MCP631_14 [MICROCHIP]

Unity-Gain Stable;
MCP631_14
型号: MCP631_14
厂家: MICROCHIP    MICROCHIP
描述:

Unity-Gain Stable

文件: 总60页 (文件大小:1906K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP631/2/3/4/5/9  
24 MHz, 2.5 mA Rail-to-Rail Output (RRO) Op Amps  
Features:  
Description:  
• Gain-Bandwidth Product: 24 MHz  
• Slew Rate: 10 V/µs  
The Microchip Technology Inc. MCP631/2/3/4/5/9  
family of operational amplifiers features high gain  
bandwidth product (24 MHz, typical) and high output  
short-circuit current (70 mA, typical). Some also  
provide a Chip Select (CS) pin that supports a  
low-power mode of operation. These amplifiers are  
optimized for high speed, low noise and distortion,  
single-supply operation with rail-to-rail output and an  
input that includes the negative rail.  
• Noise: 10 nV/Hz at 1 MHz)  
• Low Input Bias Current: 4 pA (typical)  
• Ease of Use:  
- Unity-Gain Stable  
- Rail-to-Rail Output  
- Input Range including Negative Rail  
- No Phase Reversal  
This family is offered in single (MCP631), single with  
CS pin (MCP633), dual (MCP632), dual with two CS  
pins (MCP635), quad (MCP634) and quad with two  
Chip Select pins (MCP639). All devices are fully  
specified from -40°C to +125°C.  
• Supply Voltage Range: +2.5V to +5.5V  
• High Output Current: ±70 mA  
• Supply Current: 2.5 mA/ch (typical)  
• Low-Power Mode: 1 µA/ch  
• Small Packages: SOT23-5, DFN  
• Extended Temperature Range: -40°C to +125°C  
Typical Application Circuit  
MCP63X  
0A – 20 A  
Typical Applications:  
+5V  
• Fast Low-Side Current Sensing  
• Point-of-Load Control Loops  
• Power Amplifier Control Loops  
• Barcode Scanners  
51.1  
+
VOUT  
-
0V – 4V  
0.005  
• Optical Detector Amplifier  
• Multi-Pole Active Filter  
51.1  
2.0 k  
Design Aids:  
• SPICE Macro Models  
• FilterLab® Software  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
High Gain-Bandwidth Op Amp Portfolio  
Model Family  
Channels/Package  
Gain-Bandwidth  
VOS (max.)  
IQ/Ch (typ.)  
MCP621/1S/2/3/4/5/9  
MCP631/2/3/4/5/9  
1, 2, 4  
1, 2, 4  
20 MHz  
24 MHz  
50 MHz  
60 MHz  
0.2 mV  
8.0 mV  
0.2 mV  
8.0 mV  
2.5 mA  
2.5 mA  
6.0 mA  
6.0 mA  
MCP651/1S/2/3/4/5/9  
MCP660/1/2/3/4/5/9  
1, 2, 4  
1, 2, 3, 4  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 1  
MCP631/2/3/4/5/9  
Package Types  
MCP631  
MCP631  
MCP631  
MCP634  
SOIC  
2x3 TDFN*  
SOT-23-5  
SOIC, TSSOP  
1
2
3
4
8
NC  
NC  
V
V
NC  
NC  
V
1
2
8
7
V
OUTA  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTD  
V
V
V
1
2
3
5
4
DD  
OUT  
7
6
5
V
V
V
V
-
V
-
V
IN  
IN  
DD  
INA  
IND  
EP  
9
IN  
DD  
V
V
+
SS  
V
+
V
OUT  
+
INA  
V
+
V
IND  
3
4
6
5
IN  
OUT  
V
V
NC  
DD  
SS  
V
NC  
SS  
SS  
V
+
-
IN  
IN  
V
+
V
V
V
+
INB  
INC  
V
-
-
INB  
INC  
V
8
OUTB  
OUTC  
MCP632  
SOIC  
MCP632  
3x3 DFN*  
MCP633  
SOT-23-6  
MCP633  
SOIC  
V
1
2
3
4
8
7
6
5
V
V
DD  
1
2
3
4
8
7
6
5
NC  
CS  
V
1
2
3
4
8
7
6
5
V
DD  
OUTA  
V
6
5
4
OUTA  
V
OUT  
1
DD  
V
V
V
V
+
V
V
V
V
V
+
OUTB  
INA  
OUTB  
IN  
IN  
DD  
EP  
9
INA  
CS  
2
3
V
SS  
V
+
V
OUT  
-
V
V
INA  
INB  
INB  
INA  
+
V
NC  
V
V
+
INB  
SS  
SS  
SS  
INB  
V
-
V
+
IN  
IN  
MCP639  
4x4 QFN*  
MCP635  
MSOP  
MCP635  
3x3 DFN*  
16 15 14 13  
V
10  
V
1
2
3
DD  
OUTA  
V
-
V
+
1
10  
9
8
7
6
1
12  
11  
10  
9
V
V
V
V
DD  
INA  
IND  
OUTA  
V
+
V
OUTB  
9
8
7
6
INA  
2
3
4
5
+
V
V
V
INA  
OUTB  
V
+
V
V
V
2
3
4
INA  
SS  
EP  
17  
V
EP  
11  
V
V
-
-
+
INA  
INB  
INA  
INB  
+
-
V
INC  
INC  
DD  
V
V
+
SS  
INB  
SS 4  
INB  
V
+
INB  
CSA  
CSB  
CSA  
CSB  
5
5
6
7
8
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
DS20002197C-page 2  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V  
.......................................................................6.5V  
SS  
DD  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (V + and V –) †† . V – 1.0V to V + 1.0V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
IN  
IN  
SS  
DD  
All other Inputs and Outputs .......... V – 0.3V to V + 0.3V  
SS  
DD  
Output Short-Circuit Current ................................Continuous  
Current at Output and Supply Pins ..........................±150 mA  
Storage Temperature ...................................-65°C to +150°C  
Maximum Junction Temperature ................................+150°C  
ESD protection on all pins (HBM, MM)  1 kV, 200V  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /3,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 2 kto V and CS = V (refer to Figure 1-2).  
