MCP6072T-E [MICROCHIP]

110 uA, High Precision Op Amps; 110微安,高精密运算放大器
MCP6072T-E
型号: MCP6072T-E
厂家: MICROCHIP    MICROCHIP
描述:

110 uA, High Precision Op Amps
110微安,高精密运算放大器

运算放大器
文件: 总40页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6071/2/4  
110 µA, High Precision Op Amps  
Features  
Description  
• Low Offset Voltage: ±150 µV (maximum)  
• Low Quiescent Current: 110 µA (typical)  
• Rail-to-Rail Input and Output  
The Microchip Technology Inc. MCP6071/2/4 family of  
operational amplifiers (op amps) has low input offset  
voltage (±150 µV, maximum) and rail-to-rail input and  
output operation. This family is unity gain stable and  
has a gain bandwidth product of 1.2 MHz (typical).  
These devices operate with a single supply voltage as  
low as 1.8V, while drawing low quiescent current per  
amplifier (110 µA, typical). These features make the  
family of op amps well suited for single-supply, high  
precision, battery-powered applications.  
• Wide Supply Voltage Range: 1.8V to 6.0V  
• Gain Bandwidth Product: 1.2 MHz (typical)  
• Unity Gain Stable  
• Extended Temperature Range: -40°C to +125°C  
• No Phase Reversal  
The MCP6071/2/4 family is offered in single  
(MCP6071), dual (MCP6072), and quad (MCP6074)  
configurations.  
Applications  
• Automotive  
• Portable Instrumentation  
• Sensor Conditioning  
• Battery Powered Systems  
• Medical Instrumentation  
Test Equipment  
The MCP6071/2/4 is designed with Microchip’s  
advanced CMOS process. All devices are available in  
the extended temperature range, with a power supply  
range of 1.8V to 6.0V.  
Package Types  
• Analog Filters  
MCP6071  
SOIC  
MCP6072  
SOIC  
Design Aids  
NC  
V
V
1
8
7
6
5
1
2
3
4
8
NC  
V
OUTA  
DD  
• SPICE Macro Models  
V
V
V
• FilterLab® Software  
2
3
4
7
6
5
V
+
V
INA  
DD  
OUTB  
IN  
V
V
V
+
INA  
OUT  
INB  
IN  
• MAPS (Microchip Advanced Part Selector)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
NC  
+
V
V
INB  
SS  
SS  
MCP6072  
2x3 TDFN  
MCP6071  
2x3 TDFN  
Typical Application  
NC  
V
OUTA  
1
8
7
1
2
8
NC  
V
V
V
DD  
V
+
V
INA  
V
2
7
IN  
DD  
OUTB  
EP  
9
EP  
9
RL  
V
V
+
INA  
V
IN  
3
4
6
5
3
4
6
5
OUT  
INB  
V
V
NC  
V
+
VOUT  
SS  
SS  
INB  
ZIN  
MCP6071  
MCP6074  
SOIC, TSSOP  
MCP6071  
SOT-23-5  
C
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
OUTD  
OUTA  
V
1
2
3
5
V
OUT  
DD  
V
V
V
ZIN = RL + jωL  
L = RLRC  
R
V
IND  
V
INA  
SS  
+
V
+
Gyrator  
IND  
INA  
V
V
+
4
IN  
IN  
V
SS  
DD  
V
V
V
+
V
V
+
INC  
INB  
INB  
INC  
8
V
OUTC  
OUTB  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2010 Microchip Technology Inc.  
DS22142B-page 1  
MCP6071/2/4  
NOTES:  
DS22142B-page 2  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other conditions  
above those indicated in the operational listings of this  
specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect  
device reliability.  
DD  
SS  
Current at Input Pins.....................................................±2 mA  
Analog Inputs (V +, V -)†† .......... V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs ......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
SS  
DD  
Output Short-Circuit Current .................................continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ....................................-65°C to +150°C  
†† See 4.1.2 “Input Voltage Limits”  
Maximum Junction Temperature (T )..........................+150°C  
J
ESD protection on all pins (HBM; MM) ................ ≥ 4 kV; 400V  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
TABLE 1-1:  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +6.0V, VSS= GND, TA= +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2 and RL = 10 kΩ to VL. (Refer to Figure 1-1).  
Parameters  
Input Offset  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset Voltage  
VOS  
-150  
±1.5  
±4.0  
87  
+150  
µV VDD = 3.0V,  
CM = VDD/3  
V
Input Offset Drift with Temperature  
ΔVOS/ΔTA  
ΔVOS/ΔTA  
PSRR  
µV/°C TA= -40°C to +85°C,  
VDD = 3.0V, VCM = VDD/3  
µV/°C TA= +85°C to +125°C,  
VDD = 3.0V, VCM = VDD/3  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
70  
dB VCM = VSS  
IB  
IB  
±1.0  
60  
100  
pA  
pA TA = +85°C  
IB  
1100  
5000  
pA TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1.0  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||6  
Ω||pF  
Ω||pF  
Common Mode Input Voltage Range  
VCMR  
VCMR  
VSS0.15  
VSS0.3  
72  
89  
VDD+0.15  
VDD+0.3  
V
V
VDD = 1.8V (Note 1)  
VDD = 6.0V (Note 1)  
Common Mode Rejection Ratio  
CMRR  
dB VCM = -0.15V to 1.95V,  
VDD = 1.8V  
74  
72  
74  
91  
87  
89  
dB VCM = -0.3V to 6.3V,  
VDD = 6.0V  
dB  
V
V
CM = 3.0V to 6.3V,  
DD = 6.0V  
dB VCM = -0.3V to 3.0V,  
VDD = 6.0V  
Note 1: Figure 2-13 shows how VCMR changed across temperature.  
© 2010 Microchip Technology Inc.  
DS22142B-page 3  
MCP6071/2/4  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +6.0V, VSS= GND, TA= +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2 and RL = 10 kΩ to VL. (Refer to Figure 1-1).  
Parameters  
Open-Loop Gain  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
DC Open-Loop Gain  
(Large Signal)  
AOL  
95  
115  
dB 0.2V < VOUT <(VDD-0.2V)  
CM = VSS  
V
Output  
Maximum Output Voltage Swing  
Output Short-Circuit Current  
V
OL, VOH  
ISC  
VSS+15  
±7  
VDD–15  
mV 0.5V input overdrive  
mA VDD = 1.8V  
±28  
mA VDD = 6.0V  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
50  
6.0  
V
Quiescent Current per Amplifier  
110  
170  
µA IO = 0, VDD = 6.0V  
VCM = 0.9VDD  
Note 1: Figure 2-13 shows how VCMR changed across temperature.  
TABLE 1-2: AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to +6.0V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF. (Refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1.2  
57  
MHz  
°
G = +1 V/V  
Slew Rate  
SR  
0.5  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
4.3  
19  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
0.6  
fA/Hz f = 1 kHz  
TABLE 1-3:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +6.0V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
220.7  
52.5  
149.5  
95.3  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
DS22142B-page 4  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
1.3  
Test Circuits  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
CF  
6.8 pF  
RG  
100 kΩ  
RF  
100 kΩ  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD/2  
VP  
EQUATION 1-1:  
VDD  
VIN+  
GDM = RF RG  
CB1  
100 nF  
CB2  
1 µF  
VCM = (VP + VDD 2) ⁄ 2  
VOST = VINVIN+  
MCP607X  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
)
VIN–  
Where:  
VOUT  
VM  
GDM = Differential Mode Gain  
(V/V)  
(V)  
RL  
10 kΩ  
CL  
RG  
100 kΩ  
RF  
100 kΩ  
60 pF  
VCM = Op Amp’s Common Mode  
Input Voltage  
VOST = Op Amp’s Total Input Offset (mV)  
CF  
6.8 pF  
VL  
Voltage  
FIGURE 1-1:  
AC and DC Test Circuit for  
Most Specifications.  
© 2010 Microchip Technology Inc.  
DS22142B-page 5  
MCP6071/2/4  
NOTES:  
DS22142B-page 6  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.  
14%  
1000  
1244 Samples  
VDD = 6.0V  
Representative Part  
800  
600  
VDD = 3.0V  
VCM = VDD/3  
12%  
10%  
8%  
400  
200  
0
6%  
-200  
-400  
-600  
-800  
-1000  
TA = -40°C  
A = +25°C  
TA = +85°C  
A = +125°C  
4%  
T
2%  
T
0%  
Input Offset Voltage (µV)  
Common Mode Input Voltage (V)  
FIGURE 2-1:  
Input Offset Voltage with  
FIGURE 2-4:  
Input Offset Voltage vs.  
VDD = 3.0V.  
Common Mode Input Voltage with VDD = 6.0V.  
27%  
1000  
1244 Samples  
VDD = 3.0V  
CM = VDD/3  
VDD = 3.0V  
Representative Part  
800  
600  
24%  
21%  
18%  
15%  
12%  
9%  
V
400  
200  
0
TA = -40°C to +85°C  
-200  
-400  
-600  
-800  
-1000  
TA = -40°C  
A = +25°C  
TA = +85°C  
A = +125°C  
T
6%  
T
3%  
0%  
Input Offset Drift with Temperature (µV/°C)  
Common Mode Input Voltage (V)  
FIGURE 2-2:  
Input Offset Voltage Drift  
FIGURE 2-5:  
Input Offset Voltage vs.  
with VDD = 3.0V and TA +85°C.  
Common Mode Input Voltage with VDD = 3.0V.  
27%  
24%  
21%  
1000  
1244 Samples  
VDD = 3.0V  
VCM = VDD/3  
VDD = 1.8V  
Representative Part  
800  
600  
TA = +85°C to +125°C  
400  
200  
18%  
15%  
12%  
9%  
0
-200  
-400  
-600  
-800  
-1000  
TA = -40°C  
A = +25°C  
TA = +85°C  
A = +125°C  
T
6%  
3%  
T
0%  
Input Offset Drift with Temperature (µV/°C)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage Drift  
FIGURE 2-6:  
Input Offset Voltage vs.  
with VDD = 3.0V and TA +85°C.  
Common Mode Input Voltage with VDD = 1.8V.  
© 2010 Microchip Technology Inc.  
DS22142B-page 7  
MCP6071/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.  
350  
250  
150  
50  
40  
35  
30  
25  
20  
15  
10  
5
f = 10 kHz  
VDD = 6.0V  
Representative Part  
VDD = 6.0V  
-50  
VDD = 3.0V  
-150  
-250  
-350  
VDD = 1.8V  
0
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-10:  
vs. Common Mode Input Voltage.  
Input Noise Voltage Density  
FIGURE 2-7:  
Output Voltage.  
Input Offset Voltage vs.  
110  
1000  
800  
600  
400  
200  
PSRR-  
Representative Part  
CMRR  
TA = -40°C  
TA = +25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Representative Part  
TA = +85°C  
TA = +125°C  
PSRR+  
0
-200  
-400  
-600  
-800  
-1000  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Power Supply Voltage (V)  
FIGURE 2-11:  
Frequency.  
CMRR, PSRR vs.  
FIGURE 2-8:  
Power Supply Voltage.  
Input Offset Voltage vs.  
110  
1,000  
105  
100  
95  
CMRR (VDD = 6.0V, VCM = -0.3V to 6.3V)  
90  
85  
PSRR (VDD = 1.8V to 6.0V, VCM = VSS  
)
100  
80  
75  
70  
65  
60  
10  
-50  
-25  
0
25  
50  
75  
100  
125  
0.1  
1
10  
100  
1k  
10k 100k  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-12:  
Temperature.  
CMRR, PSRR vs. Ambient  
FIGURE 2-9:  
vs. Frequency.  
Input Noise Voltage Density  
DS22142B-page 8  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.  
0.35  
0.30  
0.25  
150  
140  
VDD = 6.0V  
VCM = 0.9VDD  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
130  
120  
110  
100  
90  
VCMR_H - VDD @ VDD = 6.0V  
@ VDD = 3.0V  
@ VDD = 1.8V  
VCMR_L - VSS @ VDD = 1.8V  
VOL - VSS @ VDD = 3.0V  
VOL - VSS @ VDD = 6.0V  
80  
VDD = 1.8V  
CM = 0.9VDD  
V
70  
60  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Common Mode Input  
FIGURE 2-16:  
Quiescent Current vs  
Voltage Range Limit vs. Ambient Temperature.  
Ambient Temperature with VCM = 0.9VDD  
.
10000  
180  
VDD = 6.0V  
VDD = 6.0V  
160  
VCM = 0.9VDD  
V
CM = VDD  
140  
120  
100  
80  
1000  
100  
10  
Input Bias Current  
TA = +125°C  
TA = +85°C  
60  
40  
TA = +25°C  
TA = -40°C  
20  
Input Offset Current  
0
1
25  
45  
65  
85  
105  
125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Input Bias, Offset Currents  
FIGURE 2-17:  
Quiescent Current vs.  
vs. Ambient Temperature.  
Power Supply Voltage with VCM = 0.9VDD  
.
10000  
120  
100  
80  
60  
40  
20  
0
0
VDD = 6.0V  
Open-Loop Gain  
-30  
1000  
100  
10  
-60  
TA = +125°C  
TA = +85°C  
Open-Loop Phase  
-90  
-120  
-150  
-180  
-210  
VDD = 6.0V  
1
-20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Common Mode Input Votlage (V)  
0.11001k10k100k1M10M
1 10  
Frequency (Hz)  
FIGURE 2-15:  
Input Bias Current vs.  
FIGURE 2-18:  
Open-Loop Gain, Phase vs.  
Common Mode Input Voltage.  
Frequency.  
© 2010 Microchip Technology Inc.  
DS22142B-page 9  
MCP6071/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
180  
160  
140  
120  
100  
80  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
Gain Bandwidth Product  
60  
40  
VDD = 6.0V  
Phase Margin  
RL = 10 k  
SS + 0.2V < VOUT < VDD - 0.2V  
20  
V
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-19:  
DC Open-Loop Gain vs.  
FIGURE 2-22:  
Gain Bandwidth Product,  
Power Supply Voltage.  
Phase Margin vs. Common Mode Input Voltage.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
180  
160  
140  
120  
100  
80  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
VDD = 6.0V  
Gain Bandwidth Product  
VDD = 1.8V  
60  
Large Signal AOL  
40  
VDD = 6.0V  
Phase Margin  
20  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0
Output Voltage Headroom  
VDD - VOH or VOL - VSS (V)  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
FIGURE 2-20:  
DC Open-Loop Gain vs.  
FIGURE 2-23:  
Gain Bandwidth Product,  
Output Voltage Headroom.  
Phase Margin vs. Ambient Temperature.  
1.8  
1.6  
180  
160  
140  
120  
100  
80  
150  
140  
130  
120  
110  
100  
Gain Bandwidth Product  
1.4  
1.2  
1.0  
0.8  
0.6  
60  
0.4  
40  
Input Referred  
90  
VDD = 1.8V  
Phase Margin  
0.2  
0.0  
20  
80  
0
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
FIGURE 2-21:  
Channel-to-Channel  
FIGURE 2-24:  
Gain Bandwidth Product,  
Separation vs. Frequency ( MCP6072/4 only).  
Phase Margin vs. Ambient Temperature.  
DS22142B-page 10  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.  
40  
35  
30  
25  
20  
15  
10  
5
16.0  
14.0  
12.0  
10.0  
8.0  
TA = -40°C  
TA = +25°C  
VDD - VOH  
TA = +85°C  
TA = +125°C  
6.0  
VOL - VSS  
4.0  
2.0  
0
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Ouput Short Circuit Current  
FIGURE 2-28:  
Output Voltage Headroom  
vs. Power Supply Voltage.  
vs. Ambient Temperature.  
1.0  
10  
VDD = 6.0V  
Falling Edge, VDD = 6.0V  
0.9  
Falling Edge, VDD = 1.8V  
0.8  
VDD = 1.8V  
0.7  
0.6  
0.5  
0.4  
0.3  
1
Rising Edge, VDD = 6.0V  
Rising Edge, VDD = 1.8V  
0.1  
0.2  
0.1  
0.0  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Output Voltage Swing vs.  
FIGURE 2-29:  
Slew Rate vs. Ambient  
Frequency.  
Temperature.  
60  
(VDD - VOH)/IOUT  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VDD = 1.8V  
(VOL - VSS)/(-IOUT  
)
)
(VDD - VOH)/IOUT  
(VOL - VSS)/(-IOUT  
VDD = 6.0V  
VDD = 6.0V  
G = +1 V/V  
0
0.1  
1
10  
Time (2 µs/div)  
Output Current (mA)  
FIGURE 2-27:  
Ratio of Output Voltage  
FIGURE 2-30:  
Small Signal Non-Inverting  
Headroom to Output Current vs. Output Current.  
Pulse Response.  
© 2010 Microchip Technology Inc.  
DS22142B-page 11  
MCP6071/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.  
7.0  
6.0  
VDD = 6.0V  
VOUT  
G = -1 V/V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VIN  
VDD = 6.0V  
G = +2 V/V  
Time (2 µs/div)  
Time (0.1 ms/div)  
FIGURE 2-31:  
Small Signal Inverting Pulse  
FIGURE 2-34:  
The MCP6071/2/4 Shows  
Response.  
No Phase Reversal.  
1000  
100  
10  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
GN:  
101 V/V  
11 V/V  
1 V/V  
VDD = 6.0V  
G = +1 V/V  
1
10  
100  
1k
Frequency (Hz)  
10k
100k1M
Time (0.02 ms/div)  
FIGURE 2-32:  
Large Signal Non-Inverting  
FIGURE 2-35:  
Closed Loop Output  
Pulse Response.  
Impedance vs. Frequency.  
1
1m  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100µ  
VDD = 6.0V  
G = -1 V/V  
10µ  
1µ  
100n  
TA = -40°C  
10n  
T
A = +25°C  
TA = +85°C  
A = +125°C  
1n  
T
100p  
10p  
1p  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
IN (V)  
Time (0.02 ms/div)  
V
FIGURE 2-33:  
Large Signal Inverting Pulse  
FIGURE 2-36:  
Measured Input Current vs.  
Response.  
Input Voltage (below VSS).  
DS22142B-page 12  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6072  
MCP6071  
MCP6074  
Symbol  
Description  
SOIC,  
TSSOP  
SOIC SOT-23-5 2x3 TDFN SOIC 2x3 TDFN  
6
2
1
4
6
2
1
2
3
8
5
6
1
2
3
8
5
6
1
2
3
4
5
6
VOUT, VOUTA Analog Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VDD  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
7
5
7
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
2
7
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
4
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
4
4
VSS  
9
VIND+  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
No Internal Connection  
VIND–  
VOUTD  
NC  
1, 5, 8  
1, 5, 8  
9
EP  
Exposed Thermal Pad (EP); must  
be connected to VSS  
.
3.1  
Analog Outputs  
3.3  
Power Supply Pins  
The output pins are low-impedance voltage sources.  
The positive power supply (VDD) is 1.8V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
3.2  
Analog Inputs  
and VDD  
.
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.4  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
© 2010 Microchip Technology Inc.  
DS22142B-page 13  
MCP6071/2/4  
NOTES:  
DS22142B-page 14  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
4.0  
APPLICATION INFORMATION  
VDD  
The MCP6071/2/4 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-power, high precision  
applications.  
U1  
D1 D2  
V1  
V2  
MCP607X  
4.1  
Rail-to-Rail Input  
VOUT  
4.1.1  
PHASE REVERSAL  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
The MCP6071/2/4 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-34 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
A significant amount of current can flow out of the  
inputs when the Common Mode voltage (VCM) is below  
ground (VSS). See Figure 2-36.  
4.1.2  
INPUT VOLTAGE LIMITS  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1, Absolute Maximum  
Ratings †).  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1, Absolute Maximum  
Ratings †).  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors and to minimize input bias  
current (IB).  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible cur-  
rents in or out of the input pins (and the ESD diodes, D1  
and D2). The diode currents will go through either VDD  
or VSS  
.
Bond  
VDD  
VDD  
Pad  
D1 D2  
R1  
U1  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
V1  
V2  
VOUT  
MCP607X  
Bond  
Pad  
R2  
VSS  
VSS – min (V1,V2)  
2 mA  
min(R1,R2) >  
max(V1,V2) – VDD  
2 mA  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
min(R1,R2) >  
FIGURE 4-3:  
Inputs.  
Protecting the Analog  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their break-  
down voltage is high enough to allow normal operation,  
but not low enough to protect against slow over-voltage  
(beyond VDD) events. Very fast ESD events (that meet  
the spec) are limited so that damage does not occur.  
4.1.4  
NORMAL OPERATION  
The input stage of the MCP6071/2/4 op amps use two  
differential input stages in parallel. One operates at a  
low common mode input voltage (VCM), while the other  
operates at a high VCM. With this topology, the device  
operates with a VCM up to 300 mV above VDD and  
300 mV below VSS. (See Figure 2-13). The input offset  
voltage is measured at VCM = VSS – 0.3V and  
VDD + 0.3V to ensure proper operation.  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs.  
Figure 4-2 shows one approach to protecting these  
inputs.  
The transition between the input stages occurs when  
VCM is near VDD – 1.1V (See Figures 2-4, 2-5 and  
Figure 2-6). For the best distortion performance and  
gain linearity, with non-inverting gains, avoid this region  
of operation.  
© 2010 Microchip Technology Inc.  
DS22142B-page 15  
MCP6071/2/4  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6071/2/4 SPICE macro  
model are very helpful.  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6071/2/4 op amps  
is VSS + 15 mV (minimum) and VDD 15 mV  
(maximum) when RL = 10 kΩ is connected to VDD/2  
and VDD = 6.0V. Refer to Figures 2-27 and 2-28 for  
more information.  
4.4  
Supply Bypass  
4.3  
Capacitive Loads  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor can be shared  
with other analog parts.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, all gains show the same  
general behavior.  
4.5  
Unused Op Amps  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
An unused op amp in a quad package (MCP6074)  
should be configured as shown in Figure 4-6. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
RISO  
VOUT  
MCP607X  
+
¼ MCP6074 (A)  
VDD  
¼ MCP6074 (B)  
VIN  
CL  
VDD  
VDD  
R1  
R2  
FIGURE 4-4:  
Output Resistor, RISO  
Stabilizes Large Capacitive Loads.  
VREF  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
R
2
V
= V  
× --------------------  
REF  
DD  
R
+ R  
1
2
FIGURE 4-6:  
Unused Op Amps.  
1000  
VDD = 6.0 V  
RL = 10 kΩ  
100  
10  
1
GN:  
1 V/V  
2 V/V  
5 V/V  
10p  
100p  
1n  
10n  
0.1µ  
1µ  
1
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-5:  
Recommended RISO Values  
for Capacitive Loads.  
DS22142B-page 16  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
4.6  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; which is greater than the  
MCP6071/2/4 family’s bias current at +25°C (±1.0 pA,  
typical).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
Guard Ring  
VIN– VIN+  
VSS  
FIGURE 4-7:  
for Inverting Gain.  
Example Guard Ring Layout  
1. Non-inverting Gain and Unity-Gain Buffer:  
a.Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
b.Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
a.Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
b.Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
© 2010 Microchip Technology Inc.  
DS22142B-page 17  
MCP6071/2/4  
4.7.2  
INSTRUMENTATION AMPLIFIER  
4.7  
Application Circuits  
The MCP6071/2/4 op amps are well suited for  
conditioning sensor signals in battery-powered  
4.7.1  
GYRATOR  
applications. Figure 4-9 shows  
a two op amp  
The MCP6071/2/4 op amps can be used in gyrator  
applications. The gyrator is an electric circuit which can  
make a capacitive circuit behave inductively.  
instrumentation amplifier, using the MCP6072, that  
works well for applications requiring rejection of  
common mode noise at higher gains. The reference  
voltage (VREF) is supplied by a low impedance source.  
In single supply applications, VREF is typically VDD/2.  
Figure 4-8 shows an example of a gyrator simulating  
inductance, with an approximately equivalent circuit  
below. The two ZIN have similar values in typical  
applications. The primary application for a gyrator is to  
reduce the size and cost of a system by removing the  
need for bulky, heavy and expensive inductors. For  
example, RLC bandpass filter characteristics can be  
realized with capacitors, resistors and operational  
amplifiers without using inductors. Moreover, gyrators  
will typically have higher accuracy than real inductors,  
due to the lower cost of precision capacitors than  
inductors.  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
V2  
V1  
½
½
MCP6072  
MCP6072  
.
RL  
R1 2R1  
VOUT = (V1 V2) 1 + ----- + --------- + VREF  
R2 RG  
VOUT  
ZIN  
MCP6071  
FIGURE 4-9:  
Two Op Amp  
Instrumentation Amplifier.  
C
Gyrator  
To obtain the best CMRR possible, and not limit the  
performance by the resistor tolerances, set a high gain  
with the RG resistor.  
R
ZIN = RL + jωL  
L = RLRC  
4.7.3  
PRECISION COMPARATOR  
RL  
ZIN  
Use high gain before a comparator to improve the  
latter’s input offset performance. Figure 4-10 shows a  
gain of 11 V/V placed before a comparator. The  
reference voltage VREF can be any value between the  
supply rails.  
Equivalent Circuit  
L
FIGURE 4-8:  
Gyrator.  
VIN  
MCP6071  
1 MΩ  
VOUT  
MCP6541  
100 kΩ  
VREF  
FIGURE 4-10:  
Precision, Non-inverting  
Comparator.  
DS22142B-page 18  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6071/2/4 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP6071/2/4  
op amps is available on the Microchip web site at  
www.microchip.com. The model was written and tested  
in official Orcad (Cadence) owned PSPICE. For the  
other simulators, it may require translation.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
The model covers a wide aspect of the op amp's  
electrical specifications. Not only does the model cover  
voltage, current, and resistance of the op amp, but it  
also covers the temperature and noise effects on the  
behavior of the op amp. The model has not been  
verified outside of the specification range listed in the  
op amp data sheet. The model behaviors under these  
conditions can not be guaranteed that it will match the  
actual op amp performance.  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N  
SOIC14EV  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
5.5  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip. com/appnotes and are  
recommended as supplemental reference resources.  
®
5.2  
FilterLab Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
5.3  
MAPS (Microchip Advanced Part  
Selector)  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data Sheets,  
purchase, and sampling of Microchip parts.  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”, DS01332  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
© 2010 Microchip Technology Inc.  
DS22142B-page 19  
MCP6071/2/4  
NOTES:  
DS22142B-page 20  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23 (MCP6071)  
YH25  
XXNN  
8-Lead SOIC (150 mil) (MCP6071, MCP6072)  
Example:  
XXXXXXXX  
MCP6071E  
e
3
XXXXYYWW  
SN^1044  
NNN  
256  
8-Lead 2x3 TDFN (MCP6071, MCP6072)  
Example:  
XXX  
YWW  
NN  
AHE  
044  
25  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2010 Microchip Technology Inc.  
DS22142B-page 21  
MCP6071/2/4  
Package Marking Information (Continuation)  
14-Lead SOIC (150 mil) (MCP6074)  
Example:  
XXXXXXXXXXX  
XXXXXXXXXXX  
MCP6074  
e
3
E/SL  
1044256  
YYWWNNN  
Example:  
14-Lead TSSOP (MCP6074)  
XXXXXXXX  
YYWW  
MCP6074E  
1044  
256  
NNN  
DS22142B-page 22  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢷꢴ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢸꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢸꢟ  
ꢗꢻ  
ꢀꢁꢞꢟ  
ꢀꢁꢸꢗ  
ꢗꢁꢀꢟ  
ꢸꢁꢘꢗ  
ꢀꢁꢷꢗ  
ꢸꢁꢀꢗ  
ꢗꢁꢺꢗ  
ꢗꢁꢷꢗ  
ꢸꢗꢻ  
ꢮꢀ  
ꢗꢁꢗꢷ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢺ  
ꢗꢁꢟꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢀꢠ  
© 2010 Microchip Technology Inc.  
DS22142B-page 23  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22142B-page 24  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2010 Microchip Technology Inc.  
DS22142B-page 25  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22142B-page 26  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2010 Microchip Technology Inc.  
DS22142B-page 27  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22142B-page 28  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢐꢄꢈꢆꢟꢈꢄꢊꢠꢆꢛꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌꢡꢄꢢꢃꢆꢕꢣꢛꢖꢆꢤꢆꢘꢥꢙꢥꢦꢧꢨꢀꢆꢎꢎꢆꢩꢔꢅꢪꢆꢗꢒꢞꢟꢛꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
© 2010 Microchip Technology Inc.  
DS22142B-page 29  
MCP6071/2/4  
ꢫꢬꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆꢤꢆꢛꢄꢓꢓꢔꢭꢠꢆꢙꢧꢮꢦꢆꢎꢎꢆꢩꢔꢅꢪꢆꢗꢍꢏꢯꢰꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢀꢞ  
ꢀꢁꢘꢙꢉꢠꢜꢡ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉꢉ"  
ꢀꢁꢘꢟ  
ꢗꢁꢀꢗ  
ꢀꢁꢙꢟ  
ꢗꢁꢘꢟ  
ꢛꢘ  
ꢛꢀ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢺꢁꢗꢗꢉꢠꢜꢡ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢡꢒꢊꢄꢑꢅꢓꢉUꢈꢔꢍꢃꢈꢆꢊꢏV  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢌꢀ  
ꢸꢁꢴꢗꢉꢠꢜꢡ  
ꢷꢁꢺꢟꢉꢠꢜꢡ  
ꢗꢁꢘꢟ  
ꢗꢁꢞꢗ  
ꢗꢁꢟꢗ  
ꢀꢁꢘꢙ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉꢔ  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉꢠꢈꢍꢍꢈꢄ  
ꢮꢀ  
ꢀꢁꢗꢞꢉꢯꢌꢧ  
ꢗꢻ  
ꢗꢁꢀꢙ  
ꢗꢁꢸꢀ  
ꢟꢻ  
ꢷꢻ  
ꢗꢁꢘꢟ  
ꢗꢁꢟꢀ  
ꢀꢟꢻ  
ꢟꢻ  
ꢀꢟꢻ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ "ꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉꢡꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
ꢸꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢟꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢞꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢯꢌꢧꢢ ꢯꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢩꢉꢐꢇꢐꢊꢏꢏꢤꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢩꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏꢤꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢺꢟꢠ  
DS22142B-page 30  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
© 2010 Microchip Technology Inc.  
DS22142B-page 31  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22142B-page 32  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2010 Microchip Technology Inc.  
DS22142B-page 33  
MCP6071/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22142B-page 34  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
APPENDIX A: REVISION HISTORY  
Revision B (December 2010)  
The following is the list of modifications:  
1. Added new SOT-23-5 package type for  
MCP6071 device.  
2. Corrected Figures 2-13, 2-22, 2-23, 2-24, 2-28,  
2-29 and 2-34 in Section 2.0 “Typical  
Performance Curves”.  
3. Modified Table 3-1 to show the pin column for  
MCP6071, SOT-23-5 package.  
4. Updated Section 4.1.2 “Input Voltage Limits”.  
5. Added Section 4.1.3 “Input Current Limits”.  
6. Added new document item in Section 5.5  
“Application Notes”.  
7. Updated the Product Identification System  
page.  
Revision A (March 2009)  
• Original Release of this Document.  
© 2010 Microchip Technology Inc.  
DS22142B-page 35  
MCP6071/2/4  
NOTES:  
DS22142B-page 36  
© 2010 Microchip Technology Inc.  
MCP6071/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a) MCP6071T-E/OT: Tape and Reel,  
5LD SOT-23 pkg  
Temperature  
Range  
Package  
b) MCP6071-E/SN:  
8LD SOIC pkg  
c) MCP6071T-E/SN: Tape and Reel,  
8LD SOIC pkg  
Device:  
MCP6071:  
MCP6071T:  
Single Op Amp  
Single Op Amp (Tape and Reel)  
(SOIC, SOT-23 and 2x3 TDFN)  
Dual Op Amp  
d) MCP6071T-E/MNY: Tape and Reel,  
8LD 2x3 TDFN pkg  
MCP6072:  
MCP6072T:  
Dual Op Amp (Tape and Reel)  
(SOIC and 2x3 TDFN)  
Quad Op Amp  
MCP6074:  
a) MCP6072-E/SN:  
8LD SOIC pkg  
MCP6074T:  
Quad Op Amp (Tape and Reel)  
(SOIC and TSSOP)  
b) MCP6072T-E/SN: Tape and Reel,  
8LD SOIC pkg  
c) MCP6072T-E/MNY: Tape and Reel  
8LD 2x3 TDFN pkg  
Temperature Range:  
Package:  
E
= -40°C to +125°C  
MNY *  
= Plastic Dual Flat, No Lead, (2x3 TDFN ) 8-leadd  
a) MCP6074-E/SL:  
14LD SOIC pkg  
OT  
SL  
SN  
ST  
=
=
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic SOIC, (150 mil Body), 8-lead  
b) MCP6074T-E/SL: Tape and Reel,  
14LD SOIC pkg  
Plastic TSSOP (4.4mm Body), 14-lead  
c) MCP6074-E/ST:  
d) MCP6074T-E/ST:  
14LD TSSOP pkg  
Tape and Reel,  
* Y = Nickel palladium gold manufacturing designator. Only  
available on the TDFN package.  
14LD TSSOP pkg  
© 2010 Microchip Technology Inc.  
DS22142B-page 37  
MCP6071/2/4  
NOTES:  
DS22142B-page 38  
© 2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-732-3  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2010 Microchip Technology Inc.  
DS22142B-page 39  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS22142B-page 40  
© 2010 Microchip Technology Inc.  

相关型号:

MCP6072T-E/MNY

110 μA, High Precision Op Amps
MICROCHIP

MCP6072T-E/SL

110 μA, High Precision Op Amps
MICROCHIP

MCP6072T-E/SN

110 μA, High Precision Op Amps
MICROCHIP

MCP6072T-E/ST

110 μA, High Precision Op Amps
MICROCHIP

MCP6074

110 uA, High Precision Op Amps
MICROCHIP

MCP6074-E

110 uA, High Precision Op Amps
MICROCHIP

MCP6074-E/MNY

110 μA, High Precision Op Amps
MICROCHIP

MCP6074-E/SL

110 μA, High Precision Op Amps
MICROCHIP

MCP6074-E/SN

110 μA, High Precision Op Amps
MICROCHIP

MCP6074-E/ST

110 μA, High Precision Op Amps
MICROCHIP

MCP6074T

110 μA, High Precision Op Amps
MICROCHIP

MCP6074T-E

110 uA, High Precision Op Amps
MICROCHIP