MCP6041T-I/SNG [MICROCHIP]

暂无描述;
MCP6041T-I/SNG
型号: MCP6041T-I/SNG
厂家: MICROCHIP    MICROCHIP
描述:

暂无描述

运算放大器
文件: 总32页 (文件大小:605K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6041/2/3/4  
M
600 nA, Rail-to-Rail Input/Output Op Amps  
Features  
Description  
• Low Quiescent Current: 600 nA/Amplifier (typ)  
The MCP6041/2/3/4 family of operational amplifiers  
from Microchip Technology, Inc. operate with a single  
supply voltage as low as 1.4 V, while drawing less than  
1 µA (max) of quiescent current per amplifier. These  
devices are also designed to support rail-to-rail input  
and output operation. This combination of features sup-  
ports battery-powered and portable applications.  
The MCP6041/2/3/4 amplifiers have a typical gain  
bandwidth product of 14 kHz (typ) and are unity gain  
stable. These specs make these operational amplifiers  
appropriate for low frequency applications, such as  
battery current monitoring and sensor conditioning.  
The MCP6041/2/3/4 family operational amplifiers are  
offered in single (MCP6041), single with a Chip Select  
(CS) feature (MCP6043), dual (MCP6042) and quad  
(MCP6044) configurations. The MCP6041 device is  
available in the 5-lead SOT-23 package.  
• Rail-to-Rail Input: -0.3 V to V +0.3 V (max)  
DD  
• Rail-to-Rail Output:  
V
+10 mV to V -10 mV (max)  
DD  
SS  
• Gain Bandwidth Product: 14 kHz (typ)  
• Wide Supply Voltage Range: 1.4 V to 5.5 V (max)  
• Unity Gain Stable  
• Available in Single, Dual and Quad  
• Chip Select (CS) with MCP6043  
• 5-lead SOT-23 package (MCP6041 only)  
Applications  
Toll Booth Tags  
• Wearable Products  
Temperature Measurement  
• Battery Powered  
Typical Application  
Available Tools  
V
DD  
• Spice macro models (at www.microchip.com)  
V
DD  
®
• FilterLab Software (at www.microchip.com)  
I
Package Types  
DD  
10  
MCP604X  
MCP6041  
MCP6042  
+2.5 V  
to  
V
SS  
PDIP, SOIC, MSOP  
PDIP, SOIC, MSOP  
100 k  
NC  
VDD  
1
2
3
4
5.5 V  
8 NC  
1
2
3
4
8
7
6
5
OUTA  
A
-IN  
+IN  
VSS  
-
+
-
OUTB  
-INB  
7
+
VDD  
6 OUT  
NC  
-INA  
+INA  
VSS  
1 M  
High Side Battery Current Sensor  
B
-
+
+INB  
5
MCP6041  
SOT-23-5  
MCP6044  
PDIP, SOIC, TSSOP  
1
2
3
4
OUTD  
14  
13 -IND  
OUTA  
VDD  
5
1
2
OUT  
VSS  
A
D
-
-
+
-INA1  
+INA1  
VDD  
+
+IND  
12  
-
V
+INC  
-INC  
11  
10  
9
SS  
-IN  
4
+IN  
3
+INB  
-INB  
OUTB1  
5
6
7
-
-
+
+
C
B
8
OUTC  
MCP6043  
PDIP, SOIC, MSOP  
NC  
1
2
3
4
CS  
8
7
6
5
-
+
VDD  
OUT  
NC  
-IN  
+IN  
VSS  
2002 Microchip Technology Inc.  
DS21669B-page 1  
MCP6041/2/3/4  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
+IN/+INA/+INB/+INC/+IND  
-IN/-INA/-INB/-INC/-IND  
VDD  
VSS  
Non-inverting Inputs  
Inverting Inputs  
Positive Power Supply  
Negative Power Supply  
1.1  
Maximum Ratings*  
VDD - VSS ......................................................................................7.0 V  
All inputs and outputs................................... VSS –0.3 V to VDD +0.3 V  
Difference Input voltage ..................................................... |VDD - VSS  
|
Output Short Circuit Current ...............................................continuous  
Current at Input Pins ..................................................................±2 mA  
Current at Output and Supply Pins ..........................................±30 mA  
Storage temperature ...................................................-65°C to +150°C  
Ambient temp. with power applied ..............................-55°C to +125°C  
ESD protection on all pins (HBM).....................................................≥ 4 kV  
OUT/OUTA/OUTB/OUTC/OUTD Outputs  
CS  
Chip Select  
No internal connection to  
IC  
NC  
*Notice: Stresses above those listed under “Maximum Ratings” may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at those or any other conditions  
above those indicated in the operational listings of this specification is  
not implied. Exposure to maximum rating conditions for extended peri-  
ods may affect device reliability.  
MCP6041/2/3/4 DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for VDD = +1.4 V to +5.5 V, VSS = GND, TA = 25 °C,  
VCM = VDD/2, RL = 1 Mto VDD/2, and VOUT ~ VDD/2  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VCM = VSS  
Input Offset:  
Input Offset Voltage  
Drift with Temperature  
Power Supply Rejection  
VOS  
VOS/T  
PSRR  
-3.0  
70  
±1.5  
85  
+3.0  
mV  
µV/°C TA= -40°C to+85°C  
dB  
Input Bias Current and Impedance:  
Input Bias Current  
Input Bias Current Over Temperature  
Input Offset Current  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode:  
IB  
IB  
IOS  
ZCM  
ZDIFF  
1.0  
1.0  
1013||6  
1013||6  
100  
pA  
pA  
pA  
||pF  
||pF  
TA= -40°C to+85°  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
VCMR  
CMRR  
V
SS0.3  
62  
80  
V
DD+0.3  
V
dB  
VDD = 5 V,  
CM = -0.3 V to 5.3 V  
VDD = 5 V,  
CM = 2.5 V to 5.3 V  
VDD = 5 V,  
CM = -0.3 V to 2.5 V  
V
60  
60  
75  
80  
dB  
dB  
V
V
Open Loop Gain:  
DC Open Loop Gain (large signal)  
AOL  
95  
115  
dB  
RL = 50 kto VDD/2,  
100 mV < VOUT < (VDD  
100 mV)  
Output:  
Maximum Output Voltage Swing  
Linear Region Output Voltage Swing  
VOL, VOH VSS + 10  
VDD 10  
VDD 100  
mV  
mV  
RL = 50 kto VDD/2  
RL = 50 kto VDD/2,  
AOL 95 dB  
VOVR  