OUT  
DD  
L
DD  
L
L
SS  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
Input Offset Voltage Drift  
V
-8  
61  
±1.8  
±2.0  
76  
+8  
mV  
OS  
V /T  
µV/°C T = -40°C to +125°C  
OS  
A
A
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
PSRR  
dB  
I
I
I
4
pA  
B
B
B
Across Temperature  
100  
1500  
±2  
pA  
pA  
T = +85°C  
A
Across Temperature  
5000  
T = +125°C  
A
Input Offset Current  
I
pA  
OS  
13  
Common-Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Z
10 ||9  
||pF  
||pF  
CM  
13  
Z
10 ||2  
DIFF  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
V
V
0.3  
78  
81  
V
1.3  
DD  
V
Note 1  
CMR  
SS  
CMRR  
63  
66  
dB  
dB  
V
V
= 2.5V, V  
= 5.5V, V  
= -0.3V to 1.2V  
= -0.3V to 4.2V  
DD  
DD  
CM  
CM  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
A
88  
94  
115  
124  
dB  
dB  
V
V
= 2.5V, V  
= 5.5V, V  
= 0.3V to 2.2V  
= 0.3V to 5.2V  
OL  
DD  
DD  
OUT  
OUT  
Output  
Maximum Output Voltage Swing  
V
, V  
V
V
+ 20  
V
V
20  
mV  
mV  
V
= 2.5V, G = +2,  
DD  
OL  
OH  
SS  
DD  
DD  
0.5V Input Overdrive  
V = 5.5V, G = +2,  
DD  
+ 40  
40  
SS  
0.5V Input Overdrive  
Output Short-Circuit Current  
I
I
±40  
±85  
±70  
±130  
±110  
mA  
mA  
V
V
= 2.5V (Note 2)  
= 5.5V (Note 2)  
SC  
SC  
DD  
DD  
±35  
Power Supply  
Supply Voltage  
V
2.5  
1.2  
5.5  
3.6  
V
DD  
Quiescent Current per Amplifier  
I
2.5  
mA  
No Load Current  
Q
Note 1: See Figure 2-5 for temperature effects.  
2: The I specifications are for design guidance only; they are not tested.  
SC  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 3  
MCP631/2/3/4/5/9  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 2 kto V , C = 50 pF and CS = V (refer to Figure 1-2).  
DD L DD L L L SS  
OUT  
Parameters  
Sym.  
Min.  
Typ. Max. Units  
Conditions  
AC Response  
Gain-Bandwidth Product  
Phase Margin  
GBWP  
PM  
24  
65  
20  
MHz  
°
G = +1  
Open-Loop Output Impedance  
AC Distortion  
R
OUT  
Total Harmonic Distortion plus Noise  
THD + N  
0.0015  
%
G = +1, V  
= 2V , f = 1 kHz,  
OUT P-P  
V
= 5.5V, BW = 80 kHz  
DD  
Step Response  
Rise Time, 10% to 90%  
Slew Rate  
t
20  
10  
ns  
G = +1, V  
= 100 mV  
OUT P-P  
r
SR  
V/µs G = +1  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
E
e
16  
10  
4
µV  
f = 0.1 Hz to 10 Hz  
ni  
P-P  
nV/Hz f = 1 MHz  
fA/Hz f = 1 kHz  
ni  
i
ni  
DIGITAL ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 2 kto V , C = 50 pF and CS = V (refer to Figures 1-1 and 1-2).  
OUT  
DD L DD L L L SS  
Parameters  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
GND Current  
V
V
0.2V  
V
IL  
SS  
DD  
I
0.1  
nA  
CS = 0V  
CSL  
V
0.8V  
V
DD  
V
IH  
DD  
I
-2  
0.7  
-1  
µA  
µA  
M  
nA  
CS = V  
DD  
CSH  
I
SS  
CS Internal Pull-Down Resistor  
Amplifier Output Leakage  
CS Dynamic Specifications  
CS Input Hysteresis  
R
5
PD  
O(LEAK)  
I
50  
CS = V , T = +125°C  
DD A  
V
0.25  
200  
V
HYST  
CS High to Amplifier Off Time  
(output goes High Z)  
t
ns  
G = +1 V/V, V = V  
CS = 0.8V to V  
,
OFF  
L
SS  
= 0.1(V /2)  
DD  
DD  
OUT  
G = +1 V/V, V = V ,  
SS  
CS Low to Amplifier On Time  
t
2
10  
µs  
L
ON  
CS = 0.2V to V  
= 0.9(V /2)  
DD  
DD  
OUT  
DS20002197C-page 4  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: V = +2.5V to +5.5V, V = GND.  
DD  
SS  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
T
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
A
T
Note 1  
A
T
A
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 8L-3x3 DFN  
Thermal Resistance, 8L-SOIC  
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
201.0  
190.5  
52.5  
56.7  
149.5  
54.0  
202  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
°C/W Note 2  
°C/W  
Thermal Resistance, 10L-3x3 DFN  
Thermal Resistance, 10L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
Thermal Resistance, 16L-4x4-QFN  
°C/W Note 2  
°C/W  
90.8  
100  
°C/W  
°C/W  
52.1  
°C/W Note 2  
Note 1: Operation must not cause T to exceed Maximum Junction Temperature specification (+150°C).  
J
2: Measured on a standard JC51-7, four-layer printed circuit board with ground plane and vias.  
EQUATION 1-1:  
1.3  
Timing Diagram  
RF  
GDM = ------  
0.1 nA  
(typical)  
RG  
0.7 µA  
(typical)  
0.7 µA  
(typical)  
ICS  
CS  
GN = 1 + GDM  
1
GN  
1
VIH  
VIL  
VCM = V 1 ------- + V  
P  
-------  
REF  
GN  
tON  
tOFF  
VOST = VIN- VIN+  
VOUT  
High Z  
High Z  
On  
VOUT = VREF + VP VMGDM + VOSTGN  
-2.5 mA  
(typical)  
-1 µA  
(typical)  
-1 µA  
(typical)  
ISS  
Where:  
GDM = Differential Mode Gain  
GN = Noise Gain  
(V/V)  
(V/V)  
(V)  
FIGURE 1-1:  
Timing Diagram.  
1.4 Test Circuits  
VCM = Op Amp’s Common-Mode  
Input Voltage  
The circuit used for most DC and AC tests is shown in  
Figure 1-2. It independently sets VCM and VOUT; see  
Equation 1-1. The circuit’s Common-Mode voltage is  
(VP + VM)/2, not VCM. VOST includes VOS plus the  
VOST = Op Amp’s Total Input Offset  
Voltage  
(mV)  
effects of temperature, CMRR, PSRR and AOL  
.
2009-2014 Microchip Technology Inc.  
DS20002197C-page 5  
MCP631/2/3/4/5/9  
CF  
6.8 pF  
RG  
RF  
10 k  
10 k  
VREF = VDD/2  
VDD  
VP  
VIN+  
CB1  
CB2  
MCP63X  
100 nF  
2.2 µF  
VIN-  
VOUT  
VM  
RL  
CL  
RG  
RF  
2 k  
50 pF  
10 k  
10 k  
CF  
6.8 pF  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Specifications.  
DS20002197C-page 6  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.1  
DC Signal Inputs  
14%  
12%  
10%  
8%  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
-3.0  
396 Samples  
TA = +25°C  
VDD = 2.5V and 5.5V  
Representative Part  
VDD = 2.5V  
VDD = 5.5V  
6%  
4%  
2%  
0%  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Output Voltage.  
16%  
0.0  
398 Samples  
1 Lot  
VDD = 2.5V and 5.5V  
TA = -40°C to +125°C  
14%  
12%  
10%  
8%  
Low (VCMR_L – VSS  
)
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6%  
VDD = 2.5V and 5.5V  
4%  
2%  
0%  
-8 -7 -6 -5 -4 -3 -2 -1  
0 1 2 3 4 5 6 7 8  
-50  
-25  
0
25  
50  
75  
100 125  
Input Offset Voltage Drift (µV/°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Low-Input Common-Mode  
Voltage Headroom vs. Ambient Temperature.  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
-3.0  
-3.2  
-3.4  
-3.6  
-3.8  
-4.0  
1.3  
Representative Part  
1 Lot  
High (VDD – VCMR_H  
VCM = VSS  
)
1.2  
1.1  
1.0  
0.9  
VDD = 2.5V  
+125°C  
+85°C  
+25°C  
-40°C  
VDD = 5.5V  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
High-Input Common-Mode  
Power Supply Voltage with VCM = 0V.  
Voltage Headroom vs. Ambient Temperature.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 7  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.0  
130  
125  
120  
115  
110  
105  
100  
VDD = 2.5V  
Representative Part  
1.5  
1.0  
+125°C  
+85°C  
+25°C  
-40°C  
VDD = 5.5V  
VDD = 2.5V  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Input Common Mode Voltage (V)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
DC Open-Loop Gain vs.  
Common-Mode Voltage with VDD = 2.5V.  
Ambient Temperature.  
2.0  
130  
VDD = 5.5V  
VDD = 5.5V  
Representative Part  
1.5  
125  
120  
115  
110  
105  
100  
95  
1.0  
+125°C  
+85°C  
+25°C  
-40°C  
0.5  
0.0  
VDD = 2.5V  
-0.5  
-1.0  
-1.5  
-2.0  
100  
1k  
1.E+03  
Load Resistance ()  
10k  
1.E+04  
100k  
1.E+05  
1.E+02  
Input Common Mode Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
DC Open-Loop Gain vs.  
Common-Mode Voltage with VDD = 5.5V.  
Load Resistance.  
110  
105  
100  
1.E1-008n  
VDD = 5.5V  
VCM = VCMR_H  
1n  
1.E-09  
95  
CMRR, VDD = 2.5V  
90  
85  
80  
75  
70  
65  
60  
CMRR, VDD = 5.5V  
IB  
100p  
1.E-10  
10p  
1.E-11  
PSRR  
| IOS  
|
1p  
1.E-12  
-50  
-25  
0
25  
50  
75  
100  
125  
25  
45  
65  
85  
105  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR and PSRR vs.  
FIGURE 2-12:  
Input Bias and Offset  
Ambient Temperature.  
Currents vs. Ambient Temperature with  
DD = 5.5V.  
V
DS20002197C-page 8  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
1.E-10m3  
1.E10-004µ  
1.E1-005µ  
1µ  
1.E-06  
100n  
1.E-07  
10n  
1.E- 8  
1n  
1.E-09  
+125°C  
+85°C  
+25°C  
-40°C  
100p  
1.E-10  
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-13:  
Input Bias Current vs. Input  
Voltage (below VSS).  
200  
150  
100  
50  
IB  
0
IOS  
-50  
-100  
-150  
-200  
Representative Part  
A = +85°C  
VDD = 5.5V  
T
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Input Bias and Offset  
Currents vs. Common-Mode Input Voltage with  
TA = +85°C.  
2000  
IB  
1500  
1000  
500  
IOS  
0
-500  
Representative Part  
T
A = +125°C  
-1000  
-1500  
VDD = 5.5V  
Common Mode Input Voltage (V)  
FIGURE 2-15:  
Input Bias and Offset  
Currents vs. Common-Mode Input Voltage with  
TA = +125°C.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 9  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.2  
Other DC Voltages and Currents  
1000  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
100  
10  
1
+125°C  
+85°C  
+25°C  
-40°C  
VDD = 2.5V  
VOL – VSS  
VDD – VOH  
0.1  
1
10  
100  
Output Current Magnitude (mA)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Output Voltage Headroom  
FIGURE 2-19:  
Supply Current vs. Power  
vs. Output Current.  
Supply Voltage.  
20  
3.5  
3.0  
2.5  
2.0  
RL = 2 k  
18  
VDD = 5.5V  
16  
14  
12  
VOL – VSS  
VDD = 2.5V  
VDD = 5.5V  
10  
1.5  
1.0  
0.5  
0.0  
8
6
4
2
0
VDD = 2.5V  
VDD – VOH  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Supply Current vs.  
vs. Ambient Temperature.  
Common-Mode Input Voltage.  
100  
80  
60  
+125°C  
+85°C  
+25°C  
-40°C  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
Power Supply Voltage (V)  
FIGURE 2-18:  
Output Short-Circuit Current  
vs. Power Supply Voltage.  
DS20002197C-page 10  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.3  
Frequency Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
36  
34  
32  
30  
28  
26  
24  
22  
20  
80  
75  
70  
65  
60  
55  
50  
45  
40  
PM  
VDD = 5.5V  
VDD = 2.5V  
CMRR  
PSRR+  
PSRR-  
GBWP  
100  
11.Ek+3  
10k  
100k  
1M  
10M  
1.E+7  
1.E+2  
1.E+4  
1.E+5  
1.E+6  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-21:  
CMRR and PSRR vs.  
FIGURE 2-24:  
Gain-Bandwidth Product  
Frequency.  
and Phase Margin vs. Common-Mode Input  
Voltage.  
140  
120  
100  
80  
0
36  
34  
32  
30  
28  
26  
24  
22  
20  
80  
-30  
75  
70  
65  
60  
55  
50  
45  
40  
PM  
-60  
-90  
AOL  
VDD = 5.5V  
VDD = 2.5V  
60  
-120  
-150  
-180  
-210  
-240  
40  
| AOL  
|
20  
0
GBWP  
-20  
1
10 100 1k 10k 100k 11.EM+6 10M 100M  
1.E+7 1.E+8  
1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Frequency (Hz)  
FIGURE 2-22:  
Open-Loop Gain vs.  
FIGURE 2-25:  
Gain-Bandwidth Product  
Frequency.  
and Phase Margin vs. Output Voltage.  
36  
34  
32  
30  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
PM  
G = 101 V/V  
G = 11 V/V  
G = 1 V/V  
10  
VDD = 5.5V  
VDD = 2.5V  
28  
26  
24  
22  
20  
1
GBWP  
0.1  
10k  
100k  
1.0E+05  
1M  
10M  
1.0E+07  
100M  
-50 -25  
0
25  
50  
75 100 125  
1.0E+04  
1.0E+06  
1.0E+08  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-23:  
Gain-Bandwidth Product  
FIGURE 2-26:  
Closed-Loop Output  
and Phase Margin vs. Ambient Temperature.  
Impedance vs. Frequency.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 11  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
10  
9
150  
140  
130  
120  
110  
100  
90  
RS = 0Ω  
RS = 100Ω  
RS = 1 kΩ  
8
GN = 1 V/V  
GN = 2 V/V  
7
GN 4 V/V  
6
5
4
3
2
1
0
VCM = VDD/2  
G = +1 V/V  
80  
70  
RS = 10 kΩ  
RS = 100 kΩ  
60  
50  
1k  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
10M  
1.E+07  
10p  
1.0E-11  
100p  
1.0E-10  
1n  
1.0E-09  
1.E+03  
Normalized Capacitive Load; CL/GN (F)  
Frequency (Hz)  
FIGURE 2-27:  
Gain Peaking vs.  
FIGURE 2-28:  
Channel-to-Channel  
Normalized Capacitive Load.  
Separation vs. Frequency.  
DS20002197C-page 12  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.4  
Noise and Distortion  
1.E+4  
10µ  
20  
15  
10  
5
Representative Part  
1.E+3  
1µ  
0
110.E0+n2  
11.E0+n1  
-5  
-10  
-15  
-20  
Analog NPBW = 0.1 Hz  
Sample Rate = 2 SPS  
VOS = -3150 µV  
1n  
1.E+0  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
0.1  
1
10 100 1k 10k 100k 11.EM+6 10M  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+7  
Frequency (Hz)  
Time (min)  
FIGURE 2-29:  
Input Noise Voltage Density  
FIGURE 2-32:  
Input Noise vs. Time with  
vs. Frequency.  
0.1 Hz Filter.  
200  
180  
1
VDD = 2.5V  
160  
140  
120  
100  
80  
0.1  
G = 1 V/V  
G = 11 V/V  
BW = 22 Hz to > 500 kHz  
VDD = 5.5V  
0.01  
0.001  
60  
40  
BW = 22 Hz to 80 kHz  
VDD = 5.0V  
20  
f = 100 Hz  
VOUT = 2 VP-P  
0
0.0001  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-30:  
Input Noise Voltage Density  
FIGURE 2-33:  
THD+N vs. Frequency.  
vs. Input Common-Mode Voltage with  
f = 100 Hz.  
20  
18  
16  
VDD = 2.5V  
14  
12  
VDD = 5.5V  
10  
8
6
4
2
f = 1 MHz  
0
Common Mode Input Voltage (V)  
FIGURE 2-31:  
Input Noise Voltage Density  
vs. Input Common-Mode Voltage with f = 1 MHz.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 13  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.5  
Time Response  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = -1  
RF = 1 kΩ  
VIN  
VIN  
VOUT  
VOUT  
0.0  
0.1  
0.2  
0.3  
0.4  
Time (µs)  
0.5  
0.6  
0.7  
0.8  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Time (µs)  
FIGURE 2-34:  
Non-Inverting Small Signal  
FIGURE 2-37:  
Inverting Large Signal Step  
Step Response.  
Response.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7
6
VDD = 5.5V  
G = 2  
VDD = 5.5V  
G = 1  
VOUT  
5
VIN  
4
3
2.5  
VIN  
VOUT  
2
2.0  
1.5  
1.0  
0.5  
0.0  
1
0
-1  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Time (µs)  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
FIGURE 2-35:  
Step Response.  
Non-Inverting Large Signal  
FIGURE 2-38:  
Family Shows No Input Phase Reversal With  
Overdrive.  
The MCP631/2/3/4/5/9  
24  
22  
Falling Edge  
VIN  
20  
18  
VDD = 5.5V  
16  
VDD = 5.5V  
G = -1  
RF = 1 k  
VDD = 2.5V  
14  
12  
10  
8
6
4
2
Rising Edge  
VOUT  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
Ambient Temperature (°C)  
Time (µs)  
FIGURE 2-39:  
Slew Rate vs. Ambient  
FIGURE 2-36:  
Inverting Small Signal Step  
Temperature.  
Response.  
DS20002197C-page 14  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
10  
VDD = 5.5V  
VDD = 2.5V  
1
0.1  
100k  
1M  
1.E+06  
10M  
1.E+07  
100M  
1.E+08  
1.E+05  
Frequency (Hz)  
FIGURE 2-40:  
Maximum Output Voltage  
Swing vs. Frequency.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 15  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
2.6  
Chip Select Response  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
CS = VDD  
VDD = 5.5V  
VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-41:  
CS Current vs. Power  
FIGURE 2-44:  
CS Hysteresis vs. Ambient  
Supply Voltage.  
Temperature.  
3.0  
5
4
3
2
1
0
VDD = 2.5V  
G = 1  
VL = 0V  
2.5  
CS  
2.0  
1.5  
1.0  
0.5  
VDD = 2.5V  
VOUT  
On  
VDD = 5.5V  
0.0  
Off  
Off  
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16 18 20  
Time (µs)  
Ambient Temperature (°C)  
FIGURE 2-42:  
CS and Output Voltages vs.  
FIGURE 2-45:  
CS Turn-On Time vs.  
Time with VDD = 2.5V.  
Ambient Temperature.  
6
8
VDD = 5.5V  
G = 1  
VL = 0V  
Representative Part  
CS  
7
6
5
4
3
2
1
0
5
4
3
VOUT  
2
On  
1
0
Off  
Off  
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16 18 20  
Time (µs)  
Ambient Temperature (°C)  
FIGURE 2-43:  
CS and Output Voltages vs.  
FIGURE 2-46:  
CS Pull-Down Resistor  
Time with VDD = 5.5V.  
(RPD) vs. Ambient Temperature.  
DS20002197C-page 16  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CS = VSS  
.
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1.E-016µ  
1.E10-007n  
CS = VDD  
CS = VDD = 5.5V  
+125°C  
+85°C  
10n  
1.E-08  
-1.2  
-1.4  
-40°C  
+25°C  
1n  
1.E-09  
-1.6  
-1.8  
-2.0  
-2.2  
+85°C  
+125°C  
100p  
1.E-10  
+25°C  
10p  
1.E-11  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-47:  
Quiescent Current in  
FIGURE 2-48:  
Output Leakage Current vs.  
Shutdown vs. Power Supply Voltage.  
Output Voltage.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 17  
MCP631/2/3/4/5/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
Description  
SOT 2x3  
-23 TDFN  
3x3  
DFN  
SOT-  
23  
3x3  
DFN  
SOIC  
2
SOIC  
2
SOIC  
2
SOIC TSSOP MSOP  
QFN  
1
4
2
2
4
2
3
2
3
2
3
2
VIN-,  
VINA  
VIN+, Non-Inverting Input (op  
Inverting Input (op amp A)  
-
3
3
3
3
3
3
3
3
2
VINA  
VDD  
VINB  
+
amp A)  
7
5
7
8
5
8
5
7
6
4
5
4
5
10  
7
10  
7
3
4
Positive Power Supply  
+
Non-Inverting Input (op  
amp B)  
6
7
6
7
6
7
6
7
8
9
8
9
5
6
7
VINB  
-
Inverting Input (op amp B)  
VOUTB Output (op amp B)  
CSBC Chip Select Digital Input  
(op amp B and C)  
8
9
8
9
8
9
VOUTC Output (op amp C)  
VINC  
-
Inverting Input (op amp C)  
10  
10  
10  
VINC  
+
Non-Inverting Input (op  
amp C)  
4
2
4
4
4
4
2
11  
12  
11  
12  
4
4
11  
12  
VSS  
VIND  
Negative Power Supply  
+
Non-Inverting Input (op  
amp D)  
13  
14  
13  
14  
13  
14  
15  
VIND  
-
Inverting Input (op amp D)  
VOUTD Output (op amp D)  
CSAD Chip Select Digital Input  
(op amp A and D)  
6
1
6
9
1
1
9
6
1
1
1
1
1
16  
17  
VOUT  
VOUTA  
,
Output (op amp A)  
11  
EP  
Exposed Thermal Pad  
(EP); must be connected to  
VSS  
8
5
5
5
CS, CSA Chip Select Digital Input  
(op amp A)  
6
6
CSB  
Chip Select Digital Input  
(op amp B)  
1,5,  
8
1, 5,  
8
1, 5  
NC  
No Internal Connection  
DS20002197C-page 18  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
3.1  
Analog Outputs  
3.4  
Chip Select Digital Input (CS)  
This input (CS) is a CMOS, Schmitt-triggered input that  
places the part into a low-power mode of operation.  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
3.5  
Exposed Thermal Pad (EP)  
3.2  
Analog Inputs  
There is an internal connection between the exposed  
thermal pad (EP) and the VSS pin; they must be  
connected to the same potential on the printed circuit  
board (PCB).  
The non-inverting and inverting inputs (VIN+, VIN-, …)  
are high-impedance CMOS inputs with low bias  
currents.  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (JA).  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 2.5V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In that case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 19  
MCP631/2/3/4/5/9  
When implemented as shown, resistors R1 and R2 also  
limit the current through D1 and D2.  
4.0  
APPLICATIONS  
The MCP631/2/3/4/5/9 family is manufactured using  
the Microchip state-of-the-art CMOS process. It is  
designed for low-cost, low-power and high-speed  
applications. Its low supply voltage, low quiescent  
VDD  
D1  
R1  
D2  
current  
MCP631/2/3/4/5/9  
applications.  
and  
wide  
ideal  
bandwidth  
for  
make  
battery-powered  
the  
MCP63X  
VOUT  
V1  
V2  
4.1  
Input  
PHASE REVERSAL  
R2  
4.1.1  
VSS minimum expected V1  
R1 ------------------------------------------------------------------------  
The input devices are designed to exhibit no phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-38 shows an input voltage  
exceeding both supplies with no phase inversion.  
2 mA  
VSS minimum expected V2  
R2 ------------------------------------------------------------------------  
2 mA  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
It is also possible to connect the diodes to the left of the  
resistors R1 and R2. If so, the currents through the  
diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN-) should be very small.  
The electrostatic discharge (ESD) protection on the  
inputs can be depicted as shown in Figure 4-1. This  
structure was chosen to protect the input transistors  
and to minimize input bias current (IB). The input ESD  
diodes clamp the inputs when they try to go more than  
one diode drop below VSS. They also clamp any  
voltages that go too far above VDD; their breakdown  
voltage is high enough to allow normal operation and  
low enough to bypass quick ESD events within the  
specified limits.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the  
Common-Mode voltage (VCM) is below ground (VSS);  
see Figure 2-13. Applications that are high-impedance  
may need to limit the usable voltage range.  
4.1.3  
NORMAL OPERATION  
Bond  
VDD  
Pad  
The input stage of the MCP631/2/3/4/5/9 op amps uses  
a differential PMOS input stage. It operates at low  
Common-Mode input voltages (VCM), with VCM  
between VSS – 0.3V and VDD – 1.3V. To ensure proper  
operation, the input offset voltage (VOS) is measured at  
both VCM = VSS – 0.3V and VCM = VDD – 1.3V. See  
Figures 2-5 and 2-6 for temperature effects.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN-  
When operating at very low non-inverting gains, the  
output voltage is limited at the top by the VCM range  
(< VDD – 1.3V); see Figure 4-3.  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
VDD  
MCP63X  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Section 1.1  
“Absolute Maximum Ratings †”). Figure 4-2 shows  
the recommended approach to protecting these inputs.  
VIN  
+
-
VOUT  
VSS VIN  
VOUT VDD 1.3V  
FIGURE 4-3: Unity-Gain Voltage  
Limitations for Linear Operation.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN-) from going too far below ground, while the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN-) from going too far above VDD and  
dump any currents onto VDD  
.
DS20002197C-page 20  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Figure 4-5 shows the power calculations used for a  
single op amp:  
4.2  
Rail-to-Rail Output  
4.2.1  
MAXIMUM OUTPUT VOLTAGE  
• RSER is 0in most applications and can be used  
to limit IOUT  
.
The maximum output voltage (see Figures 2-16  
and 2-17) describes the output range for a given load.  
For instance, the output voltage swings to within 50 mV  
of the negative rail with a 1 kload tied to VDD/2.  
• VOUT is the op amp’s output voltage.  
• VL is the voltage at the load.  
• VLG is the load’s ground point.  
• VSS is usually ground (0V).  
4.2.2  
OUTPUT CURRENT  
The input currents are assumed to be negligible. The  
currents shown in Figure 4-5 can be approximated  
using Equation 4-1:  
Figure 4-4 shows the possible combinations of output  
voltage (VOUT) and output current (IOUT), when  
VDD = 5.5V.  
IOUT is positive when it flows out of the op amp into the  
external circuit.  
EQUATION 4-1:  
VOUT VLG  
IOUT = IL = -----------------------------  
R
SER + RL  
6.0  
5.5  
5.0  
VOH Limited  
(VDD = 5.5V)  
IDD IQ + max0, IOUT  
4.5  
RL = 1 kΩ  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
RL = 100Ω  
RL = 10Ω  
ISS IQ + min0, IOUT  
Where:  
IQ = Quiescent supply current  
VOL Limited  
The instantaneous op amp power (POA(t)), RSER power  
(PRSER(t)) and load power (PL(t)) are:  
IOUT (mA)  
EQUATION 4-2:  
FIGURE 4-4:  
Output Current.  
POA(t) = IDD (VDD – VOUT) + ISS (VSS – VOUT  
)
4.2.3 POWER DISSIPATION  
2
PRSER(t) = IOUT RSER  
Since the output short-circuit current (ISC) is specified  
at ±70 mA (typical), these op amps are capable of both  
delivering and dissipating significant power.  
PL(t) = IL2RL  
The maximum op amp power, for resistive loads,  
occurs when VOUT is halfway between VDD and VLG or  
halfway between VSS and VLG  
.
VDD  
VOUT  
EQUATION 4-3:  
IDD  
max2VDD VLGVLG VSS  
IOUT  
RSER  
+
POAmax -------------------------------------------------------------------------  
4RSER + RL  
VL  
-
MCP63X  
IL  
RL  
The maximum ambient to junction temperature rise  
(TJA) and junction temperature (TJ) can be calculated  
using POAmax, the ambient temperature (TA), the  
ISS  
VLG  
VSS  
package thermal resistance (JA, found in the  
Temperature Specifications table) and the number of  
op amps in the package (assuming equal power  
dissipations), as shown in Equation 4-4:  
FIGURE 4-5:  
Calculations.  
Diagram for Power  
EQUATION 4-4:  
TJA = POAtJA nPOAmaxJA  
TJ = TA + TJA  
Where:  
n = Number of op amps in the package (1, 2)  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 21  
MCP631/2/3/4/5/9  
The power derating across temperature for an op amp  
in a particular package can be easily calculated  
(assuming equal power dissipations):  
Figure 4-7 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1 + |Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
EQUATION 4-5:  
TJmax TA  
POAmax --------------------------  
nJA  
1,000  
Where:  
TJmax = Absolute maximum junction temperature  
Several techniques are available to reduce TJA for a  
100  
given POAmax  
:
• Lower JA  
GN = +1  
- Use another package  
- PCB layout (ground plane, etc.)  
- Heat sinks and air flow  
• Reduce POAmax  
GN +2  
10  
10p  
100p  
1.E-11  
1n  
1.E-09  
10n  
1.E-08  
1.E-12  
1.E-10  
Normalized Capacitance; CL/GN (F)  
FIGURE 4-7:  
for Capacitive Loads.  
Recommended RISO Values  
- Increase RL  
- Limit IOUT (using RSER  
)
After selecting RISO  
, double-check the resulting  
- Decrease VDD  
frequency response peaking and step response  
overshoot. Modify the value of RISO until the response  
is reasonable. Bench evaluation and simulations with  
the MCP631/2/3/4/5/9 SPICE macro model are helpful.  
4.3  
Improving Stability  
4.3.1  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the phase margin (stability) of  
the feedback loop decreases and the closed-loop  
bandwidth is reduced. This produces gain peaking in  
the frequency response, with overshoot and ringing in  
the step response. A unity-gain buffer (G = +1) is the  
most sensitive to capacitive loads, though all gains  
show the same general behavior.  
4.3.2  
GAIN PEAKING  
Figure 4-8 shows an op amp circuit that represents  
non-inverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The capacitances CN and CG  
represent the total capacitance at the input pins; they  
include the op amp’s Common-Mode input capacitance  
(CCM), board parasitic capacitance and any capacitor  
placed in parallel.  
When driving large capacitive loads with these op  
amps (e.g., > 20 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-6) improves the  
phase margin of the feedback loop by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
CN  
RN  
MCP63X  
+
VP  
VOUT  
-
VM  
RG  
RF  
CG  
RISO  
CL  
RG  
RF  
VOUT  
-
FIGURE 4-8:  
Amplifier with Parasitic  
Capacitance.  
+
MCP63X  
Output Resistor, RISO  
RN  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF.  
FIGURE 4-6:  
,
Stabilizes Large Capacitive Loads.  
CN and RN form a low-pass filter that affects the signal  
at VP. This filter has a single real pole at 1/(2RNCN).  
DS20002197C-page 22  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
The largest value of RF that should be used depends  
on the noise gain (see GN in Section 4.3.1  
“Capacitive Loads”), CG and the open-loop gain’s  
phase shift. Figure 4-9 shows the maximum  
recommended RF for several CG values. Some  
applications may modify these values to reduce either  
output loading or gain peaking (step response  
overshoot).  
4.4  
MCP633, MCP635 and MCP639  
Chip Select  
The MCP633 is a single amplifier with Chip Select  
(CS). When CS is pulled high, the supply current drops  
to 1 µA (typical) and flows through the CS pin to VSS  
When this happens, the amplifier output is put into a  
high-impedance state. By pulling CS low, the amplifier  
is enabled. The CS pin has an internal 5 M(typical)  
pull-down resistor connected to VSS, so it will go low if  
the CS pin is left floating. Figures 1-1, 2-42 and 2-43  
show the output voltage and supply current response to  
a CS pulse.  
.
1.E+05  
100k  
CG = 10 pF  
CG = 32 pF  
CG = 100 pF  
CG = 320 pF  
CG = 1 nF  
1.E+1004k  
The MCP635 is a dual amplifier with two CS pins; CSA  
controls op amp A and CSB controls op amp B. These  
op amps are controlled independently, with an enabled  
quiescent current (IQ) of 2.5 mA/amplifier (typical) and  
a disabled IQ of 1 µA/amplifier (typical). The IQ seen at  
the supply pins is the sum of the two op amps’ IQ; the  
typical value for the IQ of the MCP635 will be 2 µA,  
2.5 mA or 5 mA when there are 0, 1 or 2 amplifiers  
enabled, respectively.  
1k  
1.E+03  
GN > +1 V/V  
100  
1.E+02  
1
10  
100  
Noise Gain; GN (V/V)  
FIGURE 4-9:  
RF vs. Gain.  
Maximum Recommended  
The MCP639 is a quad amplifier with two CS pins; CSB  
controls op amp B and CSD controls op amp D.  
Figures 2-34 and 2-35 show the small signal and large  
signal step responses at G = +1 V/V. The unity-gain  
buffer usually has RF = 0and RG open.  
4.5  
Power Supply  
With this family of operational amplifiers, the Power  
Supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. Surface mount,  
multilayer ceramic capacitors, or their equivalent,  
should be used.  
Figures 2-36 and 2-37 show the small signal and large  
signal step responses at G = -1 V/V. Since the noise  
gain is 2 V/V and CG 10 pF, the resistors were  
chosen to be RF = RG = 1 kand RN = 500.  
It is also possible to add a capacitor (CF) in parallel with  
RF to compensate for the destabilizing effect of CG.  
This makes it possible to use larger values of RF. The  
conditions for stability are summarized in Equation 4-6.  
These op amps require a bulk capacitor (i.e., 2.2 µF or  
larger) within 50 mm to provide large, slow currents.  
Tantalum capacitors, or their equivalent, may be a good  
choice. This bulk capacitor can be shared with other  
nearby analog parts as long as crosstalk through the  
supplies does not prove to be a problem.  
EQUATION 4-6:  
Given:  
RF  
GN1 = 1 + ------  
RG  
CG  
GN2 = 1 + ------  
CF  
1
fF = --------------------  
2RFCF  
GN1  
fZ = fF ---------  
GN2  
We need:  
fGBWP  
fF --------------- , GN1 GN2  
2GN2  
fGBWP  
G
N1 GN2  
fF --------------- ,  
4GN1  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 23  
MCP631/2/3/4/5/9  
4.7.2  
OPTICAL DETECTOR AMPLIFIER  
4.6  
High-Speed PCB Layout  
Figure 4-11 shows a transimpedance amplifier, using  
the MCP63X op amp, in a photo detector circuit. The  
photo detector is a capacitive current source. RF  
provides enough gain to produce 10 mV at VOUT. CF  
stabilizes the gain and limits the transimpedance  
bandwidth to about 1.1 MHz. The parasitic capacitance  
of RF (e.g., 0.2 pF for a 0805 SMD) acts in parallel with  
CF.  
These op amps are fast enough that a little extra care  
in the printed circuit board (PCB) layout can make a  
significant difference in performance. Good PCB layout  
techniques will help achieve the performance shown in  
the specifications and typical performance curves; it  
will also help minimize electromagnetic compatibility  
(EMC) issues.  
Use a solid ground plane. Connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
CF  
1.5 pF  
Separate digital from analog, low-speed from  
high-speed, and low-power from high-power. This will  
reduce interference.  
Photo  
Detector  
RF  
100 k  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high-frequency (low rise time)  
signals.  
VOUT  
ID  
100 nA  
CD  
30 pF  
-
+
MCP632  
Sometimes, it helps to place guard traces next to victim  
traces. They should be on both sides of the victim trace  
and as close as possible. Connect guard traces to  
ground plane at both ends and in the middle for long  
traces.  
VDD/2  
FIGURE 4-11:  
for an Optical Detector.  
Transimpedance Amplifier  
Use coax cables, or low-inductance wiring, to route  
signal and power to and from the PCB. Mutual and  
self-inductance of power wires is often a cause of  
crosstalk and unusual behavior.  
4.7.3  
H-BRIDGE DRIVER  
Figure 4-12 shows the MCP632 dual op amp used as  
a H-bridge driver. The load could be a speaker or a DC  
motor.  
4.7  
Typical Applications  
½ MCP633  
VIN  
+
-
4.7.1  
POWER DRIVER WITH HIGH GAIN  
Figure 4-10 shows a power driver with high gain  
(1 + R2/R1). The short-circuit current of the  
MCP631/2/3/4/5/9 op amps makes it possible to drive  
significant loads. The calibrated input offset voltage  
supports accurate response at high gains. R3 should  
be small and equal to R1||R2 in order to minimize the  
bias current induced offset.  
VOT  
RF  
RF  
RF  
RL  
RGT  
RGB  
VOB  
-
R1  
R3  
R2  
+
VDD/2  
VDD/2  
VOUT  
RL  
½ MCP633  
-
FIGURE 4-12:  
H-Bridge Driver.  
+
MCP63X  
VIN  
This circuit automatically makes the noise gains (GN)  
equal when the gains are set properly, so that the  
frequency responses match well (in magnitude and in  
phase). Equation 4-7 shows how to calculate RGT and  
RGB so that both op amps have the same DC gains;  
FIGURE 4-10:  
Power Driver.  
GDM needs to be selected first.  
DS20002197C-page 24  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
EQUATION 4-7:  
VOT VOB  
GDM -------------------------- 1 V /V  
VDD  
V
IN ----------  
2
RF  
RGT = --------------------  
GDM  
----------- 1  
2
RF  
RGB = -----------  
GDM  
-----------  
2
Equation 4-8 gives the resulting Common-Mode and  
Differential mode output voltages.  
EQUATION 4-8:  
VOT + VOB  
--------------------------- = ----------  
VDD  
2
2
VDD  
VOT VOB = GDM  
V
IN ----------  
2
2009-2014 Microchip Technology Inc.  
DS20002197C-page 25  
MCP631/2/3/4/5/9  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP631/2/3/4/5/9 family of op amps.  
Microchip offers  
a
broad spectrum of analog  
demonstration and evaluation boards that are  
designed to help customers achieve faster time to  
market. For a complete listing of these boards and their  
corresponding user’s guides and technical information,  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the  
MCP631/2/3/4/5/9 op amps is available on the  
Microchip web site at www.microchip.com. This model  
is intended to be an initial design tool that works well in  
the linear region of operation over the temperature  
range of the op amp. See the model file for information  
on its capabilities.  
visit  
the  
Microchip  
web  
site  
at  
www.microchip.com/analog tools.  
Some boards that are especially useful are:  
MCP6XXX Amplifier Evaluation Board 1,  
part number: MCP6XXXEV-AMP1  
MCP6XXX Amplifier Evaluation Board 2,  
part number: MCP6XXXEV-AMP2  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
MCP6XXX Amplifier Evaluation Board 3,  
part number: MCP6XXXEV-AMP3  
MCP6XXX Amplifier Evaluation Board 4,  
part number: MCP6XXXEV-AMP4  
®
5.2  
FilterLab Software  
Active Filter Demo Board Kit,  
part number: MCP6XXXDM-FLTR  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
8-Pin SOIC/MSOP/TSSOP/DIP Evaluation  
Board, part number: SOIC8EV  
5.5  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes and are  
recommended as supplemental reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit particular design  
a
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
requirement. Available at no cost from the Microchip  
web site at www.microchip.com/maps, the MAPS is an  
overall selection tool for Microchip’s product portfolio  
that includes Analog, Memory, MCUs and DSCs. Using  
this tool, a filter can be defined to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for data sheets, purchase and sampling of  
Microchip parts.  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
Some of these application notes, and others, are listed  
in the “Signal Chain Design Guide”, DS21825.  
DS20002197C-page 26  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23 (MCP631)  
Example  
YV25  
XXNN  
6-Lead SOT-23 (MCP633)  
Example  
JC25  
XXNN  
8-Lead TDFN (2x3x0.75 mm) (MCP631)  
Example  
ABK  
425  
25  
8-Lead DFN (3x3x0.9 mm) (MCP632)  
Example  
DABM  
1425  
256  
Device  
Code  
DABM  
Note 1: Applies to 8-lead 3x3 DFN  
MCP632T-E/MF  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 27  
MCP631/2/3/4/5/9  
8-Lead SOIC (3.90 mm) (MCP631, MCP632)  
Example  
MCP631E  
e
3
SN^425  
256  
NNN  
10-Lead DFN (3x3x0.9 mm) (MCP635)  
Example  
BAFB  
1425  
256  
Device  
MCP635T-E/MF  
Code  
BAFB  
Note 1: Applies to 10-lead 3x3 DFN  
10-Lead MSOP (3x3 mm) (MCP635)  
Example  
665EUN  
425256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20002197C-page 28  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
14-Lead SOIC (3.90 mm) (MCP634)  
Example  
MCP634  
e
3
E/SL
1425256  
14-Lead TSSOP (4.4 mm) (MCP634)  
Example  
XXXXXXXX  
YYWW  
634E/ST  
1425  
256  
NNN  
16-Lead QFN (4x4x0.9 mm) (MCP639)  
Example  
PIN 1  
PIN 1  
639  
e
3
E/ML^
1425256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 29  
MCP631/2/3/4/5/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢷꢴ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢸꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢸꢟ  
ꢗꢻ  
ꢀꢁꢞꢟ  
ꢀꢁꢸꢗ  
ꢗꢁꢀꢟ  
ꢸꢁꢘꢗ  
ꢀꢁꢷꢗ  
ꢸꢁꢀꢗ  
ꢗꢁꢺꢗ  
ꢗꢁꢷꢗ  
ꢸꢗꢻ  
ꢮꢀ  
ꢗꢁꢗꢷ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢺ  
ꢗꢁꢟꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢀꢠ  
DS20002197C-page 30  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 31  
MCP631/2/3/4/5/9  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
L1  
I
c
b
0.08  
0.20  
0.26  
0.51  
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-028B  
DS20002197C-page 32  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 33  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 34  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 35  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 36  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 37  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 38  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ"#ꢆꢙ$%&ꢆꢎꢎꢆ'ꢔꢅ*ꢆꢗꢍꢏ+,ꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 39  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 40  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 41  
MCP631/2/3/4/5/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ.ꢐꢄꢈꢆ/ꢈꢄꢊ#ꢆꢛꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ0ꢄ1ꢃꢆꢕ4ꢛꢖꢆMꢆꢘ5ꢙ5&$7ꢀꢆꢎꢎꢆ'ꢔꢅ*ꢆꢗꢒ./ꢛꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS20002197C-page 42  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 43  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 44  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 45  
MCP631/2/3/4/5/9  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 46  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 47  
MCP631/2/3/4/5/9  
10-Lead Plastic Micro Small Outline Package (UN) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 48  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 49  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 50  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 51  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 52  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 53  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 54  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
89ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ;ꢐꢄꢅꢆ/ꢈꢄꢊ#ꢆꢛꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ0ꢄ1ꢃꢆꢕ4ꢂꢖꢆMꢆ<5<5&$%ꢆꢎꢎꢆ'ꢔꢅ*ꢆꢗ;/ꢛꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋꢉꢮꢅꢆꢚꢍꢒ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢹꢃꢋꢍꢒ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢀꢺ  
ꢗꢁꢺꢟꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢗꢘ  
ꢗꢁꢘꢗꢉꢯꢌꢧ  
ꢞꢁꢗꢗꢉꢠꢜꢡ  
ꢘꢁꢺꢟ  
ꢞꢁꢗꢗꢉꢠꢜꢡ  
ꢘꢁꢺꢟ  
ꢗꢁꢷꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢗꢟ  
ꢛꢀ  
ꢛꢸ  
ꢌꢘ  
ꢂꢘ  
ꢘꢁꢟꢗ  
ꢘꢁꢷꢗ  
ꢘꢁꢟꢗ  
ꢗꢁꢘꢟ  
ꢗꢁꢸꢗ  
ꢗꢁꢘꢗ  
ꢘꢁꢷꢗ  
ꢗꢁꢸꢟ  
ꢗꢁꢟꢗ  
ꢗꢁꢸꢗ  
ꢗꢁꢞꢗ  
ꢡꢈꢆꢍꢊꢎꢍꢼꢍꢈꢼꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋ  
{
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢪꢊꢎꢨꢊꢚꢅꢉꢃꢇꢉꢇꢊꢦꢉꢇꢃꢆꢚꢐꢏꢊꢍꢅꢋꢁ  
ꢸꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢯꢌꢧꢢ ꢯꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢩꢉꢐꢇꢐꢊꢏꢏꢤꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢩꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏꢤꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢀꢘꢙꢠ  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 55  
MCP631/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002197C-page 56  
2009-2014 Microchip Technology Inc.  
MCP631/2/3/4/5/9  
APPENDIX A: REVISION HISTORY  
Revision C (July 2014)  
The following is the list of modifications:  
1. Updated the Features: list.  
2. Added the High Gain-Bandwidth Op Amp  
Portfolio table in the Features: section.  
3. Updated Figures 4-6 and 4-11.  
4. Updated  
Section 6.0  
“Packaging  
Information” and Section 6.1 “Package  
Marking Information”.  
5. Minor typographical changes.  
Revision B (November 2011)  
The following is the list of modifications:  
1. Added the MCP634 and MCP639 amplifiers to  
the product family and the related information  
throughout the document.  
2. Added the 2x3 TDFN (8L), SOT23 (5L) package  
option for MCP631, SOT23 (6L) package option  
for MCP633, 4x4 QFN (16L) package option for  
MCP639, SOIC and TSSOP (14L) package  
options for MCP634 and the related information  
throughout the document. Updated package  
types drawing with pin designation for each new  
package.  
3. Updated the Temperature Specifications table to  
show the temperature specifications for new  
packages.  
4. Updated Table 3-1 to show all the pin functions.  
5. Updated Section 6.0 “Packaging Informa-  
tion” with markings for the new additions.  
Added the corresponding SOT23 (5L), SOT23  
(6L), TDFN (8L), SOIC, TSSOP (14L), and 4x4  
QFN (16L) package options and related infor-  
mation.  
6. Updated table description and examples in the  
Product Identification System section.  
Revision A (August 2009)  
• Original Release of this Document.  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 57  
MCP631/2/3/4/5/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
MCP631T-E/OT: Tape and Reel  
Extended temperature,  
5LD SOT-23 package  
MCP631T-E/MNY:Tape and Reel  
Temperature  
Range  
Package  
b)  
Extended temperature,  
8LD TDFN package  
Device:  
MCP631  
Single Op Amp  
MCP631T  
Single Op Amp (Tape and Reel)  
(SOIC, SOT-23, TDFN)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and SOIC)  
Single Op Amp with CS  
Single Op Amp with CS (Tape and Reel)  
(SOIC, SOT-23)  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(TSSOP and SOIC)  
Dual Op Amp with CS  
Dual Op Amp with CS (Tape and Reel)  
(DFN and MSOP)  
c)  
d)  
e)  
f)  
MCP631T-E/SN: Tape and Reel  
Extended temperature,  
8LD SOIC package  
MCP632  
MCP632T  
MCP632T-E/MF: Tape and Reel  
Extended temperature,  
8LD DFN package  
MCP633  
MCP633T  
MCP632T-E/SN: Tape and Reel  
MCP634  
MCP634T  
Extended temperature,  
8LD SOIC package  
MCP633T-E/SN: Tape and Reel  
MCP635  
MCP635T  
Extended temperature,  
8LD SOIC package  
g)  
h)  
i)  
MCP633T-E/CHY: Tape and Reel  
MCP639  
MCP639T  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(QFN)  
Extended temperature,  
6LD SOT package  
MCP634T-E/SL: Tape and Reel  
Extended temperature,  
14LD SOIC package  
Temperature  
Range:  
E
=
=
-40°C to +125°C  
MCP634T-E/ST: Tape and Reel  
Extended temperature,  
14LD TSSOP package  
Package:  
OT  
Plastic Small Outline (SOT-23), 5-lead  
j)  
MCP635T-E/MF: Tape and Reel  
CHY = Plastic Small Outline (SOT-23), 6-lead  
Extended temperature,  
10LD DFN package  
MNY= Plastic Dual Flat, No Lead (2x3 TDFN), 8-lead  
MF  
=
Plastic Dual Flat, No Lead (3×3 DFN),  
8-lead, 10-lead  
k)  
l)  
MCP635T-E/UN: Tape and Reel  
SN  
UN  
SL  
=
=
=
Plastic Small Outline (3.90 mm), 8-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
Plastic Small Outline, Narrow, (3.90 mm SOIC),  
14-lead  
Extended temperature,  
10LD MSOP package  
MCP639T-E/ML: Tape and Reel  
Extended temperature,  
16LD QFN package.  
ST  
ML  
=
=
Plastic Thin Shrink Small Outline, (4.4 mm TSSOP),  
14-lead  
Plastic Quad Flat, No Lead Package (4x4 QFN),  
(4x4x0.9 mm), 16-lead  
DS20002197C-page 58  
2009-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-382-2  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2014 Microchip Technology Inc.  
DS20002197C-page 59  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002197C-page 60  
2009-2014 Microchip Technology Inc.  

相关型号:

MCP632

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632T

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632T-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632T-E/MFVAO

Operational Amplifier, 2 Func, 8000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP632T-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP632T-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP