MCP6231_05 [MICROCHIP]

20 レA, 300 kHz Rail-to-Rail Op Amp; 20 μA , 300 kHz的轨至轨运算放大器
MCP6231_05
型号: MCP6231_05
厂家: MICROCHIP    MICROCHIP
描述:

20 レA, 300 kHz Rail-to-Rail Op Amp
20 μA , 300 kHz的轨至轨运算放大器

运算放大器
文件: 总28页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6231/2/4  
20 µA, 300 kHz Rail-to-Rail Op Amp  
Features  
Description  
• Gain Bandwidth Product: 300 kHz (typ.)  
• Supply Current: IQ = 20 µA (typ.)  
The Microchip Technology Inc. MCP6231/2/4 opera-  
tional amplifiers (op amps) provide wide bandwidth for  
the quiescent current. The MCP6231/2/4 family has a  
300 kHz Gain Bandwidth Product (GBWP) and 65°  
(typ.) phase margin. This family operates from a single  
supply voltage as low as 1.8V, while drawing 20 µA  
(typ.) quiescent current. In addition, the MCP6231/2/4  
family supports rail-to-rail input and output swing, with  
a common mode input voltage range of VDD + 300 mV  
to VSS – 300 mV. These op amps are designed in one  
of Microchip’s advanced CMOS processes.  
• Supply Voltage: 1.8V to 5.5V  
• Rail-to-Rail Input/Output  
• Extended Temperature Range: -40°C to +125°C  
• Available in 5-Pin SC-70 and SOT-23 packages  
Applications  
• Automotive  
• Portable Equipment  
• Transimpedance amplifiers  
• Analog Filters  
Package Types  
MCP6231  
MCP6231  
PDIP, SOIC, MSOP  
• Notebooks and PDAs  
• Battery-Powered Systems  
SOT-23-5  
NC  
1
2
3
4
8
7
6
5
NC  
VDD  
VOUT  
VSS  
1
2
3
5
4
VDD  
VIN  
+
+
Available Tools  
VIN  
VOUT  
NC  
VIN  
+
VIN–  
• SPICE Macro Models (at www.microchip.com)  
• FilterLab® Software (at www.microchip.com)  
VSS  
MCP6231R  
MCP6232  
PDIP, SOIC, MSOP  
Typical Application  
SOT-23-5  
V
VSS  
VOUT  
VDD  
V
V
8
7
6
5
1
5
4
OUTA  
1
2
R
DD  
G2  
_
V
2
3
V
-
+
IN2  
INA  
OUTB  
R
_
VIN+  
VIN–  
G1  
V
+ 3  
4
+ -  
V
V
INA  
INB  
V
IN1  
V
R
+
SS  
F
INB  
V
DD  
MCP6231U  
SC-70-5, SOT-23-5  
MCP6234  
PDIP, SOIC, TSSOP  
R
X
Y
V
OUT  
MCP6231  
+
VDD  
VIN  
VSS  
VIN  
+
V
14 V  
1
1
2
3
5
OUTA  
OUTD  
+
R
R
Z
V
– 2  
- + + 13 V  
-
INA  
IND  
V
+
12 V  
+
3
4
VOUT  
4
INA  
IND  
V
V
SS  
11  
DD  
V
V
+
10 V  
9 V  
8 V  
+
5
6
7
INB  
INC  
- + + -  
Summing Amplifier Circuit  
INB  
INC  
V
OUTB  
OUTC  
© 2005 Microchip Technology Inc.  
DS21881C-page 1  
MCP6231/2/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
- V .........................................................................7.0V  
SS  
DD  
All Inputs and Outputs ................. V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
DD  
SS  
Output Short Circuit Current ..................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature....................................65°C to +150°C  
Junction Temperature (T )...........................................+150°C  
J
ESD Protection On All Pins (HBM;MM) ............... ≥ 4 kV; 300V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/2, RL = 100 kΩ to VDD/2 and VOUT VDD/2.  
Sym  
Min  
Typ  
Max  
Units Conditions  
mV VCM = VSS  
Parameters  
Input Offset  
Input Offset Voltage  
VOS  
VOS  
-5.0  
-7.0  
+5.0  
+7.0  
Extended Temperature  
mV TA = -40°C to +125°C,  
VCM = VSS (Note)  
Input Offset Drift with Temperature ΔVOS/ΔTA  
±3.0  
83  
µV/°C TA= -40°C to +125°C,  
VCM = VSS  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current:  
PSRR  
dB VCM = VSS  
IB  
IB  
±1.0  
20  
pA  
At Temperature  
pA TA = +85°C  
At Temperature  
IB  
1100  
pA TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1.0  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||3  
Ω||pF  
Ω||pF  
Common Mode Input Range  
Common Mode Rejection Ratio  
VCMR  
VSS – 0.3  
61  
VDD + 0.3  
V
CMRR  
75  
dB VCM = -0.3V to 5.3V,  
VDD = 5V  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
AOL  
90  
110  
dB VOUT = 0.3V to VDD – 0.3V,  
VCM = VSS  
Output  
Maximum Output Voltage Swing  
VOL, VOH VSS + 35  
VDD – 35  
mV RL =10 kΩ, 0.5V Output  
Overdrive  
Output Short-Circuit Current  
ISC  
ISC  
±6  
mA VDD = 1.8V  
mA VDD = 5.5V  
±23  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
10  
5.5  
30  
V
Quiescent Current per Amplifier  
20  
µA IO = 0, VCM = VDD – 0.5V  