VSS + 100  
Output Short Circuit Current  
Power Supply:  
Supply Voltage  
IO  
21  
mA  
VOUT = 2.5 V, VDD = 5 V  
VDD  
IQ  
1.4  
0.3  
0.6  
5.5  
1.0  
V
µA  
Quiescent Current per amplifier  
IO = 0  
DS21669B-page 2  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
MCP6041/2/3/4 AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for VDD = +5 V, VSS = GND, TA = 25 °C,  
VCM = VDD/2, RL = 1 Mto VDD/2, CL = 60 pF, and VOUT ~ VDD/2  
Parameters  
Gain Bandwidth Product  
Slew Rate  
Sym  
GBWP  
SR  
PM  
En  
Min  
Typ  
14  
3.0  
65  
5.0  
170  
0.6  
Max  
Units  
kHz  
V/ms  
°
Conditions  
Phase Margin  
G = +1  
Input Voltage Noise  
Input Voltage Noise Density  
Input Current Noise Density  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
en  
in  
SPECIFICATIONS FOR MCP6043 CHIP SELECT FEATURE  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for VDD = +1.4 V to +5.5 V, VSS = GND, TA = 25 °C,  
VCM = VDD/2, RL = 1 Mto VDD/2, CL = 60 pF, and VOUT ~ VDD/2  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications:  
CS Logic Threshold, Low  
CS Input Current, Low  
VIL  
VSS  
VSS + 0.3  
V
For entire VDD range  
CS = VSS  
ICSL  
5.0  
pA  
CS High Specifications:  
CS Logic Threshold, High  
CS Input Current, High  
VIH  
ICSH  
IQ  
VDD - 0.3  
5.0  
20  
VDD  
V
For entire VDD range  
CS = VDD  
pA  
pA  
pA  
CS Input High, GND Current  
Amplifier Output Leakage, CS High  
Dynamic Specifications:  
CS = VDD  
20  
CS = VDD  
CS Low to Amplifier Output High  
Turn-on Time  
tON  
tOFF  
2.0  
10  
50  
ms  
µs  
V
CS low = VSS + 0.3 V, G = +1 V/V,  
V
OUT = 0.9 VDD/2  
CS high = VDD - 0.3 V, G = +1 V/V  
OUT = 0.1 VDD/2  
CS High to Amplifier Output High Z  
Hysteresis  
V
VHYST  
0.6  
VDD = 5 V  
MCP6041/2/3/4 TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for VDD = +1.4 V to +5.5 V, VSS = GND  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges:  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
Note 1  
Thermal Package Resistances:  
Thermal Resistance, 5L-SOT23  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
163  
206  
70  
120  
100  
Note 1: The MCP6041/2/3/4 family of op amps operates over this extended range, but with reduced performance.  
2002 Microchip Technology Inc.  
DS21669B-page 3  
MCP6041/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD  
SS  
A
CM  
DD  
L
DD  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
1196 Samples  
1196 Samples  
V
DD = 5.5V  
V
DD = 1.4V  
CM = VDD  
VCM = VDD  
V
0%  
0%  
-4.0  
-3.0  
-2.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
-4.0  
-3.0  
-2.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Histogram of Input Offset  
FIGURE 2-4:  
Histogram of Input Offset  
Voltage with V = 5.5 V, V  
= V  
.
Voltage with V = 1.4 V, V  
= V  
.
DD  
CM  
DD  
DD  
CM  
DD  
35%  
35%  
1199 Samples  
1199 Samples  
V
DD = 5.5V  
V
DD = 1.4V  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VDD/2  
VCM = VDD/2  
0%  
0%  
-4.0  
-3.0  
-2.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
-4.0  
-3.0  
-2.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
FIGURE 2-2:  
Histogram of Input Offset  
FIGURE 2-5:  
Histogram of Input Offset  
Voltage with V = 5.5 V, V  
= V /2.  
Voltage with V = 1.4 V, V  
= V /2.  
CM DD  
DD  
CM  
DD  
DD  
35%  
35%  
1199 Samples  
1199 Samples  
VDD = 5.5V  
30%  
V
DD = 1.4V  
CM = VSS  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VSS  
V
25%  
20%  
15%  
10%  
5%  
0%  
0%  
-4.0  
-3.0  
-2.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
-4.0  
-3.0  
-2.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
FIGURE 2-3:  
Histogram of Input Offset  
FIGURE 2-6:  
Histogram of Input Offset  
= V  
Voltage with V = 5.5 V, V  
= V  
.
Voltage with V = 1.4 V, V  
.
SS  
DD  
CM  
SS  
DD  
CM  
DS21669B-page 4  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD L DD  
DD  
SS  
A
CM  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
400  
300  
200  
100  
0
35%  
30%  
25%  
20%  
15%  
10%  
5%  
VDD = 5.5V  
1176 Samples  
V
DD = 5.5V  
VCM = VDD/2  
TA = +85°C  
TA = +25°C  
TA = -40°C  
-100  
-200  
-300  
-400  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0%  
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Offset Voltage Drift (µV/°C)  
Common Mode Input Voltage (V)  
FIGURE 2-7:  
Histogram of Input Offset  
FIGURE 2-10:  
Input Offset Voltage vs.  
Voltage Drift with V = 5.5 V, V  
= V /2.  
Common Mode Input Voltage vs. Temperature  
DD  
CM  
DD  
with V = 5.5 V.  
DD  
35%  
1000  
VDD = 1.4V  
1143 Samples  
800  
600  
400  
200  
0
30%  
25%  
20%  
15%  
10%  
5%  
VDD = 5.5V  
VCM = VSS  
TA = +85°C  
-200  
-400  
-600  
TA = -40°C  
TA = +25°C  
TA = +85°C  
-800  
TA = +85°C  
0.0  
0%  
-1000  
-0.5  
0.5  
1.0  
1.5  
2.0  
Input Offset Voltage Drift (µV/°C)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Histogram of Input Offset  
FIGURE 2-11:  
Input Offset Voltage vs.  
Voltage Drift with V = 5.5 V, V  
= V  
.
Common Mode Input Voltage vs. Temperature  
DD  
CM  
SS  
with V = 1.4 V.  
DD  
35%  
500  
450  
1124 Samples  
RL = 50 k  
V
DD = 1.4V  
CM = VSS  
30%  
25%  
20%  
15%  
10%  
5%  
V
VDD = 1.4V  
400  
350  
300  
250  
VDD = 5.5V  
0%  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Offset Voltage Drift (µV/°C)  
Output Voltage (V)  
FIGURE 2-9:  
Histogram of Input Offset  
FIGURE 2-12:  
Input Offset Voltage vs.  
Voltage Drift with V = 1.4 V, V  
= V  
.
Output Voltage vs. Power Supply Voltage.  
DD  
CM  
SS  
2002 Microchip Technology Inc.  
DS21669B-page 5  
MCP6041/2/3/4  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD L DD  
DD  
SS  
A
CM  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
300  
250  
200  
150  
100  
50  
1000  
eni = 170 nV/—Hz, f = 1 kHz  
f = 1 kHz  
VDD = 5V  
Eni = 5.0 µVp-p,  
f = 0.1 to 10 Hz  
100  
0
0.1  
1
10  
Frequency (Hz)  
100  
1000  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Noise Voltage Density  
FIGURE 2-16:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage.  
90  
80  
70  
60  
50  
40  
100  
1182 Samples  
V
DD = 5.0V  
CM = VSS  
95  
90  
85  
80  
75  
70  
V
PSRR-  
PSRR+  
PSRR  
CMRR  
CMRR  
30  
VDD = 5.0V  
20  
-40  
-20  
0
20  
40  
60  
80  
0.1  
1
10  
100  
1000  
Frequency (Hz)  
Temperature (°C)  
FIGURE 2-14:  
Common Mode Rejection  
FIGURE 2-17:  
Common Mode Rejection  
Ratio, Power Supply Rejection Ratio vs.  
Frequency.  
Ratio, Power Supply Rejection Ratio vs.  
Temperature.  
45  
50  
TA = 85°C  
VDD = 5.5V  
VCM = VDD  
40  
V
DD = 5.5V  
40  
30  
20  
10  
0
35  
30  
25  
20  
Input Bias Current  
Input Offset Current  
Input Bias Current  
Input Offset Current  
15  
10  
5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
-40  
-20  
0
20  
40  
60  
80  
Common Mode Input Voltage (V)  
Temperature ( °C)  
FIGURE 2-15:  
Input Bias, Offset Currents  
FIGURE 2-18:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage with  
Temperature = 85°C.  
vs. Temperature.  
DS21669B-page 6  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD L DD  
DD  
SS  
A
CM  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = +85°C  
VDD = 5.5V  
TA = +25°C  
TA = -40°C  
VDD = 1.4V  
-40  
-20  
0
20  
40  
60  
80  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
Power Supply Voltage, VDD (V)  
Temperature (° C)  
FIGURE 2-19:  
Quiescent Current vs.  
FIGURE 2-22:  
Quiescent Current Vs.  
Temperature vs. Power Supply Voltage.  
Power Supply Voltage vs. Temperature.  
130  
140  
0
VDD = 5.5V  
Open Loop Gain  
120  
-30  
-60  
V
OUT = 0.5V to 5.0V  
120  
110  
100  
90  
100  
Open Loop Phase  
80  
60  
40  
20  
-90  
-120  
-150  
-180  
-210  
1.E+05 -240  
VDD = 1.4V  
OUT = 0.5V to 0.9V  
V
80  
0
70  
VDD = 5.5V  
-20 1.E-03  
1.E-02  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1. E+0  
2
1. E+0  
3
1. E+0  
4
1. E+0 5  
60  
100  
0.001 0.01 0.1  
1
10  
100  
1k  
10k 100k  
1k  
10k  
100k  
Frequency (Hz)  
Load Resistance (  
)
FIGURE 2-20:  
Open Loop Gain, Phase vs.  
FIGURE 2-23:  
Open Loop Gain vs. Load  
Frequency with V = 5.5 V.  
Resistance vs. Power Supply Voltage.  
DD  
140  
140  
RL = 50 k  
RL = 50 kΩ  
VSS + 100 mV < VOUT < VDD - 100 mV  
130  
130  
120  
110  
100  
90  
VDD = 5.5V  
120  
110  
100  
90  
VDD = 1.4V  
80  
0.00  
80  
0.05  
0.10  
0.15  
0.20  
0.25  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Power Supply Voltage, VDD (V)  
Output Voltage Headroom, VDD-VOUT or VOUT-VSS (V)  
FIGURE 2-21:  
Supply Voltage.  
Open Loop Gain vs. Power  
FIGURE 2-24:  
Open Loop Gain vs. Output  
Voltage Headroom vs. Power Supply Voltage.  
2002 Microchip Technology Inc.  
DS21669B-page 7  
MCP6041/2/3/4  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD L DD  
DD  
SS  
A
CM  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
130  
120  
110  
100  
90  
18  
16  
4  
2  
0  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Phase Margin  
Gain Bandwidth Product  
6
80  
4
VDD = 5V  
RL = 100 k  
70  
2
Input Referred  
G = +1 V/V  
0
60  
1.E+02  
1.E+03  
1.E+04  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
100  
1k  
10k  
Common Mode Input Voltage(V)  
Frequency (Hz)  
FIGURE 2-25:  
Channel to Channel  
FIGURE 2-28:  
Gain Bandwidth Product,  
Separation vs. Frequency (MCP6042 and  
MCP6044 only).  
Phase Margin vs. Common Mode Input Voltage  
with Unity Gain.  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
16  
14  
12  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Phase Margin  
Gain Bandwidth Product  
Phase Margin  
10  
8
Gain Bandwidth Product  
6
6
4
4
VDD = 5.5V  
VDD = 1.4V  
G = +1 V/V  
2
2
G = +1 V/V  
0
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-26:  
Gain Bandwidth Product,  
FIGURE 2-29:  
Gain Bandwidth Product,  
Phase Margin vs. Temperature with V = 5.5 V,  
Phase Margin vs. Temperature with V = 1.4 V,  
DD  
DD  
Unity Gain.  
Unity Gain.  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
| ISC- | @ VDD=5.5V  
30  
ISC+ @ VDD=5.5V  
25  
20  
Unity Loop Gain Frequency  
15  
6
| ISC- | @ VDD=1.4V  
Phase Margin  
ISC+ @ VDD=1.4V  
10  
4
VDD = 5.5V  
G = +1 V/V  
5
0
2
RL = 10 kΩ  
0
-40  
-20  
0
20  
40  
60  
80  
10  
100  
Load Capacitance (pF)  
1000  
Temperature (°C)  
FIGURE 2-27:  
Unity Loop Gain Frequency,  
FIGURE 2-30:  
Output Short Circuit Current  
Phase Margin vs. Load Capacitance.  
vs. Temperature vs. Power Supply Voltage.  
DS21669B-page 8  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD  
SS  
A
CM  
DD  
L
DD  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
10  
6
5
4
3
2
1
0
VDD = 5.0V  
VDD = 5.5V  
High-to-Low Transition  
Low-to-High Transition  
VDD = 1.4V  
1
0.1  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
-40  
-20  
0
20  
40  
60  
80  
10  
100  
1k  
10k  
Temperature (°C)  
Frequency (Hz)  
FIGURE 2-31:  
Slew Rate vs. Temperature.  
FIGURE 2-34:  
Output Voltage Swing vs.  
Frequency vs. Power Supply Voltage.  
100  
5
VOL-VSS @ VDD = 5.5V  
VDD-VOH @ VDD = 5.5V  
VDD = 5.5V  
RL = 50 k  
4
3
2
1
0
VOL - VSS  
10  
VDD-VOH @ VDD = 1.4V  
VOL-VSS @ VDD = 1.4V  
VDD - VOH  
1
1.E+03  
1.E+04  
1.E+05  
1k  
10k  
Load Resistance (:)  
100k  
-40  
-20  
0
20  
40  
60  
80  
Temperature (°C)  
FIGURE 2-32:  
Output Voltage Headroom  
FIGURE 2-35:  
Output Voltage Headroom  
vs. Load Resistance vs. Power Supply Voltage.  
vs. Temperature.  
3.E-02  
0.025  
VDD = 5.0V  
2.E-02  
VDD = 5.0V  
0.020  
G = +1 V/V  
G = -1 V/V  
RL = 50 k  
2.E-02  
0.015  
RL = 50 kΩ  
1.E-02  
5.E-03  
0.E+00  
0.010  
0.005  
0.000  
-5.E-03  
-0.005  
-1.E-02  
-0.010  
-2.E-02  
-0.015  
-2.E-02  
-0.020  
-3.  
E-0  
2
0.E+00  
1.E-04  
2.E-04  
3.E-04  
4.E-04  
5.E-04  
6.E-04  
7.E-04  
8.E-04  
9.E-04  
1.E-03  
-0.  
025  
0.0E+00  
1.0E-04  
2.0E-04  
3.0E-04  
4.0E-04  
5.0E-04  
6.0E-04  
7.0E-04  
8.0E-04  
9.0E-04  
1.0E-03  
Time (100 µs/div)  
Time (100 µs/div)  
FIGURE 2-33:  
Pulse Response.  
Small Signal Non-Inverting  
FIGURE 2-36:  
Small Signal Inverting Pulse  
Response.  
2002 Microchip Technology Inc.  
DS21669B-page 9  
MCP6041/2/3/4  
Note: Unless otherwise indicated, V = +5 V, V = GND, T = 25°C, V  
= V /2, R = 1 Mto V /2,  
DD L DD  
DD  
SS  
A
CM  
C = 60 pF, and V  
~ V /2.  
DD  
L
OUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
G = +1 V/V  
RL = 50 kΩ  
VDD = 5.0V  
G = -1 V/V  
R
L = 50 kΩ  
0.E+00  
1.E-03  
2.E-03  
3.E-03  
4.E-03  
5.E-03  
6.E-03  
7.E-03  
8.E-03  
9.E-03  
1.E-02  
0.E+00  
1.E-03  
2.E-03  
3.E-03  
4.E-03  
5.E-03  
6.E-03  
7.E-03  
8.E-03  
9.E-03  
1.E-02  
Time (1 ms/div)  
Time (1 ms/div)  
FIGURE 2-37:  
Large Signal Non-Inverting  
FIGURE 2-40:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
3.0  
Amplifier Output–Active (driven)  
VDD = 5.0V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
CS  
2.5  
0.0  
CS Input High  
to Low  
VDD = 5.0V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
CS Input Low  
to High  
VOUT  
-
-
Amplifier Output–Hi-Z  
4
Output Driven  
Output Hi-Z  
Output Hi-Z  
0
1
2
3
5
CS Input Voltage (V)  
Time (1 ms/div)  
FIGURE 2-38:  
Chip Select (CS) to  
FIGURE 2-41:  
(MCP6043 only).  
Chip Select (CS) Hysteresis  
Amplifier Output Response Time (MCP6043  
only).  
6
VIN  
5
VOUT  
4
3
2
1
VDD = 5.0V  
0
G = +2 V/V  
-1 0.00E+00  
5.00E-03  
1.00E-0  
2
1.50E-0  
2
2.00E-02  
2.50E-02  
Time (5 ms/div)  
FIGURE 2-39:  
The MCP6041/2/3/4 family  
shows no phase reversal (for information only–  
the Maximum Absolute Input Voltage is still  
V
-0.3 V and V +0.3 V).  
DD  
SS  
DS21669B-page 10  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
The second specification, Linear Region Output Volt-  
age Swing, details the output voltage range that sup-  
3.0  
APPLICATIONS INFORMATION  
The MCP6041/2/3/4 family of operational amplifiers  
are fabricated on Microchip’s state-of-the-art CMOS  
process. They are unity gain stable and suitable for a  
wide range of applications requiring very low power  
consumption. With these op amps, the power supply  
pin needs to be by-passed with a 0.1 µF capacitor.  
ports the specified Open Loop Gain (A 95 dB with  
OL  
R = 50 k).  
L
3.4  
Input Voltage and Phase Reversal  
The MCP6041/2/3/4 op amp family uses CMOS tran-  
sistors at the input. It is designed to not exhibit phase  
inversion when the input pins exceed the supply volt-  
ages. Figure 2-39 shows an input voltage exceeding  
both supplies with no resulting phase inversion.  
3.1  
Rail to Rail Input  
The input stage of the family of devices uses two differ-  
ential input stages in parallel; one operates at low V  
CM  
The maximum operating V  
(common mode input  
CM  
(common mode input voltage) and the other at high  
voltage) that can be applied to the inputs is V -0.3 V  
SS  
V
. With this topology, the MCP6041/2/3/4 family  
CM  
and V  
+0.3 V. Voltage on the input that exceed this  
DD  
operates with V up to 300 mV past either supply rail.  
CM  
absolute maximum rating can cause excessive current  
to flow in or out of the input pins. Current beyond ±2 mA  
can cause possible reliability problems. Applications  
that exceed this rating must be externally limited with  
an input resistor as shown in Figure 3-1.  
The Input Offset Voltage is measured at both  
V
= V - 0.3 V and V  
+ 0.3 V to ensure proper  
DD  
CM  
SS  
operation.  
3.2  
Output Loads and Battery Life  
The MCP6041/2/3/4 op amp family has outstanding  
quiescent current, which supports battery-powered  
applications. There is minimal quiescent current glitch-  
ing when chip select (CS) is raised or lowered. This  
prevents excessive current draw and reduced battery  
life, when the part is turned off or on.  
V
R
MCP604X  
OUT  
IN  
V
IN  
Heavy resistive loads at the output can cause exces-  
sive battery drain. Driving a DC voltage of 2.5 V across  
