MCP6043-I/SNG [MICROCHIP]

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8;
MCP6043-I/SNG
型号: MCP6043-I/SNG
厂家: MICROCHIP    MICROCHIP
描述:

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8

光电二极管
文件: 总40页 (文件大小:1161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6041/2/3/4  
600 nA, Rail-to-Rail Input/Output Op Amps  
Features  
Description  
• Low Quiescent Current: 600 nA/amplifier (typical)  
• Rail-to-Rail Input/Output  
The MCP6041/2/3/4 family of operational amplifiers  
(op amps) from Microchip Technology Inc. operate with  
a single supply voltage as low as 1.4V, while drawing  
less than 1 µA (maximum) of quiescent current per  
amplifier. These devices are also designed to support  
rail-to-rail input and output operation. This combination  
of features supports battery-powered and portable  
applications.  
• Gain Bandwidth Product: 14 kHz (typical)  
• Wide Supply Voltage Range: 1.4V to 6.0V  
• Unity Gain Stable  
• Available in Single, Dual, and Quad  
• Chip Select (CS) with MCP6043  
• Available in 5-lead and 6-lead SOT-23 Packages  
Temperature Ranges:  
The MCP6041/2/3/4 amplifiers have a gain-bandwidth  
product of 14 kHz (typical) and are unity gain stable.  
These specifications make these op amps appropriate  
for low frequency applications, such as battery current  
monitoring and sensor conditioning.  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
The MCP6041/2/3/4 family operational amplifiers are  
offered in single (MCP6041), single with Chip Select  
(CS) (MCP6043), dual (MCP6042), and quad  
(MCP6044) configurations. The MCP6041 device is  
available in the 5-lead SOT-23 package, and the  
MCP6043 device is available in the 6-lead SOT-23  
package.  
Applications  
Toll Booth Tags  
• Wearable Products  
Temperature Measurement  
• Battery Powered  
Design Aids  
Package Types  
• SPICE Macro Models  
• FilterLab® Software  
MCP6041  
PDIP, SOIC, MSOP  
MCP6043  
PDIP, SOIC, MSOP  
• MAPS (Microchip Advanced Part Selector)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
NC 1  
8
7
6
NC  
V
NC 1  
8 CS  
2
3
4
V
V
+
2
3
4
7
6
V
V
+
V
V
IN  
DD  
IN  
DD  
V
IN  
OUT  
IN  
OUT  
5 NC  
V
5 NC  
V
SS  
SS  
Related Devices  
MCP6041  
SOT-23-5  
MCP6043  
SOT-23-6  
• MCP6141/2/3/4: G = +10 Stable Op Amps  
V
1
5
V 1  
OUT  
6
V
V
V
Typical Application  
OUT  
DD  
DD  
2
3
2
3
5 CS  
V
V
SS  
SS  
IDD  
VDD  
4
4 V  
V
+
V +  
IN  
IN  
IN  
IN  
1.4V  
to  
6.0V  
10  
MCP6042  
PDIP, SOIC, MSOP  
MCP6044  
PDIP, SOIC, TSSOP  
VOUT  
MCP604X  
100 k  
V
1
2
3
4
5
6
7
14  
13  
12  
V
V
V
V
1
2
3
4
8
7
6
V
V
V
OUTA  
OUTD  
OUTA  
DD  
V
+
V
INA  
IND  
INA  
OUTB  
1 M  
V
+
V
+
INA  
IND  
INA  
INB  
11 V  
V
5 V  
+
V
DD  
SS  
SS  
INB  
VDD VOUT  
10  
9
V
V
+
V
V
+
IDD = -----------------------------------------  
INB  
INC  
10 V/V10  
INC  
INB  
High Side Battery Current Sensor  
8 V  
V
OUTB  
OUTC  
2001-2013 Microchip Technology Inc.  
DS21669D-page 1  
MCP6041/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
SS  
DD  
Current at Input Pins .....................................................±2 mA  
Analog Inputs (V +, V –) ............. V – 1.0V to V + 1.0V  
†† See Section 4.1 “Rail-to-Rail Input”  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs.......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input voltage ...................................... |V – V  
|
DD  
SS  
Output Short Circuit Current ..................................continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature....................................65°C to +150°C  
Junction Temperature..................................................+150°C  
ESD protection on all pins (HBM; MM)  4 kV; 200V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +1.4V to +5.5V, V = GND, T = 25°C, V  
= V /2,  
DD  
SS  
A
CM  
DD  
V
V /2, V = V /2, and R = 1 Mto V (refer to Figure 1-2 and Figure 1-3).  
OUT  
DD L DD L L  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
Drift with Temperature  
V
-3  
±2  
+3  
mV  
V
V
V
= V  
SS  
OS  
CM  
CM  
CM  
V /T  
µV/°C  
µV/°C  
= V , T = -40°C to +85°C  
OS  
A
SS  
A
V /T  
±15  
= V  
,
OS  
A
SS  
T = +85°C to +125°C  
A
Power Supply Rejection  
PSRR  
70  
85  
dB  
V
= V  
CM SS  
Input Bias Current and Impedance  
Input Bias Current  
I
I
I
1
20  
100  
5000  
pA  
pA  
B
B
B
Industrial Temperature  
T = +85°  
A
Extended Temperature  
1200  
1
pA  
T = +125°  
A
Input Offset Current  
I
pA  
OS  
13  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Z
10 ||6  
||pF  
||pF  
CM  
13  
Z
10 ||6  
DIFF  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
V
V
0.3  
80  
75  
80  
V
+0.3  
DD  
V
CMR  
SS  
CMRR  
CMRR  
CMRR  
62  
dB  
dB  
dB  
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= -0.3V to 5.3V  
= 2.5V to 5.3V  
= -0.3V to 2.5V  
DD  
DD  
DD  
CM  
CM  
CM  
60  
60  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
A
95  
115  
dB  
R = 50 kto V ,  
OL  
L
L
V
= 0.1V to V 0.1V  
OUT  
DD  
Output  
Maximum Output Voltage Swing  
V
, V  
V
+ 10  
V
10  
mV  
mV  
R = 50 kto V ,  
L L  
0.5V input overdrive  
OL  
OH  
SS  
DD  
Linear Region Output Voltage Swing  
Output Short Circuit Current  
V
V
+ 100  
V
100  
R = 50 kto V ,  
OVR  
SS  
DD  
L
L
A
V
V
 95 dB  
OL  
I
2
mA  
mA  
= 1.4V  
= 5.5V  
SC  
DD  
DD  
I
20  
SC  
Power Supply  
Supply Voltage  
V
1.4  
0.3  
6.0  
1.0  
V
(Note 1)  
I = 0  
O
DD  
Quiescent Current per Amplifier  
I
0.6  
µA  
Q
Note 1: All parts with date codes November 2007 and later have been screened to ensure operation at V = 6.0V. However,  
DD  
the other minimum and maximum specifications are measured at 1.4V and/or 5.5V.  
DS21669D-page 2  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +1.4V to +5.5V, V = GND, T = 25°C, V  
= V /2,  
DD  
DD  
SS  
A
CM  
V
V /2, V = V /2, R = 1 Mto V , and C = 60 pF (refer to Figure 1-2 and Figure 1-3).  
OUT  
DD L DD L L L  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Slew Rate  
GBWP  
SR  
14  
3.0  
65  
kHz  
V/ms  
°
Phase Margin  
PM  
G = +1 V/V  
Noise  
Input Voltage Noise  
Input Voltage Noise Density  
Input Current Noise Density  
E
e
5.0  
170  
0.6  
µV  
f = 0.1 Hz to 10 Hz  
ni  
P-P  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
ni  
i
ni  
MCP6043 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +1.4V to +5.5V, V = GND, T = 25°C, V  
= V /2,  
DD  
DD  
SS  
A
CM  
V
V /2, V = V /2, R = 1 Mto V , and C = 60 pF (refer to Figure 1-2 and Figure 1-3).  
DD L DD L L L  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
V
V
5
V +0.3  
SS  
V
IL  
SS  
I
pA  
CS = V  
CSL  
SS  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
CS Input High, GND Current  
V
V
–0.3  
5
V
DD  
V
IH  
DD  
I
pA  
pA  
pA  
CS = V  
CS = V  
CS = V  
CSH  
DD  
DD  
DD  
I
-20  
20  
SS  
Amplifier Output Leakage, CS High  
Dynamic Specifications  
I
OLEAK  
CS Low to Amplifier Output Turn-on Time  
t
2
50  
ms  
G = +1V/V, CS = 0.3V to  
= 0.9V /2  
ON  
V
OUT  
DD  
CS High to Amplifier Output High-Z  
Hysteresis  
t
10  
µs  
V
G = +1V/V, CS = V –0.3V to  
DD  
OFF  
V
= 0.1V /2  
OUT  
DD  
V
0.6  
V
= 5.0V  
DD  
HYST  
VIL  
CS  
VIH  
tOFF  
tON  
VOUT  
High-Z  
High-Z  
-0.6 µA  
(typical)  
ISS  
-20 pA  
(typical)  
-20 pA  
(typical)  
ICS  
5 pA  
(typical)  
FIGURE 1-1:  
Chip Select (CS) Timing  
Diagram (MCP6043 only).  
2001-2013 Microchip Technology Inc.  
DS21669D-page 3  
MCP6041/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +1.4V to +5.5V, V = GND.  
DD  
SS  
Parameters  
Sym Min  
Typ Max Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
T
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
Industrial Temperature parts  
Extended Temperature parts  
(Note 1)  
A
T
+125  
+125  
+150  
A
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
T
A
T
A
256  
230  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
163  
206  
70  
120  
100  
JA  
Note 1: The MCP6041/2/3/4 family of Industrial Temperature op amps operates over this extended range, but with reduced  
performance. In any case, the internal Junction Temperature (T ) must not exceed the Absolute Maximum specification  
J
of +150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-3. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.6 “Supply Bypass”.  
VDD  
1 µF  
0.1 µF  
VIN  
VOUT  
RL  
RN  
RG  
MCP604X  
CL  
RF  
VDD/2  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
VDD  
1 µF  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP604X  
CL  
RF  
VIN  
VL  
FIGURE 1-3:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
DS21669D-page 4  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 Mto VL, and CL = 60 pF.  
18%  
10%  
245 Samples  
1124 Samples  
16%  
14%  
12%  
10%  
8%  
1 Representative Lot  
A = +85°C to +125°C  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
V
DD = 1.4V and 5.5V  
T
V
CM = VSS  
VDD = 1.4V  
VCM = VSS  
6%  
4%  
2%  
0%  
-3  
-2  
-1  
0
1
2
3
-32 -28 -24 -20 -16 -12 -8  
-4  
0
4
Input Offset Voltage (mV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage Drift  
with TA = +85°C to +125°C and VDD = 1.4V.  
24%  
12%  
239 Samples  
22%  
1124 Samples  
A = -40°C to +85°C  
11%  
10%  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
1 Representative Lot  
T
20%  
T
A = +85°C to +125°C  
V
V
DD = 1.4V  
CM = VSS  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
VDD = 5.5V  
VCM = VSS  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-32 -28 -24 -20 -16 -12 -8  
-4  
0
4
Input Offset Voltage Drift (µV/°C)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift  
FIGURE 2-5:  
Input Offset Voltage Drift  
with TA = -40°C to +85°C.  
with TA = +25°C to +125°C and VDD = 5.5V.  
2000  
2000  
VDD = 1.4V  
Representative Part  
VDD = 5.5V  
Representative Part  
1500  
1500  
1000  
500  
0
1000  
500  
0
TA = +125°C  
TA = +125°C  
-500  
-1000  
-1500  
-2000  
-500  
-1000  
-1500  
-2000  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with VDD = 1.4V.  
Common Mode Input Voltage with VDD = 5.5V.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 5  
MCP6041/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 Mto VL, and CL = 60 pF.  
6
5
500  
450  
400  
350  
300  
250  
4
VDD = 1.4V  
VIN  
VOUT  
3
2
VDD = 5.5V  
1
VDD = 5.0V  
G = +2 V/V  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
-1  
0
5
Ti1m0e (5 ms/1d5iv)  
20  
25  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
The MCP6041/2/3/4 family  
Output Voltage.  
shows no phase reversal.  
1000  
300  
f = 1 kHz  
VDD = 5.0V  
250  
200  
150  
100  
50  
0
100  
0.1  
1
10  
100  
1000  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage.  
90  
80  
70  
60  
50  
40  
30  
100  
95  
Referred to Input  
PSRR  
(VCM = VSS  
90  
)
85  
80  
75  
70  
PSRR–  
PSRR+  
CMRR  
CMRR  
(VDD = 5.0V, VCM = -0.3V to +5.3V)  
20  
0.1  
1
10  
100  
1000  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
CMRR, PSRR vs. Ambient  
Frequency.  
Temperature.  
DS21669D-page 6  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 Mto VL, and CL = 60 pF.  
10k  
100 0  
1001000k  
10010k  
VDD = 5.5V  
CM = VDD  
VDD = 5.5V  
V
1k  
1000  
IB  
TA = +125°C  
TA = +85°C  
100  
100  
100  
100  
IB  
10  
10  
10  
10  
| IOS  
|
| IOS  
|
1
1
1
1
0.1  
0.1  
0.1  
0.1  
45  
55  
65  
75  
85  
95 105 115 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Input Bias, Offset Currents  
FIGURE 2-16:  
Input Bias, Offset Currents  
vs. Ambient Temperature.  
vs. Common Mode Input Voltage.  
120  
0
130  
120  
Gain  
100  
-30  
VDD = 5.5V  
110  
80  
60  
40  
20  
0
-60  
Phase  
-90  
100  
VDD = 1.4V  
-120  
-150  
-180  
-210  
90  
80  
70  
VOUT = 0.1V to VDD – 0.1V  
-20  
60  
1.E+02  
0.001 0.01 0.1  
1
10 100 1k 10k 100k  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1.E- 1.E- 1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
03 02 01 F0r0eque0n1cy (0H2z) 03 04 05  
Load Resistance ()  
FIGURE 2-14:  
Open-Loop Gain, Phase vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Frequency.  
Load Resistance.  
140  
130  
120  
110  
100  
90  
140  
RL = 50 kꢁ  
130  
120  
110  
100  
90  
VDD = 5.5V  
VDD = 1.4V  
RL = 50 k  
VDD = 5.0V  
VOUT = 0.1V to VDD - 0.1V  
80  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
80  
Output Voltage Headroom;  
VDD – VOH or VOL – VSS (V)  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
FIGURE 2-15:  
DC Open-Loop Gain vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Power Supply Voltage.  
Output Voltage Headroom.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 7  
MCP6041/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 Mto VL, and CL = 60 pF.  
130  
120  
110  
100  
90  
20  
18  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PM  
(G = +1)  
GBWP  
6
80  
4
VDD = 5.0V  
70  
2
RL = 100 kΩ  
Input Referred  
0
60  
100  
1k  
10k  
1.E+02  
1.E+03  
1.E+04  
Frequency (Hz)  
Common Mode Input Voltage  
FIGURE 2-19:  
Channel-to-Channel  
FIGURE 2-22:  
Gain Bandwidth Product,  
Separation vs. Frequency (MCP6042 and  
MCP6044 only).  
Phase Margin vs. Common Mode Input Voltage.  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PM  
(G = +1)  
16  
14  
12  
10  
8
PM  
(G = +1)  
GBWP  
GBWP  
6
6
4
4
2
2
VDD = 5.5V  
VDD = 1.4V  
0
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-23:  
Gain Bandwidth Product,  
FIGURE 2-20:  
Gain Bandwidth Product,  
Phase Margin vs. Ambient Temperature with  
VDD = 5.5V.  
Phase Margin vs. Ambient Temperature with  
VDD = 1.4V.  
35  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
30  
25  
20  
15  
10  
5
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
FIGURE 2-24:  
Output Short Circuit Current  
FIGURE 2-21:  
Quiescent Current vs.  
vs. Power Supply Voltage.  
Power Supply Voltage.  
DS21669D-page 8  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 Mto VL, and CL = 60 pF.  
1000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
RL = 50 kΩ  
VOL – VSS  
VDD – VOH  