Note:  
The SC-70 package is only tested at +25°C.  
DS21881C-page 2  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 100 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
300  
65  
kHz  
°
G = +1  
Slew Rate  
SR  
0.15  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
6.0  
52  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
0.6  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Note  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
206  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
70  
120  
100  
Note:  
The internal Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
© 2005 Microchip Technology Inc.  
DS21881C-page 3  
MCP6231/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
90  
85  
80  
75  
70  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
630 Samples  
CM = VSS  
V
PSRR (VCM = VSS  
)
6%  
CMRR (VCM = -0.3V to +5.3V,  
DD = 5.0V)  
4%  
V
2%  
0%  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Offset Voltage (mV)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
CMRR, PSRR vs. Ambient  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
120  
100  
80  
0
RL = 10 kΩ  
VCM = VDD/2  
PSRR-  
-30  
Gain  
-60  
CMRR  
60  
-90  
Phase  
PSRR+  
40  
20  
0
-120  
-150  
-180  
-210  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
20  
-20  
10  
100  
1k  
10k  
100k  
0.1  
1
10 100 1k 10k 100k 1M 10M  
1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
01 00 01 Fr0e2que0n3cy (0H4z) 05 06 07  
Frequency (Hz)  
FIGURE 2-2:  
PSRR, CMRR vs.  
FIGURE 2-5:  
Open-Loop Gain, Phase vs.  
Frequency.  
Frequency.  
20%  
30%  
630 Samples  
CM = VDD/2  
A = +85°C  
632 Samples  
VCM = VDD/2  
TA = +125°C  
18%  
16%  
14%  
12%  
10%  
8%  
V
T
25%  
20%  
15%  
10%  
5%  
6%  
4%  
2%  
0%  
0%  
Input Bias Current (pA)  
Input Bias Current (nA)  
FIGURE 2-3:  
Input Bias Current at +85°C.  
FIGURE 2-6:  
Input Bias Current at +125°C.  
DS21881C-page 4  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
1,000  
20%  
628 Samples  
18%  
V
CM = VSS  
16%  
14%  
12%  
10%  
8%  
TA = -40°C to +125°C  
100  
6%  
4%  
2%  
0%  
10  
0.1  
1
10  
100  
1k  
10k 100k  
1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
4
Input Offset Voltage Drift (µV/°C)  
0
1Freque2ncy (Hz3)  
5
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
Input Offset Voltage Drift.  
vs. Frequency.  
100  
50  
550  
VCM = VSS  
VDD = 1.8V  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
450  
350  
250  
150  
0
-50  
-100  
-150  
-200  
VDD = 5.5V  
VDD = 1.8V  
-250  
-300  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-11:  
Input Offset Voltage vs.  
FIGURE 2-8:  
Input Offset Voltage vs.  
Output Voltage.  
Common Mode Input Voltage at VDD = 1.8V.  
30  
25  
20  
15  
10  
5
200  
+ISC  
VDD = 5.5 V  
150  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
100  
TA = +125°C  
TA = +85°C  
50  
0
-5  
0
-50  
TA = +25°C  
A = -40°C  
T
-10  
-15  
-20  
-25  
-30  
-100  
-150  
-200  
-ISC  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-12:  
Output Short-Circuit Current  
FIGURE 2-9:  
Input Offset Voltage vs.  
vs. Ambient Temperature.  
Common Mode Input Voltage at VDD = 5.5V.  
© 2005 Microchip Technology Inc.  
DS21881C-page 5  
MCP6231/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
G = +1 V/V  
L = 10 kΩ  
VDD = 5.5V  
R
Falling Edge  
VDD = 1.8V  
50  
Rising Edge  
-50 -25  
0
25  
75  
100 125  
Time (2 µs/div)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Slew Rate vs. Ambient  
FIGURE 2-16:  
Small-Signal, Non-Inverting  
Temperature.  
Pulse Response.  
1,000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
G = +1 V/V  
VDD – VOH  
VOL – VSS  
1
10µ  
100µ  
1
1m  
1.0  
10m  
11  
12  
Output Current Magnitude (A)  
Time (20 µs/div)  
FIGURE 2-14:  
Output Voltage Headroom  
FIGURE 2-17:  
Large-Signal, Non-Inverting  
vs. Output Current Magnitude.  
Pulse Response.  
30  
10  
VCM = 0.9VDD  
25  
20  
15  
10  
5
VDD = 5.5V  
VDD = 1.8V  
1
TA = +125°C  
T
A = +85°C  
TA = +25°C  
A = -40°C  
T
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