a 100 kload resistor will cause the supply current to  
increase by 25 µA, depleting the battery 43 times as  
(Maximum expected VIN) VDD  
RIN  
RIN  
------------------------------------------------------------------------------  
2 mA  
V
SS (Minimum expected VIN  
)
fast as I (0.6 µA typ) alone.  
Q
---------------------------------------------------------------------------  
2 mA  
High frequency signals (fast edge rate) across capaci-  
tive loads will also significantly increase supply current.  
For instance, a 0.1 µF capacitor at the output presents  
an AC impedance of 15.9 k(1/2πfC) to a 100 Hz  
sinewave. It can be shown that the average power  
drawn from the battery by a 5.0 Vp-p sinewave  
(1.77 Vrms), under these conditions, is:  
FIGURE 3-1:  
An input resistor, R ,  
IN  
should be used to limit excessive input current if  
the inputs exceed the Absolute Maximum  
specification.  
3.5  
Capacitive Load and Stability  
EQUATION  
Driving capacitive loads can cause stability problems  
with voltage feedback op amps. A buffer configuration  
(G = +1) is the most sensitive to capacitive loads.  
Figure 2-27 shows how increasing the load capaci-  
tance will decrease the phase margin. While a phase  
margin above 60° is ideal, 45° is sufficient. As can be  
PSUPPLY = (VDD VSS)(IQ + VL(p p)fCL)  
= (5V)(0.6µA + 5.0Vp p 100Hz 0.1µF)  
= 3.0µW + 50µW  
seen, up to C = 150 pF can be placed on the  
This will drain the battery 18 times as fast as I alone.  
L
Q
MCP6041/2/3/4 op amp outputs without any problems,  
while 250 pF is usable with a 45° phase margin.  
3.3  
Rail to Rail Output  
When the op amp is required to drive large capacitive  
The output voltage range of the MCP6041/2/3/4 family  
is specified two ways. The first specification, Maximum  
Output Voltage Swing, defines the maximum swing  
possible under a particular output load. According to  
the spec table, the output can reach 10 mV of either  
supply rail when R = 50 k. See Figure 2-32 for infor-  
mation on Maximum Output Voltage Swing vs. load  
resistance.  
loads (C >150 pF), a small series resistor (R  
in  
L
ISO  
Figure 3-2) at the output of the amplifier improves the  
phase margin. This resistor makes the output load  
resistive at higher frequencies, which improves the  
phase margin. The bandwidth reduction caused by the  
capacitive load, however, is not changed. To select  
L
R
, start with 1 k, then use the MCP6041 SPICE  
ISO  
2002 Microchip Technology Inc.  
DS21669B-page 11  
MCP6041/2/3/4  
macro model and bench testing to adjust R  
until the  
Surface leakage is caused by a difference in voltage  
between traces, combined with high humidity, dust or  
other contamination on the board. Under low humidity  
conditions, a typical resistance between nearby traces  
ISO  
frequency response peaking is reasonable. Use the  
smallest reasonable value.  
12  
is 10 . A 5 V difference would cause 5 pA of current  
to flow; this is greater than the input current of the  
MCP6041/2/3/4 family at 25°C (1 pA, typ).  
The simplest technique to reduce surface leakage is  
using a guard ring around sensitive pins (or traces).  
The guard ring is biased at the same voltage as the  
sensitive pin or trace. Figure 3-4 shows an example of  
a typical layout.  
R
ISO  
V
MCP604X  
OUT  
V
IN  
C
L
FIGURE 3-2:  
Amplifier circuit for heavy  
capacitive loads.  
IN-  
IN+  
V
SS  
3.6  
The MCP6043 Chip Select (CS)  
Option  
The MCP6043 is a single amplifier with a chip select  
(CS) option. When CS is pulled high, the supply current  
drops to 20 pA (typ) and goes through the CS pin to  
V
. When this happens, the amplifier is put into a high  
SS  
impedance state. By pulling CS low, the amplifier is  
enabled. If the CS pin is left floating, the amplifier will  
not operate properly. Figure 3-3 shows the output volt-  
age and supply current response to a CS pulse.  
Guard Ring  
FIGURE 3-4:  
layout.  
Example of Guard Ring  
Circuit schematics for different guard ring implementa-  
tions are shown in Figure 3-5. Figure 3-5A biases the  
guard ring to the input common mode voltage, which is  
most effective for non-inverting gains, including unity  
gain. Figure 3-5B biases the guard ring to a reference  
CS  
VIL  
tON  
VIH  
tOFF  
VOUT  
Hi-Z  
Hi-Z  
voltage (V  
, which can be ground). This is useful for  
REF  
inverting gains and precision photo sensing circuits.  
0.6 µA, typ  
0.6 µA, typ  
Figure 3-5A  
5 pA, typ  
5 pA, typ  
IVDD  
V
DD  
20 pA, typ  
5 pA, typ  
20 pA, typ  
5 pA, typ  
IVSS  
MCP604X  
V
REF  
ICS  
Figure 3-5B  
FIGURE 3-3:  
Timing Diagram for the CS  
function on the MCP6043 op amp.  
3.7 Layout Considerations  
V
DD  
Good PC board layout techniques will help you achieve  
the performance shown in the specs and Typical Per-  
formance Curves. It will also assist in minimizing Elec-  
tro-Magnetic Compatibility (EMC) issues.  
MCP604X  
V
REF  
3.7.1  
SURFACE LEAKAGE  
FIGURE 3-5:  
Two possible guard ring  
connection strategies to reduce surface leakage  
effects.  
In applications where low input bias current is critical,  
PC board surface leakage effects and signal coupling  
from trace to trace need to be considered.  
DS21669B-page 12  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
3.7.2  
COMPONENT PLACEMENT  
3.8  
Typical Applications  
BATTERY CURRENT SENSING  
Separate digital from analog and low speed from high  
speed. This helps prevent crosstalk.  
3.8.1  
The MCP6041/2/3/4 op amps’ Common Mode Input  
Range, which goes 300 mV beyond both supply rails,  
supports their use in high side and low side battery  
current sensing applications. The very low quiescent  
current (0.6 µA, typ) help prolong battery life while the  
rail-to-rail output allows you to detect low currents.  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high frequency (low rise time)  
signals.  
Use a 0.1 µF supply bypass capacitor within 0.1”  
(2.5 mm) of the V pin. It must connect directly to the  
DD  
Figure 3-7 shows a high side battery current sensor cir-  
ground plane.  
cuit. The 10 resistors are sized to minimize power  
losses. The battery current (I ) through the 10 Ω  
DD  
3.7.3  
SIGNAL COUPLING  
resistor causes its top terminal to be more negative  
The input pins of the MCP6041/2/3/4 family of op amps  
are high impedance, which allows noise injection. This  
noise can be capacitively or magnetically coupled. In  
either case, using a ground plane helps reduce noise  
injection.  
than the bottom terminal. This keeps the common  
mode input voltage of the op amp V , which is within  
DD  
its allowed range. The output of the op amp can reach  
V
- 0.1 mV (see Figure 2-32), which is a smaller  
DD  
error than the offset voltage.  
When noise is coupled capacitively, the ground plane  
provides shunt capacitance to ground for high fre-  
quency signals. Figure 3-6 shows the equivalent cir-  
V
DD  
V
DD  
cuit. The coupled current, I , produces a lower voltage  
M
(V  
) on the victim trace when the trace to ground  
TRACE 2  
I
plane capacitance (C  
) is large and the terminating  
resistor (R ) is small. Increasing the distance between  
DD  
10  
MCP604X  
SH2  
T2  
+2.5 V  
to  
V
SS  
traces, and using wider traces, also helps.  
100 k  
5.5 V  
C
I
M
V
M
TRACE 2  
1 M  
V
TRACE 1  
FIGURE 3-7:  
High Side Battery Current  
Sensor.  
C
C
R
SH1  
SH2  
T2  
3.8.2  
INSTRUMENTATION AMPLIFIER  
The MCP6041/2/3/4 op amp is well suited for condition-  
ing sensor signals in battery-powered applications.  
Figure 3-8 shows a two op amp instrumentation  
amplifier, using the MCP6042, that works well for appli-  
cations requiring rejection of common mode noise at  
FIGURE 3-6:  
Equivalent circuit for  
capacitive coupling between traces on a PC  
board (with ground plane).  
When noise is coupled magnetically, ground plane  
reduces the mutual inductance between traces. This  
occurs because the ground return current at high fre-  
quencies will follow a path directly beneath the signal  
trace. Increasing the separation between traces makes  
a significant difference. Changing the direction of one  
of the traces can also reduce magnetic coupling.  
If these techniques are not enough, it may help to place  
guard traces next to the victim trace. They should be on  
both sides of the victim trace and be as close as possi-  
ble. Connect the guard traces to ground plane at both  
ends, and in the middle, for long traces.  
higher gains. The reference voltage (V  
) is supplied  
REF  
by  
a
low impedance source. In single supply  
is typically V /2.  
applications, V  
REF  
DD  
R
G
V
R
R
R
R
V
OUT  
REF  
1
1
1
1
V
V
2
½
MCP6042  
½ MCP6042  
1
R1 2R1  
VOUT = (V1 V2) 1 + ----- + --------- + VREF  
R2 RG  
FIGURE 3-8:  
Two Op Amp  
Instrumentation Amplifier.  
2002 Microchip Technology Inc.  
DS21669B-page 13  
MCP6041/2/3/4  
4.0 SPICE MACRO MODEL  
The Spice macro model for the MCP6041, MCP6042,  
MCP6043 and MCP6044 simulates the typical ampli-  
fier performance of: offset voltage, DC power supply  
rejection, input capacitance, DC common mode rejec-  
tion, open loop gain over frequency, phase margin, out-  
put swing, DC power supply current, power supply  
current change with supply voltage, input common  
mode range, output voltage range vs. load and input  
voltage noise.  
The characteristics of the MCP6041, MCP6042,  
MCP6043 and MCP6044 amplifiers are similar in terms  
of performance and behavior. This single op amp  
macro model supports all four devices with the excep-  
tion of the chip select function of the MCP6043, which  
is not modeled.  
The listing for this macro model is shown on the next  
page. The most recent revision of the model can be  
downloaded from  
www.microchip.com.  
Microchip’s  
web site at  
DS21669B-page 14  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
Software License Agreement  
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the Com-  
pany’s customer, for use solely and exclusively on Microchip products.  
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.  
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil  
liability for the breach of the terms and conditions of this license.  
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-  
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-  
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR  
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.  
.SUBCKT MCP6041 1 2 3 4 5  
R11 10 12 78K  
C11 11 12 4.9P  
*
*
*
*
*
*
*
| | | | |  
| | | | Output  
| | | Negative Supply  
| | Positive Supply  
| Inverting Input  
Non-inverting Input  
C12  
1
0 6P  
E12 1 14 POLY(4) 20 0 21 0 26 0 27 0  
1 1  
G12 14 0 POLY(2) 22 0 23 0  
M12 11 14 15 15 NMI  
C13 14 2 3P  
1M 1 1  
1.5P 1U 1U  
* Macromodel for the MCP6041/2/3/4 op amp  
family:  
M14 12 2 15 15 NMI  
G14  
C14  
2
2
0 POLY(2) 24 0 25 0  
0 6P  
0.5P 1U 1U  
*
*
*
MCP6041 (single)  
MCP6042 (dual)  
MCP6043 (single w/ CS; chip select is not  
I15 15 4 500N  
V16 16 4 0.18  
D16 16 15 DL  
modeled)  
*
*
MCP6044 (quad)  
V13 3 13 0.00  
D13 14 13 DL  
* Revision History:  
*
*
*
REV A: 7-9-01 created KEB  
* Noise Sources  
I20 21 20 17.2N  
D20 20 0 DN1  
D21 0 21 DN1  
I22 23 22 588U  
D22 22 0 DN23  
D23 0 23 DN23  
I24 25 24 588U  
D24 24 0 DN23  
D25 0 25 DN23  
*
* Recommendations:  
Use PSPICE (other simulators may require  
translation)  
*
*
For a quick, effective design, use a com-  
bination of: data sheet  
*
with this macromodel  
*
specs, bench testing, and simulations  
For high impedance circuits, set  
GMIN=100F in the.OPTIONS  
*
*
statement  
* PSRR and CMRR  
G26 0 26 POLY(1) 3 4  
R26 26 0 1  
G27 0 27 POLY(2) 1 3 2 4  
R27 27 0 1  
110U -20U  
-275U 50U 50U  
* Supported:  
*
(25 degrees C)  
Typical performance at room temperature  
*
*
DC, AC, Transient, and Noise analyses.  
Most specs, including: offsets, PSRR,  
*
* Open Loop Gain, Slew Rate  
CMRR, input impedance,  
G30 0 30 POLY(1) 12 11  
R30 30 0 1  
0 1MEG  
*
open loop gain, voltage ranges, supply  
current,..., etc.  
*
* Not Supported:  
C30 30 0 11.4  
G31 0 31 POLY(1) 30 0  
R31 31 0 1  
0 1  
*
*
Chip Select (MCP6043)  
Variation in specs vs. Power Supply Volt-  
C31 31 0 775N  
*
age  
*
*
* Output Stage  
G40 0 40 POLY(1) 45 5  
D41 40 41 DL  
Distortion (detailed non-linear behavior)  
Temperature analysis  
0 22.7M  
*
Process variation  
R41 41 0 1K  
*
Behavior outside normal operating region  
D42 42 40 DL  
*
R42 42 0 1K  
* Input Stage  
V10 3 10 -0.3  
R10 10 11 78K  
G43  
G47  
3
0
0 POLY(1) 41 0  
4 POLY(1) 42 0  
100N 1M  
100N -1M  
0 1  
E43 43 0 POLY(1) 3 0  
2002 Microchip Technology Inc.  
DS21669B-page 15  
MCP6041/2/3/4  
E47 47 0 POLY(1) 4 0  
V44 43 44 1M  
0 1  
D44 45 44 DLS  
D46 46 45 DLS  
V46 46 47 1M  
G45 47 45 POLY(2) 31 0 3 4  
R45 45 47 125K  
0 8U 4U  
R48 45 5 44  
C48  
*
5
0 2P  
* Models  
.MODEL NMI NMOS L=2 W=42  
.MODEL DL D N=1 IS=1F  
.MODEL DLS D N=1M IS=1F  
.MODEL DN1 D IS=1F KF=1.13E-18 AF=1  
.MODEL DN23 D IS=1F KF=3E-20  
AF=1  
*
.ENDS MCP6041  
DS21669B-page 16  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6041  
I/PNNN  
YYWW  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6041  
I/SNYYWW  
NNN  
NNN  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6041  
YWWNNN  
Example:  
5
5-Lead SOT-23 (MCP6041 only)  
5
4
4
XXNN  
SBNN  
1
2
3
1
2
3
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
2002 Microchip Technology Inc.  
DS21669B-page 17  
MCP6041/2/3/4  
5.1  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6044)  
Example:  
MCP6044-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
YYWWNNN  
14-Lead SOIC (150 mil) (MCP6044)  
Example:  
MCP6044ISL  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
YYWWNNN  
Example:  
14-Lead TSSOP (MCP6044)  
XXXXXX  
YYWW  
6044ST  
YYWW  
NNN  
NNN  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
DS21669B-page 18  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
4.32  
3.68  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
2002 Microchip Technology Inc.  
DS21669B-page 19  
MCP6041/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
h
L
φ
Number of Pins  
Pitch  
Overall Height  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
Standoff  
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21669B-page 20  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
p
E1  
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026  
0.65  
Overall Height  
Molded Package Thickness  
A
A2  
A1  
E
E1  
D
.044  
1.18  
.030  
.034  
.038  
.006  
.200  
.122  
.122  
.028  
.039  
0.76  
0.86  
0.97  
0.15  
.5.08  
3.10  
3.10  
0.70  
1.00  
Standoff  
§
.002  
.184  
.114  
.114  
.016  
.035  
0.05  
4.67  
2.90  
2.90  
0.40  
0.90  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Footprint (Reference)  
Foot Angle  
.193  
.118  
.118  
.022  
.037  
4.90  
3.00  
3.00  
0.55  
0.95  
L
F
φ
0
6
0
6
c
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
.004  
.010  
.006  
.012  
.008  
.016  
0.10  
0.25  
0.15  
0.30  
0.20  
0.40  
B
α
β
7
7
7
7
*Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
Drawing No. C04-111  
2002 Microchip Technology Inc.  
DS21669B-page 21  
MCP6041/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
p1  
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Outside lead pitch (basic)  
Overall Height  
5
.038  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
0.95  
1.90  
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
0.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
1.45  
Molded Package Thickness  
.051  
.006  
.118  
.069  
.122  
.022  
10  
.008  
.020  
10  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
0.20  
0.50  
10  
Standoff  
§
0.00  
2.60  
1.50  
2.80  
0.35  
0
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
L
φ
c
.004  
.014  
0
.006  
.017  
5
0.09  
0.35  
0
0.15  
0.43  
5
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-178  
Drawing No. C04-091  
DS21669B-page 22  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
14  
14  
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
4.32  
3.68  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
2002 Microchip Technology Inc.  
DS21669B-page 23  
MCP6041/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
Standoff  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
h
L
φ
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
DS21669B-page 24  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
Overall Height  
14  
14  
.026  
0.65  
A
.043  
1.10  
Molded Package Thickness  
A2  
A1  
E
E1  
D
.033  
.002  
.246  
.169  
.193  
.020  
0
.004  
.007  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.006  
.010  
5
.037  
.006  
.256  
.177  
.201  
.028  
8
.008  
.012  
10  
0.85  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
0.15  
0.25  
5
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
0.20  
0.30  
10  
Standoff  
§
0.05  
6.25  
4.30  
4.90  
0.50  
0
0.09  
0.19  
0
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L
φ
c
B1  
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
2002 Microchip Technology Inc.  
DS21669B-page 25  
MCP6041/2/3/4  
NOTES:  
DS21669B-page 26  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
013001  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2002 Microchip Technology Inc.  
DS21669B-page 27  
MCP6041/2/3/4  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS21669B  
Device:  
MCP6041/2/3/4  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS21669B-page 28  
2002 Microchip Technology Inc.  
MCP6041/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature Package  
Range  
a)  
b)  
c)  
d)  
e)  
f)  
MCP6041-I/P:  
Industrial temperature,  
PDIP package.  
MCP6041T-I/OT: Tape and Reel, Indus-  
trial temperature, SOT-23 package.  
MCP6042-I/SN: Industrial temperature,  
SOIC package.  
MCP6043-I/MS: Industrial temperature,  
MSOP package.  
MCP6044-I/SL:  
SIOC package.  
Device:  
MCP6041: CMOS Single Op Amp  
MCP6041T: CMOS Single Op Amp  
(Tape and Reel for SOT-23, SOIC, MSOP)  
MCP6042: CMOS Dual Op Amp  
MCP6042T: CMOS Dual Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Industrial temperature,  
MCP6043: CMOS Single Op Amp w/CS Function  
MCP6043T: CMOS Single Op Amp w/CS Function  
(Tape and Reel for SOIC and MSOP)  
MCP6044-I/ST:  
TSSOP package.  
Industrial temperature,  
MCP6044: CMOS Quad Op Amp  
MCP6044T: CMOS Quad Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
MS  
P
=
=
=
=
Plastic MSOP, 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic Small Outline Transistor (SOT-23),  
5-lead (Tape and Reel - MCP6041 only)  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4mm Body), 14-lead  
SN  
OT  
SL  
ST  
=
=
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21669B-page 29  
MCP6041/2/3/4  
NOTES:  
DS21669B-page 30  
2002 Microchip Technology Inc.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21669B - page 31  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
Chicago  
No. 88 TIDU Street  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
No. 71 Wusi Road  
EUROPE  
Detroit  
Fuzhou 350001, China  
Denmark  
Tri-Atria Office Building  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Kokomo  
Room 701, Bldg. B  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Far East International Plaza  
No. 317 Xian Xia Road  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
China - Shenzhen  
Batiment A - ler Etage  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
91300 Massy, France  
Tel: 949-263-1888 Fax: 949-263-1338  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
New York  
Germany  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Shenzhen 518001, China  
Tel: 631-273-5305 Fax: 631-273-5335  
Tel: 86-755-2350361 Fax: 86-755-2366086  
San Jose  
China - Hong Kong SAR  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Milan, Italy  
Microchip Technology Inc.  
India Liaison Office  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Divyasree Chambers  
Microchip Ltd.  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Austria  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
05/16/02  
DS21669B-page 32  
2002 Microchip Technology Inc.  

相关型号:

MCP6041_13

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6042

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6042-E/MSVAO

Operational Amplifier, 1 Func, 3000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6042-E/P

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8
MICROCHIP

MCP6042-E/SN

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8
MICROCHIP

MCP6042-E/SNVAO

Operational Amplifier, 1 Func, 3000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6042-I

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6042-I/MS

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MCP6042-I/SN

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6042-ISN

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6042T

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6042T-E/MS

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP