MCP617-I/SN [MICROCHIP]

2.3V to 5.5V Micropower Bi-CMOS Op Amps; 2.3V至5.5V微功耗双CMOS运算放大器
MCP617-I/SN
型号: MCP617-I/SN
厂家: MICROCHIP    MICROCHIP
描述:

2.3V to 5.5V Micropower Bi-CMOS Op Amps
2.3V至5.5V微功耗双CMOS运算放大器

运算放大器 放大器电路 光电二极管 信息通信管理 PC
文件: 总38页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP616/7/8/9  
2.3V to 5.5V Micropower Bi-CMOS Op Amps  
Description  
Features  
• Low Input Offset Voltage: ±150 µV (maximum)  
• Low Noise: 2.2 µVP-P (typical, 0.1 Hz to 10 Hz)  
• Rail-to-Rail Output  
The MCP616/7/8/9 family of operational amplifiers (op  
amps) from Microchip Technology Inc. are capable of  
precision, low-power, single-supply operation. These  
op amps are unity-gain stable, have low input offset  
voltage (±150 µV, maximum), rail-to-rail output swing  
and low input offset current (0.3 nA, typical). These  
features make this family of op amps well suited for  
battery-powered applications.  
• Low Input Offset Current: 0.3 nA (typical)  
• Low Quiescent Current: 25 µA (maximum)  
• Power Supply Voltage: 2.3V to 5.5V  
• Unity Gain Stable  
• Chip Select (CS) Capability: MCP618  
• Industrial Temperature Range: -40°C to +85°C  
• No Phase Reversal  
The single MCP616, the single MCP618 with Chip  
Select (CS) and the dual MCP617 are all available in  
standard 8-lead PDIP, SOIC and MSOP packages. The  
quad MCP619 is offered in standard 14-lead PDIP,  
SOIC and TSSOP packages. All devices are fully  
specified from -40°C to +85°C, with power supplies  
from 2.3V to 5.5V.  
• Available in Single, Dual and Quad Packages  
Typical Applications  
• Battery Power Instruments  
• Weight Scales  
Package Types  
• Strain Gauges  
MCP617  
MCP616  
• Medical Instruments  
Test Equipment  
PDIP, SOIC, MSOP  
PDIP, SOIC, MSOP  
NC 1  
8
7
6
VOUTA  
1
2
3
4
8
7
6
5
NC  
VDD  
2
3
4
VIN–  
VIN+  
VSS  
VDD  
VINA  
VOUTB  
Design Aids  
VOUT VINA  
VINB  
VINB  
+
+
5 NC  
VSS  
• SPICE Macro Models  
• Microchip Advanced Part Selector (MAPS)  
• Mindi™ Circuit Designer & Simulator  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP618  
PDIP, SOIC, MSOP  
MCP619  
PDIP, SOIC, TSSOP  
VOUTA  
1
2
3
4
5
6
7
14  
13  
12  
VOUTD  
NC 1  
2
8
7
6
CS  
VINA  
VINA  
+
VIND  
VIND  
+
VIN–  
VDD  
VOUT  
3
4
VIN+  
VSS  
Input Offset Voltage  
11 VSS  
VDD  
VINB  
VINB  
5 NC  
14%  
10  
9
+
VINC  
VINC  
+
598 Samples  
12%  
VDD = 5.5V  
8 VOUTC  
10%  
8%  
6%  
4%  
2%  
0%  
VOUTB  
Input Offset Voltage (µV)  
© 2008 Microchip Technology Inc.  
DS21613C-page 1  
MCP616/7/8/9  
NOTES:  
DS21613C-page 2  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+ and VIN–)................±2 mA  
Analog Inputs (VIN+ and VIN–) †.. VSS – 0.3V to VDD + 0.3V  
All other Inputs and Outputs .......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ...................................65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 4 kV; 400V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2 and RL = 100 kΩ to VDD/2.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
–150  
+150  
µV  
Input Offset Drift with Temperature  
Power Supply Rejection  
Input Bias Current and Impedance  
Input Bias Current  
ΔVOS/ΔTA  
PSRR  
±2.5  
105  
µV/°C TA = -40°C to +85°C  
dB  
86  
IB  
IB  
-35  
-70  
-15  
-21  
-5  
nA  
At Temperature  
nA  
nA  
TA = -40°C  
TA = +85°C  
At Temperature  
IB  
-12  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±0.15  
600||4  
3||2  
nA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
MΩ||pF  
MΩ||pF  
Common Mode Input Voltage Range  
Common Mode Rejection Ratio  
VCMR  
VSS  
80  
VDD – 0.9  
V
CMRR  
100  
dB  
V
V
DD = 5.0V,  
CM = 0.0V to 4.1V  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
AOL  
AOL  
100  
95  
120  
115  
dB  
dB  
RL = 25 kΩ to VDD/2,  
OUT = 0.05V to VDD – 0.05V  
RL = 5 kΩ to VDD/2,  
OUT = 0.1V to VDD – 0.1V  
V
DC Open-Loop Gain (large signal)  
V
Output  
Maximum Output Voltage Swing  
V
V
OL, VOH  
OL, VOH  
VOUT  
VSS + 15  
VSS + 45  
VSS + 50  
VSS + 100  
VDD – 20  
VDD – 60  
VDD – 50  
VDD – 100  
mV  
mV  
mV  
mV  
RL = 25 kΩ to VDD/2,  
0.5V input overdrive  
RL = 5 kΩ to VDD/2,  
0.5V input overdrive  
Linear Output Voltage Range  
Output Short Circuit Current  
RL = 25 kΩ to VDD/2,  
AOL 100 dB  
RL = 5 kΩ to VDD/2,  
AOL 95 dB  
VDD = 2.3V  
VDD = 5.5V  
VOUT  
ISC  
ISC  
±7  
mA  
mA  
±17  
Power Supply  
Supply Voltage  
VDD  
IQ  
2.3  
12  
5.5  
25  
V
Quiescent Current per Amplifier  
19  
µA  
IO = 0  
© 2008 Microchip Technology Inc.  
DS21613C-page 3  
MCP616/7/8/9  
AC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
190  
57  
kHz  
°
G = +1V/V  
Slew Rate  
SR  
0.08  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
2.2  
32  
70  
µVP-P  
nV/Hz  
fA/Hz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
MCP618 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
VIL  
VSS  
0.2 VDD  
V
ICSL  
–1.0  
0.01  
µA  
CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
VIH  
ICSH  
0.8 VDD  
0.01  
-0.05  
10  
VDD  
2
V
-2  
µA  
µA  
nA  
CS = VDD  
CS = VDD  
CS = VDD  
GND Current  
ISS  
Amplifier Output Leakage  
CS Dynamic Specifications  
CS Low to Amplifier Output Turn-on Time  
IO(LEAK)  
tON  
tOFF  
9
100  
µs  
µs  
V
CS = 0.2VDD to VOUT = 0.9VDD/2,  
G = +1 V/V, RL = 1 kΩ to VSS  
CS High to Amplifier Output High-Z  
CS Hysteresis  
0.1  
0.6  
CS = 0.8VDD to VOUT = 0.1VDD/2,  
G = +1 V/V, RL = 1 kΩ to VSS  
VHYST  
VDD = 5.0V  
VIH  
VIL  
CS  
VOUT  
ISS  
tOFF  
tON  
High-Z  
High-Z  
-19 µA  
(typical)  
-50 nA  
(typical)  
-50 nA  
(typical)  
ICS  
10 nA  
10 nA  
(typical)  
(typical)  
FIGURE 1-1:  
Timing Diagram for the CS  
Pin on the MCP618.  
DS21613C-page 4  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.3V to +5.5V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
Note 1  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
211  
89.3  
149.5  
70  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
95.3  
100  
Note 1: The MCP616/7/8/9 operate over this extended temperature range, but with reduced performance. In any case, the  
Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-3. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.6 “Supply Bypass”.  
VDD  
1 µF  
0.1 µF  
VIN  
VOUT  
RL  
RN  
RG  
MCP61X  
CL  
RF  
VDD/2  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
VDD  
1 µF  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP61X  
CL  
RF  
VIN  
VL  
FIGURE 1-3:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
© 2008 Microchip Technology Inc.  
DS21613C-page 5  
MCP616/7/8/9  
NOTES:  
DS21613C-page 6  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
20%  
14%  
598 Samples  
VDD = 5.5V  
598 Samples  
VDD = 5.5V  
18%  
16%  
14%  
12%  
10%  
8%  
12%  
10%  
8%  
TA = -40°C to +85°C  
6%  
4%  
6%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage at  
FIGURE 2-4:  
Input Offset Voltage Drift at  
V
= 5.5V.  
V
= 5.5V.  
DD  
DD  
18%  
16%  
598 Samples  
VDD = 2.3V  
A = -40°C to +85°C  
598 Samples  
DD = 2.3V  
16%  
14%  
12%  
10%  
8%  
14%  
12%  
10%  
8%  
V
T
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage at  
FIGURE 2-5:  
Input Offset Voltage Drift at  
V
= 2.3V.  
V
= 2.3V.  
DD  
DD  
16%  
20%  
600 Samples  
DD = 5.5V  
600 Samples  
VDD = 5.5V  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
14%  
12%  
10%  
8%  
V
6%  
4%  
2%  
0%  
0%  
Input Bias Current (nA)  
Input Offset Current (nA)  
FIGURE 2-3:  
= 5.5V.  
Input Bias Current at  
FIGURE 2-6:  
V = 5.5V.  
DD  
Input Offset Current at  
V
DD  
© 2008 Microchip Technology Inc.  
DS21613C-page 7  
MCP616/7/8/9  
Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
0
-5  
1.0  
150  
100  
50  
VDD = 5.5V  
Representative Part  
0.8  
0.6  
0.4  
0.2  
0.0  
VDD = 5.5V  
IOS  
-10  
-15  
-20  
-25  
0
VDD = 2.3V  
-50  
-100  
-150  
IB  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Bias, Offset Currents  
Ambient Temperature.  
vs. Ambient Temperature.  
24  
22  
120  
115  
110  
20  
18  
16  
14  
12  
10  
8
VDD = 5.5V  
PSRR  
105  
100  
95  
VDD = 2.3V  
CMRR  
90  
6
4
2
85  
80  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Quiescent Current vs.  
FIGURE 2-11:  
CMRR, PSRR vs. Ambient  
Ambient Temperature.  
Temperature.  
40  
9
RL = 5 kꢀ  
35  
VDD – VOH  
RL = 25 kꢀ  
8
7
6
5
4
3
2
1
0
VDD – VOH  
30  
VDD = 5.5V  
VDD = 5.5V  
25  
20  
15  
10  
VOL – VSS  
VOL – VSS  
5
0
VDD = 2.3V  
-25  
VDD = 2.3V  
-25  
-50  
0
25  
50  
75  
100  
-50  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Maximum Output Voltage  
FIGURE 2-12:  
Maximum Output Voltage  
Swing vs. Ambient Temperature at R = 5 kΩ.  
Swing vs. Ambient Temperature at R = 25 kΩ.  
L
L
DS21613C-page 8  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
200  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
GBWP  
ISC+  
VDD = 5.5V  
PM  
60  
| ISC–  
|
40  
VDD = 2.3V  
75 100  
20  
0
0
-50  
-25  
0
25  
50  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Output Short Circuit Current  
FIGURE 2-16:  
Gain Bandwidth Product,  
vs. Ambient Temperature.  
Phase Margin vs. Ambient Temperature.  
0.10  
100  
VDD = 5.5V  
0.09  
80  
Low-to-High Transition  
0.08  
0.07  
0.06  
60  
40  
20  
High-to-Low Transition  
0
0.05  
TA = +85°C  
-20  
0.04  
T
A = +25°C  
-40  
-60  
0.03  
T
A = -40°C  
0.02  
-80  
0.01 VDD = 5.0V  
0.00  
-100  
-50  
-25  
0
25  
50  
75  
100  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Slew Rate vs. Ambient  
FIGURE 2-17:  
Input Offset Voltage vs.  
Temperature.  
Common Mode Input Voltage.  
50  
40  
30  
20  
10  
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
0.30  
0.25  
0.20  
0.15  
0.10  
RL = 25 kꢀ  
VDD = 5.5V  
TA = +85°C  
A = +25°C  
A = -40°C  
IOS  
IB  
0.05  
0.00  
T
T
0
VDD = 2.3V  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-10  
-20  
-30  
-40  
-50  
VDD = 5.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-15:  
vs. Common Mode Input Voltage.  
Input Bias, Offset Currents  
FIGURE 2-18:  
Output Voltage.  
Input Offset Voltage vs.  
© 2008 Microchip Technology Inc.  
DS21613C-page 9  
MCP616/7/8/9  
Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
1,000  
100  
10  
25  
20  
15  
10  
5
VDD = 2.3V  
VDD – VOH  
VDD = 5.5V  
TA = +85°C  
A = +25°C  
A = -40°C  
T
T
VOL – VSS  
0
1
10µ  
100µ  
0.1  
1m  
1
10m  
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.01  
Output Current Magnitude (A)  
FIGURE 2-19:  
Quiescent Current vs.  
FIGURE 2-22:  
Output Voltage Headroom  
Power Supply Voltage.  
vs. Output Current Magnitude.  
125  
130  
125  
120  
115  
110  
105  
100  
95  
RL = 25 kꢀ  
120  
115  
110  
105  
VDD = 5.5V  
VDD = 2.3V  
90  
100  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1k  
10k  
10  
100k  
100  
0.1  
1
Power Supply Voltage (V)  
Load Resistance (Ω)  
FIGURE 2-20:  
DC Open-Loop Gain vs.  
FIGURE 2-23:  
DC Open-Loop Gain vs.  
Load Resistance.  
Power Supply Voltage.  
200  
180  
160  
140  
120  
100  
80  
100  
140  
130  
120  
110  
100  
90  
Referred to Input  
90  
GBWP  
80  
70  
60  
PM  
50  
40  
30  
20  
10  
0
60  
40  
80  
20  
70  
0
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1k  
1
10k  
10  
100k  
100  
1M  
1.E+02  
1,000  
Load Resistance (Ω)  
Frequency (Hz)  
FIGURE 2-21:  
Gain-Bandwidth Product,  
FIGURE 2-24:  
Channel-to-Channel  
Phase Margin vs. Load Resistance.  
Separation vs. Frequency (MCP617 and  
MCP619 only).  
DS21613C-page 10  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
140  
120  
100  
80  
0
120  
110  
100  
90  
PSRR+  
-30  
CMRR  
-60  
Phase  
PSRR-  
-90  
80  
60  
-120  
-150  
-180  
-210  
-240  
70  
60  
40  
Gain  
50  
20  
40  
0
30  
-20  
20  
0.01 0.1  
1
10 100 1k 10k 100k 1M  
0.1  
1
10  
100  
1k  
10k  
1.E- 1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
02 01 00 F0r1eque02ncy0(H3z) 04 05 06  
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04  
Frequency (Hz)  
FIGURE 2-25:  
Open-Loop Gain, Phase vs.  
FIGURE 2-28:  
CMRR, PSRR vs.  
Frequency.  
Frequency.  
10  
10,000  
10,000  
VDD = 5.5V  
VDD = 2.3V  
1,000  
100  
10  
1,000  
ini  
1
100  
eni  
10  
0.1  
1
10  
100 1k  
10k  
0.1  
1.E- 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1.E+02  
01  
0
1
2
3
4
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-26:  
Input Noise Voltage, Current  
FIGURE 2-29:  
Maximum Output Voltage  
Densities vs. Frequency.  
Swing vs. Frequency.  
Gain = -1  
Gain = +1  
Time (50 µs/div)  
Time (50 µs/div)  
FIGURE 2-27:  
Small-Signal, Non-Inverting  
FIGURE 2-30:  
Small-Signal, Inverting  
Pulse Response.  
Pulse Response.  
© 2008 Microchip Technology Inc.  
DS21613C-page 11  
MCP616/7/8/9  
Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5
4
3
2
1
0
Gain = -1  
Gain = +1  
DD = 5.0V  
VDD = 5.0V  
V
Time (50 µs/div)  
Time (50 µs/div)  
FIGURE 2-31:  
Large-Signal, Non-Inverting  
FIGURE 2-34:  
Large-Signal, Inverting  
Pulse Response.  
Pulse Response.  
5.0  
4.5  
4.0  
5
0
5.0  
4.5  
4.0  
VDD = 5.0V  
CS  
Hysteresis  
VDD = 5.0V  
Gain = +1 V/V  
RL = 1 kꢀ to VSS  
3.5  
3.5  
Output  
On  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT  
CS swept  
High-to-Low  
CS swept  
Low-to-High  
Output  
High-Z  
Output  
On  
Output  
High-Z  
Output  
High-Z  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Chip Select Voltage (V)  
Time (5 μs/div)  
FIGURE 2-32:  
Chip Select (CS) to  
FIGURE 2-35:  
Chip Select (CS) Internal  
Amplifier Output Response Time (MCP618 only).  
Hysteresis (MCP618 only).  
6
1.E-02  
10m  
1.E-03  
1m  
1.E- 4  
100µ  
1.E1-05µ  
Gain = +2 V/V  
VDD = 5.0V  
5
4
1.E-06  
1µ  
100n  
1.E- 7  
3
10n  
1.E- 8  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
2
+125°C  
+85°C  
+25°C  
-40°C  
VIN  
1
VOUT  
0
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
-1  
Time (100 µs/div)  
FIGURE 2-33:  
The MCP616/7/8/9 Show  
FIGURE 2-36:  
Measured Input Current vs.  
No Phase Reversal.  
Input Voltage (below V ).  
SS  
DS21613C-page 12  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP616  
PIN FUNCTION TABLE  
MCP617  
MCP618  
MCP619  
PDIP,  
SOIC,  
TSSOP  
Symbol  
Description  
MSOP,  
MSOP,  
MSOP,  
PDIP, SOIC PDIP, SOIC PDIP, SOIC  
6
2
1
2
6
2
1
2
VOUT, VOUTA  
Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Output (op amp B)  
3
3
3
3
+
7
8
7
4
4
5
4
5
VINB  
VINB  
+
6
6
7
7
VOUTB  
VOUTC  
4
8
Output (op amp B)  
9
VINC  
VINC  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Output (op amp D)  
10  
11  
12  
13  
14  
+
VSS  
1, 5, 8  
8
VIND+  
VIND–  
VOUTD  
CS  
Chip Select  
1, 5  
NC  
No Internal Connection  
3.1  
Analog Outputs  
3.4  
Power Supply Pins (VDD, VSS)  
The output pins are low-impedance voltage sources.  
The positive power supply (VDD) is 2.3V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
3.2  
Analog Inputs  
and VDD  
.
The non-inverting and inverting inputs are high-  
impedance PNP inputs with low bias currents.  
Typically, these parts are used in a single-supply  
(positive) supply configuration. In this case, VSS is  
connected to ground and VDD is connected to the  
supply. VDD will need bypass capacitors.  
3.3  
Chip Select Digital Input (CS)  
This is a CMOS, Schmitt-triggered input that places the  
MCP618 op amp into a low-power mode of operation.  
© 2008 Microchip Technology Inc.  
DS21613C-page 13  
MCP616/7/8/9  
NOTES:  
DS21613C-page 14  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
4.0  
APPLICATIONS INFORMATION  
VDD  
The MCP616/7/8/9 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process,  
which includes PNP transistors. These op amps are  
unity-gain stable and suitable for a wide range of  
general purpose applications.  
D1 D2  
V1  
V2  
R1  
R2  
MCP61X  
4.1  
Rail-to-Rail Inputs  
4.1.1  
PHASE REVERSAL  
The MCP616/7/8/9 op amp is designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-36 shows the input voltage exceed-  
ing the supply voltage without any phase reversal.  
R3  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
FIGURE 4-2:  
Protecting the Analog  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
Inputs.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS). (See Figure 2-36.) Applications that are  
high impedance may need to limit the usable voltage  
range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
The inputs of the MCP616/7/8/9 op amps connect to a  
differential PNP input stage. The common mode input  
voltage range (VCMR) includes ground in single-supply  
systems (VSS), but does not include VDD. This means  
that the amplifier input behaves linearly as long as the  
common mode input voltage (VCM) is kept within the  
specified VCMR limits (VSS to VDD–0.9V at +25°C).  
VIN+  
VIN–  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
4.2  
DC Offsets  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
“Absolute Maximum Ratings †” at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-2  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
The MCP616/7/8/9 family of op amps have a PNP input  
differential pair that gives good DC performance. They  
have very low input offset voltage (±150 µV, maximum)  
at TA = +25°C, with a typical bias current of -15 nA  
(sourced out of the inputs).  
There must be a DC path to ground (or power supply)  
from both inputs, or the op amp will not bias properly.  
The DC resistances seen by the op amp inputs (R1||R2  
and R4||R5 in Figure 4-3) need to be equal and less  
than 100 k, to minimize the total DC offset.  
© 2008 Microchip Technology Inc.  
DS21613C-page 15  
MCP616/7/8/9  
EQUATION 4-1:  
GN = 1 + R2 R1  
VOOS = GN [VOS + IB ((R1 ||R2) – REQ  
– IOS ((R1 ||R2 ) + REQ ) / 2]  
VCM = VEQ – (IB + IOS /2) REQ  
VOUT = VEQ (GN ) – V1 (GN – 1) + VOOS  
R1  
R2  
V1  
)
C3  
R3  
VOUT  
MCP61X  
V2  
Where:  
GN  
R4  
R5  
=
op amp’s noise gain (from the  
non-inverting input to the  
output)  
FIGURE 4-3:  
Example Circuit for  
Calculating DC Offset.  
VOOS  
VOS  
IB  
=
=
=
=
=
circuit’s output offset voltage  
op amp’s input offset voltage  
op amp’s input bias current  
op amp’s input offset current  
To calculate the DC bias point and DC offset, convert  
the circuit to its DC equivalent:  
• Replace capacitors with open circuits  
IOS  
• Replace inductors with short circuits  
VCM  
op amp’s coommon mode  
input voltage  
• Replace AC voltage sources with short circuits  
• Replace AC current sources with open circuits  
• Convert DC sources and resistances into their  
Thevenin equivalent form  
Use the worst-case specs and source values to  
determine the worst-case output voltage range and  
offset for your design. Make sure the common mode  
input voltage range and output voltage range are not  
exceeded.  
The DC equivalent circuit for Figure 4-3 is shown in  
Figure 4-4.  
R1  
R2  
4.3  
Rail-to-Rail Output  
V1  
There are two specifications that describe the output  
swing capability of the MCP616/7/8/9 family of op  
amps. The first specification (Maximum Output Voltage  
Swing) defines the absolute maximum swing that can  
be achieved under the specified load conditions. For  
instance, the output voltage swings to within 15 mV of  
the negative rail with a 25 kΩ load tied to VDD/2.  
Figure 2-33 shows how the output voltage is limited  
when the input goes beyond the linear region of  
operation.  
VOUT  
MCP61X  
REQ  
VEQ  
R5  
------------------  
R4 + R5  
VEQ = V2 ⋅  
REQ = R4 || R5  
FIGURE 4-4:  
Equivalent DC Circuit.  
The second specification that describes the output  
swing capability of these amplifiers is the Linear Output  
Voltage Range. This specification defines the  
maximum output swing that can be achieved while the  
amplifier still operates in its linear region. To verify  
linear operation in this range, the large-signal DC  
Open-Loop Gain (AOL) is measured at points inside the  
supply rails. The measurement must meet the specified  
Now calculate the nominal DC bias point with offset:  
AOL conditions in the specification table.  
DS21613C-page 16  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
4.4  
Capacitive Loads  
4.5  
MCP618 Chip Select (CS)  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
The MCP618 is a single op amp with Chip Select (CS).  
When CS is pulled high, the supply current drops to  
50 nA (typical) and flows through the CS pin to VSS  
.
When this happens, the amplifier output is put into a  
high-impedance state. By pulling CS low, the amplifier  
is enabled. The CS pin has an internal 5 MΩ (typical)  
pull-down resistor connected to VSS, so it will go low if  
the CS pins is left floating. Figure 1-1 shows the output  
voltage and supply current response to a CS pulse.  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-5) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
4.6  
Supply Bypass  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It may use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor is not required  
and can be shared with other analog parts.  
RISO  
VOUT  
4.7  
Unused Op Amps  
MCP61X  
VIN  
CL  
An unused op amp in a quad package (MCP619)  
should be configured as shown in Figure 4-7. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuits A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
FIGURE 4-5:  
Output Resistor, R  
ISO  
stabilizes large capacitive loads.  
Figure 4-6 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
¼ MCP619 (A)  
VDD  
¼ MCP619 (B)  
10,0 0  
10k  
VDD  
VDD  
R1  
R2  
1k  
1,000  
VREF  
GN = +1  
N +2  
G
R2  
------------------  
100  
100  
1.E-11  
VREF = VDD  
R1 + R2  
10p  
100p  
1.E-10  
1n  
1.E-09  
10n  
1.E-08  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-7:  
Unused Op Amps.  
FIGURE 4-6:  
Recommended R  
Values  
ISO  
for Capacitive Loads.  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP616/7/8/9 SPICE macro  
model are helpful.  
© 2008 Microchip Technology Inc.  
DS21613C-page 17  
MCP616/7/8/9  
4.8  
PCB Surface Leakage  
4.9  
Application Circuits  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP616/7/8/9 family’s bias current at 25°C  
(1 pA, typical).  
4.9.1  
HIGH GAIN PRE-AMPLIFIER  
The MCP616/7/8/9 op amps are well suited to  
amplifying small signals produced by low-impedance  
sources/sensors. The low offset voltage, low offset  
current and low noise fit well in this role. Figure 4-9  
shows a typical pre-amplifier connected to a low-  
impedance source (VS and RS).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example is shown below in Figure 4-8.  
RS  
VS  
10 kΩ  
VOUT  
MCP616  
RG  
RF  
VDD/2  
Guard Ring  
VIN– VIN+ VSS  
11.0 kΩ  
100 kΩ  
FIGURE 4-9:  
High Gain Pre-amplifier.  
For the best noise and offset performance, the source  
resistance RS needs to be less than 15 kΩ. The DC  
resistances at the inputs are equal to minimize the  
offset voltage caused by the input bias currents  
(Section 4.2 “DC Offsets”). In this circuit, the DC gain  
is 10 V/V, which will give a typical bandwidth of 19 kHz.  
FIGURE 4-8:  
for Inverting Gain.  
Example Guard Ring Layout  
1. Non-inverting Gain and Unity Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
4.9.2  
TWO OP AMP INSTRUMENTATION  
AMPLIFIER  
The two-op amp instrumentation amplifier shown in  
Figure 4-10 serves the function of taking the difference  
of two input voltages, level-shifting it and gaining it to  
the output. This configuration is best suited for higher  
gains (i.e., gain > 3 V/V). The reference voltage (VREF  
is typically at mid-supply (VDD/2) in a single-supply  
environment.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
2. Inverting Gain and Transimpedance gain (con-  
vert current to voltage, such as photo detectors)  
amplifiers:  
)
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
R
2R  
1
1
V
= (V V ) 1 + ------ + --------- + V  
OUT  
1
2
REF  
R
R
2
G
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
V2  
V1  
½
MCP617  
½
MCP617  
FIGURE 4-10:  
Two-Op Amp  
Instrumentation Amplifier.  
The key specifications that make the MCP616/7/8/9  
family appropriate for this application circuit are low  
input bias current, low offset voltage and high common-  
mode rejection.  
DS21613C-page 18  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
4.9.3  
THREE OP AMP  
INSTRUMENTATION AMPLIFIER  
4.9.4  
PRECISION GAIN WITH GOOD  
LOAD ISOLATION  
A classic, three-op amp instrumentation amplifier is  
illustrated in Figure 4-11. The two-input op amps  
provide differential signal gain and a common mode  
gain of +1. The output op amp is a difference amplifier,  
which converts its input signal from differential to a  
single-ended output; it rejects common mode signals at  
its input. The gain of this circuit is simply adjusted with  
one resistor (RG). The reference voltage (VREF) is  
typically referenced to mid-supply (VDD/2) in single-  
supply applications.  
In Figure 4-12, the MCP616 op amp, R1 and R2 provide  
a high gain to the input signal (VIN). The MCP616’s low  
offset voltage makes this an accurate circuit.  
The MCP606 is configured as a unity-gain buffer. It  
isolates the MCP616’s output from the load, increasing  
the high gain stage’s precision. Since the MCP606 has  
a higher output current, and the two amplifiers are  
housed in separate packages, there is minimal change  
in the MCP616’s offset voltage due to loading effect.  
V
= V (1 + R R )  
IN 2 1  
OUT  
R
2R  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
4
2
-----  
V
= (V V ) 1 + ---------  
+ V  
OUT  
1
2
REF  
R
3
R
MCP616  
G
VIN  
MCP606  
½
VOUT  
MCP617  
V2  
R1  
R2  
R3  
R4  
VOUT  
FIGURE 4-12:  
Precision Gain with Good  
R2  
RG  
R2  
Load Isolation.  
MCP616  
VREF  
R3  
R4  
V1  
FIGURE 4-11:  
½
MCP617  
Three-Op Amp  
Instrumentation Amplifier.  
© 2008 Microchip Technology Inc.  
DS21613C-page 19  
MCP616/7/8/9  
NOTES:  
DS21613C-page 20  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0 DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP616/7/8/9 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP616/7/8/9  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Two of our boards that are especially useful are:  
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP  
Evaluation Board  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP  
Evaluation Board  
5.5  
Application Notes  
The following Microchip Application Notes are avail-  
able on the Microchip web site at www.microchip. com/  
appnotes and are recommended as supplemental  
reference resources.  
5.2  
Mindi™ Circuit Designer &  
Simulator  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power-management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
Circuit Designer & Simulator can be downloaded to a  
personal computer or workstation.  
ADN003: “Select the Right Operational Amplifier for  
your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op Amps”,  
DS00884  
AN990: “Analog Sensor Conditioning Circuits – An  
Overview”, DS00990  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
These application notes and others are listed in the  
design guide:  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparasion  
reports. Helpful links are also provided for Datasheets,  
Purchase, and Sampling of Microchip parts.  
“Signal Chain Design Guide”, DS21825  
© 2008 Microchip Technology Inc.  
DS21613C-page 21  
MCP616/7/8/9  
NOTES:  
DS21613C-page 22  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead MSOP  
XXXXXX  
616I  
812256  
YWWNNN  
8-Lead PDIP (300 mil)  
Examples:  
XXXXXXXX  
XXXXXNNN  
MCP616  
I/P 256  
0812  
MCP616  
e
3
I/P256  
OR  
OR  
YYWW  
0812  
8-Lead SOIC (150 mil)  
Examples:  
XXXXXXXX  
XXXXYYWW  
MCP616I  
MCP616  
I/SN0812  
e
3
SN^0812  
NNN  
256  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS21613C-page 23  
MCP616/7/8/9  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP619)  
Examples:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP619-I/P  
XXXXXXXXXXXXXX  
MCP619  
I/P
0812256  
e
3
OR  
YYWWNNN  
0812256  
14-Lead SOIC (150 mil) (MCP619)  
Examples:  
XXXXXXXXXX  
XXXXXXXXXX  
MCP619  
MCP619ISL  
XXXXXXXXXX  
e
3
I/SL
OR  
YYWWNNN  
0812256  
0812256  
Example:  
14-Lead TSSOP (MCP619)  
XXXXXXXX  
YYWW  
619IST  
0812  
256  
NNN  
DS21613C-page 24  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢋꢌꢎꢏꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢇꢄꢌꢕꢄꢖꢃꢆꢗꢍꢐꢘꢆꢙꢍꢐꢒꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢓꢁ:+ꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
M
ꢓꢁꢛ+  
ꢓꢁꢓꢓ  
M
ꢓꢁ9+  
ꢀꢁꢀꢓ  
ꢓꢁꢜ+  
ꢓꢁꢀ+  
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
M
ꢗꢁꢜꢓꢅ.ꢖ/  
,ꢁꢓꢓꢅ.ꢖ/  
,ꢁꢓꢓꢅ.ꢖ/  
ꢓꢁ:ꢓ  
5
ꢓꢁꢗꢓ  
ꢓꢁ9ꢓ  
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢀ  
ꢓꢁꢜ+ꢅꢙ*1  
M
ꢓꢝ  
9ꢝ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
(
ꢓꢁꢓ9  
ꢓꢁꢏꢏ  
M
M
ꢓꢁꢏ,  
ꢓꢁꢗꢓ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢀꢀꢀ.  
© 2008 Microchip Technology Inc.  
DS21613C-page 25  
MCP616/7/8/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢝꢓꢄꢈꢆ ꢔꢁꢂꢋꢔꢃꢆꢗꢇꢘꢆMꢆ"##ꢆꢑꢋꢈꢆ$ꢏꢅ%ꢆꢙꢇꢝ ꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
4ꢄꢃ%  
ꢚ6/;*ꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
9
ꢁꢀꢓꢓꢅ.ꢖ/  
M
ꢁꢀ,ꢓ  
M
ꢁ,ꢀꢓ  
ꢁꢏ+ꢓ  
ꢁ,:+  
ꢁꢀ,ꢓ  
ꢁꢓꢀꢓ  
ꢁꢓ:ꢓ  
ꢁꢓꢀ9  
M
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
ꢑꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
.ꢇ ꢉꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢖꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢖꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
6
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
5
(ꢀ  
(
ꢉ.  
M
ꢁꢏꢀꢓ  
ꢁꢀꢜ+  
M
ꢁꢀꢀ+  
ꢁꢓꢀ+  
ꢁꢏꢜꢓ  
ꢁꢏꢗꢓ  
ꢁ,ꢗ9  
ꢁꢀꢀ+  
ꢁꢓꢓ9  
ꢁꢓꢗꢓ  
ꢁꢓꢀꢗ  
M
ꢁ,ꢏ+  
ꢁꢏ9ꢓ  
ꢁꢗꢓꢓ  
ꢁꢀ+ꢓ  
ꢁꢓꢀ+  
ꢁꢓꢛꢓ  
ꢁꢓꢏꢏ  
ꢁꢗ,ꢓ  
ꢘꢃꢑꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
4ꢑꢑꢉꢊꢅ5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
5ꢌ)ꢉꢊꢅ5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅꢙꢌ)ꢅꢖꢑꢇꢍꢃꢄꢔꢅꢅꢟ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ$ꢃꢍꢇꢄ%ꢅ/ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢓꢀꢓ@ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0ꢅ.ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓꢀ9.  
DS21613C-page 26  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐꢛꢘꢆMꢆꢛꢄꢎꢎꢏ&'ꢆ"()#ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙꢐꢒ *ꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢀꢁꢏꢛꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
M
ꢀꢁꢏ+  
ꢓꢁꢀꢓ  
M
M
M
ꢀꢁꢛ+  
M
ꢓꢁꢏ+  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅꢅ  
ꢕꢏ  
ꢕꢀ  
*
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
:ꢁꢓꢓꢅ.ꢖ/  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
/ꢎꢇ&$ꢉꢊꢅAꢌꢑ%ꢃꢌꢄꢇꢈB  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
*ꢀ  
,ꢁꢜꢓꢅ.ꢖ/  
ꢗꢁꢜꢓꢅ.ꢖ/  
ꢓꢁꢏ+  
ꢓꢁꢗꢓ  
M
M
ꢓꢁ+ꢓ  
ꢀꢁꢏꢛ  
5
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ.ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢓꢗꢅꢙ*1  
ꢓꢝ  
ꢓꢁꢀꢛ  
ꢓꢁ,ꢀ  
+ꢝ  
M
M
M
M
M
9ꢝ  
(
ꢓꢁꢏ+  
ꢓꢁ+ꢀ  
ꢀ+ꢝ  
+ꢝ  
ꢀ+ꢝ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ$ꢃꢍꢇꢄ%ꢅ/ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓ+ꢛ.  
© 2008 Microchip Technology Inc.  
DS21613C-page 27  
MCP616/7/8/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐꢛꢘꢆMꢆꢛꢄꢎꢎꢏ&'ꢆ"()#ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙꢐꢒ *ꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
DS21613C-page 28  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
+,ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢝꢓꢄꢈꢆ ꢔꢁꢂꢋꢔꢃꢆꢗꢇꢘꢆMꢆ"##ꢆꢑꢋꢈꢆ$ꢏꢅ%ꢆꢙꢇꢝ ꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
4ꢄꢃ%  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢚ6/;*ꢖ  
67ꢒ  
ꢀꢗ  
ꢁꢀꢓꢓꢅ.ꢖ/  
M
ꢒꢚ6  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢑꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢀꢓ  
ꢁꢀꢜ+  
M
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
.ꢇ ꢉꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢖꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢖꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
ꢘꢃꢑꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
4ꢑꢑꢉꢊꢅ5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
5
(ꢀ  
(
ꢉ.  
ꢁꢀꢀ+  
ꢁꢓꢀ+  
ꢁꢏꢜꢓ  
ꢁꢏꢗꢓ  
ꢁꢛ,+  
ꢁꢀꢀ+  
ꢁꢓꢓ9  
ꢁꢓꢗ+  
ꢁꢓꢀꢗ  
M
ꢁꢀ,ꢓ  
M
ꢁ,ꢀꢓ  
ꢁꢏ+ꢓ  
ꢁꢛ+ꢓ  
ꢁꢀ,ꢓ  
ꢁꢓꢀꢓ  
ꢁꢓ:ꢓ  
ꢁꢓꢀ9  
M
ꢁ,ꢏ+  
ꢁꢏ9ꢓ  
ꢁꢛꢛ+  
ꢁꢀ+ꢓ  
ꢁꢓꢀ+  
ꢁꢓꢛꢓ  
ꢁꢓꢏꢏ  
ꢁꢗ,ꢓ  
5ꢌ)ꢉꢊꢅ5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅꢙꢌ)ꢅꢖꢑꢇꢍꢃꢄꢔꢅꢅꢟ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ$ꢃꢍꢇꢄ%ꢅ/ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢓꢀꢓ@ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0ꢅ.ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓꢓ+.  
© 2008 Microchip Technology Inc.  
DS21613C-page 29  
MCP616/7/8/9  
+,ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐꢂꢘꢆMꢆꢛꢄꢎꢎꢏ&'ꢆ"()#ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙꢐꢒ *ꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢗ  
ꢀꢁꢏꢛꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅꢅꢟ  
M
ꢀꢁꢏ+  
ꢓꢁꢀꢓ  
M
M
M
ꢀꢁꢛ+  
M
ꢓꢁꢏ+  
ꢕꢏ  
ꢕꢀ  
*
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
:ꢁꢓꢓꢅ.ꢖ/  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
/ꢎꢇ&$ꢉꢊꢅAꢌꢑ%ꢃꢌꢄꢇꢈB  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
*ꢀ  
,ꢁꢜꢓꢅ.ꢖ/  
9ꢁ:+ꢅ.ꢖ/  
ꢓꢁꢏ+  
ꢓꢁꢗꢓ  
M
M
ꢓꢁ+ꢓ  
ꢀꢁꢏꢛ  
5
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ.ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢓꢗꢅꢙ*1  
ꢓꢝ  
ꢓꢁꢀꢛ  
ꢓꢁ,ꢀ  
+ꢝ  
M
M
M
M
M
9ꢝ  
(
ꢓꢁꢏ+  
ꢓꢁ+ꢀ  
ꢀ+ꢝ  
+ꢝ  
ꢀ+ꢝ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ$ꢃꢍꢇꢄ%ꢅ/ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓ:+.  
DS21613C-page 30  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
© 2008 Microchip Technology Inc.  
DS21613C-page 31  
MCP616/7/8/9  
+,ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ-.ꢋꢔꢆꢐ.ꢎꢋꢔꢕꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐ-ꢘꢆMꢆ,(,ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙ-ꢐꢐꢒꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢗ  
ꢓꢁ:+ꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
M
ꢓꢁ9ꢓ  
ꢓꢁꢓ+  
M
ꢀꢁꢓꢓ  
M
:ꢁꢗꢓꢅ.ꢖ/  
ꢗꢁꢗꢓ  
+ꢁꢓꢓ  
ꢓꢁ:ꢓ  
ꢀꢁꢏꢓ  
ꢀꢁꢓ+  
ꢓꢁꢀ+  
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
ꢗꢁ,ꢓ  
ꢗꢁꢜꢓ  
ꢓꢁꢗ+  
ꢗꢁ+ꢓ  
+ꢁꢀꢓ  
ꢓꢁꢛ+  
5
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
5ꢀ  
ꢀꢁꢓꢓꢅꢙ*1  
ꢓꢝ  
ꢓꢁꢓꢜ  
ꢓꢁꢀꢜ  
M
M
M
9ꢝ  
(
ꢓꢁꢏꢓ  
ꢓꢁ,ꢓ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓ9ꢛ.  
DS21613C-page 32  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
APPENDIX A: REVISION HISTORY  
Revision C (October 2008)  
The following is the list of modifications:  
1. Added Section 1.1 “Test Circuits”.  
2. Added Figure 2-36.  
3. Added Section 4.1.1 “Phase Reversal”,  
Section 4.1.2 “Input Voltage and Current  
Limits”, and Section 4.1.3 “Normal Opera-  
tion”.  
4. Updated Figure 4-7.  
5. Updated Section 5.0 “Design Aids”.  
6. Updated Section 6.0 “Packaging Informa-  
tion”  
Revision B (April 2005)  
The following is the list of modifications:  
1. Clarified specifications found in Section 1.0  
“Electrical Characteristics”.  
2. Updated Section 2.0 “Typical Performance  
Curves” and added input noise current density  
plot.  
3. Added Section 3.0 “Pin Descriptions”.  
4. Updated Section 4.0 “Applications Informa-  
tion”.  
5. Updated the SPICE macro model and added  
information on the FilterLab software, in  
Section 5.0 “Design Aids”.  
6. Corrected package marking information  
(Section 6.0 “Packaging Information”).  
7. Added Appendix A: “Revision History”.  
Revision A (April 2001)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS21613C-page 29  
MCP616/7/8/9  
NOTES:  
DS21613C-page 30  
© 2008 Microchip Technology Inc.  
MCP616/7/8/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature  
Range  
Package  
a)  
b)  
c)  
MCP616-I/P:  
Industrial Temperature,  
8 lead PDIP.  
MCP616-I/SN:  
Industrial Temperature,  
8 lead SOIC.  
Device:  
MCP616:  
Single Operational Amplifier  
MCP616T-I/MS: Tape and Reel,  
Industrial Temperature,  
MCP616T: Single Operational Amplifier  
(Tape and Reel for SOIC, MSOP)  
8 lead MSOP.  
MCP617:  
MCP617T: Dual Operational Amplifier  
(Tape and Reel for SOIC and MSOP)  
Single Operational Amplifier w/Chip Select (CS)  
Dual Operational Amplifier  
a)  
b)  
MCP617-I/MS:  
Industrial Temperature,  
8 lead MSOP.  
MCP618:  
MCP618T: Single Operational Amplifier w/Chip Select (CS)  
(Tape and Reel for SOIC and MSOP)  
MCP619:  
MCP619T: Quad Operational Amplifier  
(Tape and Reel for SOIC and TSSOP)  
MCP617T-I/MS: Tape and Reel,  
Industrial Temperature,  
Quad Operational Amplifier  
8 lead MSOP.  
c)  
MCP617-I/P:  
Industrial Temperature,  
8 lead PDIP.  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
a)  
b)  
MCP618-I/SN:  
Industrial Temperature,  
8 lead SOIC.  
MS  
P
SN  
SL  
ST  
=
=
=
=
=
Plastic MSOP, 8-lead  
MCP618T-I/SN: Tape and Reel,  
Industrial Temperature,  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (3.90 mm body), 8-lead  
Plastic SOIC (3.90 mm Body), 14-lead (MCP619)  
Plastic TSSOP (4.4mm Body), 14-lead (MCP619)  
8 lead SOIC.  
c)  
a)  
b)  
c)  
MCP618-I/P:  
MCP619T-I/SL:  
MCP619T-I/ST:  
MCP619-I/P:  
Industrial Temperature,  
8 lead PDIP.  
Tape and Reel,  
Industrial Temperature,  
14 lead SOIC.  
Tape and Reel,  
Industrial Temperature,  
14 lead TSSOP.  
Industrial Temperature,  
14 lead PDIP.  
© 2008 Microchip Technology Inc.  
DS21613C-page 31  
MCP616/7/8/9  
NOTES:  
DS21613C-page 32  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS21613C-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS21613C-page 34  
© 2008 Microchip Technology Inc.  

相关型号:

MCP617-I/ST

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP617T

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP617T-I/MS

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP617T-I/P

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP617T-I/SL

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP617T-I/SN

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP617T-I/ST

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP618

2.3V TO 5.5V MICROPOWER BI - CMOS OP AMPS
MICROCHIP

MCP618-I/MS

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP618-I/P

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP618-I/SL

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP

MCP618-I/SN

2.3V to 5.5V Micropower Bi-CMOS Op Amps
MICROCHIP