1k  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
1.E+03  
Frequency (Hz)  
FIGURE 2-15:  
Maximum Output Voltage  
FIGURE 2-18:  
Quiescent Current vs.  
Swing vs. Frequency.  
Power Supply Voltage.  
DS21881C-page 6  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1:  
PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP6231  
(PDIP, SOIC, MSOP)  
MCP6231  
(SOT-23-5)  
MCP6231R  
(SOT-23-5)  
MCP6231U  
(SOT-23-5)  
Symbol  
Description  
Analog Output  
6
1
4
1
4
4
3
VOUT  
VIN–  
VIN+  
VDD  
VSS  
2
Inverting Input  
3
3
3
1
Non-inverting Input  
Positive Power Supply  
Negative Power Supply  
No Internal Connection  
7
4
5
2
5
2
5
2
1, 5, 8  
NC  
TABLE 3-2:  
MCP6232  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP6234  
Symbol  
Description  
Analog Output (op amp A)  
Inverting Input (op amp A)  
1
2
1
2
VOUTA  
VINA  
+
3
3
VINA  
Non-inverting Input (op amp A)  
Positive Power Supply  
8
4
VDD  
5
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
3.1  
Analog Outputs  
3.3  
Power Supply (V and V  
)
DD  
SS  
The output pins are low-impedance voltage sources.  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
3.2  
Analog Inputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts can  
share a bulk capacitor (typically 1 µF to 100 µF) with  
other nearby analog parts; it needs to be within 100 mm  
of the VDD pin.  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
© 2005 Microchip Technology Inc.  
DS21881C-page 7  
MCP6231/2/4  
4.0  
APPLICATION INFORMATION  
The MCP6231/2/4 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-cost, low-power and  
general-purpose applications. The low supply voltage,  
low quiescent current and wide bandwidth makes the  
MCP6231/2/4 ideal for battery-powered applications.  
VOUT  
RIN  
MCP623X  
+
VIN  
(Maximum expected VIN) VDD  
------------------------------------------------------------------------------  
2 mA  
RIN  
4.1  
Rail-to-Rail Inputs  
VSS (Minimum expected VIN  
)
The MCP6231/2/4 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 4-1 shows the input voltage exceeding  
the supply voltage without any phase reversal.  
---------------------------------------------------------------------------  
RIN  
2 mA  
FIGURE 4-2:  
Input Current-Limiting  
Resistor (RIN).  
6.0  
VDD = 5.0V  
VOUT  
4.2  
Rail-to-Rail Output  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
G = +2 V/V  
The output voltage range of the MCP6231/2/4 op amps  
is VDD – 35 mV (max.) and VSS + 35 mV (min.) when  
RL = 10 kΩ is connected to VDD/2 and VDD = 5.5V.  
Refer to Figure 2-14 for more information.  
VIN  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, but all gains show the  
same general behavior.  
Time (1 ms/div)  
FIGURE 4-1:  
Phase Reversal.  
The MCP6231/2/4 Show No  
The input stage of the MCP6231/2/4 op amps use two  
differential input stages in parallel. One operates at low  
common mode input voltage (VCM) and the other at  
high VCM. With this topology, the device operates with  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series resis-  
tor at the output (RISO in Figure 4-3) improves the feed-  
back loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The band-  
width will be generally lower than the bandwidth with no  
capacitive load.  
VCM up to 300 mV above VDD and 300 mV below VSS  
.
The input offset voltage is measured at  
VCM = VSS – 300 mV and VDD + 300 mV to ensure  
proper operation.  
Input voltages that exceed the input voltage range  
(VSS – 0.3V to VDD + 0.3V at 25°C) can cause  
excessive current to flow into or out of the input pins.  
Current beyond ±2 mA can cause reliability problems.  
Applications that exceed this rating must be externally  
limited with a resistor, as shown in Figure 4-2.  
RISO  
VOUT  
MCP623X  
+
VIN  
CL  
FIGURE 4-3:  
Output resistor, RISO  
stabilizes large capacitive loads.  
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
signal gain are equal. For inverting gains, GN is  
1 + |Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).  
DS21881C-page 8  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
4.6  