VOL – VSS  
VDD – VOH  
1
0.01  
0.1  
1
10  
-50  
-25  
0
25  
50  
75  
100 125  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Output Voltage Headroom  
FIGURE 2-28:  
Output Voltage Headroom  
vs. Output Current Magnitude.  
vs. Ambient Temperature.  
5.5  
10  
VDD = 5.5V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VDD = 5.5V  
High-to-Low  
Low-to-High  
VDD = 1.4V  
1
1.5  
VDD = 1.4V  
1.0  
0.5  
0.0  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
100  
1.E+02  
Frequency (Hz)  
1k  
10k  
1.E+04  
1.E+01  
1.E+03  
Ambient Temperature (°C)  
FIGURE 2-26:  
Slew Rate vs. Ambient  
FIGURE 2-29:  
Maximum Output Voltage  
Temperature.  
Swing vs. Frequency.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
G = +1 V/V  
RL = 50 kΩ  
G = -1 V/V  
L = 50 kΩ  
R
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
0.0 0.1 0.2 0.3 Ti0m.4e (100.05µs0/d.6iv) 0.7 0.8 0.9 1.0  
0.0 0.1 0.2 0.3 Ti0m.4e (100.05 µs0/d.6iv) 0.7 0.8 0.9 1.0  
FIGURE 2-27:  
Pulse Response.  
Small Signal Non-inverting  
FIGURE 2-30:  
Response.  
Small Signal Inverting Pulse  
2001-2013 Microchip Technology Inc.  
DS21669D-page 9  
MCP6041/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 Mto VL, and CL = 60 pF.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
VDD = 5.0V  
G = +1 V/V  
RL = 50 kΩ  
G = -1 V/V  
RL = 50 kΩ  
0
1
2
3
Tim4 e (15ms/d6iv)  
7
8
9
10  
0
1
2
3
Tim4 e (15ms/d6iv)  
7
8
9
10  
FIGURE 2-31:  
Large Signal Non-inverting  
FIGURE 2-34:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
VDD = 5.0V  
VOUT Active  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
CS  
2.5  
0.0  
VDD = 5.0V  
CS  
3.0  
CS  
Low-to-High  
High-to-Low  
2.5  
Output On  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VOUT  
Hysteresis  
VOUT High-Z  
High-Z  
High-Z  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
CS Input Voltage (V)  
0
1
2
3Tim4e (15ms6/div)7  
8
9
10  
FIGURE 2-32:  
Chip Select (CS) to  
FIGURE 2-35:  
Chip Select (CS) Hysteresis  
Amplifier Output Response Time (MCP6043  
only).  
(MCP6043 only).  
1.E1-00m2  
1m  
1.E-03  
100µ  
1.E-04  
10µ  
1.E-05  
1µ  
1.E-06  
100n  
1.E- 7  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
+125°C  
+85°C  
+25°C  
-40°C  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-33:  
Input Current vs. Input  
Voltage (below VSS).  
DS21669D-page 10  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6041  
PIN FUNCTION TABLE  
MCP6042  
MCP6043  
MCP6044  
PDIP,  
SOIC,  
MSOP  
PDIP,  
SOIC,  
MSOP  
PDIP,  
SOIC, SOT-23-6  
MSOP  
PDIP,  
SOIC,  
TSSOP  
Symbol  
Description  
SOT-23-5  
6
2
1
1
2
6
2
1
4
1
2
VOUT, VOUTA Analog Output (op amp A)  
4
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
3
3
3
+
7
5
8
7
6
4
4
2
5
4
2
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
8
5
CS  
NC  
Chip Select  
1, 5, 8  
1, 5  
No Internal Connection  
3.1  
Analog Outputs  
3.4  
Power Supply Pins  
The output pins are low-impedance voltage sources.  
The positive power supply pin (VDD) is 1.4V to 6.0V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
3.2  
Analog Inputs  
between VSS and VDD  
.
The non-inverting and inverting inputs are high-imped-  
ance CMOS inputs with low bias currents.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.3  
Chip Select Digital Input  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 11  
MCP6041/2/3/4  
dump any currents onto VDD. When implemented as  
shown, resistors R1 and R2 also limit the current  
through D1 and D2.  
4.0  
APPLICATIONS INFORMATION  
The MCP6041/2/3/4 family of op amps is manufactured  
using Microchip’s state of the art CMOS process.  
These op amps are unity gain stable and suitable for a  
wide range of general purpose, low-power applica-  
tions.  
VDD  
See Microchip’s related MCP6141/2/3/4 family of op  
amps for applications, at a gain of 10 V/V or higher,  
needing greater bandwidth.  
D1  
R1  
V1  
D2  
VOUT  
MCP604X  
4.1  
Rail-to-Rail Input  
V2  
R2  
4.1.1  
PHASE REVERSAL  
The MCP6041/2/3/4 op amps are designed to not  
exhibit phase inversion when the input pins exceed the  
supply voltages. Figure 2-10 shows an input voltage  
exceeding both supplies with no phase inversion.  
R3  
VSS (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-33. Applications that are high impedance may  
need to limit the useable voltage range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
The input stage of the MCP6041/2/3/4 op amps uses  
two differential input stages in parallel. One operates at  
a low common mode input voltage (VCM), while the  
other operates at a high VCM. With this topology, the  
device operates with a VCM up to 300 mV above VDD  
and 300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V to  
ensure proper operation.  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
There are two transitions in input behavior as VCM is  
changed. The first occurs, when VCM is near  
VSS + 0.4V, and the second occurs when VCM is near  
VDD – 0.5V (see Figure 2-3 and Figure 2-6). For the  
best distortion performance with non-inverting gains,  
avoid these regions of operation.  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Absolute Maxi-  
mum Ratings † at the beginning of Section 1.0 “Elec-  
trical Characteristics”). Figure 4-2 shows the  
recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN–) from going too far above VDD, and  
DS21669D-page 12  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
4.2  
Rail-to-Rail Output  
4.4  
Capacitive Loads  
There are two specifications that describe the output  
swing capability of the MCP6041/2/3/4 family of op  
amps. The first specification (Maximum Output Voltage  
Swing) defines the absolute maximum swing that can  
be achieved under the specified load condition. Thus,  
the output voltage swings to within 10 mV of either sup-  
ply rail with a 50 kload to VDD/2. Figure 2-10 shows  
how the output voltage is limited when the input goes  
beyond the linear region of operation.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity gain buffer (G = +1) is the most  
sensitive to capacitive loads, although all gains show  
the same general behavior.  
The second specification that describes the output  
swing capability of these amplifiers is the Linear Output  
Voltage Range. This specification defines the maxi-  
mum output swing that can be achieved while the  
amplifier still operates in its linear region. To verify  
linear operation in this range, the large signal DC  
Open-Loop Gain (AOL) is measured at points inside the  
supply rails. The measurement must meet the specified  
AOL condition in the specification table.  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
RISO  
4.3  
Output Loads and Battery Life  
VOUT  
MCP604X  
VIN  
CL  
The MCP6041/2/3/4 op amp family has outstanding  
quiescent current, which supports battery-powered  
applications. There is minimal quiescent current  
glitching when Chip Select (CS) is raised or lowered.  
This prevents excessive current draw, and reduced  
battery life, when the part is turned off or on.  
FIGURE 4-3:  
Stabilizes Large Capacitive Loads.  
Output Resistor, RISO  
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
Heavy resistive loads at the output can cause  
excessive battery drain. Driving a DC voltage of 2.5V  
across a 100 kload resistor will cause the supply cur-  
rent to increase by 25 µA, depleting the battery 43  
times as fast as IQ (0.6 µA, typical) alone.  
High frequency signals (fast edge rate) across  
capacitive loads will also significantly increase supply  
current. For instance, a 0.1 µF capacitor at the output  
presents an AC impedance of 15.9 k(1/2fC) to a  
100 Hz sinewave. It can be shown that the average  
power drawn from the battery by a 5.0 Vp-p sinewave  
(1.77 Vrms), under these conditions, is  
100,000  
100k  
10k  
10,000  
GN = +1  
G
G
N = +2  
N +5  
EQUATION 4-1:  
PSupply = (VDD - VSS) (IQ + VL(p-p) f CL )  
1k  
1,000  
= (5V)(0.6 µA + 5.0Vp-p · 100Hz · 0.1µF)  
10p  
100p  
1.E+02  
1n  
1.E+03  
10n  
1.E+04  
1.E+01  
Normalized Load Capacitance; CL/GN (F)  
= 3.0 µW + 50 µW  
FIGURE 4-4:  
for Capacitive Loads.  
Recommended RISO Values  
This will drain the battery 18 times as fast as IQ alone.  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6041/2/3/4 SPICE macro  
model are helpful.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 13  
MCP6041/2/3/4  
4.5  
MCP6043 Chip Select  
4.8  
PCB Surface Leakage  
The MCP6043 is a single op amp with Chip Select  
(CS). When CS is pulled high, the supply current drops  
In applications where low input bias current is critical,  
printed circuit board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6041/2/3/4 family’s bias current at +25°C (1 pA,  
typical).  
to 50 nA (typical) and flows through the CS pin to VSS  
.
When this happens, the amplifier output is put into a  
high impedance state. By pulling CS low, the amplifier  
is enabled. If the CS pin is left floating, the amplifier  
may not operate properly. Figure 1-1 shows the output  
voltage and supply current response to a CS pulse.  
4.6  
Supply Bypass  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
Figure 4-6 shows an example of this type of layout.  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor is not required  
for most applications and can be shared with nearby  
analog parts.  
Guard Ring  
VIN– VIN+  
4.7  
Unused Op Amps  
An unused op amp in a quad package (MCP6044)  
should be configured as shown in Figure 4-5. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
FIGURE 4-6:  
for Inverting Gain.  
Example Guard Ring Layout  
1. Non-inverting Gain and Unity Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
(convert current to voltage, such as photo  
detectors) amplifiers:  
¼ MCP6044 (A)  
VDD  
¼ MCP6044 (B)  
VDD  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
VDD  
R1  
R2  
VREF  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
R2  
VREF = VDD ------------------  
R1 + R2  
FIGURE 4-5:  
Unused Op Amps.  
DS21669D-page 14  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
4.9.2  
INSTRUMENTATION AMPLIFIER  
4.9  
Application Circuits  
The MCP6041/2/3/4 op amp is well suited for  
conditioning sensor signals in battery-powered  
applications. Figure 4-8 shows a two op amp instru-  
mentation amplifier, using the MCP6042, that works  
well for applications requiring rejection of Common  
mode noise at higher gains. The reference voltage  
(VREF) is supplied by a low impedance source. In single  
supply applications, VREF is typically VDD/2.  
.
4.9.1  
BATTERY CURRENT SENSING  
The MCP6041/2/3/4 op amps’ Common Mode Input  
Range, which goes 0.3V beyond both supply rails,  
supports their use in high-side and low-side battery  
current sensing applications. The very low quiescent  
current (0.6 µA, typical) helps prolong battery life, and  
the rail-to-rail output supports detection low currents.  
Figure 4-7 shows a high-side battery current sensor  
circuit. The 10resistor is sized to minimize power  
losses. The battery current (IDD) through the 10  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the Common  
mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, which is within its Maximum Output  
Voltage Swing specification.  
RG  
R1  
R2  
R2  
R1  
VOUT  
VREF  
V2  
V1  
½
½
MCP6042  
MCP6042  
.
IDD  
VDD  
R1 2R1  
1.4V  
to  
6.0V  
VOUT = V1 V21 + ----- + -------- + VREF  
10  
R2 RG  
VOUT  
MCP604X  
1 M  
100 k  
FIGURE 4-8:  
Two Op Amp  
Instrumentation Amplifier.  
VDD VOUT  
IDD = -----------------------------------------  
10 V/V10  
FIGURE 4-7:  
High-Side Battery Current  
Sensor.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 15  
MCP6041/2/3/4  
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evalu-  
ation Board  
5.0 DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6041/2/3/4 family of op amps.  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6041/2/3/4  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
5.5  
Application Notes  
The following Microchip Application Notes are avail-  
able on the Microchip web site at www.microchip.com/  
appnotes and are recommended as supplemental ref-  
erence resources:  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
ADN003: “Select the Right Operational Amplifier for  
your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
®
5.2  
FilterLab Software  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
AN884: “Driving Capacitive Loads With Op Amps”,  
DS00884  
AN990: “Analog Sensor Conditioning Circuits – An  
Overview”, DS00990  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.3  
MAPS (Microchip Advanced Part  
Selector)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for data sheets,  
purchase, and sampling of Microchip parts.  
5.4  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
a
complete listing of these boards and their  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Some boards that are especially useful are:  
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP  
Evaluation Board  
DS21669D-page 16  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
7X25  
Example:  
5-Lead SOT-23 (MCP6041)  
I-Temp  
Code  
E-Temp  
Code  
Device  
XXNN  
MCP6041/T-E/OT  
SPNN  
7XNN  
Note:  
Parts with date codes prior to  
November 2012 have their package  
markings in the SBNN format.  
6-Lead SOT-23 (MCP6043)  
I-Temp  
Code  
E-Temp  
Code  
Device  
MCP6043T-E/CH  
XXNN  
SC25  
SCNN  
SDNN  
Example:  
8-Lead MSOP  
XXXXXX  
6043I  
YWWNNN  
304256  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6041  
MCP6041  
I/P 256  
1304  
e
3
I/P256  
OR  
OR  
YYWW  
1304  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6042  
I/SN1304  
MCP6042I  
e
3
SN 1304  
NNN  
256  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
N
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 17  
MCP6041/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6044)  
Example:  
MCP6044-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
1304256  
MCP6044  
e
3
E/P  
OR  
1304256  
14-Lead SOIC (150 mil) (MCP6044)  
Example:  
MCP6044ISL  
XXXXXXXXXX  
XXXXXXXXXX  
e
3
I/SL^
YYWWNNN  
1304256  
MCP6044  
OR  
E/SL^  
e3  
1304256  
Example:  
14-Lead TSSOP (MCP6044)  
6044ST  
XXXXXXXX  
YYWW  
1304  
256  
NNN  
6044EST  
1304  
OR  
256  
DS21669D-page 18  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢷꢴ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢸꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢸꢟ  
ꢗꢻ  
ꢀꢁꢞꢟ  
ꢀꢁꢸꢗ  
ꢗꢁꢀꢟ  
ꢸꢁꢘꢗ  
ꢀꢁꢷꢗ  
ꢸꢁꢀꢗ  
ꢗꢁꢺꢗ  
ꢗꢁꢷꢗ  
ꢸꢗꢻ  
ꢮꢀ  
ꢗꢁꢗꢷ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢺ  
ꢗꢁꢟꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢀꢠ  
2001-2013 Microchip Technology Inc.  
DS21669D-page 19  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21669D-page 20  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2013 Microchip Technology Inc.  
DS21669D-page 21  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21669D-page 22  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2013 Microchip Technology Inc.  
DS21669D-page 23  
MCP6041/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢐꢄꢈꢆꢟꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆꢠꢆꢙꢡꢡꢆꢎꢋꢈꢆꢢꢔꢅꢣꢆꢗꢇꢞꢟꢇꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
ꢬꢆꢃꢍꢇꢭꢰꢡꢵꢌꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢪꢏꢊꢆꢅ  
ꢁꢀꢗꢗꢉꢠꢜꢡ  
ꢁꢘꢀꢗ  
ꢁꢀꢴꢟ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢠꢊꢇꢅꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢪꢏꢊꢆꢅ  
ꢜꢒꢈꢐꢏꢋꢅꢓꢉꢍꢈꢉꢜꢒꢈꢐꢏꢋꢅꢓꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢣꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢪꢏꢊꢆꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢬꢔꢔꢅꢓꢉꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢳꢀ  
ꢅꢠ  
ꢁꢀꢀꢟ  
ꢁꢗꢀꢟ  
ꢁꢘꢴꢗ  
ꢁꢘꢞꢗ  
ꢁꢸꢞꢷ  
ꢁꢀꢀꢟ  
ꢁꢗꢗꢷ  
ꢁꢗꢞꢗ  
ꢁꢗꢀꢞ  
ꢁꢀꢸꢗ  
ꢁꢸꢀꢗ  
ꢁꢘꢟꢗ  
ꢁꢸꢺꢟ  
ꢁꢀꢸꢗ  
ꢁꢗꢀꢗ  
ꢁꢗꢺꢗ  
ꢁꢗꢀꢷ  
ꢁꢸꢘꢟ  
ꢁꢘꢷꢗ  
ꢁꢞꢗꢗ  
ꢁꢀꢟꢗ  
ꢁꢗꢀꢟ  
ꢁꢗꢙꢗ  
ꢁꢗꢘꢘ  
ꢁꢞꢸꢗ  
ꢮꢈꢦꢅꢓꢉꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢯꢈꢦꢉꢜꢔꢊꢎꢃꢆꢚꢉꢉꢽ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢽꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉꢡꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
ꢸꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢀꢗꢾꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢞꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢꢉꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢀꢷꢠ  
DS21669D-page 24  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
ꢤꢥꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢐꢄꢈꢆꢟꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆꢠꢆꢙꢡꢡꢆꢎꢋꢈꢆꢢꢔꢅꢣꢆꢗꢇꢞꢟꢇꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
ꢬꢆꢃꢍꢇꢭꢰꢡꢵꢌꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢪꢏꢊꢆꢅ  
ꢀꢞ  
ꢁꢀꢗꢗꢉꢠꢜꢡ  
ꢁꢘꢀꢗ  
ꢁꢀꢴꢟ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢠꢊꢇꢅꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢪꢏꢊꢆꢅ  
ꢜꢒꢈꢐꢏꢋꢅꢓꢉꢍꢈꢉꢜꢒꢈꢐꢏꢋꢅꢓꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢣꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉꢪꢏꢊꢆꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢬꢔꢔꢅꢓꢉꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢳꢀ  
ꢅꢠ  
ꢁꢀꢀꢟ  
ꢁꢗꢀꢟ  
ꢁꢘꢴꢗ  
ꢁꢘꢞꢗ  
ꢁꢙꢸꢟ  
ꢁꢀꢀꢟ  
ꢁꢗꢗꢷ  
ꢁꢗꢞꢟ  
ꢁꢗꢀꢞ  
ꢁꢀꢸꢗ  
ꢁꢸꢀꢗ  
ꢁꢘꢟꢗ  
ꢁꢙꢟꢗ  
ꢁꢀꢸꢗ  
ꢁꢗꢀꢗ  
ꢁꢗꢺꢗ  
ꢁꢗꢀꢷ  
ꢁꢸꢘꢟ  
ꢁꢘꢷꢗ  
ꢁꢙꢙꢟ  
ꢁꢀꢟꢗ  
ꢁꢗꢀꢟ  
ꢁꢗꢙꢗ  
ꢁꢗꢘꢘ  
ꢁꢞꢸꢗ  
ꢮꢈꢦꢅꢓꢉꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢯꢈꢦꢉꢜꢔꢊꢎꢃꢆꢚꢉꢉꢽ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢽꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉꢡꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
ꢸꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢀꢗꢾꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢞꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢꢉꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢗꢟꢠ  
2001-2013 Microchip Technology Inc.  
DS21669D-page 25  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21669D-page 26  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2013 Microchip Technology Inc.  
DS21669D-page 27  
MCP6041/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢏꢦꢖꢆꢠꢆꢛꢄꢓꢓꢔꢧꢨꢆꢙꢩꢪꢡꢆꢎꢎꢆꢢꢔꢅꢣꢆꢗꢍꢏꢟꢫꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS21669D-page 28  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2013 Microchip Technology Inc.  
DS21669D-page 29  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21669D-page 30  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2001-2013 Microchip Technology Inc.  
DS21669D-page 31  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21669D-page 32  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2013 Microchip Technology Inc.  
DS21669D-page 33  
MCP6041/2/3/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21669D-page 34  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision D (March 2013)  
The following is the list of modifications:  
1. Updated the boards list in Section 5.4 “Analog  
Demonstration and Evaluation Boards”.  
2. Removed the Mindi™ Circuit Designer &  
Simulator section.  
3. Updated the E-Temp Code value for the 5-Lead  
SOT-23 package in Section 6.0 “Packaging  
Information”.  
Revision C (February 2008)  
The following is the list of modifications:  
1. Updated Figure 2-4 and Figure 2-5.  
2. Updated trademark and Sales listing pages.  
3. Expanded this op amp family:  
4. Added the SOT-23-6 package for the MCP6043  
op amp with Chip Select.  
5. Added Extended Temperature (-40°C to  
+125°C) parts.  
6. Expanded Analog Input Absolute Max Voltage  
Range (applies retroactively).  
7. Expanded operating VDD to a maximum of 6.0V.  
8. Section 1.0  
“Electrical  
Characteristics”  
updated.  
9. Section 2.0 “Typical Performance Curves”  
updated.  
10. Section 3.0 “Pin Descriptions” added.  
11. Section 4.0“ApplicationsInformationadded.  
12. Added Section 4.7 “Unused Op Amps”.  
13. Updated input stage explanation.  
14. Section 5.0 “Design Aids” updated.  
15. Section 6.0“PackagingInformationupdated.  
16. Added SOT-23-6 package.  
17. Corrected package marking information.  
18. Appendix A: “Revision History” added.  
Revision B (June 2002)  
The following is the list of modifications.  
• Undocumented changes.  
Revision A (August 2001)  
• Original data sheet release.  
2001-2013 Microchip Technology Inc.  
DS21669D-page 35  
MCP6041/2/3/4  
NOTES:  
DS21669D-page 36  
2001-2013 Microchip Technology Inc.  
MCP6041/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
a) MCP6041-I/P:  
PART NO.  
Device  
X
/XX  
Industrial Temperature,  
8LD PDIP package.  
Temperature Package  
Range  
b)  
MCP6041T-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23 package.  
Device:  
MCP6041: Single Op Amp  
MCP6041T Single Op Amp  
(Tape and Reel for SOT-23, SOIC, MSOP)  
MCP6042 Dual Op Amp  
MCP6042T Dual Op Amp  
a)  
b)  
MCP6042-I/SN: Industrial Temperature,  
8LD SOIC package.  
MCP6042T-E/MS: Tape and Reel,  
Extended Temperature,  
8LD MSOP package.  
(Tape and Reel for SOIC and MSOP)  
MCP6043 Single Op Amp w/ Chip Select  
MCP6043T Single Op Amp w/ Chip Select  
(Tape and Reel for SOT-23, SOIC, MSOP)  
MCP6044 Quad Op Amp  
MCP6044T Quad Op Amp  
a)  
b)  
MCP6043-I/P:  
Industrial Temperature,  
8LD PDIP package.  
MCP6043T-E/CH: Tape and Reel,  
Extended Temperature,  
6LD SOT-23 package.  
(Tape and Reel for SOIC and TSSOP)  
a)  
b)  
MCP6044-I/SL: Industrial Temperature,  
14LD SOIC package.  
MCP6044T-E/ST: Tape and Reel,  
Extended Temperature,  
Temperature Range:  
Package:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
14LD TSSOP package.  
CH = Plastic Small Outline Transistor (SOT-23),  
6-lead (Tape and Reel - MCP6043 only)  
MS = Plastic Micro Small Outline (MSOP), 8-lead  
OT = Plastic Small Outline Transistor (SOT-23),  
5-lead (Tape and Reel - MCP6041 only)  
P
= Plastic DIP (300 mil Body), 8-lead, 14-lead  
SL = Plastic SOIC (150 mil Body), 14-lead  
SN = Plastic SOIC (150 mil Body), 8-lead  
ST = Plastic TSSOP (4.4 mm Body), 14-lead  
2001-2013 Microchip Technology Inc.  
DS21669D-page 37  
MCP6041/2/3/4  
NOTES:  
DS21669D-page 38  
2001-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2001-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-042-9  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2001-2013 Microchip Technology Inc.  
DS21669D-page 39  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS21669D-page 40  
2001-2013 Microchip Technology Inc.  

相关型号:

MCP6043-IP

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6043T

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6043T-E/CH

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6043T-E/MS

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MCP6043T-E/SN

暂无描述
MICROCHIP

MCP6043T-ECH

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6043T-I

600 nA, Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6043T-I/CH

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO6, PLASTIC, SOT-23, 6 PIN
MICROCHIP

MCP6043T-I/MS

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, PLASTIC, MSOP-8
MICROCHIP

MCP6043T-I/P

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MICROCHIP

MCP6043T-I/SN

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP6043T-I/SNG

OP-AMP, 3000 uV OFFSET-MAX, 0.014 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP