MCP604-EST [MICROCHIP]

2.7V to 6.0V Single Supply CMOS Op Amps; 2.7V至6.0V单电源CMOS运算放大器
MCP604-EST
型号: MCP604-EST
厂家: MICROCHIP    MICROCHIP
描述:

2.7V to 6.0V Single Supply CMOS Op Amps
2.7V至6.0V单电源CMOS运算放大器

运算放大器
文件: 总34页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP601/1R/2/3/4  
2.7V to 6.0V Single Supply CMOS Op Amps  
Description  
Features  
• Single-Supply: 2.7V to 6.0V  
• Rail-to-Rail Output  
The Microchip Technology Inc. MCP601/1R/2/3/4  
family of low-power operational amplifiers (op amps)  
are offered in single (MCP601), single with Chip Select  
(CS) (MCP603), dual (MCP602), and quad (MCP604)  
configurations. These op amps utilize an advanced  
CMOS technology that provides low bias current, high-  
speed operation, high open-loop gain, and rail-to-rail  
output swing. This product offering operates with a  
single supply voltage that can be as low as 2.7V, while  
drawing 230 µA (typical) of quiescent current per  
amplifier. In addition, the common mode input voltage  
range goes 0.3V below ground, making these  
amplifiers ideal for single-supply operation.  
• Input Range Includes Ground  
• Gain Bandwidth Product: 2.8 MHz (typical)  
• Unity-Gain Stable  
• Low Quiescent Current: 230 µA/amplifier (typical)  
• Chip Select (CS): MCP603 only  
Temperature Ranges:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Available in Single, Dual, and Quad  
These devices are appropriate for low power, battery  
operated circuits due to the low quiescent current, for  
A/D convert driver amplifiers because of their wide  
bandwidth or for anti-aliasing filters by virtue of their low  
input bias current.  
Typical Applications  
• Portable Equipment  
• A/D Converter Driver  
• Photo Diode Pre-amp  
• Analog Filters  
The MCP601, MCP602, and MCP603 are available in  
standard 8-lead PDIP, SOIC, and TSSOP packages.  
The MCP601 and MCP601R are also available in a  
standard 5-lead SOT-23 package, while the MCP603 is  
available in a standard 6-lead SOT-23 package. The  
MCP604 is offered in standard 14-lead PDIP, SOIC,  
and TSSOP packages.  
• Data Acquisition  
• Notebooks and PDAs  
• Sensor Interface  
Available Tools  
The MCP601/1R/2/3/4 family is available in the  
Industrial and Extended temperature ranges and has a  
power supply range of 2.7V to 6.0V.  
• SPICE Macro Models  
• FilterLab® Software  
• Mindi™ Simulation Tool  
• MAPS (Microchip Advanced Part Selector)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
Package Types  
MCP604  
MCP603  
MCP601  
PDIP, SOIC, TSSOP  
NC  
MCP602  
PDIP, SOIC, TSSOP  
PDIP, SOIC, TSSOP  
PDIP, SOIC, TSSOP  
VOUTA  
VOUTA  
NC  
V
OUTD  
1
NC  
1
VDD  
8
7
1
2
3
4
5
6
7
8
1
CS  
14  
13  
12  
11  
10  
9
8
7
VDD  
V
IN– 2  
VOUTB  
VINA  
+
V
INA– 2  
VDD  
7
V
IN– 2  
VIND  
VIND  
VSS  
+
VIN  
+
VINA  
VINA  
+
VIN  
+
3
4
6 VOUT  
3
4
6 VINB  
+
3
4
6 VOUT  
VSS  
VDD  
VSS  
VSS  
5
5
5
NC  
VINB  
NC  
VINB  
+
VINC  
VINC  
+
MCP601  
SOT23-5  
MCP601R  
SOT23-5  
MCP603  
SOT23-6  
VINB  
VOUTB  
8
VOUTC  
VOUT  
VSS  
VOUT  
VDD  
VOUT  
VSS  
1
2
3
VDD  
1
VSS  
1
VDD  
6
5
5
2
3
2
3
5 CS  
4 VIN  
VIN  
+
VIN  
+
VIN+  
4 VIN  
4 VIN  
© 2007 Microchip Technology Inc.  
DS21314G-page 1  
MCP601/1R/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Input Pins .....................................................±2 mA  
Analog Inputs (VIN+, VIN–) †† ........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current .................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature....................................65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 3 kV; 200V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, and RL = 100 kΩ to VL, and CS is tied low. (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Input Offset  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset Voltage  
VOS  
VOS  
-2  
-3  
±0.7  
±1  
+2  
+3  
mV  
Industrial Temperature  
Extended Temperature  
Input Offset Temperature Drift  
Power Supply Rejection  
Input Current and Impedance  
Input Bias Current  
mV TA = -40°C to +85°C (Note 1)  
mV TA = -40°C to +125°C (Note 1)  
µV/°C TA = -40°C to +125°C  
VOS  
-4.5  
±1  
+4.5  
ΔVOS/ΔTA  
PSRR  
±2.5  
88  
80  
dB  
VDD = 2.7V to 5.5V  
IB  
IB  
1
60  
pA  
Industrial Temperature  
Extended Temperature  
Input Offset Current  
20  
pA TA = +85°C (Note 1)  
pA TA = +125°C (Note 1)  
pA  
IB  
450  
±1  
1013||6  
1013||3  
5000  
IOS  
ZCM  
Common Mode Input Impedance  
Ω||pF  
Differential Input Impedance  
ZDIFF  
Ω||pF  
Common Mode  
Common Mode Input Range  
Common Mode Rejection Ratio  
Open-loop Gain  
VCMR  
VSS – 0.3  
75  
VDD – 1.2  
V
CMRR  
90  
dB VDD = 5.0V, VCM = -0.3V to 3.8V  
DC Open-loop Gain (large signal)  
AOL  
AOL  
100  
95  
115  
110  
dB RL = 25 kΩ to VL,  
V
OUT = 0.1V to VDD – 0.1V  
dB RL = 5 kΩ to VL,  
V
OUT = 0.1V to VDD – 0.1V  
Output  
Maximum Output Voltage Swing  
VOL, VOH VSS + 15  
OL, VOH VSS + 45  
VDD – 20  
VDD – 60  
mV RL = 25 kΩ to VL, Output overdrive = 0.5V  
mV RL = 5 kΩ to VL, Output overdrive = 0.5V  
V
Linear Output Voltage Swing  
Output Short Circuit Current  
VOUT  
VOUT  
ISC  
VSS + 100  
VSS + 100  
VDD – 100 mV RL = 25 kΩ to VL, AOL 100 dB  
VDD – 100 mV RL = 5 kΩ to VL, AOL 95 dB  
±22  
±12  
mA VDD = 5.5V  
mA VDD = 2.7V  
ISC  
Power Supply  
Supply Voltage  
VDD  
IQ  
2.7  
6.0  
V
(Note 2)  
Quiescent Current per Amplifier  
230  
325  
µA IO = 0  
Note 1: These specifications are not tested in either the SOT-23 or TSSOP packages with date codes older than YYWW = 0408.  
In these cases, the minimum and maximum values are by design and characterization only.  
2: All parts with date codes November 2007 and later have been screened to ensure operation at VDD=6.0V. However, the  
other minimum and maximum specifications are measured at 1.4V and/or 5.5V.  
DS21314G-page 2  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, and RL = 100 kΩ to VL, CL = 50 pF, and CS is tied low. (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Frequency Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
2.8  
50  
MHz  
°
G = +1 V/V  
Step Response  
Slew Rate  
SR  
2.3  
4.5  
V/µs G = +1 V/V  
µs G = +1 V/V, 3.8V step  
Settling Time (0.01%)  
Noise  
tsettle  
Input Noise Voltage  
Input Noise Voltage Density  
Eni  
eni  
eni  
ini  
7
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
29  
21  
0.6  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
Input Noise Current Density  
MCP603 CHIP SELECT (CS) CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, and RL = 100 kΩ to VL, CL = 50 pF, and CS is tied low. (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
VIL  
VSS  
-1.0  
0.2 VDD  
V
ICSL  
µA  
CS = 0.2VDD  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
VIH  
0.8 VDD  
0.7  
-0.7  
1
VDD  
2.0  
V
ICSH  
µA  
µA  
nA  
CS = VDD  
CS = VDD  
Shutdown VSS current  
IQ_SHDN  
IO_SHDN  
-2.0  
Amplifier Output Leakage in Shutdown  
Timing  
CS Low to Amplifier Output Turn-on Time  
CS High to Amplifier Output High-Z Time  
Hysteresis  
tON  
tOFF  
3.1  
100  
0.4  
10  
µs  
ns  
V
CS 0.2VDD, G = +1 V/V  
CS 0.8VDD, G = +1 V/V, No load.  
VDD = 5.0V  
VHYST  
CS  
tON  
tOFF  
VOUT  
Hi-Z  
Output Active  
Hi-Z  
2 nA  
(typical)  
IDD  
230 µA  
(typical)  
-230 µA  
(typical)  
ISS  
-700 nA  
(typical)  
2 nA  
(typical)  
CS  
Current  
700 nA  
(typical)  
FIGURE 1-1:  
MCP603 Chip Select (CS)  
Timing Diagram.  
© 2007 Microchip Technology Inc.  
DS21314G-page 3  
MCP601/1R/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
Industrial temperature parts  
Extended temperature parts  
Note  
+125  
+125  
+150  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23  
Thermal Resistance, 6L-SOT23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
230  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
124  
70  
120  
100  
Note:  
The Industrial temperature parts operate over this extended range, but with reduced performance. The  
Extended temperature specs do not apply to Industrial temperature parts. In any case, the internal Junction  
temperature (TJ) must not exceed the absolute maximum specification of 150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-2. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.5 “Supply Bypass”.  
VDD  
1 µF  
0.1 µF  
VIN  
VOUT  
RL  
RN  
RG  
MCP60X  
CL  
RF  
VDD/2  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
VDD  
1 µF  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP60X  
CL  
RF  
VIN  
VL  
FIGURE 1-3:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
DS21314G-page 4  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 50 pF and CS is tied low.  
120  
100  
80  
0
300  
250  
200  
150  
100  
50  
IO = 0  
-30  
Phase  
-60  
Gain  
60  
-90  
40  
-120  
-150  
-180  
-210  
-240  
20  
TA  
TA  
TA  
=
=
=
-40°C  
+25°C  
+85°C  
0
-20  
TA = +125°C  
-40  
0
0.1  
1
10 100 1k 10k 100k 1M 10M  
1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
01 00 01 02 03 04 05 06 07  
Frequency (Hz)  
FIGURE 2-1:  
Open-Loop Gain, Phase vs.  
FIGURE 2-4:  
Quiescent Current vs.  
Frequency.  
Supply Voltage.  
300  
250  
200  
150  
100  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
IO = 0  
VDD = 5.0V  
Falling Edge  
VDD = 5.5V  
Rising Edge  
VDD = 2.7V  
0.0  
-50  
0
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Slew Rate vs. Temperature.  
FIGURE 2-5:  
Quiescent Current vs.  
Temperature.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
110  
100  
90  
80  
70  
1.E+104µ  
GBWP  
1µ  
1.E+03  
60  
50  
PM, G = +1  
40  
30  
20  
10  
0
100n  
1.E+02  
10n  
1.E+01  
0.1  
1
10  
100  
1k  
10k 100k 1M  
-50 -25  
0
25  
50  
75 100 125  
1.E- 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
Ambient Temperature (°C)  
01  
0
1 Freq2uency3(Hz) 4  
5
6
FIGURE 2-3:  
Gain Bandwidth Product,  
FIGURE 2-6:  
Input Noise Voltage Density  
Phase Margin vs. Temperature.  
vs. Frequency.  
© 2007 Microchip Technology Inc.  
DS21314G-page 5  
MCP601/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 50 pF and CS is tied low.  
16%  
14%  
12%  
10%  
8%  
18%  
16%  
14%  
12%  
10%  
8%  
1200 Samples  
A = –40 to +125°C  
1200 Samples  
T
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0  
Input Offset Voltage (mV)  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-7:  
Input Offset Voltage.  
FIGURE 2-10:  
Input Offset Voltage Drift.  
0.5  
0.4  
100  
95  
90  
85  
80  
75  
VDD = 5.5V  
VDD = 2.7V  
0.3  
0.2  
0.1  
PSRR  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
CMRR  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
CMRR, PSRR vs.  
Temperature.  
Temperature.  
800  
800  
VDD = 2.7V  
VDD = 5.5V  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
TA = –40°C  
TA = +25°C  
TA = +85°C  
TA = –40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = +125°C  
-100  
-200  
-100  
-200  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Offset Voltage vs.  
Common Mode Input Voltage with V = 2.7V.  
Common Mode Input Voltage with V = 5.5V.  
DD  
DD  
DS21314G-page 6  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 50 pF and CS is tied low.  
150  
140  
130  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
No Load  
Input Referred  
PSRR+  
PSRR–  
CMRR  
VDD = 5.0V  
10  
1
100  
1k  
10k  
100k  
1M  
1k  
10k  
1.E+04  
100k  
1.E+05  
Frequency (Hz)  
1M  
1.E+06  
1.E+03  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06  
Frequency (Hz)  
FIGURE 2-13:  
Channel-to-Channel  
FIGURE 2-16:  
CMRR, PSRR vs.  
Separation vs. Frequency.  
Frequency.  
1000  
1000  
VDD = 5.5V  
IB, +125°C  
VCM = 4.3V  
VDD = 5.5V  
max. VCMR 4.3V  
100  
100  
10  
1
IB, +85°C  
IOS, +125°C  
IB  
IOS  
10  
1
IOS, +85°C  
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Input Bias Current, Input  
FIGURE 2-17:  
Input Bias Current, Input  
Offset Current vs. Ambient Temperature.  
Offset Current vs. Common Mode Input Voltage.  
120  
120  
RL = 25 k  
VDD = 5.5V  
VDD = 2.7V  
110  
100  
90  
110  
100  
90  
80  
80  
100  
1k  
10k  
100k  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Power Supply Voltage (V)  
Load Resistance ()  
FIGURE 2-15:  
DC Open-Loop Gain vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Load Resistance.  
Supply Voltage.  
© 2007 Microchip Technology Inc.  
DS21314G-page 7  
MCP601/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 50 pF and CS is tied low.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
90  
130  
120  
110  
100  
90  
VDD = 5.0V  
RL = 25 k  
GBWP  
VDD = 5.5V  
80  
70  
PM, G = +1 60  
RL = 5 kΩ  
50  
40  
30  
VDD = 2.7V  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
100  
1k  
1.E+03  
Load Resistance ()  
10k  
100k  
1.E+02  
1.E+04  
1.E+05  
Ambient Temperature (°C)  
FIGURE 2-19:  
Gain Bandwidth Product,  
FIGURE 2-22:  
DC Open-Loop Gain vs.  
Phase Margin vs. Load Resistance.  
Temperature.  
1,000  
1000  
VDD = 5.5V  
RL tied to VDD/2  
RL = 5 kΩ  
100  
100  
10  
1
VDD – VOH  
VDD – VOH  
VOL – VSS  
10  
RL = 25 kΩ  
VOL – VSS  
1
-50  
-25  
0
25  
50  
75  
100 125  
0.01  
0.1  
1
10  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-20:  
Output Voltage Headroom  
FIGURE 2-23:  
Output Voltage Headroom  
vs. Output Current.  
vs. Temperature.  
10  
30  
VDD = 5.5V  
TA  
TA  
TA  
=
=
=
–40°C  
+25°C  
+85°C  
25  
20  
15  
10  
5
VDD = 2.7V  
TA = +125°C  
1
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
10k  
100k  
Frequency (Hz)  
1M  
1.E+06  
1.E+04  
1.E+05  
FIGURE 2-21:  
Maximum Output Voltage  
FIGURE 2-24:  
Output Short-Circuit Current  
Swing vs. Frequency.  
vs. Supply Voltage.  
DS21314G-page 8  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 50 pF and CS is tied low.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
G = +1  
VDD = 5.0V  
G = –1  
Time (1 µs/div)  
Time (1 µs/div)  
FIGURE 2-25:  
Large Signal Non-Inverting  
FIGURE 2-28:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
VDD = 5.0V  
G = –1  
VDD = 5.0V  
G = +1  
Time (1 µs/div)  
Time (1 µs/div)  
FIGURE 2-26:  
Small Signal Non-Inverting  
FIGURE 2-29:  
Small Signal Inverting Pulse  
Pulse Response.  
Response.  
0
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VDD = 5.5V  
CS  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
VDD = 5.0V  
G = +1  
VIN = 2.5V  
RL = 100 kto GND  
VOUT Active  
VOUT High-Z  
Time (5 µs/div)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
FIGURE 2-27:  
(MCP603).  
Chip Select Timing  
FIGURE 2-30: Quiescent Current Through  
V vs. Chip Select Voltage (MCP603).  
SS  
© 2007 Microchip Technology Inc.  
DS21314G-page 9  
MCP601/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.7V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 50 pF and CS is tied low.  
6
0.8  
VDD = +5.0V  
G = +2  
VDD = 5.5V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5
4
3
2
VIN  
VOUT  
1
0
-1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
Time (5 µs/div)  
FIGURE 2-31:  
Chip Select Pin Input  
FIGURE 2-33:  
The MCP601/1R/2/3/4  
Current vs. Chip Select Voltage.  
family of op amps shows no phase reversal  
under input overdrive.  
3.0  
1.E1-00m2  
VDD = 5.0V  
1m  
1.E-03  
Amplifier On  
2.5  
1.E10-004µ  
10µ  
1.E-05  
1µ  
1.E-06  
2.0  
100n  
1.5  
1.0  
0.5  
0.0  
CS Hi to Low  
CS Low to Hi  
1.E- 7  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
+125°C  
+85°C  
+25°C  
-40°C  
10p  
1.E-11  
Amplifier Hi-Z  
1p  
1.E-12  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Chip Select Voltage (V)  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-32:  
Hysteresis of Chip Select’s  
FIGURE 2-34:  
Measured Input Current vs.  
Internal Switch.  
Input Voltage (below V ).  
SS  
DS21314G-page 10  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP601  
MCP601R  
MCP603  
PDIP, SOIC,  
Symbol  
Description  
PDIP, SOIC,  
TSSOP  
SOT-23-5  
(Note 1)  
SOT-23-5  
SOT-23-6  
TSSOP  
6
2
3
7
4
1
4
3
5
2
1
4
3
2
5
6
2
3
7
4
6
2
3
7
4
VOUT  
VIN–  
VIN+  
VDD  
VSS  
Analog Output  
Inverting Input  
Non-inverting Input  
Positive Power Supply  
Negative Power Supply  
8
8
1
CS  
NC  
Chip Select  
1, 5, 8  
1, 5  
No Internal Connection  
Note 1: The MCP601R is only available in the 5-pin SOT-23 package.  
TABLE 3-2:  
MCP602  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP604  
Symbol  
Description  
PDIP, SOIC,  
TSSOP  
PDIP, SOIC,  
TSSOP  
1
2
1
2
VOUTA  
Analog Output (op amp A)  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
VINA  
VINA  
3
3
+
8
4
VDD  
5
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
3.1  
Analog Outputs  
3.4  
Power Supply Pins  
The op amp output pins are low-impedance voltage  
sources.  
The positive power supply pin (VDD) is 2.5V to 6.0V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.2  
Analog Inputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
The op amp non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
3.3  
Chip Select Digital Input  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
© 2007 Microchip Technology Inc.  
DS21314G-page 11  
MCP601/1R/2/3/4  
4.0  
APPLICATIONS INFORMATION  
VDD  
The MCP601/1R/2/3/4 family of op amps are fabricated  
on Microchip’s state-of-the-art CMOS process. They  
are unity-gain stable and suitable for a wide range of  
general purpose applications.  
D1 D2  
R1  
V1  
V2  
MCP60X  
4.1  
Inputs  
4.1.1  
PHASE REVERSAL  
R2  
The MCP601/1R/2/3/4 op amp is designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-34 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
R3  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
FIGURE 4-2:  
Protecting the Analog  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
Inputs.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-34. Applications that are  
high impedance may need to limit the useable voltage  
range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
The Common Mode Input Voltage Range (VCMR  
)
VIN+  
VIN–  
includes ground in single-supply systems (VSS), but  
does not include VDD. This means that the amplifier  
input behaves linearly as long as the Common Mode  
Input Voltage (VCM) is kept within the specified VCMR  
limits (VSS–0.3V to VDD–1.2V at +25°C).  
Bond  
Pad  
VSS  
Figure 4-3 shows a unity gain buffer. Since VOUT is the  
same voltage as the inverting input, VOUT must be kept  
below VDD–1.2V for correct operation.  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-2  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
VIN  
+
VOUT  
MCP60X  
FIGURE 4-3:  
Unity Gain Buffer has a  
Range.  
Limited V  
OUT  
DS21314G-page 12  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
4.2  
Rail-to-Rail Output  
RISO  
There are two specifications that describe the output  
swing capability of the MCP601/1R/2/3/4 family of op  
amps. The first specification (Maximum Output Voltage  
Swing) defines the absolute maximum swing that can  
be achieved under the specified load conditions. For  
instance, the output voltage swings to within 15 mV of  
the negative rail with a 25 kΩ load to VDD/2. Figure 2-33  
shows how the output voltage is limited when the input  
goes beyond the linear region of operation.  
+
VOUT  
MCP60X  
CL  
RG  
RF  
FIGURE 4-4:  
Output resistor R  
ISO  
stabilizes large capacitive loads.  
The second specification that describes the output  
swing capability of these amplifiers is the Linear Output  
Voltage Swing. This specification defines the maximum  
output swing that can be achieved while the amplifier is  
still operating in its linear region. To verify linear  
operation in this range, the large signal (DC Open-Loop  
Gain (AOL)) is measured at points 100 mV inside the  
supply rails. The measurement must exceed the  
specified gains in the specification table.  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN) in order to make  
it easier to interpret the plot for arbitrary gains. GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
gain are equal. For inverting gains, GN = 1 + |Gain|  
(e.g., -1 V/V gives GN = +2 V/V).  
1k  
4.3  
MCP603 Chip Select  
The MCP603 is a single amplifier with Chip Select  
(CS). When CS is pulled high, the supply current drops  
to -0.7 µA (typ.), which is pulled through the CS pin to  
VSS. When this happens, the amplifier output is put into  
a high-impedance state. Pulling CS low enables the  
amplifier.  
100  
GN = +1  
GN +2  
10  
10p  
100p  
1n  
10n  
The CS pin has an internal 5 MΩ (typical) pull-down  
resistor connected to VSS, so it will go low if the CS pin  
is left floating. Figure 1-1 is the Chip Select timing  
diagram and shows the output voltage, supply currents,  
and CS current in response to a CS pulse. Figure 2-27  
shows the measured output voltage response to a CS  
pulse.  
Normalized Load Capacitance;  
CL / GN (F)  
FIGURE 4-5:  
for capacitive loads.  
Recommended R  
values  
ISO  
Once you have selected RISO for your circuit, double-  
check the resulting frequency response peaking and  
step response overshoot in your circuit. Evaluation on  
the bench and simulations with the MCP601/1R/2/3/4  
SPICE macro model are very helpful. Modify RISO’s  
value until the response is reasonable.  
4.4  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response with overshoot and ringing in the step  
response.  
4.5  
Supply Bypass  
With this family of op amps, the power supply pin (VDD  
for single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-  
frequency performance. It also needs a bulk capacitor  
(i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
nearby analog parts.  
When driving large capacitive loads with these op  
amps (e.g., > 40 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
© 2007 Microchip Technology Inc.  
DS21314G-page 13  
MCP601/1R/2/3/4  
2. Connect the guard ring to the non-inverting input  
pin (VIN+) for inverting gain amplifiers and  
transimpedance amplifiers (converts current to  
voltage, such as photo detectors). This biases  
the guard ring to the same reference voltage as  
the op amp (e.g., VDD/2 or ground).  
4.6  
Unused Op Amps  
An unused op amp in a quad package (MCP604)  
should be configured as shown in Figure 4-6. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuits A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
4.8  
Typical Applications  
4.8.1  
ANALOG FILTERS  
Figure 4-8 and Figure 4-9 show low-pass, second-  
order, Butterworth filters with a cutoff frequency of  
10 Hz. The filter in Figure 4-8 has a non-inverting gain  
of +1 V/V, and the filter in Figure 4-9 has an inverting  
gain of -1 V/V.  
¼ MCP604 (A)  
VDD  
¼ MCP604 (B)  
VDD  
VDD  
R1  
R2  
G = +1 V/V  
fP = 10 Hz  
C1  
47 nF  
VREF  
R2  
R1  
641 kΩ  
382 kΩ  
R2  
------------------  
VIN  
+
VREF = VDD  
R1 + R2  
C2  
VOUT  
MCP60X  
22 nF  
FIGURE 4-6:  
Unused Op Amps.  
4.7  
PCB Surface Leakage  
FIGURE 4-8:  
Second-Order, Low-Pass  
In applications where low input bias current is critical,  
printed circuit board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference  
would cause 5 pA of current to flow. This is greater  
than the MCP601/1R/2/3/4 family’s bias current at  
+25°C (1 pA, typical).  
Sallen-Key Filter.  
G = -1 V/V  
fP = 10 Hz  
R2  
618 kΩ  
R3  
C1  
8.2 nF  
R1  
1.00 MΩ  
618 kΩ  
VIN  
VOUT  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
C2  
47 nF  
MCP60X  
VDD/2  
+
Guard Ring  
VIN– VIN+  
FIGURE 4-9:  
Second-Order, Low-Pass  
Multiple-Feedback Filter.  
The MCP601/1R/2/3/4 family of op amps have low  
input bias current, which allows the designer to select  
larger resistor values and smaller capacitor values for  
these filters. This helps produce a compact PCB layout.  
These filters, and others, can be designed using  
Microchip’s Design Aids; see Section 5.2 “FilterLab®  
Software” and Section 5.3 “Mindi™ Simulatior  
Tool”.  
FIGURE 4-7:  
Example Guard Ring layout.  
1. Connect the guard ring to the inverting input pin  
(VIN–) for non-inverting gain amplifiers, includ-  
ing unity-gain buffers. This biases the guard ring  
to the common mode input voltage.  
DS21314G-page 14  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
4.8.2  
INSTRUMENTATION AMPLIFIER  
CIRCUITS  
4.8.3  
PHOTO DETECTION  
The MCP601/1R/2/3/4 op amps can be used to easily  
convert the signal from a sensor that produces an  
output current (such as a photo diode) into a voltage (a  
transimpedance amplifier). This is implemented with a  
single resistor (R2) in the feedback loop of the  
amplifiers shown in Figure 4-12 and Figure 4-13. The  
optional capacitor (C2) sometimes provides stability for  
these circuits.  
Instrumentation amplifiers have a differential input that  
subtracts one input voltage from another and rejects  
common mode signals. These amplifiers also provide a  
single-ended output voltage.  
The three-op amp instrumentation amplifier is illustrated  
in Figure 4-10. One advantage of this approach is unity-  
gain operation, while one disadvantage is that the  
common mode input range is reduced as R2/RG gets  
larger.  
A photodiode configured in the Photovoltaic mode has  
zero voltage potential placed across it (Figure 4-12). In  
this mode, the light sensitivity and linearity is  
maximized, making it best suited for precision  
applications. The key amplifier specifications for this  
application are: low input bias current, low noise,  
common mode input voltage range (including ground),  
and rail-to-rail output.  
V1  
+
R3  
R4  
MCP60X  
VOUT  
MCP60X  
R2  
+
C2  
R2  
RG  
R2  
R3  
R4  
VOUT  
ID1  
VREF  
MCP60X  
VDD  
+
V2  
D1  
Light  
MCP60X  
R4  
-----  
R3  
2R2  
⎞ ⎛  
⎠ ⎝  
VOUT = (V1 V2) 1 + ---------  
+ VREF  
+
RG  
VOUT = ID1 R2  
FIGURE 4-10:  
Three-Op Amp  
Instrumentation Amplifier.  
FIGURE 4-12:  
Photovoltaic Mode Detector.  
The two-op amp instrumentation amplifier is shown in  
Figure 4-11. While its power consumption is lower than  
the three-op amp version, its main drawbacks are that  
the common mode range is reduced with higher gains  
and it must be configured in gains of two or higher.  
In contrast, a photodiode that is configured in the  
Photoconductive mode has a reverse bias voltage  
across the photo-sensing element (Figure 4-13). This  
decreases the diode capacitance, which facilitates  
high-speed operation (e.g., high-speed digital  
communications). The design trade-off is increased  
diode leakage current and linearity errors. The op amp  
needs to have a wide Gain Bandwidth Product  
(GBWP).  
RG  
VOUT  
R1  
R2  
R2  
R1  
-
-
C2  
R2  
VREF  
V2  
MCP60X  
+
MCP60X  
+
ID1  
VOUT  
V1  
VDD  
R1 2R1  
D1  
VOUT = (V1 V2) 1 + ----- + -------- + VREF  
Light  
MCP60X  
R2 RG  
+
VOUT = ID1 R2  
VBIAS < 0V  
VBIAS  
FIGURE 4-11:  
Two-Op Amp  
Instrumentation Amplifier.  
Both instrumentation amplifiers should use a bulk  
bypass capacitor of at least 1 µF. The CMRR of these  
amplifiers will be set by both the op amp CMRR and  
resistor matching.  
FIGURE 4-13:  
Detector.  
Photoconductive Mode  
© 2007 Microchip Technology Inc.  
DS21314G-page 15  
MCP601/1R/2/3/4  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0 DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP601/1R/2/3/4 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP601/1R/2/  
3/4 op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Two of our boards that are especially useful are:  
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP  
Evaluation Board  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evalu-  
ation Board  
5.6  
Application Notes  
The following Microchip Application Notes are avail-  
able on the Microchip web site at www.microchip. com/  
appnotes and are recommended as supplemental  
reference resources.  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
ADN003: “Select the Right Operational Amplifier for  
your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op Amps”,  
5.3  
Mindi™ Simulatior Tool  
DS00884  
AN990: “Analog Sensor Conditioning Circuits – An  
Overview”, DS00990  
Microchip’s Mindi™ simulator tool aids in the design of  
various circuits useful for active filter, amplifier and  
power-management applications. It is a free online  
simulation tool available from the Microchip web site at  
www.microchip.com/mindi. This interactive simulator  
enables designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
simulation tool can be downloaded to a personal  
computer or workstation.  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.4  
MAPS (Microchip Advanced Part  
Selector)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparasion  
reports. Helpful links are also provided for Datasheets,  
Purchase, and Sampling of Microchip parts.  
DS21314G-page 16  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23 (MCP601 and MCP601R only)  
I-Temp  
E-Temp  
Code  
Device  
Code  
XXNN  
SJ25  
MCP601  
SANN  
SJNN  
SLNN  
MCP601R  
SMNN  
Example:  
6-Lead SOT-23 (MCP603 only)  
I-Temp  
Code  
E-Temp  
Code  
Device  
XXNN  
AU25  
MCP603  
AENN  
AUNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS21314G-page 17  
MCP601/1R/2/3/4  
Package Marking Information (Continued)  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP601  
I/P256  
0722  
MCP601  
E/P 256  
0722  
e
3
OR  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
MCP601  
MCP601E  
e
3
XXXXYYWW  
I/SN0722  
SN 0722  
OR  
NNN  
256  
256  
Example:  
8-Lead TSSOP  
601  
I722  
256  
XXXX  
XYWW  
NNN  
DS21314G-page 18  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP604)  
Example:  
MCP604-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0722256  
MCP604  
e
3
E/P  
OR  
0722256  
14-Lead SOIC (150 mil) (MCP604)  
Example:  
MCP604ISL  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0722256  
MCP604  
OR  
E/SL^  
e
3
0722256  
Example:  
14-Lead TSSOP (MCP604)  
XXXXXXXX  
YYWW  
604E  
0722  
NNN  
256  
© 2007 Microchip Technology Inc.  
DS21314G-page 19  
MCP601/1R/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
2
!
ꢗꢁ6!ꢉ"ꢜ#  
3ꢐꢍꢇꢃꢋꢅꢉ0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
ꢀꢁ6ꢗꢉ"ꢜ#  
ꢗꢁ6ꢗ  
ꢗꢁ96  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁ:ꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁ:!  
ꢗꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁ !  
ꢀꢁ:ꢗ  
ꢗꢁꢀ!  
:ꢁꢘꢗ  
ꢀꢁ9ꢗ  
:ꢁꢀꢗ  
ꢗꢁ<ꢗ  
ꢗꢁ9ꢗ  
:ꢗꢞ  
0ꢀ  
5
ꢗꢁꢗ9  
ꢗꢁꢘꢗ  
ꢗꢁꢘ<  
ꢗꢁ!ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ6ꢀ"  
DS21314G-page 20  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕ !ꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
<
ꢗꢁ6!ꢉ"ꢜ#  
3ꢐꢍꢇꢃꢋꢅꢉ0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
ꢀꢁ6ꢗꢉ"ꢜ#  
ꢗꢁ6ꢗ  
ꢗꢁ96  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁ:ꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁ:!  
ꢗꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁ !  
ꢀꢁ:ꢗ  
ꢗꢁꢀ!  
:ꢁꢘꢗ  
ꢀꢁ9ꢗ  
:ꢁꢀꢗ  
ꢗꢁ<ꢗ  
ꢗꢁ9ꢗ  
:ꢗꢞ  
0ꢀ  
5
ꢗꢁꢗ9  
ꢗꢁꢘꢗ  
ꢗꢁꢘ<  
ꢗꢁ!ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗꢘ9"  
© 2007 Microchip Technology Inc.  
DS21314G-page 21  
MCP601/1R/2/3/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ&&ꢆꢎꢋꢈꢆ'ꢔꢅ(ꢆꢗꢇ#$ꢇꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
.ꢆꢃꢍꢇ  
/2#7ꢌꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
9
ꢁꢀꢗꢗꢉ"ꢜ#  
M
ꢁꢀ:ꢗ  
M
ꢁ:ꢀꢗ  
ꢁꢘ!ꢗ  
ꢁ:<!  
ꢁꢀ:ꢗ  
ꢁꢗꢀꢗ  
ꢁꢗ<ꢗ  
ꢁꢗꢀ9  
M
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
%ꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
"ꢊꢇꢅꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
ꢜꢒꢈꢐꢏꢋꢅꢓꢉꢍꢈꢉꢜꢒꢈꢐꢏꢋꢅꢓꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
2
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
5ꢀ  
5
ꢅ"  
M
ꢁꢘꢀꢗ  
ꢁꢀ6!  
M
ꢁꢀꢀ!  
ꢁꢗꢀ!  
ꢁꢘ6ꢗ  
ꢁꢘ ꢗ  
ꢁ: 9  
ꢁꢀꢀ!  
ꢁꢗꢗ9  
ꢁꢗ ꢗ  
ꢁꢗꢀ  
M
ꢁ:ꢘ!  
ꢁꢘ9ꢗ  
ꢁ ꢗꢗ  
ꢁꢀ!ꢗ  
ꢁꢗꢀ!  
ꢁꢗꢙꢗ  
ꢁꢗꢘꢘ  
ꢁ :ꢗ  
%ꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
.ꢔꢔꢅꢓꢉ0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
0ꢈ(ꢅꢓꢉ0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ1ꢈ(ꢉꢜꢔꢊꢎꢃꢆꢚꢉꢉꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
:ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢀꢗ@ꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ꢉ"ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗꢀ9"  
DS21314G-page 22  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ)*ꢆꢙ+,&ꢆꢎꢎꢆ'ꢔꢅ(ꢆꢗꢍꢏ$ ꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
9
ꢀꢁꢘꢙꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
M
ꢀꢁꢘ!  
ꢗꢁꢀꢗ  
M
M
M
ꢀꢁꢙ!  
M
ꢗꢁꢘ!  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉꢉ  
ꢛꢘ  
ꢛꢀ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
<ꢁꢗꢗꢉ"ꢜ#  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
#ꢒꢊꢄꢑꢅꢓꢉAꢈꢔꢍꢃꢈꢆꢊꢏB  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
ꢌꢀ  
:ꢁ6ꢗꢉ"ꢜ#  
 ꢁ6ꢗꢉ"ꢜ#  
ꢗꢁꢘ!  
ꢗꢁ ꢗ  
M
M
ꢗꢁ!ꢗ  
ꢀꢁꢘꢙ  
0
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ%  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ"ꢈꢍꢍꢈꢄ  
0ꢀ  
ꢀꢁꢗ ꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢀꢙ  
ꢗꢁ:ꢀ  
!ꢞ  
M
M
M
M
M
9ꢞ  
5
ꢗꢁꢘ!  
ꢗꢁ!ꢀ  
ꢀ!ꢞ  
!ꢞ  
ꢀ!ꢞ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
:ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ!ꢙ"  
© 2007 Microchip Technology Inc.  
DS21314G-page 23  
MCP601/1R/2/3/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ-ꢋꢑꢆꢍ-ꢓꢋꢑ.ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ/+/ꢆꢎꢎꢆ'ꢔꢅ(ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
9
ꢗꢁ<!ꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
M
ꢗꢁ9ꢗ  
ꢗꢁꢗ!  
M
ꢀꢁꢗꢗ  
M
ꢀꢁꢘꢗ  
ꢀꢁꢗ!  
ꢗꢁꢀ!  
ꢛꢘ  
ꢛꢀ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
<ꢁ ꢗꢉ"ꢜ#  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
ꢌꢀ  
0
 ꢁ:ꢗ  
ꢘꢁ6ꢗ  
ꢗꢁ !  
 ꢁ ꢗ  
:ꢁꢗꢗ  
ꢗꢁ<ꢗ  
 ꢁ!ꢗ  
:ꢁꢀꢗ  
ꢗꢁꢙ!  
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
0ꢀ  
ꢀꢁꢗꢗꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢗ6  
ꢗꢁꢀ6  
M
M
M
9ꢞ  
5
ꢗꢁꢘꢗ  
ꢗꢁ:ꢗ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
:ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ9<"  
DS21314G-page 24  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
0/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ&&ꢆꢎꢋꢈꢆ'ꢔꢅ(ꢆꢗꢇ#$ꢇꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
.ꢆꢃꢍꢇ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
/2#7ꢌꢜ  
23ꢕ  
 
ꢁꢀꢗꢗꢉ"ꢜ#  
M
ꢕ/2  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
%ꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
M
ꢁꢘꢀꢗ  
ꢁꢀ6!  
M
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
"ꢊꢇꢅꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
ꢜꢒꢈꢐꢏꢋꢅꢓꢉꢍꢈꢉꢜꢒꢈꢐꢏꢋꢅꢓꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
%ꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
.ꢔꢔꢅꢓꢉ0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
5ꢀ  
5
ꢅ"  
ꢁꢀꢀ!  
ꢁꢗꢀ!  
ꢁꢘ6ꢗ  
ꢁꢘ ꢗ  
ꢁꢙ:!  
ꢁꢀꢀ!  
ꢁꢗꢗ9  
ꢁꢗ !  
ꢁꢗꢀ  
M
ꢁꢀ:ꢗ  
M
ꢁ:ꢀꢗ  
ꢁꢘ!ꢗ  
ꢁꢙ!ꢗ  
ꢁꢀ:ꢗ  
ꢁꢗꢀꢗ  
ꢁꢗ<ꢗ  
ꢁꢗꢀ9  
M
ꢁ:ꢘ!  
ꢁꢘ9ꢗ  
ꢁꢙꢙ!  
ꢁꢀ!ꢗ  
ꢁꢗꢀ!  
ꢁꢗꢙꢗ  
ꢁꢗꢘꢘ  
ꢁ :ꢗ  
0ꢈ(ꢅꢓꢉ0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ1ꢈ(ꢉꢜꢔꢊꢎꢃꢆꢚꢉꢉꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
:ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢀꢗ@ꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ꢉ"ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗꢗ!"  
© 2007 Microchip Technology Inc.  
DS21314G-page 25  
MCP601/1R/2/3/4  
0/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢛꢄꢓꢓꢔ)*ꢆꢙ+,&ꢆꢎꢎꢆ'ꢔꢅ(ꢆꢗꢍꢏ$ ꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
 
ꢀꢁꢘꢙꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉꢉꢟ  
M
ꢀꢁꢘ!  
ꢗꢁꢀꢗ  
M
M
M
ꢀꢁꢙ!  
M
ꢗꢁꢘ!  
ꢛꢘ  
ꢛꢀ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
<ꢁꢗꢗꢉ"ꢜ#  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
#ꢒꢊꢄꢑꢅꢓꢉAꢈꢔꢍꢃꢈꢆꢊꢏB  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
ꢌꢀ  
:ꢁ6ꢗꢉ"ꢜ#  
9ꢁ<!ꢉ"ꢜ#  
ꢗꢁꢘ!  
ꢗꢁ ꢗ  
M
M
ꢗꢁ!ꢗ  
ꢀꢁꢘꢙ  
0
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ%  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ"ꢈꢍꢍꢈꢄ  
0ꢀ  
ꢀꢁꢗ ꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢀꢙ  
ꢗꢁ:ꢀ  
!ꢞ  
M
M
M
M
M
9ꢞ  
5
ꢗꢁꢘ!  
ꢗꢁ!ꢀ  
ꢀ!ꢞ  
!ꢞ  
ꢀ!ꢞ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
:ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ<!"  
DS21314G-page 26  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
0/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ-ꢋꢑꢆꢍ-ꢓꢋꢑ.ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ/+/ꢆꢎꢎꢆ'ꢔꢅ(ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
 
ꢗꢁ<!ꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
M
ꢗꢁ9ꢗ  
ꢗꢁꢗ!  
M
ꢀꢁꢗꢗ  
M
<ꢁ ꢗꢉ"ꢜ#  
 ꢁ ꢗ  
!ꢁꢗꢗ  
ꢗꢁ<ꢗ  
ꢀꢁꢘꢗ  
ꢀꢁꢗ!  
ꢗꢁꢀ!  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
 ꢁ:ꢗ  
 ꢁ6ꢗ  
ꢗꢁ !  
 ꢁ!ꢗ  
!ꢁꢀꢗ  
ꢗꢁꢙ!  
0
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
0ꢀ  
ꢀꢁꢗꢗꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢗ6  
ꢗꢁꢀ6  
M
M
M
9ꢞ  
5
ꢗꢁꢘꢗ  
ꢗꢁ:ꢗ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
:ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ9ꢙ"  
© 2007 Microchip Technology Inc.  
DS21314G-page 27  
MCP601/1R/2/3/4  
NOTES:  
DS21314G-page 28  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision G (December 2007)  
• Updated Figure 2-15 and Figure 2-19.  
• Updated Table 3-1 and Table 3-2.  
• Updated notes to Section 1.0 “Electrical  
Characteristics”.  
• Expanded Analog Input Absolute Maximum  
Voltage Range (applies retroactively).  
• Expanded operating VDD to a maximum of 6.0V.  
• Added Figure 2-34.  
• Added Section 4.1.1 “Phase Reversal”,  
Section 4.1.2 “Input Voltage and Current Lim-  
its”, and Section 4.1.3 “Normal Operation”.  
• Corrected Section 6.0 “Packaging Informa-  
tion”.  
Revision F (February 2004)  
• Undocumented changes.  
Revision E (September 2003)  
• Undocumented changes.  
Revision D (April 2000)  
• Undocumented changes.  
Revision C (July 1999)  
• Undocumented changes.  
Revision B (June 1999)  
• Undocumented changes.  
Revision A (March 1999)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS21314G-page 29  
MCP601/1R/2/3/4  
NOTES:  
DS21314G-page 30  
© 2007 Microchip Technology Inc.  
MCP601/1R/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
–X  
/XX  
a)  
b)  
c)  
MCP601-I/P:  
Single Op Amp,  
Industrial Temperature,  
8 lead PDIP package.  
Temperature  
Range  
Package  
MCP601-E/SN: Single Op Amp,  
Extended Temperature,  
8 lead SOIC package.  
MCP601T-E/ST: Tape and Reel,  
Device  
MCP601  
Single Op Amp  
MCP601T Single Op Amp  
(Tape and Reel for SOT-23, SOIC and TSSOP)  
MCP601RT Single Op Amp  
(Tape and Reel for SOT-23-5)  
Dual Op Amp  
MCP602T Dual Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Single Op Amp with Chip Select  
MCP603T Single Op Amp with Chip Select  
(Tape and Reel for SOT-23, SOIC and TSSOP)  
Quad Op Amp  
MCP604T Quad Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Extended Temperature,  
Single Op Amp,  
8 lead TSSOP package  
d)  
e)  
MCP601RT-I/OT:Tape and Reel,  
MCP602  
Industrial Temperature,  
Single Op Amp, Rotated  
5 lead SOT-23 package.  
MCP603  
MCP601RT-E/OT:Tape and Reel,  
Extended Temperature,  
Single Op Amp, Rotated,  
5 lead SOT-23 package.  
MCP604  
a)  
b)  
c)  
MCP602-I/SN: Dual Op Amp,  
Industrial Temperature,  
8 lead SOIC package.  
Dual Op Amp,  
Extended Temperature,  
8 lead PDIP package.  
Temperature Range  
Package  
I
E
= -40° C to +85° C  
= -40° C to +125° C  
MCP602-E/P:  
MCP602T-E/ST: Tape and Reel,  
Extended Temperature,  
OT  
CH  
P
SN  
SL  
ST  
=
=
=
=
=
=
Plastic SOT-23, 5-lead (MCP601 only)  
Plastic SOT-23, 6-lead (MCP603 only)  
Plastic DIP (300 mil body), 8, 14 lead  
Plastic SOIC (3.90 mm body), 8 lead  
Plastic SOIC (3.90 mm body), 14 lead  
Plastic TSSOP (4.4 mm body), 8, 14 lead  
Dual Op Amp,  
8 lead TSSOP package.  
a)  
b)  
c)  
MCP603-I/SN: Industrial Temperature,  
Single Op Amp with Chip  
Select, 8 lead SOIC package.  
Extended Temperature,  
Single Op Amp with Chip  
Select, 8 lead PDIP package.  
MCP603-E/P:  
MCP603T-E/ST: Tape and Reel,  
Extended Temperature,  
Single Op Amp with Chip  
Select 8 lead TSSOP package.  
MCP603T-I/SN: Tape and Reel,  
d)  
Industrial Temperature,  
Single Op Amp with Chip  
Select, 8 lead SOIC package.  
a)  
b)  
c)  
MCP604-I/P:  
Industrial Temperature,  
Quad Op Amp,  
14 lead PDIP package.  
MCP604-E/SL: Extended Temperature,  
Quad Op Amp,  
14 lead SOIC package.  
MCP604T-E/ST: Tape and Reel,  
Extended Temperature,  
Quad Op Amp,  
14 lead TSSOP package.  
© 2007 Microchip Technology Inc.  
DS21314G-page 31  
MCP601/1R/2/3/4  
NOTES:  
DS21314G-page 32  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The  
Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21314G-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
10/05/07  
DS21314G-page 34  
© 2007 Microchip Technology Inc.  

相关型号:

MCP604-I

2.7V to 5.5V Single Supply CMOS Op Amps
MICROCHIP

MCP604-I/P

2.7V to 6.0V Single Supply CMOS Op Amps
MICROCHIP

MCP604-I/SL

暂无描述
MICROCHIP

MCP604-I/ST

QUAD OP-AMP, 2000 uV OFFSET-MAX, 2.8 MHz BAND WIDTH, PDSO14, PLASTIC, TSSOP-14
MICROCHIP

MCP604-ICH

2.7V to 6.0V Single Supply CMOS Op Amps
MICROCHIP

MCP604-IOT

2.7V to 5.5V Single Supply CMOS Op Amps
MICROCHIP

MCP604-IP

2.7V to 5.5V Single Supply CMOS Op Amps
MICROCHIP

MCP604-ISL

2.7V to 5.5V Single Supply CMOS Op Amps
MICROCHIP

MCP604-ISN

2.7V to 5.5V Single Supply CMOS Op Amps
MICROCHIP

MCP604-IST

2.7V to 5.5V Single Supply CMOS Op Amps
MICROCHIP

MCP6041

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6041+

600 nA,Rail-to-Rail Input/Output Op Amps
ETC