PCB Surface Leakage  
10,01000k  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6231/2/4 family’s bias current at 25°C (1 pA, typ.).  
1k  
1,000  
GN = 1 V/V  
GN = 2 V/V  
GN t 4 V/V  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
100  
100  
10p  
100p  
100  
Normalized Load Capacitance; CL/GN (F)  
1n  
10n  
10000  
10  
1000  
FIGURE 4-4:  
for Capacitive Loads.  
Recommended RISO Values  
VIN–  
VIN+  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Evaluation on the bench and  
simulations with the MCP6231/2/4 SPICE macro  
model are very helpful. Modify RISO’s value until the  
response is reasonable.  
VSS  
4.4  
Supply Bypass  
With this op amp, the power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-  
frequency performance. It can use a bulk capacitor  
(i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other nearby analog parts.  
Guard Ring  
Example Guard Ring Layout  
FIGURE 4-6:  
for Inverting Gain.  
1. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
4.5  
Unused Op Amps  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
An unused op amp in a quad package (MCP6234)  
should be configured as shown in Figure 4-5. Both  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A can use any reference voltage  
between the supplies, provides a buffered DC voltage  
and minimizes the supply current draw of the unused  
2. Inverting Gain and Transimpedance Amplifiers  
(convert current to voltage, such as photo  
detectors):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
op amp. Circuit  
B
minimizes the number of  
components, but may draw a little more supply current  
for the unused op amp.  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
¼ MCP6234 (A)  
¼ MCP6234 (B)  
VDD  
VDD  
VDD  
FIGURE 4-5:  
Unused Op Amps.  
© 2005 Microchip Technology Inc.  
DS21881C-page 9  
MCP6231/2/4  
To minimize output offset voltage and increase circuit  
accuracy, the resistor values need to meet the  
conditions:  
4.7  
Application Circuits  
4.7.1  
MATCHING THE IMPEDANCE AT  
THE INPUTS  
RVIN = RIN  
+
To minimize the effect of input bias current in an ampli-  
fier circuit (this is important for very high source-  
impedance applications, such as pH meters and  
transimpedance amplifiers), the impedances at the  
inverting and non-inverting inputs need to be  
matched. This is done by choosing the circuit resistor  
values so that the total resistance at each input is the  
same. Figure 4-7 shows a summing amplifier circuit.  
4.7.2  
COMPENSATING FOR THE  
PARASITIC CAPACITANCE  
In analog circuit design, the PCB parasitic capacitance  
can compromise the circuit behavior; Figure 4-8 shows  
a typical scenario. If the input of an amplifier sees  
parasitic capacitance of several picofarad (CPARA  
,
R
G2  
which includes the common mode capacitance of 6 pF,  
typ.), and large RF and RG, the frequency response of  
the circuit will include a zero. This parasitic zero  
introduces gain-peaking and can cause circuit  
instability.  
V
V
IN2  
IN1  
R
G1  
R
F
V
DD  
R
X
Y
V
OUT  
MCP623X  
+
V
+
AC  
V
MCP623X  
OUT  
R
R
Z
R
R
G
F
V
DC  
FIGURE 4-7:  
Summing Amplifier Circuit.  
To match the inputs, set all voltage sources to ground  
and calculate the total resistance at the input nodes. In  
this summing amplifier circuit, the resistance at the  
inverting input is calculated by setting VIN1, VIN2 and  
VOUT to ground. In this case, RG1, RG2 and RF are in  
parallel. The total resistance at the inverting input is:  
C
PARA  
C
F
RG  
------  
RF  
CF = CPARA  
FIGURE 4-8:  
Effect of Parasitic  
Capacitance at the Input.  
1
---------------------------------------------  
RIN =  
One solution is to use smaller resistor values to push  
the zero to a higher frequency. Another solution is to  
compensate by introducing a pole at the point at which  
the zero occurs. This can be done by adding CF in  
parallel with the feedback resistor (RF). CF needs to be  
selected so that the ratio CPARA:CF is equal to the ratio  
of RF:RG.  
1
1
1
--------- --------- ------  
+
+
RG1 RG2 RF  
Where:  
RVIN= total resistance at the inverting input  
At the non-inverting input, VDD is the only voltage  
source. When VDD is set to ground, both Rx and Ry are  
in parallel. The total resistance at the non-inverting  
input is:  
1
------------------------  
RVIN  
=
+ RZ  
+
1
1
------ -----  
+
RX RY  
Where:  
+
RVIN = total resistance at the inverting  
input  
DS21881C-page 10  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
5.0  
DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP6231/2/4 family of op amps.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6231/2/4 op  
amps is available on our web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. See the macro  
model file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
®
5.2  
FilterLab Software  
Microchip’s FilterLab software is an innovative tool that  
simplifies analog active-filter (using op amps) design.  
Available at no cost from our web site at  
www.microchip.com, the FilterLab design tool provides  
full schematic diagrams of the filter circuit with  
component values. It also outputs the filter circuit in  
SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
© 2005 Microchip Technology Inc.  
DS21881C-page 11  
MCP6231/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6231U Only)  
Example:  
XXN (Front)  
YWW (Back)  
AS2 (Front)  
546 (Back)  
XXNN  
AS25  
OR  
OR  
Example:  
5
5-Lead SOT-23  
5
4
3
4
3
Device  
Code  
MCP6231  
BJNN  
BKNN  
BLNN  
BJ25  
XXNN  
MCP6231R  
MCP6231U  
1
2
1
2
Note:  
Applies to 5-Lead SOT-23.  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6232E  
546256  
8-Lead PDIP (300 mil)  
Example:  
MCP6232  
XXXXXXXX  
XXXXXNNN  
e
3
E/P^256  
YYWW  
0546  
8-Lead SOIC (150 mil)  
Example:  
MCP6232E  
XXXXXXXX  
XXXXYYWW  
SN
e3  
0546  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21881C-page 12  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6234)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6234  
e
3
E/P^
YYWWNNN  
0546256  
14-Lead SOIC (150 mil) (MCP6234)  
Example:  
MCP6234  
XXXXXXXXXX  
XXXXXXXXXX  
e
3
E/SL^
YYWWNNN  
0546256  
Example:  
14-Lead TSSOP (MCP6234)  
6234E  
0546  
XXXXXXXX  
YYWW  
256  
NNN  
© 2005 Microchip Technology Inc.  
DS21881C-page 13  
MCP6231/2/4  
5-Lead Small Outline Transistor Package (SC-70)  
E
E1  
D
p
B
n
1
Q1  
A2  
A
c
A1  
L
Units  
INCHES  
NOM  
5
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.026 (BSC)  
0.65 (BSC)  
Overall Height  
A
.031  
.043  
0.80  
1.10  
1.00  
0.10  
2.40  
1.35  
2.20  
0.30  
0.40  
0.18  
0.30  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.031  
.000  
.071  
.045  
.071  
.004  
.004  
.004  
.006  
.039  
.004  
.094  
.053  
.087  
.012  
.016  
.007  
.012  
0.80  
0.00  
1.80  
1.15  
1.80  
0.10  
0.10  
0.10  
0.15  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Q1  
c
Top of Molded Pkg to Lead Shoulder  
Lead Thickness  
Lead Width  
B
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEITA (EIAJ) Standard: SC-70  
Drawing No. C04-061  
DS21881C-page 14  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
5
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
0
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Drawing No. C04-091  
© 2005 Microchip Technology Inc.  
DS21881C-page 15  
MCP6231/2/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
8
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
.037  
.006  
0.75  
0.85  
0.95  
0.15  
-
0.00  
-
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint (Reference)  
Foot Angle  
F
.037 REF  
0.95 REF  
φ
c
0°  
.003  
.009  
5°  
-
.006  
.012  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5°  
-
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
DS21881C-page 16  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2005 Microchip Technology Inc.  
DS21881C-page 17  
MCP6231/2/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21881C-page 18  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
© 2005 Microchip Technology Inc.  
DS21881C-page 19  
MCP6231/2/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
DS21881C-page 20  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
14  
14  
.026  
0.65  
Overall Height  
A
.043  
1.10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.033  
.002  
.246  
.169  
.193  
.020  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.037  
.006  
.256  
.177  
.201  
.028  
8
0.85  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
§
0.05  
6.25  
4.30  
4.90  
0.50  
0
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B1  
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
© 2005 Microchip Technology Inc.  
DS21881C-page 21  
MCP6231/2/4  
NOTES:  
DS21881C-page 22  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
APPENDIX A: REVISION HISTORY  
Revision C (March 2005)  
The following is the list of modifications:  
1. Added the MCP6234 quad op amp.  
2. Corrected plots in Section 2.0 “Typical Perfor-  
mance Curves”.  
3. Added Section 3.0 “Pin Descriptions”.  
4. Added new SC-70 package markings. Added  
PDIP-14, SOIC-14, and TSSOP-14 packages  
and corrected package marking information  
(Section 6.0 “Packaging Information”).  
5. Added Appendix A: “Revision History”.  
Revision B (August 2004)  
Revision A (March 2004)  
• Original Release of this Document.  
© 2005 Microchip Technology Inc.  
DS21881C-page 23  
MCP6231/2/4  
NOTES:  
DS21881C-page 24  
© 2005 Microchip Technology Inc.  
MCP6231/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
-X  
/XX  
a) MCP6231-E/SN:  
Extended Temp.,  
8LD SOIC package.  
Extended Temp.,  
8LD MSOP package.  
Extended Temp.,  
8LD PDIP package.  
Tape and Reel  
and/or  
Alternate Pinout  
Temperature Package  
Range  
b) MCP6231-E/MS:  
c) MCP6231-E/P:  
Device:  
MCP6231:  
MCP6231T:  
Single Op Amp (MSOP, PDIP, SOIC)  
Single Op Amp (Tape and Reel)  
(MSOP, SOIC, SOT-23)  
Single Op Amp (Tape and Reel)  
(SOT-23)  
d) MCP6231RT-E/OT: Tape and Reel,  
Extended Temp.,  
MCP6231RT:  
5LD SOT-23 package  
MCP6231UT: Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
MCP6232:  
e) MCP6231UT-E/OT: Tape and Reel,  
Extended Temp.,  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(MSOP, SOIC)  
MCP6232T:  
5LD SOT-23 package.  
f)  
MCP6231UT-E/LT: Tape and Reel,  
Extended Temp.,  
MCP6234:  
MCP6234T:  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(TSSOP, SOIC)  
5LD SC-70 package.  
a) MCP6232-E/SN:  
b) MCP6232-E/MS:  
c) MCP6232-E/P:  
Extended Temp.,  
8LD SOIC package.  
Extended Temp.,  
8LD MSOP package.  
Extended Temp.,  
8LD PDIP package.  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
LT  
MS  
P
=
=
=
=
Plastic Package (SC-70), 5-lead (MCP6231U only)  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6231, MCP6231R, MCP6231U)  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4 mil Body), 14-lead  
OT  
d) MCP6232T-E/SN: Tape and Reel,  
Extended Temp.,  
SN  
SL  
ST  
=
=
=
8LD SOIC package.  
a) MCP6234-E/P:  
b) MCP6234-E/SL:  
c) MCP6234-E/ST:  
Extended Temp.,  
14LD PDIP package.  
Extended Temp.,  
14LD SOIC package.  
Extended Temp.,  
14LD TSSOP  
package.  
d) MCP6234T-E/SL: Tape and Reel,  
Extended Temp.,  
14LD SOIC package.  
e) MCP6234T-E/ST: Tape and Reel,  
Extended Temp.,  
14LD TSSOP  
package.  
© 2005 Microchip Technology Inc.  
DS21881C-page 25  
MCP6231/2/4  
NOTES:  
DS21881C-page 26  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance and WiperLock are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21881C-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/01/05  
DS21881C-page 28  
© 2005 Microchip Technology Inc.  

相关型号:

MCP6231_09

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/LT

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/MC

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/MNY

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/MS

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/OT

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/P

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/SL

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/SN

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232-E/ST

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6232T

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP