MCP6141-E/MS [MICROCHIP]

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps; 600 nA的,非单位增益,轨到轨输入/输出运算放大器
MCP6141-E/MS
型号: MCP6141-E/MS
厂家: MICROCHIP    MICROCHIP
描述:

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
600 nA的,非单位增益,轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管
文件: 总38页 (文件大小:664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6141/2/3/4  
600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps  
Features:  
Description:  
• Low Quiescent Current: 600 nA/amplifier (typical)  
• Gain Bandwidth Product: 100 kHz (typical)  
• Stable for gains of 10 V/V or higher  
• Rail-to-Rail Input/Output  
The MCP6141/2/3/4 family of non-unity gain stable  
operational amplifiers (op amps) from Microchip  
Technology Inc. operate with a single supply voltage as  
low as 1.4V, while drawing less than 1 µA (maximum)  
of quiescent current per amplifier. These devices are  
also designed to support rail-to-rail input and output  
operation. This combination of features supports  
battery-powered and portable applications.  
• Wide Supply Voltage Range: 1.4V to 6.0V  
• Available in Single, Dual, and Quad  
• Chip Select (CS) with MCP6143  
• Available in 5-lead and 6-lead SOT-23 Packages  
Temperature Ranges:  
The MCP6141/2/3/4 amplifiers have a gain bandwidth  
product of 100 kHz (typical) and are stable for gains of  
10 V/V or higher. These specifications make these op  
amps appropriate for battery powered applications  
where a higher frequency response from the amplifier  
is required.  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
Applications:  
The MCP6141/2/3/4 family operational amplifiers are  
offered in single (MCP6141), single with Chip Select  
(CS) (MCP6143), dual (MCP6142) and quad  
(MCP6144) configurations. The MCP6141 device is  
available in the 5-lead SOT-23 package, and the  
MCP6143 device is available in the 6-lead SOT-23  
package.  
Toll Booth Tags  
• Wearable Products  
Temperature Measurement  
• Battery Powered  
Design Aids:  
Package Types  
• SPICE Macro Models  
• FilterLab® Software  
MCP6141  
PDIP, SOIC, MSOP  
MCP6143  
PDIP, SOIC, MSOP  
• Mindi™ Simulation Tool  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
NC 1  
8
7
6
NC  
NC 1  
8
7
6
CS  
2
3
4
VIN  
+
VDD  
VOUT  
2
3
4
VIN  
+
VDD  
VOUT  
VIN  
VIN  
5 NC  
VSS  
5 NC  
VSS  
Related Devices:  
MCP6141  
SOT-23-5  
MCP6143  
SOT-23-6  
• MCP6041/2/3/4: Unity Gain Stable Op Amps  
VOUT  
VSS  
1
5
VOUT  
VSS  
1
6
5
4
VDD  
VDD  
CS  
Typical Application  
2
3
2
3
R1  
4
VIN  
+
VIN  
VIN  
+
VIN–  
V1  
MCP6142  
PDIP, SOIC, MSOP  
MCP6144  
PDIP, SOIC, TSSOP  
R2  
R3  
V2  
V3  
RF  
VOUTA  
1
2
3
4
5
6
7
14  
13  
12  
VOUTD  
VOUTA  
1
2
3
4
8
7
6
VDD  
VOUT  
VINA  
+
VIND  
VIND  
+
VINA  
+
VOUTB  
VINA  
VINA  
VINB  
+
MCP614X  
11 VSS  
VDD  
5 VINB  
VSS  
VREF  
10  
9
VINB  
+
VINC  
VINC  
+
VINB  
Inverting, Summing Amplifier  
8 VOUTC  
VOUTB  
© 2009 Microchip Technology Inc.  
DS21668D-page 1  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 2  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins.........................................±2 mA  
Analog Inputs (VIN+, VIN–) †........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ...................................65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 4 kV; 400V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.4V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 1 MΩ to VL and CS is tied low (refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-3  
+3  
mV  
VCM = VSS  
Drift with Temperature  
ΔVOS/ΔTA  
ΔVOS/ΔTA  
±1.8  
±10  
µV/°C VCM = VSS, TA= -40°C to +85°C  
µV/°C VCM = VSS  
,
TA = +85°C to +125°C  
Power Supply Rejection  
Input Bias Current and Impedance  
Input Bias Current  
PSRR  
70  
85  
dB  
VCM = VSS  
IB  
IB  
1
20  
100  
5000  
pA  
pA  
Industrial Temperature  
TA = +85°  
Extended Temperature  
IB  
1200  
pA  
TA = +125°  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
1
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||6  
Ω||pF  
Ω||pF  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
VCMR  
CMRR  
CMRR  
CMRR  
VSS0.3  
62  
80  
75  
80  
VDD+0.3  
V
dB  
dB  
dB  
VDD = 5V, VCM = -0.3V to 5.3V  
VDD = 5V, VCM = 2.5V to 5.3V  
VDD = 5V, VCM = -0.3V to 2.5V  
60  
60  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
AOL  
95  
115  
dB  
RL = 50 kΩ to VL,  
V
OUT = 0.1V to VDD0.1V  
Output  
Maximum Output Voltage Swing  
VOL, VOH VSS + 10  
VDD 10  
mV  
mV  
RL = 50 kΩ to VL,  
0.5V input overdrive  
Linear Region Output Voltage Swing  
Output Short Circuit Current  
VOVR  
VSS + 100  
VDD 100  
RL = 50 kΩ to VL,  
AOL 95 dB  
ISC  
ISC  
2
mA  
mA  
VDD = 1.4V  
VDD = 5.5V  
20  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.4  
0.3  
6.0  
1.0  
V
Note 1  
