MCP6271_06 [MICROCHIP]

170 レA, 2 MHz Rail-to-Rail Op Amp; 170 μA , 2 MHz的轨至轨运算放大器
MCP6271_06
型号: MCP6271_06
厂家: MICROCHIP    MICROCHIP
描述:

170 レA, 2 MHz Rail-to-Rail Op Amp
170 μA , 2 MHz的轨至轨运算放大器

运算放大器
文件: 总34页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6271/1R/2/3/4/5  
170 µA, 2 MHz Rail-to-Rail Op Amp  
Description  
Features  
• Gain Bandwidth Product: 2 MHz (typ.)  
• Supply Current: IQ = 170 µA (typ.)  
• Supply Voltage: 2.0V to 5.5V  
• Rail-to-Rail Input/Output  
The Microchip Technology Inc. MCP6271/1R/2/3/4/5  
family of operational amplifiers (op amps) provide wide  
bandwidth for the current. This family has a 2 MHz  
Gain Bandwidth Product (GBWP) and a 65° Phase  
Margin. This family also operates from a single supply  
voltage as low as 2.0V, while drawing 170 µA (typ.)  
quiescent current. The MCP6271/1R/2/3/4/5 supports  
rail-to-rail input and output swing, with a common mode  
input voltage range of VDD + 300 mV to VSS – 300 mV.  
This family of op amps is designed with Microchip’s  
advanced CMOS process.  
• Extended Temperature Range: –40°C to +125°C  
• Available in Single, Dual and Quad Packages  
• Parts with Chip Select (CS)  
- Single (MCP6273)  
- Dual (MCP6275)  
The MCP6275 has a Chip Select input (CS) for dual op  
amps in an 8-pin package and is manufactured by  
cascading two op amps (the output of op amp A  
connected to the non-inverting input of op amp B). The  
CS input puts the device in low power mode.  
Applications  
• Automotive  
• Portable Equipment  
• Photodiode Amplifier  
• Analog Filters  
The MCP6271/1R/2/3/4/5 family operates over the  
Extended Temperature Range of –40°C to +125°C,  
with a power supply range of 2.0V to 5.5V.  
• Notebooks and PDAs  
• Battery Powered Systems  
Available Tools  
• SPICE Macro Model (at www.microchip.com)  
• FilterLab® Software (at www.microchip.com)  
Package Types  
MCP6271  
MCP6271  
MCP6271R  
MCP6272  
PDIP, SOIC, MSOP  
SOT-23-5  
SOT-23-5  
PDIP, SOIC, MSOP  
NC 1  
8 NC  
VOUT  
VSS  
1
2
5
VOUT  
VDD  
1
5
VOUTA  
VINA  
1
2
8
7
VDD  
VSS  
VDD  
2
7
2
-
+
VIN  
VIN+ 3  
VSS  
-
VDD  
VOUTB  
-
-
+
6 VOUT  
5 NC  
VIN+ 3  
4 VIN  
VIN+ 3  
4 VIN  
VINA+ 3  
VSS  
+
6 VINB  
5 VINB  
+
-
4
4
MCP6273  
MCP6273  
MCP6274  
PDIP, SOIC, TSSOP  
MCP6275  
PDIP, SOIC, MSOP  
PDIP, SOIC, MSOP  
SOT-23-6  
NC 1  
8 CS  
VOUT  
VSS  
1
2
6
5
VOUTA  
1
2
14  
13  
VOUTA/VINB+ 1  
8
7
VDD  
CS  
VOUTD  
VDD  
VOUTB  
-
2
3
4
7
2
VIN  
+
VINA  
VINA  
VINA+ 3  
VSS  
- +  
VDD  
VIND  
+
+ -  
- +  
-
+
VIN  
6
VOUT VIN+ 3  
4 VIN  
VINA+ 3  
VDD  
INB+ 5  
12 VIND  
11 VSS  
10 VINC  
+
-
6 VINB  
5 CS  
VSS  
5 NC  
4
4
V
+
-
-
+
+
VINB  
VINC  
6
7
9
8
VOUTB  
VOUTC  
© 2006 Microchip Technology Inc.  
DS21810E-page 1  
MCP6271/1R/2/3/4/5  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+ and VIN)...............±2 mA  
Analog Inputs (VIN+ and VIN–) †† .. VSS – 1.0V to VDD + 1.0V  
All other Inputs and Outputs .......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current .................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature....................................65°C to +150°C  
Junction Temperature (TJ) ..........................................+150°C  
ESD Protection On All Pins (HBM/MM) ................ ≥ 4 kV/400V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.0V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset (Note 1)  
Input Offset Voltage  
VOS  
VOS  
–3.0  
–5.0  
+3.0  
+5.0  
mV VCM = VSS  
Input Offset Voltage  
mV TA = –40°C to +125°C, VCM = VSS  
(Extended Temperature)  
Input Offset Temperature Drift  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
ΔVOS/ΔTA  
±1.7  
90  
µV/°C TA = –40°C to +125°C, VCM = VSS  
PSRR  
70  
dB  
VCM = VSS  
IB  
IB  
±1.0  
50  
200  
5
pA  
pA  
nA  
pA  
Note 2  
At Temperature  
TA= +85°C (Note 2)  
TA= +125°C (Note 2)  
Note 3  
At Temperature  
IB  
2
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1.0  
1013||6  
1013||3  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode (Note 4)  
Common Mode Input Voltage Range  
Ω||pF Note 3  
Ω||pF Note 3  
VCMR  
VCMR  
VSS 0.15  
VSS 0.30  
70  
85  
VDD + 0.15  
VDD + 0.30  
V
V
VDD = 2.0V (Note 5)  
VDD = 5.5V (Note 5)  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
CMRR  
dB  
VCM = –0.3V to 2.5V, VDD = 5V  
(Note 6)  
CMRR  
AOL  
65  
90  
80  
dB  
dB  
VCM = –0.3V to 5.3V, VDD = 5V  
(Note 6)  
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
110  
VOUT = 0.2V to VDD – 0.2V,  
V
CM = VSS (Note 1)  
Note 1: The MCP6275’s VCM for op amp B (pins VOUTA/VINB+ and VINB–) is VSS + 100 mV.  
2: The current at the MCP6275’s VINB– pin is specified by IB only.  
3: This specification does not apply to the MCP6275’s VOUTA/VINB+ pin.  
4: The MCP6275’s VINB– pin (op amp B) has a common mode input voltage range (VCMR) of VSS + 100 mV to  
DD – 100 mV. CMRR is not measured for op amp B of the MCP6275. The MCP6275’s VOUTA/VINB+ pin (op amp B)  
V
has a voltage range specified by VOH and VOL  
5: Set by design and characterization.  
.
6: Does not apply to op amp B of the MCP6275.  
DS21810E-page 2  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.0V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output  
Maximum Output Voltage Swing  
Output Short Circuit Current  
Power Supply  
VOL, VOH VSS + 15  
VDD 15  
mV 0.5V output overdrive (Note 4)  
ISC  
±25  
mA  
Supply Voltage  
VDD  
IQ  
2.0  
5.5  
V
Quiescent Current per Amplifier  
100  
170  
240  
µA  
IO = 0  
Note 1: The MCP6275’s VCM for op amp B (pins VOUTA/VINB+ and VINB–) is VSS + 100 mV.  
2: The current at the MCP6275’s VINB– pin is specified by IB only.  
3: This specification does not apply to the MCP6275’s VOUTA/VINB+ pin.  
4: The MCP6275’s VINB– pin (op amp B) has a common mode input voltage range (VCMR) of VSS + 100 mV to  
DD – 100 mV. CMRR is not measured for op amp B of the MCP6275. The MCP6275’s VOUTA/VINB+ pin (op amp B)  
V
has a voltage range specified by VOH and VOL  
5: Set by design and characterization.  
.
6: Does not apply to op amp B of the MCP6275.  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.0V to +5.5V, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, RL = 10 kΩ to VDD/2, CL = 60 pF and and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
2.0  
65  
MHz  
°
G = +1  
Slew Rate  
SR  
0.9  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
4.6  
20  
3
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +2.0V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
–40  
–40  
–65  
+125  
+125  
+150  
°C  
°C  
°C  
Note  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
230  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
70  
120  
100  
Note:  
The Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
© 2006 Microchip Technology Inc.  
DS21810E-page 3  
MCP6271/1R/2/3/4/5  
MCP6273/MCP6275 CHIP SELECT (CS) SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.0V to +5.5V, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, RL = 10 kΩ to VDD/2, CL = 60 pF and and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
VIL  
VSS  
0.2VDD  
V
ICSL  
0.01  
µA  
CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
VIH  
ICSH  
ISS  
0.8VDD  
VDD  
2
V
0.7  
µA  
µA  
µA  
CS = VDD  
CS = VDD  
CS = VDD  
GND Current per Amplifier  
Amplifier Output Leakage  
Dynamic Specifications (Note 1)  
–0.7  
0.01  
CS Low to Valid Amplifier  
Output, Turn on Time  
tON  
4
10  
µs  
CS Low 0.2 VDD, G = +1 V/V,  
VIN = VDD/2, VOUT = 0.9 VDD/2,  
VDD = 5.0V  
CS High to Amplifier Output  
High-Z  
tOFF  
0.01  
0.6  
µs  
V
CS High 0.8 VDD, G = +1 V/V,  
VIN = VDD/2, VOUT = 0.1 VDD/2  
Hysteresis  
VHYST  
VDD = 5V  
Note 1: The input condition (VIN) specified applies to both op amp A and B of the MCP6275. The dynamic  
specification is tested at the output of op amp B (VOUTB).  
CS  
VIL  
tON  
VIH  
tOFF  
High-Z  
High-Z  
VOUT  
-0.7 µA (typ.)  
ISS  
-0.7 µA (typ.)  
0.7 µA (typ.)  
-170 µA (typ.)  
10 nA (typ.)  
Timing Diagram for the  
0.7 µA (typ.)  
ICS  
FIGURE 1-1:  
Chip Select (CS) pin on the MCP6273 and  
MCP6275.  
DS21810E-page 4  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.0V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2, CL = 60 pF and CS is tied low.  
18%  
16%  
14%  
12%  
10%  
8%  
14%  
12%  
10%  
8%  
832 Samples  
CM = VSS  
832 Samples  
CM = VSS  
TA = -40°C to +125°C  
V
V
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage (mV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage Drift.  
32%  
22%  
422 Samples  
TA = +125°C  
422 Samples  
A = 85°C  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
28%  
24%  
20%  
16%  
12%  
8%  
T
6%  
4%  
4%  
2%  
0%  
0%  
0
10 20 30 40 50 60 70 80 90 100  
Input Bias Current (pA)  
Input Bias Current (nA)  
FIGURE 2-2:  
Input Bias Current at  
FIGURE 2-5:  
Input Bias Current at  
T = +85°C.  
T = +125°C.  
A
A
300  
300  
VDD = 2.0V  
VDD = 5.5V  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
TA = +125°C  
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0
-50  
-100  
-50  
-100  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage, with V = 2.0V.  
Common Mode Input Voltage, with V = 5.5V.  
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21810E-page 5  
MCP6271/1R/2/3/4/5  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, TA = +25°C, VCM = +2.0V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2, CL = 60 pF, and CS is tied low.  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
-0.40  
-0.45  
-0.50  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Typical lower (VCM – VSS) limit  
VDD = 5.5V  
VDD = 2.0V  
VDD = 2.0V  
VDD = 5.5V  
Typical upper (VCM – VDD) limit  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Common Mode Input  
FIGURE 2-10:  
Common Mode Input  
Voltage Range Lower Limit vs. Temperature.  
Voltage Range Upper Limit vs. Temperature.  
300  
10,000  
VCM = VSS  
Representative Part  
VCM = VDD  
250  
VDD = 5.5V  
1,000  
200  
150  
100  
50  
Input Bias Current  
100  
10  
1
0
VDD = 2.0V  
VDD = 5.5V  
Input Offset Current  
-50  
-100  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Bias, Input Offset  
Output Voltage.  
Currents vs. Temperature.  
120  
110  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
CMRR  
100  
90  
80  
70  
60  
CMRR  
PSRR–  
PSRR+  
PSRR  
(VCM = VSS  
)
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
1M  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
CMRR, PSRR vs.  
Frequency.  
Temperature.  
DS21810E-page 6  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, TA = +25°C, VCM = +2.0V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2, CL = 60 pF, and CS is tied low.  
2.5  
55  
2.0  
1.5  
45  
35  
25  
15  
5
Input Bias Current  
Input Offset Current  
Input Bias Current  
Input Offset Current  
1.0  
0.5  
0.0  
-5  
TA = 125°C  
DD = 5.5V  
TA = 85°C  
VDD = 5.5V  
-0.5  
-1.0  
-15  
-25  
V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias, Offset Currents  
FIGURE 2-16:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage, with  
vs. Common Mode Input Voltage, with  
T = +85°C.  
T = +125°C.  
A
A
250  
200  
150  
100  
50  
1000  
100  
10  
TA = +125°C  
A = +85°C  
TA = +25°C  
A = -40°C  
T
VOL – VSS  
T
VDD – VOH  
1
0
0.01  
0.1  
1
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Output Current Magnitude (mA)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Output Voltage Headroom  
Supply Voltage.  
vs. Output Current Magnitude.  
120  
100  
80  
0
3.0  
2.5  
80  
75  
70  
65  
60  
55  
50  
-30  
Gain  
-60  
GBWP, VDD = 5.5V  
VDD = 2.0V  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
-90  
Phase  
40  
20  
0
-120  
-150  
-180  
-210  
PM, VDD = 5.5V  
VDD = 2.0V  
-20  
0.1  
1
10 100 1k 10k 100k 1M10M 100M  
-50 -25  
0
25  
50  
75 100 125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Open-Loop Gain, Phase vs.  
FIGURE 2-18:  
Gain Bandwidth Product,  
Frequency.  
Phase Margin vs. Temperature.  
© 2006 Microchip Technology Inc.  
DS21810E-page 7  
MCP6271/1R/2/3/4/5  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, TA = +25°C, VCM = +2.0V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2, CL = 60 pF, and CS is tied low.  
10  
1
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VDD = 5.5V  
VDD = 5.5V  
VDD = 2.0V  
Falling Edge  
VDD = 2.0V  
Rising Edge  
0.1  
1k  
10k  
100k  
1M  
10M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-19:  
Maximum Output Voltage  
FIGURE 2-22:  
Slew Rate vs. Temperature.  
Swing vs. Frequency.  
25  
20  
15  
10  
1,000  
100  
5
0
f = 1 kHz  
VDD = 5.0V  
10  
0.1  
1
10  
100 1k  
10k 100k 1M  
05 06  
1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
01 Freq02uenc0y3(Hz)04  
Common Mode Input Voltage (V)  
01  
00  
FIGURE 2-23:  
Input Noise Voltage Density  
FIGURE 2-20:  
Input Noise Voltage Density  
vs. Common Mode Input Voltage, with f = 1 kHz.  
vs. Frequency.  
140  
130  
120  
110  
100  
35  
30  
25  
20  
15  
10  
5
TA = +125°C  
T
T
A = +85°C  
A = +25°C  
T
A = -40°C  
0
1
10  
100  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Frequency (kHz)  
FIGURE 2-24:  
Channel-to-Channel  
FIGURE 2-21:  
Output Short Circuit Current  
Separation vs. Frequency (MCP6272 and  
MCP6274).  
vs. Supply Voltage.  
DS21810E-page 8  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, TA = +25°C, VCM = +2.0V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2, CL = 60 pF, and CS is tied low.  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
VDD = 5.5V  
VDD = 2.0V  
Op Amp turns Off  
Hysteresis  
Hysteresis  
Op Amp turns On  
CS swept  
Low-to-High  
Op Amp  
turns  
On/Off  
CS swept  
High-to-Low  
CS swept  
Low-to-High  
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Chip Select Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
FIGURE 2-25:  
Quiescent Current vs. Chip  
FIGURE 2-28:  
Quiescent Current vs. Chip  
Select (CS) Voltage, with V = 2.0V (MCP6273  
Select (CS) Voltage, with V = 5.5V (MCP6273  
DD  
DD  
and MCP6275 only).  
and MCP6275 only).  
5.0  
5.0  
G = -1 V/V  
G = +1 V/V  
DD = 5.0V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
VDD = 5.0V  
V
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Time (5 µs/div)  
Time (5 µs/div)  
FIGURE 2-26:  
Large Signal Non-inverting  
FIGURE 2-29:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
G = -1 V/V  
G = +1 V/V  
Time (2 µs/div)  
Time (2 µs/div)  
FIGURE 2-27:  
Small Signal Non-inverting  
FIGURE 2-30:  
Small Signal Inverting Pulse  
Pulse Response.  
Response.  
© 2006 Microchip Technology Inc.  
DS21810E-page 9  
MCP6271/1R/2/3/4/5  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, TA = +25°C, VCM = +2.0V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2, CL = 60 pF, and CS is tied low.  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 2.0V  
G = +1 V/V  
VDD = 5.5V  
G = +1 V/V  
VIN = VSS  
CS  
CS  
VIN = VSS  
VOUT  
Output On  
VOUT  
Output High-Z  
Output High-Z  
Output On  
Time (5 µs/div)  
Time (5 µs/div)  
FIGURE 2-31:  
Chip Select (CS) to  
FIGURE 2-33:  
Chip Select (CS) to  
Amplifier Output Response Time, with  
= 2.0V (MCP6273 and MCP6275 only).  
Amplifier Output Response Time, with  
V
V
= 5,5V (MCP6273 and MCP6275 only).  
DD  
DD  
1.E-02  
10m  
1.E-03  
1m  
6
VDD = 5.0V  
5
4
G = +2 V/V  
1.E- 4  
100µ  
1.E1-05µ  
1.E-06  
1µ  
3
100n  
1.E- 7  
10n  
1.E- 8  
2
+125°C  
+85°C  
+25°C  
-40°C  
1n  
1.E-09  
VIN  
100p  
1.E-10  
10p  
1.E-11  
1p  
1.E-12  
1
VOUT  
0
-1  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
Time (1 ms/div)  
FIGURE 2-32:  
Input Current vs. Input  
FIGURE 2-34:  
The MCP6271/1R/2/3/4/5  
Voltage.  
Show no Phase Reversal.  
DS21810E-page 10  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP6271  
(PDIP, SOIC, MSOP)  
MCP6271  
(SOT-23-5) (SOT-23-5)  
MCP6271R  
MCP6273  
(PDIP, SOIC, MSOP)  
MCP6273  
(SOT-23-6)  
Symbol  
Description  
Inverting Input  
2
3
4
3
4
3
2
3
4
3
VIN  
+
VIN  
Non-inverting Input  
Negative Power Supply  
Analog Output  
4
2
5
4
2
VSS  
VOUT  
VDD  
CS  
6
1
1
6
1
7
5
2
7
6
Positive Power Supply  
Chip Select  
1,5,8  
8
5
1,5  
NC  
No Internal Connection  
TABLE 3-2:  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP6272  
MCP6274  
MCP6275  
Symbol  
Description  
1
2
1
2
2
VOUTA  
Analog Output (op amp A)  
Inverting Input (op amp A)  
VINA  
+
3
3
3
VINA  
Non-inverting Input (op amp A)  
Positive Power Supply  
8
4
8
VDD  
5
5
6
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
7
VOUTB  
VOUTC  
4
8
4
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
1
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
VOUTA / VINB  
CS  
+
Analog Output (op amp A)/Non-inverting Input (op amp B)  
Chip Select  
5
3.1  
Analog Outputs  
3.4  
CS Digital Input  
The output pins are low impedance voltage sources.  
This is a CMOS, Schmitt triggered input that places the  
part into a low power mode of operation.  
3.2  
Analog Inputs  
3.5  
Power Supply (VSS and VDD)  
The non-inverting and inverting inputs are high  
impedance CMOS inputs with low bias currents.  
The positive power supply (VDD) is 2.0V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
3.3  
MCP6275’s VOUTA/VINB+ Pin  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts need  
to use a bulk capacitor (within 100 mm), which can be  
shared with nearby analog parts.  
For the MCP6275 only, the output of op amp A is  
connected directly to the non-inverting input of op amp  
B; this is the VOUTA/VINB+ pin. This connection makes  
it possible to provide a CS pin for duals in 8-pin  
packages.  
© 2006 Microchip Technology Inc.  
DS21810E-page 11  
MCP6271/1R/2/3/4/5  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Absolute Maxi-  
mum Ratings † at the beginning of Section 1.0 “Elec-  
trical Characteristics”). Figure 4-2 shows the  
recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN–) from going too far above VDD, and  
dump any currents onto VDD. When implemented as  
shown, resistors R1 and R2 also limit the current  
through D1 and D2.  
4.0  
APPLICATION INFORMATION  
The MCP6271/1R/2/3/4/5 family of op amps is  
manufactured using Microchip’s state of the art CMOS  
process, specifically designed for low cost, low power  
and general purpose applications. The low supply  
voltage, low quiescent current and wide bandwidth  
make the MCP6271/1R/2/3/4/5 ideal for battery  
powered applications.  
4.1  
Rail-to-Rail Inputs  
The input stage of the MCP6271/1R/2/3/4/5 op amps  
uses two differential CMOS input stages in parallel.  
One operates at low common mode input voltage (VCM  
,
which is aproximately equal to VIN+ and VIN– in normal  
operation) and the other at high VCM. With this topol-  
ogy, the input operates with VCM up to 0.3V past either  
supply rail (see Figure 2-7 and Figure 2-10). The input  
offset voltage (VOS) is measured at VCM = VSS – 0.3V  
and VDD + 0.3V to ensure proper operation.  
VDD  
D1  
R1  
V1  
The transition between the two input stage occurs  
when VCM VDD – 1.1V (see Figure 2-3 and Figure 2-  
6). For the best distortion and gain linearity, with non-  
inverting gains, avoid this region of operation.  
D2  
VOUT  
MCP627X  
V2  
R2  
VSS – (minimum expected V1)  
4.1.1  
PHASE REVERSAL  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-34 shows an input voltage  
exceeding both supplies with no phase inversion.  
FIGURE 4-2:  
Protecting the Analog  
Inputs.  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-32. Applications that are high impedance may  
need to limit the useable voltage range.  
Bond  
VDD  
4.2  
Rail-to-Rail Output  
Pad  
The output voltage range of the MCP6271/1R/2/3/4/5  
op amps is VDD – 15 mV (min.) and VSS + 15 mV  
(max.) when RL = 10 kΩ is connected to VDD/2 and  
VDD = 5.5V. Refer to Figure 2-17 for more information.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Simplified Analog Input ESD  
Structures.  
DS21810E-page 12  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
4.3  
Capacitive Loads  
4.4  
MCP6273/5 Chip Select (CS)  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
The MCP6273 and MCP6275 are single and dual op  
amps with Chip Select (CS), respectively. When CS is  
pulled high, the supply current drops to 0.7 µA (typ.)  
and flows through the CS pin to VSS. When this  
happens, the amplifier output is put into a high  
impedance state. By pulling CS low, the amplifier is  
enabled. The CS pin has a 5 MΩ (typ.) pull-down  
resistor connected to VSS, so it will go low if the CS pin  
is left floating. Figure 1-1 shows the output voltage and  
supply current response to a CS pulse.  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
4.5  
Cascaded Dual Op Amps  
(MCP6275)  
The MCP6275 is a dual op amp with Chip Select (CS).  
The Chip Select input is available on what would be the  
non-inverting input of a standard dual op amp (pin 5).  
This pin is available because the output of op amp A  
connects to the non-inverting input of op amp B, as  
shown in Figure 4-5. The Chip Select input, which can  
be connected to a microcontroller I/O line, puts the  
device in low power mode. Refer to Section 4.4  
“MCP6273/5 Chip Select (CS)”.  
RISO  
VOUT  
MCP627X  
VIN  
+
CL  
VINB  
VOUTA/VINB  
1
+
FIGURE 4-3:  
stabilizes large capacitive loads.  
Output Resistor, R  
ISO  
6
2
3
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).  
7
VINA  
VINA  
VOUTB  
B
A
+
MCP6275  
5
CS  
1,000  
FIGURE 4-5:  
Cascaded Gain Amplifier.  
The output of op amp A is loaded by the input  
impedance of op amp B, which is typically  
1013Ω⎟⎟6 pF, as specified in the DC specification table  
(Refer to Section 4.3 “Capacitive Loads” for further  
details regarding capacitive loads).  
100  
GN = 1 V/V  
GN = 2 V/V  
GN t 4 V/V  
The common mode input range of these op amps is  
specified in the data sheet as VSS – 300 mV and  
VDD + 300 mV. However, since the output of op amp A  
is limited to VOL and VOH (20 mV from the rails with a  
10 kΩ load), the non-inverting input range of op amp B  
is limited to the common mode input range of  
VSS + 20 mV and VDD – 20 mV.  
10  
10  
100  
1,000  
10,000  
Normalized Load Capacitance; CL / GN (pF)  
FIGURE 4-4:  
for Capacitive Loads.  
Recommended R  
Values  
ISO  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO's value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6271/1R/2/3/4/5 SPICE  
macro model are helpful.  
© 2006 Microchip Technology Inc.  
DS21810E-page 13  
MCP6271/1R/2/3/4/5  
4.6  
Unused Amplifiers  
VIN–  
VIN+  
VSS  
An unused op amp in a quad package (MCP6274)  
should be configured as shown in Figure 4-6. These  
circuits prevent the output from toggling and causing  
crosstalk. In Circuit A, R1 and R2 produce a voltage  
within its output voltage range (VOH, VOL). The op amp  
buffers this voltage, which can be used elsewhere in  
the circuit. Circuit B uses the minimum number of  
components and operates as a comparator.  
Guard Ring  
Example Guard Ring Layout  
¼ MCP6274 (A)  
¼ MCP6274 (B)  
FIGURE 4-7:  
for Inverting Gain.  
VDD  
VDD  
1. For Inverting Gain and Transimpedance  
Amplifiers (convert current to voltage, such as  
photo detectors):  
VDD  
R1  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
R2  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
FIGURE 4-6:  
Unused Op Amps.  
2. Non-inverting Gain and Unity Gain Buffer:  
4.7  
Supply Bypass  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good, high frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with nearby analog parts.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
4.8  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow. This is greater than the  
MCP6271/1R/2/3/4/5 family’s bias current at 25°C  
(1 pA, typ.).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is illustrated in  
Figure 4-7.  
DS21810E-page 14  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
4.9.2  
LOSSY NON-INVERTING  
INTEGRATOR  
4.9  
Application Circuits  
4.9.1  
ACTIVE FULL-WAVE RECTIFIER  
The non-inverting integrator shown in Figure 4-9 is  
easy to build. It saves one op amp over the typical  
Miller integrator plus inverting amplifier configuration.  
The phase accuracy of this integrator depends on the  
matching of the input and feedback resistor-capacitor  
time constants. RF makes this a lossy integrator (it has  
finite gain at DC), and makes this integrator stable by  
itself.  
The MCP6271/1R/2/3/4/5 family of amplifiers can be  
used in applications such as an Active Full-Wave  
Rectifier or an Absolute Value circuit, as shown in  
Figure 4-8. The amplifier and feedback loops in this  
active voltage rectifier circuit eliminate the diode drop  
problem that exists in a passive voltage rectifier. This  
circuit behaves as a follower (the output follows the  
input) as long as the input signal is more positive than  
the reference voltage. If the input signal is more  
negative than the reference voltage, however, the  
circuit behaves as an inverting amplifier. Therefore, the  
output voltage will always be above the reference  
voltage, regardless of the input signal.  
R1  
VIN  
+
VOUT  
MCP6271  
_
C1  
RF  
C2  
R2  
R1  
VIN  
R2  
RF R2  
Op Amp B  
R3  
VOUT  
R5  
+
R1C1 = (R2||RF)C2  
1/2  
MCP6272  
R4  
D2  
VOUT  
------------- --------------------  
1
1
---------------------------------------------------  
,
f ≈  
VREF  
VIN  
s(R1C1)  
2πR1C1(1 + RF R2)  
D1  
FIGURE 4-9:  
Non-Inverting Integrator.  
R1 = R2 = R3  
VD1  
R4 < R3 1 –  
---------------------------  
VREF VSS  
Op Amp A  
R2R4  
R5 = ------------  
2R3  
+
1/2  
MCP6272  
VREF  
Input  
Output  
VREF  
VREF  
time  
time  
FIGURE 4-8:  
Active Full-wave Rectifier.  
The design equations give a gain of ±1 from VIN to  
VOUT, and produce rail-to-rail outputs.  
© 2006 Microchip Technology Inc.  
DS21810E-page 15  
MCP6271/1R/2/3/4/5  
4.9.3  
CASCADED OP AMP  
APPLICATIONS  
R4  
R3  
R2  
R1  
The MCP6275 provides the flexibility of Low power  
mode for dual op amps in an 8-pin package. The  
MCP6275 eliminates the added cost and space in a  
battery powered application by using two single op  
amps with Chip Select (CS) lines or a 10-pin device  
with one CS line for both op amps. Since the two op  
amps are internally cascaded, this device cannot be  
used in circuits that require active or passive elements  
between the two op amps. However, there are several  
applications where this op amp configuration with a CS  
line becomes suitable. The circuits below show  
possible applications for this device.  
VOUT  
B
A
VIN  
MCP6275  
CS  
FIGURE 4-11:  
Configuration.  
Cascaded Gain Circuit  
4.9.3.3  
Difference Amplifier  
4.9.3.1  
Load Isolation  
Figure 4-12 shows op amp A configured as a difference  
amplifier with Chip Select. In this configuration, it is  
recommended that well matched resistors (e.g., 0.1%)  
be used to increase the Common Mode Rejection Ratio  
(CMRR). Op amp B can be used to provide additional  
gain and isolate the load from the difference amplifier.  
With the cascaded op amp configuration, op amp B can  
be used to isolate the load from op amp A. In  
applications where op amp A is driving capacitive or  
low resistive loads in the feedback loop (such as an  
integrator or filter circuit) the op amp may not have  
sufficient source current to drive the load. In this case,  
op amp B can be used as a buffer.  
R2  
R1  
R4  
R3  
VIN2  
VOUTB  
B
VOUT  
B
A
R2  
A
Load  
MCP6275  
VIN1  
MCP6275  
R1  
CS  
CS  
FIGURE 4-10:  
Buffer.  
Isolating the Load with a  
FIGURE 4-12:  
4.9.3.4  
Difference Amplifier Circuit.  
Inverting Integrator with Active  
Compensation and Chip Select  
4.9.3.2  
Cascaded Gain  
Figure 4-11 shows a cascaded gain circuit configura-  
tion with Chip Select. Op amps A and B are configured  
in a non-inverting amplifier configuration. In this  
configuration, it is important to note that the input offset  
voltage of op amp A is amplified by the gain of op amp  
A and B, as shown below:  
Figure 4-13 uses an active compensator (op amp B) to  
compensate for the non-ideal op amp characteristics  
introduced at higher frequencies. This circuit uses  
op amp B as a unity gain buffer to isolate the  
integration capacitor C1 from op amp A and drives the  
capacitor with a low impedance source. Since both op  
amps are matched very well, they provide a high quality  
integrator.  
VOUT = VINGAGB + VOSAGAGB + VOSBGB  
Where:  
GA  
GB  
=
=
=
=
op amp A gain  
C1  
R1  
VIN  
B
op amp B gain  
VOSA  
VOSB  
op amp A input offset voltage  
op amp B input offset voltage  
VOUT  
A
MCP6275  
Therefore, it is recommended that you set most of the  
gain with op amp A and use op amp B with relatively  
small gain (e.g., a unity gain buffer).  
CS  
FIGURE 4-13:  
Integrator Circuit with Active  
Compensation.  
DS21810E-page 16  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
4.9.3.5  
Second Order MFB with an Extra  
Pole-Zero Pair  
4.9.3.7  
Capacitorless Second Order  
Low-Pass filter with Chip Select  
Figure 4-14 is a second order multiple feedback low-  
pass filter with Chip Select. Use the FilterLab® software  
from Microchip Technology Inc. to determine the R and  
C values for op amp A’s second order filter. Op amp B  
can be used to add a pole-zero pair using C3, R6 and  
R7.  
The low-pass filter shown in Figure 4-16 does not  
require external capacitors and uses only three  
external resistors; the op amp’s GBWP sets the corner  
frequency. R1 and R2 are used to set the circuit gain. R3  
is used to set the Q. To avoid gain peaking in the  
frequency response, Q needs to be low (lower values  
need to be selected for R3). Note that the amplifier  
bandwidth varies greatly over temperature and  
process. This configuration, however, provides a low  
cost solution for applications with high bandwidth  
requirements.  
C3  
R7  
R6  
R1  
C1  
R1  
R2  
R3  
R2  
R5  
VOUT  
B
VIN  
VIN  
R3  
A
A
VDD  
MCP6275  
VOUT  
B
VREF  
R4  
MCP6275  
CS  
FIGURE 4-14:  
Feedback Low-Pass Filter with an Extra Pole-  
Zero Pair.  
Second Order Multiple  
CS  
FIGURE 4-16:  
Capacitorless Second Order  
Low-Pass Filter with Chip Select.  
4.9.3.6  
Second Order Sallen-Key with an  
Extra Pole-Zero Pair  
Figure 4-15 is a second order Sallen-Key low-pass  
filter with Chip Select. Use the Filterlab® software from  
Microchip to determine the R and C values for  
op amp A’s second order filter. Op amp B can be used  
to add a pole-zero pair using C3, R5 and R6.  
C3  
R6  
R5  
R1  
R2  
VOUT  
B
R4  
R3  
C2  
A
VIN  
MCP6275  
C1  
CS  
FIGURE 4-15:  
Second Order Sallen-Key  
Low-Pass Filter with an Extra Pole-Zero Pair and  
Chip Select.  
© 2006 Microchip Technology Inc.  
DS21810E-page 17  
MCP6271/1R/2/3/4/5  
5.0  
DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP6271/1R/2/3/4/5 family of op amps.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the  
MCP6271/1R/2/3/4/5 op amps is available on our web  
site at www.microchip.com. This model is intended to  
be an initial design tool that works well in the op amp’s  
linear region of operation at room temperature. See the  
macro model file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
5.2  
FilterLab® Software  
Microchip’s FilterLab software is an innovative tool that  
simplifies analog active filter (using op amps) design. It  
is available free of charge from our web site at  
www.microchip.com. The FilterLab software tool  
provides full schematic diagrams of the filter circuit with  
component values. It also outputs the filter circuit in  
SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
DS21810E-page 18  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23 (MCP6271 and MCP6271R)  
Device  
Code  
MCP6271  
CGNN  
ETNN  
XXNN  
CG25  
MCP6271R  
Note: Applies to 5-Lead SOT-23  
Example:  
6-Lead SOT-23 (MCP6273)  
XXNN  
CK25  
8-Lead MSOP  
Example:  
XXXXXX  
YWWNNN  
6271E  
644256  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6271  
E/P256  
0437  
MCP6271  
E/P^ 256  
0644  
e3  
^
OR  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6271  
E/SN0437  
MCP6271E  
e
3
SN^0644  
OR  
NNN  
256  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS21810E-page 19  
MCP6271/1R/2/3/4/5  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6274)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6274-E/P  
0437256  
YYWWNNN  
OR  
MCP6274  
e
3
E/P^
0644256  
14-Lead SOIC (150 mil) (MCP6274)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
MCP6274ESL  
0437256  
YYWWNNN  
OR  
MCP6274  
e
3
E/SL^
0644256  
Example:  
14-Lead TSSOP (MCP6274)  
XXXXXX  
YYWW  
6274EST  
0437  
NNN  
256  
DS21810E-page 20  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
NOM  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
A
A2  
A1  
E
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
b
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
© 2006 Microchip Technology Inc.  
DS21810E-page 21  
MCP6271/1R/2/3/4/5  
6-Lead Plastic Small Outline Transistor (CH) (SOT-23)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
B
p1  
D
n
1
α
c
A
φ
A2  
A1  
β
L
Units  
INCHES  
*
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
MIN  
NOM  
6
MAX  
n
p
Number of Pins  
Pitch  
6
.038 BSC  
.075 BSC  
0.95 BSC  
1.90 BSC  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
p1  
Outside lead pitch  
Overall Height  
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
φ
Foot Angle  
0
5
0
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
5
0.20  
0.50  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
0
10  
10  
10  
5
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
JEITA (formerly EIAJ) equivalent: SC-74A  
Drawing No. C04-120  
Revised 09-12-05  
DS21810E-page 22  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
ϕ
A2  
A
L1  
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
NOM  
8
MAX  
MIN  
Number of Pins  
Pitch  
N
e
0.65 BSC  
Overall Height  
A
1.10  
0.95  
0.15  
0.75  
0.00  
0.85  
Molded Package Thickness  
Standoff  
A2  
A1  
E
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
0.40  
L
0.80  
0.95 REF  
Footprint  
L1  
0°  
Foot Angle  
ϕ
8°  
0.08  
0.22  
Lead Thickness  
Lead Width  
c
0.23  
0.40  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–111, Sept. 8, 2006  
© 2006 Microchip Technology Inc.  
DS21810E-page 23  
MCP6271/1R/2/3/4/5  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS21810E-page 24  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
© 2006 Microchip Technology Inc.  
DS21810E-page 25  
MCP6271/1R/2/3/4/5  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS21810E-page 26  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
14  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
Revised 7-20-06  
© 2006 Microchip Technology Inc.  
DS21810E-page 27  
MCP6271/1R/2/3/4/5  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
1
n
B
α
A
c
φ
β
L
A1  
A2  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
14  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026 BSC  
.041  
0.65 BSC  
1.05  
Overall Height  
A
A2  
A1  
E
.039  
.033  
.002  
.246  
.169  
.193  
.020  
.043  
1.00  
1.10  
Molded Package Thickness  
Standoff  
.035  
.004  
.251  
.173  
.197  
.024  
.037  
.006  
.256  
.177  
.201  
.028  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0.90  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
0.10  
Overall Width  
6.38  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
4.40  
5.00  
L
0.60  
φ
Foot Angle  
0°  
4°  
8°  
0°  
4°  
0.15  
0.25  
12° REF  
12° REF  
8°  
c
Lead Thickness  
.004  
.007  
.006  
.010  
.008  
.012  
0.09  
0.19  
0.20  
0.30  
Lead Width  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
12° REF  
12° REF  
β
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold fla sh or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tole rance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-153 AB-1  
Drawing No. C04-087  
Revised: 08-17-05  
DS21810E-page 28  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
APPENDIX A: REVISION HISTORY  
Revision E (December 2006)  
The following is the list of modifications:  
1. Updated specifications (Section 1.0 “Electrical  
Characteristics”):  
a) Clarified Absolute Maximum Analog Input  
Voltage and Current specifications.  
b) Clarified VCMR  
specifications.  
,
VOL  
,
VOH  
,
and PM  
c) Corrected the typical Eni.  
2. Added plots on Common Mode Input Range  
behavior vs. temperature and supply voltage  
(Section 2.0 “Typical Performance Curves”).  
3. Added applications writeup on unused op amps  
and corrected description of floating CS pin  
behavior (Section 4.0 “Application Informa-  
tion”).  
4. Updated package information (Section 6.0  
“Packaging Information”):  
a) Corrected package markings.  
b) Added disclaimer to package outline  
drawings.  
Revision D (December 2004)  
The following is the list of modifications:  
1. Added SOT-23-5 packages for the DSTEMP  
and MCP6271R single op amps.  
2. Added SOT-23-6 packages for the DSTEMP  
single op amp.  
3. Added Section 3.0 “Pin Descriptions”.  
4. Corrected application circuits  
(Section 4.9 “Application Circuits”).  
5. Added SOT-23-5 and SOT-23-6 packages and  
corrected  
package  
marking  
information  
(Section 6.0 “Packaging Information”).  
6. Added Appendix A: Revision History.  
Revision C (June 2004)  
Revision B (October 2003)  
Revision A (June 2003)  
• Original data sheet release.  
© 2006 Microchip Technology Inc.  
DS21810E-page 29  
MCP6271/1R/2/3/4/5  
NOTES:  
DS21810E-page 30  
© 2006 Microchip Technology Inc.  
MCP6271/1R/2/3/4/5  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
d)  
MCP6271-E/SN:  
Extended Temperature,  
8LD SOIC package.  
Temperature  
Range  
Package  
MCP6271-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6271-E/P:  
Extended Temperature,  
8LD PDIP package.  
Device:  
MCP6271:  
MCP6271T:  
Single Op Amp  
Single Op Amp  
(Tape and Reel)  
(SOIC, MSOP, SOT-23-5)  
Single Op Amp  
(Tape and Reel) (SOT-23-5)  
Dual Op Amp  
Dual Op Amp  
MCP6271T-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23 package.  
MCP6271RT:  
a)  
MCP6271RT-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23 package.  
MCP6272:  
MCP6272T:  
(Tape and Reel) (SOIC, MSOP)  
Single Op Amp with Chip Select  
Single Op Amp with Chip Select  
(Tape and Reel)  
(SOIC, MSOP, SOT-23-6)  
Quad Op Amp  
a)  
b)  
c)  
d)  
MCP6272-E/SN:  
Extended Temperature,  
8LD SOIC package.  
MCP6273:  
MCP6273T:  
MCP6272-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6272-E/P:  
Extended Temperature,  
8LD PDIP package.  
MCP6274:  
MCP6274T:  
Quad Op Amp  
MCP6272T-E/SN: Tape and Reel,  
Extended Temperature,  
(Tape and Reel) (SOIC, TSSOP)  
Dual Op Amp with Chip Select  
Dual Op Amp with Chip Select  
(Tape and Reel) (SOIC, MSOP)  
MCP6275:  
MCP6275T:  
8LD SOIC package.  
a)  
b)  
c)  
d)  
MCP6273-E/SN:  
Extended Temperature,  
8LD SOIC package.  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
MCP6273-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6273-E/P:  
Extended Temperature,  
8LD PDIP package.  
OT  
CH  
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6271, MCP6271R)  
Plastic Small Outline Transistor (SOT-23), 6-lead  
(MCP6273)  
MCP6273T-E/CH: Extended Temperature,  
6LD SOT-23 package.  
MS  
P
SN  
SL  
ST  
=
=
=
=
=
Plastic MSOP, 8-lead  
a)  
b)  
MCP6274-E/P:  
Extended Temperature,  
14LD PDIP package.  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4 mm Body), 14-lead  
MCP6274T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC package.  
Extended Temperature,  
14LD SOIC package.  
Extended Temperature,  
14LD TSSOP package.  
c)  
d)  
MCP6274-E/SL:  
MCP6274-E/ST:  
a)  
b)  
c)  
d)  
MCP6275-E/SN:  
Extended Temperature,  
8LD SOIC package.  
MCP6275-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6275-E/P:  
Extended Temperature,  
8LD PDIP package.  
MCP6275T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
© 2006 Microchip Technology Inc.  
DS21810E-page 31  
MCP6271/1R/2/3/4/5  
NOTES:  
DS21810E-page 32  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs,  
microperipherals, nonvolatile memory and analog products. In addition,  
Microchip’s quality system for the design and manufacture of  
development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21810E-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21810E-page 34  
© 2006 Microchip Technology Inc.  

相关型号:

MCP6271_08

170 μA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/CH

170 μA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/MS

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/OT

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/P

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/SH

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/SL

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/SN

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272-E/SNVAO

Operational Amplifier, 2 Func, 5000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6272-E/ST

170 レA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6272T-E/CH

170 μA, 2 MHz Rail-to-Rail Op Amp
MICROCHIP