
(MCP6034) configurations.  
Toll Booth Tags  
• Wearable Products  
• Battery Current Monitoring  
• Sensor Conditioning  
• Battery Powered  
The MCP6031/2/3/4 family is designed with Micro-  
chip’s advanced CMOS process. All devices are  
available in the extended temperature range, with a  
power supply range of 1.8V to 5.5V.  
Design Aids  
• SPICE Macro Models  
• FilterLab® Software  
• MindiTM Simulation Tool  
Package Types  
MCP6031  
SOIC, MSOP  
MCP6032  
SOIC, MSOP  
• MAPS (Microchip Advanced Part Selector)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
VDD  
1
2
3
4
8
7
6
5
VOUTA  
NC  
NC  
1
2
8
7
VOUTB  
VINA  
+
VIN  
+
VDD  
VINB  
VINB  
+
VINA  
VIN  
VOUT  
NC  
3
4
6
5
VSS  
VSS  
Typical Application  
VDD  
VDD  
MCP6034  
SOIC, TSSOP  
MCP6033  
SOIC, MSOP  
VOUTD  
VOUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VOUTA  
NC  
CS  
1
2
8
7
MCP6031  
VIND  
VIND  
VSS  
+
IDD  
100 kΩ  
10Ω  
VINA  
+
VIN  
+
VDD  
VINA  
VIN  
VOUT  
NC  
3
4
6
5
VSS  
VDD  
VINB  
VINB  
VSS  
1.8V to  
5.5V  
VINC  
+
+
VSS  
VINC  
1 MΩ  
VOUTC  
8
VOUTB  
VDD VOUT  
IDD = -------------------------------------------  
(10 V V) (10Ω)  
High Side Battery Current Sensor  
© 2007 Microchip Technology Inc.  
DS22041A-page 1  
MCP6031/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other conditions  
above those indicated in the operational listings of this  
specification is not implied. Exposure to maximum rat-  
ing conditions for extended periods may affect device  
reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+, VIN-). .....................±2 mA  
Analog Inputs (VIN+, VIN-)††........... VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current  
Limits”  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short-Circuit Current .................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature.....................................-65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD protection on all pins (HBM; MM) ................ ≥ 4 kV; 400V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, VL = VDD/2 and RL = 1 MΩ to VL (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Input Offset  
Input Offset Voltage  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VOS  
-150  
+150  
µV  
VDD = 3.0V, VCM = VDD/3  
Input Offset Drift with Temperature ΔVOS/ΔTA  
±3.0  
µV/°C TA= -40°C to +125°C,  
VDD = 3.0V, VCM = VDD/3  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
PSRR  
70  
88  
dB  
VCM = VSS  
IB  
IB  
±1.0  
60  
100  
pA  
pA  
TA = +85°C  
IB  
2000  
5000  
pA  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1.0  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||6  
Ω||pF  
Ω||pF  
Common Mode Input Voltage  
Range  
VCMR  
VSS 0.3  
95  
93  
89  
93  
VDD  
0.3  
+
V
Common Mode Rejection Ratio  
CMRR  
70  
72  
70  
72  
dB  
dB  
dB  
dB  
V
CM = -0.3V to 2.1V,  
VDD = 1.8V  
CM = -0.3V to 5.8V,  
V
VDD = 5.5V  
VCM = 2.75V to 5.8V,  
VDD = 5.5V  
V
CM = -0.3V to 2.75V,  
VDD = 5.5V  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
AOL  
95  
115  
dB  
0.2V < VOUT < (VDD – 0.2V)  
RL = 50 kΩ to VL  
DS22041A-page 2  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, VL = VDD/2 and RL = 1 MΩ to VL (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output  
Maximum Output Voltage Swing  
VOL, VOH VSS + 10  
VDD – 10  
mV RL = 50 kΩ to VL,  
0.5V output overdrive  
Output Short-Circuit Current  
ISC  
±5  
mA VDD = 1.8V  
±23  
mA  
VDD = 5.5V  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
0.4  
5.5  
V
Quiescent Current per Amplifier  
0.9  
1.35  
µA  
IO = 0, VCM = VDD,  
VDD = 5.5V  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, CL = 60 pF and RL = 1 MΩ to VL (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
10  
65  
kHz  
°
G = +1  
Slew Rate  
SR  
4.0  
V/ms  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
3.9  
165  
0.6  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
© 2007 Microchip Technology Inc.  
DS22041A-page 3  
MCP6031/2/3/4  
MCP6033 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD  
/
2, VOUT = VDD/2, VL = VDD/2, CL = 60 pF and RL = 1 MΩ to VL (Refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
GND Current  
VIL  
VSS  
0.2VDD  
V
ICSL  
-10  
pA  
CS = VSS  
VIH  
ICSH  
0.8VDD  
VDD  
V
10  
-400  
10  
pA  
pA  
pA  
CS = VDD  
CS = VDD  
CS = VDD  
ISS  
Amplifier Output Leakage  
CS Dynamic Specifications  
IO(LEAK)  
CS Low to Amplifier Output  
Turn-on Time  
tON  
4
10  
100  
ms  
µs  
V
CS 0.2VDD to VOUT = 0.9VDD/2,  
G = +1 V/V, VIN = VDD/2,  
RL = 50 kΩ to VL = VSS.  
CS High to Amplifier Output  
High-Z  
tOFF  
CS 0.8VDD to VOUT = 0.1VDD/2,  
G = +1 V/V, VIN = VDD/2,  
RL = 50 kΩ to VL = VSS.  
CS Hysteresis  
VHYST  
0.3VDD  
CS  
VIL  
VIH  
tON  
tOFF  
VOUT  
High-Z  
High-Z  
-0.9 µA (typ.)  
-400 pA (typ.)  
10 pA (typ.)  
-400 pA (typ.)  
ISS  
ICS  
FIGURE 1-1:  
Timing Diagram for the CS  
Pin on the MCP6033.  
DS22041A-page 4  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note  
θJA  
θJA  
θJA  
θJA  
163  
206  
120  
100  
°C/W  
°C/W  
°C/W  
°C/W  
Note:  
The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-3. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.6 “Supply Bypass”.  
VDD  
2.2 µF  
0.1 µF  
RN  
VIN  
VOUT  
MCP603X  
CL  
RL  
VDD  
2
VL  
RG  
RF  
FIGURE 1-2:  
AC and DC Test Circuit for Most Non-Inverting Gain Conditions.  
VDD  
2.2 µF  
0.1 µF  
RN  
VDD  
2
VOUT  
MCP603X  
CL  
RL  
VIN  
VL  
RG  
RF  
FIGURE 1-3:  
AC and DC Test Circuit for Most Inverting Gain Conditions.  
© 2007 Microchip Technology Inc.  
DS22041A-page 5  
MCP6031/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
400  
14%  
TA = -40°C  
1424 Samples  
DD = 3.0V  
VCM = VDD/3  
300  
12%  
10%  
8%  
TA = +25°C  
V
TA = +85°C  
TA = +125°C  
200  
100  
0
6%  
-100  
-200  
-300  
-400  
4%  
2%  
VDD = 3.0V  
0%  
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Common Mode Input Voltage (V)  
Input Offset Voltage (μV)  
FIGURE 2-1:  
Input Offset Voltage with  
FIGURE 2-4:  
Input Offset Voltage vs.  
V
= 3.0V, V  
= V /3.  
Common Mode Input Voltage with V = 3.0V.  
DD  
CM  
DD  
DD  
400  
30%  
TA = -40°C  
1080 Samples  
VDD = 3.0V  
VCM = VDD/3  
300  
200  
100  
0
TA = +25°C  
TA = +85°C  
TA = +125°C  
25%  
20%  
15%  
10%  
5%  
TA = -40°C to +125°C  
-100  
-200  
-300  
-400  
VDD = 1.8V  
0%  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8 10 12  
Input Offset Drift with Temperature (μV/°C)  
Common Mode Input Voltage (V)  
FIGURE 2-2:  
Input Offset Voltage Drift  
= V /3.  
FIGURE 2-5:  
Common Mode Input Voltage with V = 1.8V.  
Input Offset Voltage vs.  
with V = 3.0V, V  
DD  
CM  
DD  
DD  
400  
300  
200  
100  
0
250  
200  
150  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
100  
50  
VDD = 3.0V  
VDD = 5.5V  
0
-50  
-100  
-200  
VDD = 1.8V  
-100  
-150  
-200  
-250  
-300  
VDD = 5.5V  
-400  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with V = 5.5V.  
Output Voltage.  
DD  
DS22041A-page 6  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
1,000  
110  
CMRR (VDD = 1.8V,  
VCM = -0.3V to 2.1V)  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
CMRR (VDD = 5.5V,  
VCM = -0.3V to 5.8V)  
PSRR (VDD = 1.8V to 5.5V, VCM = VSS  
)
100  
0.1  
1
10  
100  
1k  
10k  
100k  
1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
Common Mode Rejection  
vs. Frequency.  
Ratio, Power Supply Rejection Ratio vs. Ambient  
Temperature.  
200  
175  
150  
125  
100  
75  
10000  
VDD = 5.5V  
VCM = VDD  
1000  
Input Bias Current  
100  
50  
10  
f = 1 kHz  
DD = 5.5V  
25  
0
V
Input Offset Current  
1
25  
45  
65  
85  
105  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage.  
vs. Ambient Temperature.  
100  
10000  
PSRR-  
90  
VDD = 5.5V  
80  
70  
PSRR+  
TA = +125°C  
1000  
100  
10  
60  
CMRR  
50  
40  
30  
20  
TA = +85°C  
10  
0
VDD = 5.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
0.1  
1
10  
100  
1000  
Frequency (Hz)  
FIGURE 2-9:  
Common Mode Rejection  
FIGURE 2-12:  
Input Bias Current vs.  
Ratio, Power Supply Rejection Ratio vs.  
Frequency.  
Common Mode Input Voltage.  
© 2007 Microchip Technology Inc.  
DS22041A-page 7  
MCP6031/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
120  
100  
80  
0
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Open-Loop Gain  
VDD = 5.5V @ VCM = VDD  
VDD = 5.5V @ VCM = VSS  
-30  
-60  
Open-Loop Phase  
60  
-90  
40  
-120  
-150  
-180  
-210  
VDD = 1.8V @ VCM = VDD  
VDD = 1.8V @ VCM = VSS  
20  
0
VDD = 5.5V  
-20  
0.001 0.01  
0
1k 10k 100k  
10 100 
1
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-13:  
Quiescent Current vs  
FIGURE 2-16:  
Open-Loop Gain, Phase vs.  
Ambient Temperature.  
Frequency.  
1.2  
130  
125  
120  
115  
110  
105  
100  
95  
VCM = VDD  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
RL = 50 k  
VSS + 0.2V < VOUT < VDD - 0.2V  
90  
85  
80  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage VDD (V)  
Power Supply Voltage (V)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Power Supply Voltage with V  
= V  
.
Power Supply Voltage.  
CM  
DD  
1.2  
1.1  
130  
VCM = VSS  
125  
120  
115  
110  
105  
100  
95  
90  
85  
80  
VDD = 5.5V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 1.8V  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
RL = 50 kΩ  
Large Signal AOL  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
Output Voltage Headroom  
VDD - VOUT or VOUT - VSS (V)  
Power Supply Voltage (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Power Supply Voltage with V  
= V  
.
Output Voltage Headroom.  
CM  
SS  
DS22041A-page 8  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
130  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
Phase Margin  
Gain Bandwidth Product  
80  
VDD = 1.8V  
G = +1 V/V  
70  
Input Referred  
60  
100  
1,000  
10,000  
-50 -25  
0
25  
50  
75 100 125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-19:  
Channel-to-Channel  
FIGURE 2-22:  
Gain Bandwidth Product,  
Separation vs. Frequency ( MCP6032/4 only).  
Phase Margin vs. Ambient Temperature.  
20  
18  
16  
14  
12  
10  
8
6
4
2
180  
160  
140  
120  
100  
80  
35  
30  
Gain Bandwidth Product  
TA = -40°C  
TA = +25°C  
25  
TA = +85°C  
20  
TA = +125°C  
Phase Margin  
15  
10  
5
60  
40  
VDD = 5.5V  
G = +1 V/V  
20  
0
0
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-20:  
Gain Bandwidth Product,  
FIGURE 2-23:  
Ouput Short Circuit Current  
Phase Margin vs. Common Mode Input Voltage.  
vs. Power Supply Voltage.  
10  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
VDD = 3.0V  
VDD = 1.8V  
Phase Margin  
1
Gain Bandwidth Product  
VDD = 5.5V  
G = +1 V/V  
0.1  
1K  
10K  
10  
100  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-21:  
Gain Bandwidth Product,  
FIGURE 2-24:  
Output Voltage Swing vs.  
Phase Margin vs. Ambient Temperature.  
Frequency.  
© 2007 Microchip Technology Inc.  
DS22041A-page 9  
MCP6031/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
1000  
VDD - VOH @ VDD = 1.8V  
VOL - VSS @ VDD = 1.8V  
100  
10  
VDD = 5.5V  
G = +1 V/V  
VDD - VOH @ VDD = 5.5V  
VOL - VSS @ VDD = 5.5V  
1
10μ  
100µ  
1m  
10m  
Time (100 μs/Div)  
Output Current (A)  
FIGURE 2-25:  
Output Voltage Headroom  
FIGURE 2-28:  
Small Signal Non-Inverting  
vs. Output Current.  
Pulse Response.  
5.0  
4.5  
4.0  
VDD = 5.5V  
RL = 50 kΩ  
VDD = 5.5V  
G = -1 V/V  
3.5  
3.0  
2.5  
2.0  
VDD - VOH  
1.5  
VSS - VOL  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
Time (100 μs/Div)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Output Voltage Headroom  
FIGURE 2-29:  
Small Signal Inverting Pulse  
vs. Ambient Temperature.  
Response.  
7.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Falling Edge, VDD = 5.5V  
Falling Edge, VDD = 1.8V  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
Rising Edge, VDD = 5.5V  
Rising Edge, VDD = 1.8V  
VDD = 5.5V  
G = +1 V/V  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Time (0.5 ms/div)  
FIGURE 2-27:  
Slew Rate vs. Ambient  
FIGURE 2-30:  
Large Signal Non-Inverting  
Temperature.  
Pulse Response.  
DS22041A-page 10  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
VDD = 5.5V  
G = -1 V/V  
Output On  
Hysteresis  
CS Input  
High to Low  
CS Input  
Low to High  
Output High-Z  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
Time (0.5 ms/div)  
FIGURE 2-31:  
Large Signal Inverting Pulse  
FIGURE 2-34:  
Chip Select (CS) Hysteresis  
Response.  
(MCP6033 only) with V = 5.5V.  
DD  
2.1  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
VIN  
VDD = 3.0V  
VOUT  
1.8  
Output On  
1.5  
Hysteresis  
1.2  
0.9  
0.6  
0.3  
0.0  
CS Input  
High to Low  
CS Input  
Low to High  
VDD = 5.0V  
G = +2 V/V  
Output High-Z  
0.0  
-1.0  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
Chip Select Voltage (V)  
Time (2 ms/div)  
FIGURE 2-32:  
The MCP6031/2/3/4 family  
FIGURE 2-35:  
Chip Select (CS) Hysteresis  
shows no phase reversal .  
(MCP6033 only) with V = 3.0V.  
DD  
1.5  
1.2  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-10  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VDD = 1.8V  
Output On  
0.9  
Chip Select  
Hysteresis  
0.6  
0.3  
0.0  
CS Input  
High to Low  
CS Input  
Low to High  
Output On  
VDD = 5.5V  
G = +1 V/V  
R
L = 50 kto VSS  
Output High-Z  
Output  
High-Z  
Output  
High-Z  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
Chip Select Voltage (V)  
Time (1 ms/div)  
FIGURE 2-33:  
Chip Select (CS) to  
FIGURE 2-36:  
Chip Select (CS) Hysteresis  
Amplifier Output Response Time (MCP6033  
only).  
(MCP6033 only) with V = 1.8V.  
DD  
© 2007 Microchip Technology Inc.  
DS22041A-page 11  
MCP6031/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
10
100k  
10m  
1.00
1m  
1.00E
10k  
10
100µ  
1.0
10µ  
1.00
1k  
10
1µ  
1.00E
100n  
1.00
GN:  
101 V/V  
11 V/V  
1 V/V  
100  
10n  
1.00
+125°C  
+85°C  
+25°C  
-40°C  
1n  
1.00E
10  
100p  
1.00
10p  
1.00
1
1p  
1.00E
1
10  
100  
1k  
10k  
100k  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
VIN (V)  
Frequency (Hz)  
FIGURE 2-37:  
Closed Loop Output  
FIGURE 2-38:  
Measured Input Current vs.  
Impedance vs. Frequency.  
Input Voltage (below V ).  
SS  
DS22041A-page 12  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6031  
MCP6032  
MCP6033  
MCP6034  
Symbol  
Description  
Analog Output (op amp A)  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
6
2
1
2
3
8
5
6
6
2
1
2
3
4
5
6
V
OUT, VOUTA  
VIN–, VINA  
+
3
3
VIN+, VINA  
VDD  
7
7
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
7
4
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
Chip Select  
4
8
9
VINC  
VINC  
10  
11  
12  
13  
14  
+
4
VSS  
8
VIND  
VIND  
+
VOUTD  
CS  
1, 5, 8  
1, 5  
NC  
No Internal Connection  
3.1  
Analog Outputs  
3.4  
Power Supply (VSS and VDD)  
The output pins are low-impedance voltage sources.  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
3.2  
Analog Inputs  
and VDD  
.
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts can  
share a bulk capacitor with analog parts (typically  
2.2 µF to 10 µF) within 100 mm of the VDD pin, but it is  
not required.  
3.3  
Chip Select Input (CS)  
This is a CMOS, Schmitt-trigerred input that places the  
MCP6033 op amp into a low-power mode of operation.  
© 2007 Microchip Technology Inc.  
DS22041A-page 13  
MCP6031/2/3/4  
4.0  
APPLICATION INFORMATION  
VDD  
The MCP6031/2/3/4 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-power, high precision  
applications.  
D1 D2  
R1  
V1  
V2  
4.1  
Rail-to-Rail Input  
MCP603X  
4.1.1  
PHASE REVERASAL  
R2  
The MCP6031/2/3/4 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-32 shows the input voltage exceed-  
ing the supply voltage without any phase reversal.  
R3  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltage that go too far above  
VDD; their breakdown voltage is high enough to allow  
normal operation and low enough to bypass ESD  
events within the specified limits.  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
It is also possible to connect the diodes to the left of the  
resistors R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC currents into the input pins (VIN+ and  
VIN-) should be very small. A significant amount of  
current can flow out of the inputs when the common  
mode voltage (VCM) is below ground (VSS).  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
The input stage of the MCP6031/2/3/4 op amps uses  
two differential input stages in parallel. One operates at  
a low common mode input voltage (VCM), while the  
other operates at a high VCM. With this topology, the  
device operates with a VCM up to 300 mV above VDD  
and 300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V to  
ensure proper operation.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Simplified Analog Input ESD  
Structures.  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
voltages and currents at the VIN+ and VIN- pins (see  
Absolute Maximum Ratings at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-2  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN-) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN-) from going too far above VDD  
.
When implemented as shown, resistors R1 and R2 also  
limit the current through D1 and D2.  
DS22041A-page 14  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6031/2/3/4 op  
amps is VSS + 10 mV (minimum) and VDD – 10 mV  
(maximum) when RL = 50 kΩ is connected to VDD/2  
and VDD = 5.5V. Refer to Figures 2-25 and 2-26 for  
more information.  
RISO  
VOUT  
MCP603X  
+
VIN  
CL  
4.3  
Output Loads and Battery Life  
FIGURE 4-3:  
stabilizes large capacitive loads.  
Output resistor, R  
ISO  
The MCP6031/2/3/4 op amp family has outstanding  
quiescent current, which supports battery-powered  
applications. There is minimal quiescent current glitch-  
ing when Chip Select (CS) is raised or lowered. This  
prevents excessive current draw, and reduced battery  
life, when the part is turned off or on.  
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
Heavy resistive loads at the output can cause exces-  
sive battery drain. Driving a DC voltage of 2.5V across  
a 100 kΩ load resistor will cause the supply current to  
increase by 25 µA, depleting the battery 28 times as  
fast as IQ (0.9 µA, typical) alone.  
10001M
High frequency signals (fast edge rate) across capaci-  
tive loads will also significantly increase supply current.  
For instance, a 0.1 µF capacitor at the output presents  
an AC impedance of 15.9 kΩ (1/2πfC) to a 100 Hz  
sinewave. It can be shown that the average power  
drawn from the battery by a 5.0 Vp-p sinewave  
(1.77 Vrms), under these conditions, is  
100k  
10
GN:  
1 V/V  
2 V/V  
5 V/V  
10k  
10
1k  
10
10p  
100p  
1n  
10n  
100n  
1µ  
Normalized Load Capacitance; CL/GN (F)  
EQUATION 4-1:  
PSupply = (VDD - VSS) (IQ + VL(p-p) f CL )  
= (5V)(0.9 µA + 5.0Vp-p · 100Hz · 0.1µF)  
= 4.5 µW + 50 µW  
FIGURE 4-4:  
for Capacitive Loads.  
Recommended R  
values  
ISO  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and simula-  
tions with the MCP6031/2/3/4 SPICE macro model are  
very helpful.  
This will drain the battery about 12 times as fast as IQ  
alone.  
4.4  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, all gains show the same  
general behavior.  
4.5  
MCP6033 CHIP SELECT (CS)  
The MCP6033 is a single op amp with Chip Select  
(CS). When CS is pulled high, the supply current drops  
to 0.4 nA (typical) and flows through the CS pin to VSS  
.
When this happens, the amplifier output is put into a  
high impedance state. By pulling CS low, the amplifier  
is enabled. If the CS pin is left floating, the amplifier will  
not operate properly. Figure 1-1 shows the output  
voltage and supply current response to a CS pulse.  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
© 2007 Microchip Technology Inc.  
DS22041A-page 15  
MCP6031/2/3/4  
4.6  
Supply Bypass  
Guard Ring  
VIN– VIN+  
VSS  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other analog parts.  
4.7  
Unused Op Amps  
FIGURE 4-6:  
for Inverting Gain.  
Example Guard Ring Layout  
An unused op amp in a quad package (MCP6034)  
should be configured as shown in Figure 4-5. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A can use any reference voltage  
1. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
between the supplies, provides  
a buffered DC  
voltage,and minimizes the supply current draw of the  
unused op amp. Circuit B uses fewer components and  
operates as a comparator; it may draw more current.  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
2. Inverting Gain and Transimpedance Gain Ampli-  
fiers (convert current to voltage, such as photo  
detectors):  
¼ MCP6034 (A)  
¼ MCP6034 (B)  
V
DD  
V
DD  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
V
DD  
R
R
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
FIGURE 4-5:  
Unused Op Amps.  
4.8  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; which is greater than the  
MCP6031/2/3/4 family’s bias current at +25°C  
(±1.0 pA, typical).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
DS22041A-page 16  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
4.9.2  
PRECISION COMPARATOR  
4.9  
Application Circuits  
Use high gain before a comparator to improve the lat-  
ter’s input offset performance. Figure 4-8 shows a gain  
of 11 V/V placed before a comparator. The reference  
voltage VREF can be any value between the supply  
rails.  
4.9.1  
BATTERY CURRENT SENSING  
The MCP6031/2/3/4 op amps’ Common Mode Input  
Range, which goes 0.3V beyond both supply rails,  
supports their use in high side and low side battery  
current sensing applications. The ultra low quiescent  
current (0.9 µA, typical) helps prolong battery life, and  
the rail-to-rail output supports detection of low currents.  
VIN  
MCP6031  
Figure 4-7 shows a high side battery current sensor  
circuit. The 10Ω resistor is sized to minimize power  
losses. The battery current (IDD) through the 10Ω  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the common  
mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, which is within its Maximum Output  
Voltage Swing specification.  
1 MΩ  
VOUT  
MCP6541  
100 kΩ  
VREF  
FIGURE 4-8:  
Comparator.  
Precision, Non-inverting  
VDD  
VDD  
VOUT  
MCP6031  
IDD  
100 kΩ  
10Ω  
VSS  
1.8V to  
5.5V  
VSS  
1 MΩ  
VDD VOUT  
IDD = -------------------------------------------  
(10 V V) (10Ω)  
FIGURE 4-7:  
High Side Battery Current  
Sensor.  
© 2007 Microchip Technology Inc.  
DS22041A-page 17  
MCP6031/2/3/4  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP6031/2/3/4 family of op amps.  
Microchip offers a broad spectrum of Analog Demon-  
stration and Evaluation Boards that are designed to  
help you achieve faster time to market. For a complete  
listing of these boards and their corresponding user’s  
guides and technical information, visit the Microchip  
web site at www.microchip.com/analogtools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6031/2/3/4  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
Two of our boards that are especially useful are:  
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP  
Evaluation Board  
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evalu-  
ation Board  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
5.6  
Application Notes  
The following Microchip Application Notes are  
available on the Microchip web site at www.micro-  
chip.com/appnotes and are recommended as  
supplemental reference resources.  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the Micro-  
chip web site at www.microchip.com/filterlab, the Filter-  
Lab design tool provides full schematic diagrams of the  
filter circuit with component values. It also outputs the  
filter circuit in SPICE format, which can be used with  
the macro model to simulate actual filter performance.  
AN003: “Select the Right Operational Amplifier for your  
Filtering Circuits”, DS00003  
AN722: Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op Amps”,  
DS00884  
5.3  
MindiTM Simulation Tool  
Microchip’s MindiTM simulation tool aids in the design  
of various circuits useful for active filter, amplifier and  
power-management applications. It is a free online  
simulation tool available from the Microchip web site at  
www.microchip.com/mindi. This interactive simulator  
enables designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
simulation tool can be downloaded to a personal com-  
puter or workstation.  
AN990: “Analog Sensor Conditioning Circuits - An  
Overview”, DS00990  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.4  
MAPS (Microchip Advanced Part  
Selector)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for Micro-  
chip’s product portfolio that includes Analog, Memory,  
MCUs and DSCs. Using this tool you can define a filter  
to sort features for a parametric search of devices and  
export side-by-side technical comparasion reports.  
Helpful links are also provided for Datasheets, Pur-  
chase, and Sampling of Microchip parts.  
DS22041A-page 18  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6031E  
711256  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
MCP6033E  
XXXXYYWW  
SN^  
e
3
0711  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS22041A-page 19  
MCP6031/2/3/4  
Package Marking Information (Continued)  
14-Lead SOIC (150 mil) (MCP6034)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
MCP6034  
E/SL^
0711256  
e
3
YYWWNNN  
Example:  
14-Lead TSSOP (MCP6034)  
XXXXXX  
YYWW  
6034EST  
0711  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22041A-page 20  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
0.65 BSC  
Overall Height  
A
1.10  
0.95  
0.15  
Molded Package Thickness  
Standoff  
A2  
A1  
E
0.75  
0.00  
0.85  
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
0.40  
0.80  
Footprint  
L1  
φ
0.95 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
Lead Width  
c
0.08  
0.22  
0.23  
0.40  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-111B  
© 2007 Microchip Technology Inc.  
DS22041A-page 21  
MCP6031/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
1.25  
0.10  
§
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-057B  
DS22041A-page 22  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
1.27 BSC  
Overall Height  
A
1.75  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
1.25  
0.10  
0.25  
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
3.90 BSC  
8.65 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.50  
1.27  
L
Footprint  
L1  
φ
1.04 REF  
Foot Angle  
0°  
0.17  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.25  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-065B  
© 2007 Microchip Technology Inc.  
DS22041A-page 23  
MCP6031/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
14  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.20  
1.05  
0.15  
A2  
A1  
E
0.80  
0.05  
1.00  
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
6.40 BSC  
E1  
D
4.30  
4.90  
0.45  
4.40  
4.50  
5.10  
0.75  
5.00  
L
0.60  
Footprint  
L1  
φ
1.00 REF  
Foot Angle  
0°  
8°  
Lead Thickness  
Lead Width  
c
0.09  
0.19  
0.20  
0.30  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-087B  
DS22041A-page 24  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision A (March 2007)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS22041A-page 25  
MCP6031/2/3/4  
NOTES:  
DS22041A-page 26  
© 2007 Microchip Technology Inc.  
MCP6031/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
MCP6031-E/SN: Extended Temperature,  
Temperature  
Range  
Package  
8LD SOIC package.  
MCP6031T-E/SN: Tape and Reel,  
Extended Temperature,  
b)  
8LD SOIC package.  
Device:  
MCP6031:  
Single Op Amp  
Single Op Amp (Tape and Reel)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
Single Op Amp with Chip Select  
Single Op Amp with Chip Select  
(Tape and Reel)  
c)  
d)  
MCP6031-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6031T:  
MCP6032:  
MCP6032T:  
MCP6033:  
MCP6033T:  
MCP6031T-E/MS: Tape and Reel,  
Extended Temperature,  
8LD MSOP package.  
MCP6034:  
Quad Op Amp  
MCP6034T:  
Quad Op Amp (Tape and Reel)  
a)  
b)  
MCP6032-E/SN: Extended Temperature,  
8LD SOIC package.  
MCP6032T-E/SN: Tape and Reel,  
Extended Temperature,  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
8LD SOIC package.  
MS  
SL  
SN  
ST  
=
=
=
=
Plastic MSOP, 8-lead  
c)  
d)  
MCP6032-E/MS: Extended Temperature,  
8LD MSOP package  
Plastic SOIC (150 mil Body), 14-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic TSSOP (4.4mm Body), 14-lead  
MCP6032T-E/MS: Tape and Reel  
Extended Temperature,  
8LD MSOP package.  
a)  
b)  
MCP6033-E/SN: Extended Temperature,  
8LD SOIC package.  
MCP6033T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
c)  
d)  
MCP6033-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6033T-E/MS: Tape and Reel,  
Extended Temperature,  
8LD MSOP package.  
a)  
b)  
MCP6034-E/SL: Extended Temperature,  
14LD SOIC package.  
MCP6034T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC package.  
c)  
d)  
MCP6034-E/ST: Extended Temperature,  
14LD TSSOP package.  
MCP6034T-E/ST: Tape and Reel,  
Extended Temperature,  
14LD TSSOP package.  
© 2007 Microchip Technology Inc.  
DS22041A-page 27  
MCP6031/2/3/4  
NOTES:  
DS22041A-page 28  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS22041A-page 29  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS22041A-page 30  
© 2007 Microchip Technology Inc.  

相关型号:

MCP6032E/SL

0.9 uA, High Precision Op Amps
MICROCHIP

MCP6032E/SN

0.9 uA, High Precision Op Amps
MICROCHIP

MCP6032E/ST

0.9 uA, High Precision Op Amps
MICROCHIP

MCP6032T

0.9 uA, High Precision Op Amps
MICROCHIP

MCP6032T-E/MC

0.9 μA, High Precision Op Amps
MICROCHIP

MCP6032T-E/MS

0.9 μA, High Precision Op Amps
MICROCHIP

MCP6032T-E/OT

0.9 μA, High Precision Op Amps
MICROCHIP

MCP6032T-E/SL

0.9 μA, High Precision Op Amps
MICROCHIP

MCP6032T-E/SN

0.9 μA, High Precision Op Amps
MICROCHIP

MCP6032T-E/SNVAO

Operational Amplifier, 2 Func, 150000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6032T-E/ST

0.9 μA, High Precision Op Amps
MICROCHIP

MCP6032T/MS

IC,OP-AMP,DUAL,CMOS,TSSOP,8PIN,PLASTIC
MICROCHIP