Quiescent Current per Amplifier  
0.6  
µA  
IO = 0  
Note 1: All parts with date codes February 2008 and later have been screened to ensure operation at V = 6.0V. However, the  
DD  
other minimum and maximum specifications are measured at 1.8V and 5.5V  
© 2009 Microchip Technology Inc.  
DS21668D-page 3  
MCP6141/2/3/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.4V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF and CS is tied low (refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Slew Rate  
GBWP  
SR  
100  
24  
kHz  
V/ms  
°
Phase Margin  
PM  
60  
G = +10 V/V  
Noise  
Input Voltage Noise  
Input Voltage Noise Density  
Input Current Noise Density  
Eni  
eni  
ini  
5.0  
170  
0.6  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
MCP6143 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.4V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 1 MΩ to VL, and CL = 60 pF (refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
VIL  
VSS  
5
VSS+0.3  
V
CS Input Current, Low  
ICSL  
pA  
CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
VIH  
ICSH  
ISS  
VDD–0.3  
5
VDD  
V
pA  
pA  
pA  
CS = VDD  
CS = VDD  
CS = VDD  
CS Input High, GND Current  
Amplifier Output Leakage, CS High  
Dynamic Specifications  
-20  
20  
IOLEAK  
CS Low to Amplifier Output Turn-on Time  
tON  
2
50  
ms  
G = +1 V/V, CS = 0.3V to  
OUT = 0.9VDD/2  
V
CS High to Amplifier Output High-Z  
Hysteresis  
tOFF  
10  
µs  
V
G = +1 V/V, CS = VDD–0.3V to  
OUT = 0.1VDD/2  
V
VHYST  
0.6  
VDD = 5.0V  
VIL  
CS  
VIH  
tOFF  
High-Z  
tON  
VOUT  
High-Z  
-0.6 µA  
(typical)  
ISS  
-20 pA  
-20 pA  
(typical)  
(typical)  
5 pA (typical)  
ICS  
5 pA (typical)  
FIGURE 1-1:  
Chip Select (CS) Timing  
Diagram (MCP6143 only).  
DS21668D-page 4  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.4V to +5.5V, VSS = GND.  
Parameters Sym. Min. Typ. Max. Units  
Temperature Ranges  
Conditions  
Specified Temperature Range  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C Industrial Temperature parts  
°C Extended Temperature parts  
°C (Note 1)  
+125  
+125  
+150  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
230  
206  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
70  
120  
100  
Note 1: The MCP6141/2/3/4 family of Industrial Temperature op amps operates over this extended range, but with  
reduced performance. In any case, the internal Junction Temperature (TJ) must not exceed the Absolute  
Maximum specification of +150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-2. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.6 “Supply Bypass”.  
VDD  
1 µF  
0.1 µF  
VIN  
VOUT  
RL  
RN  
RG  
MCP614X  
CL  
RF  
VDD/2  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
VDD  
1 µF  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP614X  
CL  
RF  
VIN  
VL  
FIGURE 1-3:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
© 2009 Microchip Technology Inc.  
DS21668D-page 5  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 6  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF, and CS is tied low.  
12%  
10%  
234 Samples  
2396 Samples  
11%  
Representative Lot  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
VCM = VSS  
10%  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
VDD = 1.4V  
VCM = VSS  
TA = +85°C to +125°C  
-3  
-2  
-1  
0
1
2
3
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
Input Offset Voltage (mV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage Drift  
with T = +85°C to +125°C and V = 1.4V.  
A
DD  
16%  
14%  
12%  
10%  
8%  
12%  
234 Samples  
Representative Lot  
VDD = 5.5V  
VCM = VSS  
TA = +85°C to +125°C  
2267 Samples  
TA = -40°C to +85°C  
VCM = VSS  
11%  
10%  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
6%  
4%  
2%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
Input Offset Voltage Drift (µV/°C)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift  
FIGURE 2-5:  
Input Offset Voltage Drift  
with T = -40°C to +85°C.  
with T = +85°C to +125°C and V = 5.5V.  
A
A
DD  
1000  
1000  
800  
VDD = 1.4V  
800  
VDD = 5.5V  
TA = +125°C  
TA = +85°C  
600  
400  
200  
0
600  
TA = +125°C  
TA = +85°C  
400  
200  
0
-200  
-400  
-600  
-200  
-400  
-600  
-800  
-1000  
TA = +25°C  
TA = -40°C  
TA = +25°C  
TA = -40°C  
-800  
-1000  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with V = 1.4V.  
Common Mode Input Voltage with V = 5.5V.  
DD  
DD  
© 2009 Microchip Technology Inc.  
DS21668D-page 7  
MCP6141/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF, and CS is tied low.  
500  
450  
400  
350  
300  
250  
6
5
VDD = 5.0V  
G = +11 V/V  
4
VDD = 1.4V  
3
2
VIN  
1
VDD = 5.5V  
VOUT  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
-1  
0
5
Ti1m0e (5 ms/1d5iv)  
20  
25  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
The MCP6141/2/3/4 Family  
Output Voltage.  
Shows No Phase Reversal.  
300  
1,000  
f = 1 kHz  
VDD = 5.0V  
250  
200  
150  
100  
50  
0
100  
0.1  
1
10  
100  
1000  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
95  
PSRR–  
PSRR+  
CMRR  
PSRR (VCM = VSS  
)
90  
85  
80  
75  
70  
CMRR (VDD = 5.0V,  
VCM = -0.3V to +5.3V)  
Referred to Input  
20  
1
10  
10  
100  
100  
1k  
1,000  
10k  
10,000  
-50  
-25  
0
25  
50  
75  
100  
125  
1
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
CMRR, PSRR vs. Ambient  
Frequency.  
Temperature.  
DS21668D-page 8  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF, and CS is tied low.  
10k  
100 0  
100 0  
10k  
VDD = 5.5V  
VCM = VDD  
VDD = 5.5V  
1k  
1000  
10010k  
100  
IB  
TA = +125°C  
TA = +85°C  
100  
100  
IB  
10  
10  
10  
10  
| IOS  
|
| IOS  
|
1
1
1
1
0.1  
0.1  
0.1  
0.1  
45  
55  
65  
75  
85  
95 105 115 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Input Bias, Offset Currents  
FIGURE 2-16:  
Input Bias, Offset Currents  
vs. Ambient Temperature.  
vs. Common Mode Input Voltage.  
120  
100  
80  
0
130  
120  
-30  
-60  
VDD = 5.5V  
Phase  
110  
60  
-90  
100  
40  
-120  
-150  
-180  
-210  
-240  
VDD = 1.4V  
Gain  
90  
20  
80  
70  
0
-20  
VOUT = 0.1V to VDD – 0.1V  
-40  
60  
0.01 0.1 10 100 1k 10k 100k  
1
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1.E- 1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
1.E+02  
Load Resistance ()  
02 01 00 Fre0q1uenc0y2(Hz)03 04 05  
FIGURE 2-14:  
Open-Loop Gain, Phase vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Frequency.  
Load Resistance.  
140  
130  
120  
110  
100  
90  
140  
RL = 50 k  
130  
120  
110  
100  
90  
VDD = 5.5V  
VDD = 1.4V  
80  
RL = 50 kΩ  
70  
V
OUT = 0.1V to VDD – 0.1V  
80  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Output Voltage Headroom;  
VDD – VOH or VOL – VSS (V)  
FIGURE 2-15:  
DC Open-Loop Gain vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Power Supply Voltage.  
Output Voltage Headroom.  
© 2009 Microchip Technology Inc.  
DS21668D-page 9  
MCP6141/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF, and CS is tied low.  
140  
130  
120  
110  
100  
90  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
GBWP  
PM  
(G = +10)  
VDD = 5.0V  
Input Referred  
80  
1k  
10k  
1.E+03  
1.E+04  
Frequency (Hz)  
Common Mode Input Voltage  
FIGURE 2-19:  
Channel to Channel  
FIGURE 2-22:  
Gain Bandwidth Product,  
Separation vs. Frequency (MCP6142 and  
MCP6144 only).  
Phase Margin vs. Common Mode Input Voltage.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PM  
(G = +10)  
GBWP  
80  
70  
60  
50  
PM  
(G = +10)  
GBWP  
40  
30  
20  
10  
VDD = 5.5V  
VDD = 1.4V  
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-23:  
Gain Bandwidth Product,  
FIGURE 2-20:  
Gain Bandwidth Product,  
Phase Margin vs. Ambient Temperature with  
Phase Margin vs. Ambient Temperature with  
V
= 5.5V.  
V
= 1.4V.  
DD  
DD  
35  
30  
25  
20  
15  
10  
5
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
FIGURE 2-24:  
Output Short Circuit Current  
FIGURE 2-21:  
Quiescent Current vs.  
vs. Power Supply Voltage.  
Power Supply Voltage.  
DS21668D-page 10  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF, and CS is tied low.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
100  
10  
VDD = 5.5V  
R
L = 50 k  
VOL – VSS  
VDD – VOH  
VDD – VOH  
VOL – VSS  
1
0.01  
0.1  
1
10  
-50  
-25  
0
25  
50  
75  
100 125  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Output Voltage Headroom  
FIGURE 2-28:  
Output Voltage Headroom  
vs. Output Current Magnitude.  
vs. Ambient Temperature.  
10  
40  
35  
30  
VDD = 5.5V  
High-to-Low  
25  
20  
15  
10  
5
VDD = 5.5V  
VDD = 1.4V  
1
Low-to-High  
VDD = 1.4V  
0
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
100  
1k  
1.E+03  
Frequency (Hz)  
10k  
1.E+04  
1.E+02  
Ambient Temperature (°C)  
FIGURE 2-26:  
Slew Rate vs. Ambient  
FIGURE 2-29:  
Maximum Output Voltage  
Temperature.  
Swing vs. Frequency.  
80  
60  
80  
60  
G = +11 V/V  
L = 50 kΩ  
G = -10 V/V  
RL = 50 kΩ  
R
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0.0 0.1 0.2 0.3 Ti0m.4e (10.05µs0/d.6iv) 0.7 0.8 0.9 1.0  
0.0 0.1 0.2 0.3 Ti0m.4e (100.05µs0/d.6iv) 0.7 0.8 0.9 1.0  
FIGURE 2-27:  
Pulse Response.  
Small Signal Non-inverting  
FIGURE 2-30:  
Response.  
Small Signal Inverting Pulse  
© 2009 Microchip Technology Inc.  
DS21668D-page 11  
MCP6141/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL, CL = 60 pF, and CS is tied low.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
G = +11 V/V  
VDD = 5.0V  
G = -10 V/V  
RL = 50 kΩ  
RL = 50 kΩ  
0
0
0
1 Tim1e (2010 µs/1div) 1  
2
2
2
0
0
0
1 Tim1e (2010 µs/1div) 1  
2
2
2
FIGURE 2-31:  
Large Signal Non-inverting  
FIGURE 2-34:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
5.5  
5.0  
VDD = 5.0V  
On  
G = +11 V/V  
VIN = +3.0V  
On  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT On  
4.5  
Hysteresis  
CS  
4.0  
3.5  
CS  
High-to-Low  
VOUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Low-to-High  
High-Z  
VOUT High-Z  
VDD = 5.0V  
G = +11 V/V  
VIN = 3.0V  
5.0  
CS  
2.5  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
CS Voltage (V)  
0
1
2
3 Tim4e (15ms6/div)7  
8
9
10  
FIGURE 2-32:  
Chip Select (CS) to  
FIGURE 2-35:  
Internal Chip Select (CS)  
Amplifier Output Response Time (MCP6143  
only).  
Hysteresis (MCP6143 only).  
1.E1-00m2  
1m  
1.E-03  
100µ  
1.E-04  
10µ  
1.E-05  
1µ  
1.E-06  
100n  
1.E-07  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
+125°C  
+85°C  
+25°C  
-40°C  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-33:  
Input Current vs. Input  
Voltage (Below V ).  
SS  
DS21668D-page 12  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6141  
PIN FUNCTION TABLE  
MCP6142  
MCP6143  
MCP6144  
MSOP,  
PDIP,  
SOIC  
MSOP,  
PDIP,  
SOIC  
MSOP,  
PDIP,  
SOIC  
MSOP,  
PDIP,  
SOIC  
Symbol  
Description  
SOT-23-5  
SOT-23-6  
6
1
1
2
6
2
1
1
2
VOUT, VOUTA Analog Output (op amp A)  
2
4
4
VIN–, VINA  
VIN+, VINA  
VDD  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
3
3
3
7
5
8
7
6
4
4
2
5
4
2
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
8
5
CS  
NC  
Chip Select  
1, 5, 8  
1, 5  
No Internal Connection  
3.1  
Analog Outputs  
3.4  
Power Supply Pins  
The output pins are low-impedance voltage sources.  
The positive power supply pin (VDD) is 1.4V to 6.0V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
3.2  
Analog Inputs  
between VSS and VDD  
.
The non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.3  
CS Digital Input  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
© 2009 Microchip Technology Inc.  
DS21668D-page 13  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 14  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
dump any currents onto VDD. When implemented as  
shown, resistors R1 and R2 also limit the current  
through D1 and D2.  
4.0  
APPLICATIONS INFORMATION  
The MCP6141/2/3/4 family of op amps is manufactured  
using Microchip’s state of the art CMOS process These  
op amps are stable for gains of 10 V/V and higher. They  
are suitable for a wide range of general purpose, low  
power applications.  
VDD  
See Microchip’s related MCP6041/2/3/4 family of op  
amps for applications needing unity gain stability.  
D1  
R1  
V1  
D2  
VOUT  
MCP604X  
4.1  
Rail-to-Rail Input  
V2  
4.1.1  
PHASE REVERSAL  
R2  
The MCP6141/2/3/4 op amps are designed to not  
exhibit phase inversion when the input pins exceed the  
supply voltages. Figure 2-10 shows an input voltage  
exceeding both supplies with no phase inversion.  
VSS (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
FIGURE 4-2:  
Protecting the Analog  
Inputs.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-33. Applications that are high impedance may  
need to limit the usable voltage range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
The input stage of the MCP6141/2/3/4 op amps uses  
two differential input stages in parallel. One operates at  
a low common mode input voltage (VCM), while the  
other operates at a high VCM. With this topology, the  
device operates with a VCM up to 300 mV above VDD  
and 300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V to  
ensure proper operation.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
There are two transitions in input behavior as VCM is  
changed. The first occurs, when VCM is near  
V
SS + 0.4V, and the second occurs when VCM is near  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Absolute  
Maximum Ratings † at the beginning of Section 1.0  
“Electrical Characteristics”). Figure 4-2 shows the  
recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN–) from going too far above VDD, and  
VDD – 0.5V (see Figure 2-3 and Figure 2-6). For the  
best distortion performance with non-inverting gains,  
avoid these regions of operation.  
© 2009 Microchip Technology Inc.  
DS21668D-page 15  
MCP6141/2/3/4  
4.2  
Rail-to-Rail Output  
4.4  
Stability  
There are two specifications that describe the output  
swing capability of the MCP6141/2/3/4 family of op  
amps. The first specification (Maximum Output Voltage  
Swing) defines the absolute maximum swing that can  
be achieved under the specified load condition. Thus,  
the output voltage swings to within 10 mV of either  
supply rail with a 50 kΩ load to VDD/2. Figure 2-10  
shows how the output voltage is limited when the input  
goes beyond the linear region of operation.  
4.4.1  
NOISE GAIN  
The MCP6141/2/3/4 op amp family is designed to give  
high bandwidth and slew rate for circuits with high noise  
gain (GN) or signal gain. Low gain applications should  
be realized using the MCP6041/2/3/4 op amp family;  
this simplifies design and implementation issues.  
Noise gain is defined to be the gain from a voltage  
source at the non-inverting input to the output when all  
other voltage sources are zeroed (shorted out). Noise  
gain is independent of signal gain and depends only on  
components in the feedback loop. The amplifier circuits  
in Figure 4-3 and Figure 4-4 have their noise gain  
calculated as follows:  
The second specification that describes the output  
swing capability of these amplifiers is the Linear Output  
Voltage Range. This specification defines the  
maximum output swing that can be achieved while the  
amplifier still operates in its linear region. To verify  
linear operation in this range, the large signal DC  
Open-Loop Gain (AOL) is measured at points inside the  
supply rails. The measurement must meet the specified  
AOL condition in the specification table.  
EQUATION 4-2:  
RF  
------  
GN = 1 +  
10 V/V  
RG  
4.3  
Output Loads and Battery Life  
In order for the amplifiers to be stable, the noise gain  
should meet the specified minimum noise gain. Note  
that a noise gain of GN = +10 V/V corresponds to a  
non-inverting signal gain of G = +10 V/V, or to an  
inverting signal gain of G = -9 V/V.  
The MCP6141/2/3/4 op amp family has outstanding  
quiescent current, which supports battery-powered  
applications. There is minimal quiescent current  
glitching when Chip Select (CS) is raised or lowered.  
This prevents excessive current draw, and reduced  
battery life, when the part is turned off or on.  
RIN  
Heavy resistive loads at the output can cause  
excessive battery drain. Driving a DC voltage of 2.5V  
across a 100 kΩ load resistor will cause the supply  
current to increase by 25 µA, depleting the battery 43  
times as fast as IQ (0.6 µA, typical) alone.  
VIN  
VOUT  
MCP614X  
RG  
RF  
High frequency signals (fast edge rate) across  
capacitive loads will also significantly increase supply  
current. For instance, a 0.1 µF capacitor at the output  
presents an AC impedance of 15.9 kΩ (1/2πfC) to a  
100 Hz sinewave. It can be shown that the average  
power drawn from the battery by a 5.0 VP-P sinewave  
(1.77 Vrms), under these conditions, is:  
FIGURE 4-3:  
Gain Configuration.  
Noise Gain for Non-inverting  
RG  
RF  
VOUT  
VIN  
EQUATION 4-1:  
PSupply = (VDD - VSS) (IQ + VL(p-p) f CL )  
= (5V)(0.6 µA + 5.0Vp-p · 100Hz · 0.1µF)  
= 3.0 µW + 50 µW  
MCP614X  
RIN  
FIGURE 4-4:  
Gain Configuration.  
Noise Gain for Inverting  
This will drain the battery 18 times as fast as IQ alone.  
DS21668D-page 16  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
Figure 4-5 shows three example circuits that are  
unstable when used with the MCP6141/2/3/4 family.  
The unity gain buffer and low gain amplifier  
(non-inverting or inverting) are at gains that are too low  
for stability (see Equation 4-2).The Miller integrator’s  
capacitor makes it reach unity gain at high frequencies,  
causing instability.  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +10), a small series  
resistor at the output (RISO in Figure 4-6) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
Note:  
The three circuits shown in Figure 4-5 are  
not to be used with the MCP6141/2/3/4 op  
amps. They are included for illustrative  
purposes only.  
RG  
RF  
RISO  
CL  
VOUT  
VA  
MCP614X  
Unity Gain Buffer  
VB  
FIGURE 4-6:  
Output Resistor, R  
ISO  
stabilizes large capacitive loads.  
VOUT  
MCP614X  
VIN  
Figure 4-7 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1 + |Signal Gain| (e.g., -9 V/V gives GN = +10 V/V).  
Low Gain Amplifier  
RG  
RF  
VOUT  
V1  
MCP614X  
1 +  
RN  
100,000  
100k  
V2  
RF  
------  
RG  
< 10  
10k  
10,0 0  
Miller Integrator  
GN = +10  
N = +20  
G
R
C
GN +50  
VIN  
VOUT  
1k  
1,000  
1p  
10p  
1.E+01  
100p  
1n  
1.E+03  
1.E+00  
1.E+02  
Normalized Load Capacitance; CL/GN (F)  
MCP614X  
FIGURE 4-7:  
Recommended R  
Values  
ISO  
for Capacitive Loads.  
FIGURE 4-5:  
Circuits for the MCP6141/2/3/4 Family.  
Examples of Unstable  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6141/2/3/4 SPICE macro  
model are helpful.  
4.4.2 CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
4.5  
MCP6143 Chip Select  
The MCP6143 is a single op amp with Chip Select  
(CS). When CS is pulled high, the supply current drops  
to 50 nA (typical) and flows through the CS pin to VSS  
.
When this happens, the amplifier output is put into a  
high impedance state. By pulling CS low, the amplifier  
is enabled. If the CS pin is left floating, the amplifier will  
not operate properly. Figure 1-1 shows the output  
voltage and supply current response to a CS pulse.  
© 2009 Microchip Technology Inc.  
DS21668D-page 17  
MCP6141/2/3/4  
4.6  
Supply Bypass  
Guard Ring  
VIN– VIN+  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor is not required  
for most applications and can be shared with other  
nearby analog parts.  
FIGURE 4-9:  
for Inverting Gain.  
Example Guard Ring Layout  
4.7  
Unused Op Amps  
1. Non-inverting Gain and Unity Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
An unused op amp in a quad package (MCP6144)  
should be configured as shown in Figure 4-8. These  
circuits prevent the output from toggling and causing  
crosstalk.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
Circuits A sets the op amp near its minimum noise gain.  
The resistor divider produces any desired reference  
voltage within the output voltage range of the op amp;  
the op amp buffers that reference voltage. Circuit B  
uses the minimum number of components and  
operates as a comparator, but it may draw more  
current.  
2. Inverting Gain and Transimpedance Gain  
(convert current to voltage, such as photo  
detectors) amplifiers:  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
¼ MCP6144 (A)  
¼ MCP6144 (B)  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
VDD  
R1  
VDD  
VDD  
VREF  
R
10R  
R2  
R
2
--------------------  
V
= V  
REF  
DD  
R + R  
1
2
FIGURE 4-8:  
Unused Op Amps.  
4.8  
PCB Surface Leakage  
In applications where low input bias current is critical,  
printed circuit board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6141/2/3/4 family’s bias current at +25°C (1 pA,  
typical).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-9.  
DS21668D-page 18  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
4.9.2  
INVERTING SUMMING AMPLIFIER  
4.9  
Application Circuits  
The MCP6141/2/3/4 op amp is well suited for the  
inverting summing amplifier shown in Figure 4-11 when  
the resistors at the input (R1, R2, and R3) make the  
noise gain at least 10 V/V. The output voltage (VOUT) is  
a weighted sum of the inputs (V1, V2, and V3), and is  
shifted by the VREF input. The necessary calculations  
follow in Equation 4-3.  
4.9.1  
BATTERY CURRENT SENSING  
The MCP6141/2/3/4 op amps’ Common Mode Input  
Range, which goes 0.3V beyond both supply rails,  
supports their use in high side and low side battery  
current sensing applications. The very low quiescent  
current (0.6 µA, typical) help prolong battery life, and  
the rail-to-rail output supports detection low currents.  
.
Figure 4-10 shows a high side battery current sensor  
circuit. The 1 kΩ resistor is sized to minimize power  
losses. The battery current (IDD) through the 1 kΩ  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the common  
mode input voltage of the op amp below VDD, which is  
within its allowed range. When no current is flowing, the  
output will be at its Maximum Output Voltage Swing  
R1  
V1  
R2  
R3  
V2  
V3  
RF  
VOUT  
MCP614X  
(VOH), which is virtually at VDD  
.
VREF  
.
IDD  
FIGURE 4-11:  
Summing Amplifier.  
VDD  
1.4V  
1 kΩ  
to  
EQUATION 4-3:  
Noise Gain:  
6.0V  
VOUT  
MCP6141  
1
1
1
GN = 1 + RF ----- + ----- + ----- 10 V/V  
R1 R2 R3  
Signal Gains:  
G1 = RF R1  
G2 = RF R2  
G3 = RF R3  
100 kΩ  
1 MΩ  
VOUT = VDD (1 kΩ)(11 V/V)IDD  
FIGURE 4-10:  
High Side Battery Current  
Output Signal:  
Sensor.  
VOUT = V1G1 + V2G2 + V3G3 + VREFGN  
© 2009 Microchip Technology Inc.  
DS21668D-page 19  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 20  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0 DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6141/2/3/4 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP6141/2/3/4  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Two of our boards that are especially useful are:  
8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N  
SOIC14EV  
5.6  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes and are  
recommended as supplemental reference resources.  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
5.3  
Mindi™ Simulation Tool  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
Microchip’s Mindi™ simulation tool aids in the design of  
various circuits useful for active filter, amplifier and  
power-management applications. It is a free online  
simulation tool available from the Microchip web site at  
www.microchip.com/mindi. This interactive simulator  
enables designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
simulation tool can be downloaded to a personal  
computer or workstation.  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data sheets,  
Purchase, and Sampling of Microchip parts.  
© 2009 Microchip Technology Inc.  
DS21668D-page 21  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 22  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23 (MCP6141)  
Device  
MCP6141  
E-Temp Code  
ASNN  
XXNN  
AS25  
Note: Applies to 5-Lead SOT-23  
Example:  
6-Lead SOT-23 (MCP6143)  
Device  
MCP6143  
E-Temp Code  
AWNN  
XXNN  
AW25  
Note: Applies to 6-Lead SOT-23  
Example:  
8-Lead MSOP  
XXXXXX  
6143I  
YWWNNN  
918256  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6141  
MCP6141  
E/P 256  
0918  
e
3
I/P256  
OR  
OR  
YYWW  
0918  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6142  
I/SN0918  
MCP6142E  
e
3
SN 0918  
NNN  
256  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS21668D-page 23  
MCP6141/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6144)  
Example:  
MCP6144-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0918256  
MCP6144  
e
3
I/P  
OR  
0918256  
14-Lead SOIC (150 mil) (MCP6144)  
Example:  
MCP6144ISL  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0918256  
MCP6144  
OR  
I/SL^  
e
3  
0918256  
Example:  
14-Lead TSSOP (MCP6144)  
6144ST  
XXXXXXXX  
YYWW  
0918  
256  
NNN  
6144EST  
0918  
OR  
256  
DS21668D-page 24  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
© 2009 Microchip Technology Inc.  
DS21668D-page 25  
MCP6141/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕ !ꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
=
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢑ;)  
DS21668D-page 26  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ$ꢄ%ꢃꢆꢕ#ꢍꢖꢆꢗ#ꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁꢒ(  
ꢐꢁꢐꢐ  
M
ꢐꢁ;(  
ꢀꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
M
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢐꢁ=ꢐ  
4
ꢐꢁꢖꢐ  
ꢐꢁ;ꢐ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢀ  
ꢐꢁꢛ(ꢈꢚ".  
M
ꢐꢝ  
;ꢝ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢑ  
M
M
ꢐꢁꢑꢜ  
ꢐꢁꢖꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢀꢀ)  
© 2009 Microchip Technology Inc.  
DS21668D-page 27  
MCP6141/2/3/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ&ꢐꢄꢈꢆ'ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ))ꢆꢎꢋꢈꢆ*ꢔꢅ+ꢆꢗꢇ&'ꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
3ꢆꢃ#  
ꢙ5*9"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢁꢀꢜꢐ  
M
ꢁꢜꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢜ=(  
ꢁꢀꢜꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ=ꢐ  
ꢁꢐꢀ;  
M
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
5
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
M
ꢁꢑꢀꢐ  
ꢁꢀꢛ(  
M
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢛꢐ  
ꢁꢑꢖꢐ  
ꢁꢜꢖ;  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖꢐ  
ꢁꢐꢀꢖ  
M
ꢁꢜꢑ(  
ꢁꢑ;ꢐ  
ꢁꢖꢐꢐ  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢜꢐ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐ@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢀ;)  
DS21668D-page 28  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
,-ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ&ꢐꢄꢈꢆ'ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ))ꢆꢎꢋꢈꢆ*ꢔꢅ+ꢆꢗꢇ&'ꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
3ꢆꢃ#  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢙ5*9"ꢕ  
56ꢏ  
ꢀꢖ  
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
M
ꢁꢑꢀꢐ  
ꢁꢀꢛ(  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢛꢐ  
ꢁꢑꢖꢐ  
ꢁꢒꢜ(  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖ(  
ꢁꢐꢀꢖ  
M
ꢁꢀꢜꢐ  
M
ꢁꢜꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢒ(ꢐ  
ꢁꢀꢜꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ=ꢐ  
ꢁꢐꢀ;  
M
ꢁꢜꢑ(  
ꢁꢑ;ꢐ  
ꢁꢒꢒ(  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢜꢐ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐ@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢐ()  
© 2009 Microchip Technology Inc.  
DS21668D-page 29  
MCP6141/2/3/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ./ꢆꢙ01)ꢆꢎꢎꢆ*ꢔꢅ+ꢆꢗꢍꢏ' ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈAꢇꢎ#ꢃꢇꢆꢉꢋB  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ(ꢒ)  
DS21668D-page 30  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
,-ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢛꢄꢓꢓꢔ./ꢆꢙ01)ꢆꢎꢎꢆ*ꢔꢅ+ꢆꢗꢍꢏ' ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈAꢇꢎ#ꢃꢇꢆꢉꢋB  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
;ꢁ=(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ=()  
© 2009 Microchip Technology Inc.  
DS21668D-page 31  
MCP6141/2/3/4  
,-ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ2ꢋꢑꢆꢍ2ꢓꢋꢑ$ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ-0-ꢆꢎꢎꢆ*ꢔꢅ+ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
=ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ=ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢜꢐ  
ꢖꢁꢛꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢝ  
ꢐꢁꢐꢛ  
ꢐꢁꢀꢛ  
M
M
M
;ꢝ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢜꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ;ꢒ)  
DS21668D-page 32  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision D (May 2009)  
Revision A (September 2002)  
The following is the list of modifications:  
• Original Release of this Document.  
1. DC Electrical Charactistics table: Corrected  
formatting issue in Output section.  
2. AC Electrical Characteristics table: Slew Rate  
- changed typical value from 3.0 to 24. Changed  
Phase Margin from 65 to 60. Changed Phase  
Margin Condition from G=+1 to G=+10 V/V.  
3. Updated Package Outline Drawings  
4. Updated Revision History.  
Revision C (December 2007)  
• Updated Figures 2.4 and 2.5  
• Expanded Analog Input Absolute Max Voltage  
Range (applies retroactively)  
• Expanded maximum operating VDD (going  
forward)  
Section 1.0 “Electrical Characteristics”  
updated  
Section 2.0 “Typical Performance Curves”  
updated  
Section 4.0 “Applications Information”  
- Updated input stage explanation  
Section 5.0 “Design Aids” updated  
Revision B (November 2005)  
The following is the list of modifications:  
1. Added the following:  
a) SOT-23-5 package for the MCP6141 single  
op amps.  
b) SOT-23-6 package for the MCP6143 single  
op amps with Chip Select.  
c) Extended Temperature (-40°C to +125°C)  
op amps.  
2. Updated  
specifications  
in  
Section 1.0  
“Electrical Characteristics” for E-temp parts.  
3. Corrected and updated plots in Section 2.0  
“Typical Performance Curves”.  
4. Added Section 3.0 “Pin Descriptions”.  
5. Updated  
Section 4.0  
“Applications  
Information” and added section on unused op  
amps.  
6. Updated Section 5.0 “Design Aids” to include  
FilterLab.  
7. Added SOT-23-5 and SOT-23-6 packages and  
corrected package marking information in  
Section 6.0 “Packaging Information”.  
8. Added Appendix A: “Revision History”.  
© 2009 Microchip Technology Inc.  
DS21668D-page 33  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 34  
© 2009 Microchip Technology Inc.  
MCP6141/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
- X  
/ XX  
a)  
MCP6141-I/P:  
Industrial Temperature  
8 lead PDIP package.  
Device  
Temperature  
Range  
Package  
b)  
MCP6141T-E/OT: Tape and Reel,  
Extended Temperature  
5 lead SOT-23 package.  
Device:  
MCP6141:  
MCP6141T:  
Single Op Amp  
Single Op Amp  
(Tape and Reel for SOT-23, SOIC, MSOP)  
Dual Op Amp  
Dual Op Amp  
(Tape and Reel for SOIC and MSOP)  
Single Op Amp w/ CS  
Single Op Amp w/ CS  
(Tape and Reel for SOT-23, SOIC, MSOP)  
Quad Op Amp  
Quad Op Amp  
a)  
b)  
MCP6142-I/SN:  
Industrial Temperature  
8 lead SOIC package.  
MCP6142T-E/MS: Tape and Reel,  
Extended Temperature  
MCP6142:  
MCP6142T:  
8 lead MSOP package.  
MCP6143:  
MCP6143T:  
a)  
b)  
MCP6143-I/P:  
Industrial Temperature,  
8 lead PDIP package.  
MCP6143T-E/CH: Tape and Reel,  
Extended Temperature  
MCP6144:  
MCP6144T:  
6 lead SOT-23 package.  
(Tape and Reel for SOIC and TSSOP)  
a)  
b)  
MCP6144-I/SL:  
Industrial Temperature  
14 lead PDIP package.  
Temperature Range:  
Package:  
I
E
=
=
-40°C to +85°C (industrial)  
-40°C to +125°C (extended)  
MCP6144T-E/ST: Tape and Reel,  
Extended Temperature  
14 lead TSSOP package.  
CH  
=
Plastic Small Outline Transistor (SOT-23),  
6-lead (Tape and Reel - MCP6143 only)  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic Small Outline Transistor (SOT-23),  
5-lead (Tape and Reel - MCP6141 only)  
Plastic DIP (300 mil body), 8-lead, 14-lead  
Plastic SOIC (3.9 mm body), 14-lead  
Plastic SOIC (3.9 mm body), 8-lead  
MS  
OT  
=
=
P
=
=
=
=
SL  
SN  
ST  
Plastic TSSOP (4.4 mm body), 14-lead  
© 2009 Microchip Technology Inc.  
DS21668D-page 35  
MCP6141/2/3/4  
NOTES:  
DS21668D-page 36  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Hampshire, Linear Active Thermistor, MXDEV,  
MXLAB, SEEVAL, SmartSensor and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,  
PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Total Endurance, TSHARC, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21668D-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS21668D-page 38  
© 2009 Microchip Technology Inc.  

相关型号:

MCP6141-E/OT

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-E/P

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-E/SL

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-E/SN

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-E/SNVAO

Operational Amplifier, 1 Func, 3000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6141-E/ST

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-I/CH

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-I/MS

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-I/OT

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-I/P

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-I/SL

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP

MCP6141-I/SN

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps
MICROCHIP