MCP651T-E/UN [MICROCHIP]

50 MHz, 6 mA Op Amps with mCal; 50兆赫, 6毫安运算放大器, MCAL
MCP651T-E/UN
型号: MCP651T-E/UN
厂家: MICROCHIP    MICROCHIP
描述:

50 MHz, 6 mA Op Amps with mCal
50兆赫, 6毫安运算放大器, MCAL

运算放大器
文件: 总44页 (文件大小:1232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP651/2/5  
50 MHz, 6 mA Op Amps with mCal  
Features  
Description  
• Gain Bandwidth Product: 50 MHz (typical)  
• Short Circuit Current: 100 mA (typical)  
• Noise: 7.5 nV/Hz (typical, at 1 MHz)  
• Calibrated Input Offset: ±200 µV (maximum)  
• Rail-to-Rail Output  
The Microchip Technology, Inc. MCP651/2/5 family of  
operational amplifiers features low offset. At power up,  
these op amps are self-calibrated using mCal. Some  
package options also provide a calibration/chip select  
pin (CAL/CS) that supports a low power mode of oper-  
ation, with offset calibration at the time normal opera-  
tion is re-started. These amplifiers are optimized for  
high speed, low noise and distortion, single-supply  
operation with rail-to-rail output and an input that  
includes the negative rail.  
• Slew Rate: 30 V/µs (typical)  
• Supply Current: 6.0 mA (typical)  
• Power Supply: 2.5V to 5.5V  
• Extended Temperature Range: -40°C to +125°C  
This family is offered in single with CAL/CS pin  
(MCP651), dual (MCP652) and dual with CAL/CS pins  
(MCP655). All devices are fully specified from -40°C to  
+125°C.  
Typical Applications  
• Driving A/D Converters  
• Power Amplifier Control Loops  
• Barcode Scanners  
Typical Application Circuit  
• Optical Detector Amplifier  
R1  
R2  
VDD/2  
VOUT  
RL  
Design Aids  
R3  
• SPICE Macro Models  
• FilterLab® Software  
MCP65X  
VIN  
• Mindi™ Circuit Designer & Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
Power Driver with High Gain  
Package Types  
MCP651  
MCP652  
MCP655  
SOIC  
3×3 DFN *  
3×3 DFN *  
1
2
3
4
8
7
6
5
NC  
CAL/CS  
VDD  
VOUTA  
V
DD  
VOUTA  
VDD  
1
2
3
10  
9
1
8
7
VIN  
+
VINA  
+
VOUTB  
VINA  
+
VOUTB  
2
EP  
9
EP  
11  
VIN  
VOUT  
VCAL  
VINA  
VINB  
VINB  
+
VINA  
VINB  
VINB  
+
8
3
4
6
5
VSS  
VSS  
VSS  
4
5
7
6
CALA/CSA  
CALB/CSB  
MCP652  
MCP655  
SOIC  
MSOP  
VDD  
8
V
DD  
VOUTA  
1
VOUTA  
1
10  
VOUTB  
VINA  
VOUTB  
2
3
4
7
6
5
2
3
9
8
7
6
VINA  
+
VINA  
+
VINB  
VINB  
+
VINA  
VINB  
VINB  
+
VSS 4  
CALA/CSA  
VSS  
CALB/CSB  
5
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2009 Microchip Technology Inc.  
DS22146A-page 1  
MCP651/2/5  
NOTES:  
DS22146A-page 2  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
VDD – VSS .......................................................................6.5V  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (VIN+ and VIN–) †† . VSS – 1.0V to VDD + 1.0V  
All other Inputs and Outputs .......... VSS – 0.3V to VDD + 0.3V  
Difference Input voltage ...................................... |VDD – VSS  
|
†† See Section 4.2.2 “Input Voltage and Current Limits”.  
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ..........................±150 mA  
Storage Temperature ...................................-65°C to +150°C  
Max. Junction Temperature ........................................+150°C  
ESD protection on all pins (HBM, MM) ................≥ 1 kV, 200V  
1.2  
Specifications  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/3,  
VOUT VDD/2, VL = VDD/2, RL = 1 kΩ to VL and CAL/CS = VSS (refer to Figure 1-2).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-200  
37  
+200  
200  
µV  
µV  
After calibration (Note 1)  
Input Offset Voltage Trim Step  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
VOSTRM  
ΔVOS/ΔTA  
PSRR  
±2.5  
76  
µV/°C TA= -40°C to +125°C  
dB  
61  
IB  
IB  
6
pA  
Across Temperature  
130  
pA  
pA  
TA= +85°C  
Across Temperature  
IB  
1700  
±1  
1013||9  
1013||2  
5,000  
TA= +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Ω||pF  
Ω||pF  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
VCMR  
CMRR  
CMRR  
VSS 0.3  
81  
84  
VDD 1.3  
V
(Note 2)  
65  
68  
dB  
dB  
VDD = 2.5V, VCM = -0.3 to 1.2V  
VDD = 5.5V, VCM = -0.3 to 4.2V  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
AOL  
AOL  
88  
94  
114  
123  
dB  
dB  
VDD = 2.5V, VOUT = 0.3V to 2.2V  
VDD = 5.5V, VOUT = 0.3V to 5.2V  
Output  
Maximum Output Voltage Swing  
VOL, VOH VSS + 25  
VOL, VOH VSS + 50  
VDD 25  
VDD 50  
mV  
mV  
VDD = 2.5V, G = +2,  
0.5V Input Overdrive  
VDD = 5.5V, G = +2,  
0.5V Input Overdrive  
Output Short Circuit Current  
ISC  
ISC  
±50  
±50  
±95  
±145  
±150  
mA  
mA  
VDD = 2.5V (Note 3)  
VDD = 5.5V (Note 3)  
±100  
Note 1: Describes the offset (under the specified conditions) right after power up, or just after the CAL/CS pin is toggled. Thus,  
1/f noise effects (an apparent wander in VOS; see Figure 2-35) are not included.  
2: See Figure 2-6 and Figure 2-7 for temperature effects.  
3: The ISC specifications are for design guidance only; they are not tested.  
© 2009 Microchip Technology Inc.  
DS22146A-page 3  
MCP651/2/5  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/3,  
VOUT VDD/2, VL = VDD/2, RL = 1 kΩ to VL and CAL/CS = VSS (refer to Figure 1-2).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Calibration Input  
Calibration Input Voltage Range  
Internal Calibration Voltage  
Input Impedance  
VCALRNG VSS + 0.1  
VDD – 1.4  
mV  
VCAL pin externally driven  
VCAL pin open  
VCAL  
ZCAL  
0.31VDD 0.33VDD 0.35VDD  
100 || 5  
kΩ||pF  
Power Supply  
Supply Voltage  
VDD  
IQ  
2.5  
3
6
5.5  
9
V
Quiescent Current per Amplifier  
POR Input Threshold, Low  
mA  
IO = 0  
VPRL  
1.15  
1.40  
V
V
POR Input Threshold, High  
VPRH  
1.40  
1.65  
Note 1: Describes the offset (under the specified conditions) right after power up, or just after the CAL/CS pin is toggled. Thus,  
1/f noise effects (an apparent wander in VOS; see Figure 2-35) are not included.  
2: See Figure 2-6 and Figure 2-7 for temperature effects.  
3: The ISC specifications are for design guidance only; they are not tested.  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF and CAL/CS = VSS (refer to Figure 1-2).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
50  
65  
20  
MHz  
°
G = +1  
Open-Loop Output Impedance  
AC Distortion  
ROUT  
Ω
Total Harmonic Distortion plus Noise  
THD+N  
0.0012  
%
G = +1, VOUT = 4VP-P, f = 1 kHz,  
DD = 5.5V, BW = 80 kHz  
V
Step Response  
Rise Time, 10% to 90%  
Slew Rate  
tr  
6
ns  
G = +1, VOUT = 100 mVP-P  
G = +1  
SR  
30  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
17  
7.5  
4
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 MHz  
fA/Hz f = 1 kHz  
DS22146A-page 4  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
TABLE 1-3:  
DIGITAL ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF and CAL/CS = VSS (refer to Figure 1-1 and Figure 1-2).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CAL/CS Low Specifications  
CAL/CS Logic Threshold, Low  
CAL/CS Input Current, Low  
CAL/CS High Specifications  
CAL/CS Logic Threshold, High  
CAL/CS Input Current, High  
GND Current  
VIL  
VSS  
0
0.2VDD  
V
ICSL  
nA  
CAL/CS = 0V  
VIH  
ICSH  
ISS  
0.8VDD  
VDD  
V
0.7  
-1.8  
-4  
µA  
µA  
µA  
µA  
µA  
MΩ  
nA  
CAL/CS = VDD  
-3.5  
-8  
Single, CAL/CS = VDD = 2.5V  
Single, CAL/CS = VDD = 5.5V  
Dual, CAL/CS = VDD = 2.5V  
Dual, CAL/CS = VDD = 5.5V  
ISS  
ISS  
-5  
-2.5  
-5  
ISS  
-10  
CAL/CS Internal Pull Down Resistor  
RPD  
IO(LEAK)  
5
Amplifier Output Leakage  
50  
CAL/CS = VDD  
POR Dynamic Specifications  
VDD Low to Amplifier Off Time  
(output goes High-Z)  
tPOFF  
tPON  
200  
200  
ns  
G = +1 V/V, VL = VSS,  
V
DD = 2.5V to 0V step to VOUT = 0.1 (2.5V)  
VDD High to Amplifier On Time  
(including calibration)  
100  
300  
ms  
G = +1 V/V, VL = VSS,  
V
DD = 0V to 2.5V step to VOUT = 0.9 (2.5V)  
CAL/CS Dynamic Specifications  
1
CAL/CS Input Hysteresis  
VHYST  
tCSU  
0.25  
V
CAL/CS Setup Time  
µs  
G = +1 V/V, VL = VSS (Notes 2, 3)  
(between CAL/CS edges)  
CAL/CS = 0.8VDD to VOUT = 0.1 (VDD/2)  
CAL/CS High to Amplifier Off Time  
(output goes High-Z)  
tCOFF  
tCON  
200  
3
4
ns  
G = +1 V/V, VL = VSS  
CAL/CS = 0.8VDD to VOUT = 0.1 (VDD/2)  
G = +1 V/V, VL = VSS  
CAL/CS = 0.2VDD to VOUT = 0.9 (VDD/2)  
,
CAL/CS Low to Amplifier On Time  
(including calibration)  
,
ms  
Note 1: The MCP652 has its CAL/CS input internally pulled down to VSS (0V).  
2: This time ensures that the internal logic recognizes the edge. However, for the rising edge case, if CAL/CS is raised  
before the calibration is complete, the calibration will be aborted and the part will return to low power mode.  
3: For the MCP655 dual, there is an additional constraint. CALA/CSA and CALB/CSB can be toggled simultaneously  
(within a time much smaller than tCSU) to make both op amps perform the same function simultaneously. If they are tog-  
gled independently, then CALA/CSA (CALB/CSB) cannot be allowed to toggle while op amp B (op amp A) is in  
calibration mode; allow more than the maximum tCON time (4 ms) before the other side is toggled.  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +2.5V to +5.5V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 8L-3×3 DFN  
Thermal Resistance, 8L-SOIC  
θJA  
θJA  
63  
°C/W (Note 2)  
163  
°C/W  
Note 1: Operation must not cause TJ to exceed Maximum Junction Temperature specification (150°C).  
2: Measured on a standard JC51-7, four layer printed circuit board with ground plane and vias.  
© 2009 Microchip Technology Inc.  
DS22146A-page 5  
MCP651/2/5  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +2.5V to +5.5V, VSS = GND.  
Parameters  
Sym  
θJA  
Min  
Typ  
71  
Max Units  
Conditions  
Thermal Resistance, 10L-3×3 DFN  
Thermal Resistance, 10L-MSOP  
°C/W (Note 2)  
°C/W  
θJA  
202  
Note 1: Operation must not cause TJ to exceed Maximum Junction Temperature specification (150°C).  
2: Measured on a standard JC51-7, four layer printed circuit board with ground plane and vias.  
1.3  
Timing Diagram  
CAL/CS  
VIL  
VIH  
VDD  
VPRH  
VPRL  
tPOFF  
tCSU  
tPON  
High-Z  
tCOFF  
tCON  
High-Z  
VOUT  
High-Z  
On  
-6 mA (typical)  
On  
-6 mA (typical)  
ISS -3 µA (typical)  
-3 µA (typical)  
-3 µA (typical)  
0 nA (typical)  
ICS  
0 nA (typical)  
0.7 µA (typical)  
FIGURE 1-1:  
Timing Diagram.  
1.4  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-2. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
RG  
10 kΩ  
RF  
10 kΩ  
VDD/2  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
2.2 µF  
GDM = RF RG  
MCP65X  
VCM = (VP + VDD 2) ⁄ 2  
VOST = VINVIN+  
VIN–  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
Where:  
)
VOUT  
VM  
RL  
CL  
RG  
RF  
GDM = Differential Mode Gain  
(V/V)  
(V)  
1 kΩ  
20 pF  
10 kΩ  
10 kΩ  
VCM = Op Amp’s Common Mode  
Input Voltage  
CF  
VL  
VOST = Op Amp’s Total Input Offset (mV)  
6.8 pF  
Voltage  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Specifications.  
DS22146A-page 6  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.1  
DC Signal Inputs  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
700  
600  
500  
400  
300  
200  
100  
0
80 Samples  
TA = +25°C  
Representative Part  
Calibrated at VDD = 6.5V  
VDD = 2.5V and 5.5V  
Calibrated at +25°C  
+125°C  
+85°C  
+25°C  
-40°C  
0%  
-100  
-100 -80 -60 -40 -20  
0
20 40 60 80 100  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
Input Offset Voltage (µV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Power Supply Voltage.  
20%  
50  
80 Samples  
VDD = 2.5V and 5.5V  
A = -40°C to +125°C  
Representative Part  
VDD = 2.5V  
18%  
16%  
14%  
12%  
10%  
8%  
40  
30  
T
Calibrated at +25°C  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
VDD = 5.5V  
6%  
4%  
2%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
55%  
0.0  
1 Lot  
Low (VCMR_L – VSS  
80 Samples  
TA = +25°C  
VDD = 2.5V and 5.5V  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
)
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
No Change  
(includes noise)  
VDD = 2.5V  
Calibration  
Changed  
Calibration  
Changed  
VDD = 5.5V  
0%  
-100 -80 -60 -40 -20  
0
20 40 60 80 100  
-50  
-25  
0
25  
50  
75  
100 125  
Input Offset Voltage Repeatability (µV)  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Offset Voltage  
FIGURE 2-6:  
Low Input Common Mode  
Repeatability (repeated calibration).  
Voltage Headroom vs. Ambient Temperature.  
© 2009 Microchip Technology Inc.  
DS22146A-page 7  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
1.4  
110  
105  
100  
95  
1 Lot  
High (VDD – VCMR_H  
)
PSRR  
1.3  
1.2  
1.1  
1.0  
VDD = 2.5V  
90  
85  
CMRR, VDD = 5.5V  
CMRR, VDD = 2.5V  
80  
75  
VDD = 5.5V  
70  
65  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
High Input Common Mode  
FIGURE 2-10:  
CMRR and PSRR vs.  
Voltage Headroom vs. Ambient Temperature.  
Ambient Temperature.  
1000  
130  
VDD = 2.5V  
Representative Part  
800  
VDD = 5.5V  
125  
120  
115  
110  
105  
100  
95  
600  
400  
200  
0
VDD = 2.5V  
-200  
-40°C  
+25°C  
+85°C  
+125°C  
-400  
-600  
-800  
-1000  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
DC Open-Loop Gain vs.  
Common Mode Voltage with V = 2.5V.  
Ambient Temperature.  
DD  
1000  
10,000  
VDD = 5.5V  
VDD = 5.5V  
Representative Part  
800  
VCM = VCMR_H  
600  
400  
200  
0
1,000  
100  
10  
IB  
-200  
-400  
-600  
-40°C  
+25°C  
+85°C  
+125°C  
-IOS  
-800  
-1000  
1
25  
45  
65  
85  
105  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Bias and Offset  
Common Mode Voltage with V = 5.5V.  
Currents vs. Ambient Temperature with  
= +5.5V.  
DD  
V
DD  
DS22146A-page 8  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
160  
1.E-10m3  
1.E10-004µ  
TA = +85°C  
140  
V
DD = 5.5V  
120  
100  
80  
10µ  
1.E-05  
IB  
1µ  
1.E-06  
100n  
1.E- 7  
60  
40  
10n  
1.E- 8  
20  
0
-20  
-40  
-60  
1n  
1.E-09  
+125°C  
+85°C  
+25°C  
-40°C  
IOS  
100p  
1.E-10  
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias and Offset  
FIGURE 2-15:  
Input Bias Current vs. Input  
Currents vs. Common Mode Input Voltage with  
Voltage (below V ).  
SS  
T = +85°C.  
A
2000  
1500  
1000  
500  
TA = +125°C  
VDD = 5.5V  
IB  
0
IOS  
-500  
-1000  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Input Bias and Offset  
Currents vs. Common Mode Input Voltage with  
T = +125°C.  
A
© 2009 Microchip Technology Inc.  
DS22146A-page 9  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.2  
Other DC Voltages and Currents  
14  
8
7
6
5
4
3
2
1
0
VDD = 5.5V  
VOL – VSS  
-IOUT  
12  
10  
8
+125°C  
+85°C  
+25°C  
-40°C  
6
VDD – VOH  
IOUT  
4
VDD = 2.5V  
2
0
1
10  
100  
Output Current Magnitude (mA)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Ratio of Output Voltage  
FIGURE 2-19:  
Supply Current vs. Power  
Headroom to Output Current.  
Supply Voltage.  
14  
9
8
7
6
5
RL = 1 k  
VDD = 5.5V  
VOL – VSS  
12  
10  
8
VDD = 5.5V  
VDD = 2.5V  
4
3
2
1
0
6
VDD – VOH  
4
VDD = 2.5V  
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Supply Current vs. Common  
vs. Ambient Temperature.  
Mode Input Voltage.  
100  
80  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
+125°C  
+85°C  
+25°C  
-40°C  
60  
VPRH  
40  
20  
VPRL  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-18:  
Output Short Circuit Current  
FIGURE 2-21:  
Power On Reset Voltages  
vs. Power Supply Voltage.  
vs. Ambient Temperature.  
DS22146A-page 10  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
30%  
140  
120  
100  
80  
144 Samples  
VDD = 2.5V and 5.5V  
25%  
20%  
15%  
10%  
5%  
60  
40  
0%  
20  
0
Normalized Internal Calibration Voltage;  
-50  
-25  
0
25  
50  
75  
100  
125  
VCAL/VDD  
Ambient Temperature (°C)  
FIGURE 2-22:  
Normalized Internal  
FIGURE 2-23:  
V
Input Resistance vs.  
CAL  
Calibration Voltage.  
Temperature.  
© 2009 Microchip Technology Inc.  
DS22146A-page 11  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.3  
Frequency Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
PM  
PSRR+  
PSRR-  
CMRR  
VDD = 5.5V  
VDD = 2.5V  
GBWP  
11.E0+02  
1.1Ek+3  
11.E0+k4  
110.E0+k5  
11.EM+6  
11.0EM+7  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-24:  
CMRR and PSRR vs.  
FIGURE 2-27:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Common Mode Input  
Voltage.  
120  
100  
80  
0
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
-30  
VDD = 5.5V  
-60  
-90  
GBWP  
AOL  
60  
VDD = 2.5V  
40  
-120  
-150  
-180  
-210  
| AOL  
|
20  
PM  
0
-20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7 1.E+8 1.E+9  
10 100 1k 10k 100k 1M 10M 100M 1G  
Frequency (Hz)  
FIGURE 2-25:  
Open-Loop Gain vs.  
FIGURE 2-28:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Output Voltage.  
1000  
100  
90  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
PM  
G = 101 V/V  
G = 11 V/V  
G = 1 V/V  
VDD = 5.5V  
VDD = 2.5V  
10  
1
GBWP  
0.1  
-50 -25  
0
25  
50  
75 100 125  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08  
Ambient Temperature (°C)  
FIGURE 2-26:  
Gain Bandwidth Product  
FIGURE 2-29:  
Closed-Loop Output  
and Phase Margin vs. Ambient Temperature.  
Impedance vs. Frequency.  
DS22146A-page 12  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
10  
9
8
7
6
150  
140  
130  
120  
110  
100  
90  
RS = 0  
RS = 1 kΩ  
RTI  
VCM = VDD/2  
G = +1 V/V  
G = 1 V/V  
5
G = 2 V/V  
4
3
2
1
0
G 4 V/V  
80  
70  
RS = 10 kΩ  
RS = 100 kΩ  
60  
50  
10p  
100p  
1n  
10n  
1.0E-09  
1k  
10k  
1.E+04  
100k  
1.E+05  
Frequency (Hz)  
1M  
1.E+06  
10M  
1.0E-11  
1.0E-10  
1.E+03  
1.E+07  
Normalized Capacitive Load; CL/G (F)  
FIGURE 2-30:  
Gain Peaking vs.  
FIGURE 2-31:  
Channel-to-Channel  
Normalized Capacitive Load.  
Separation vs. Frequency.  
© 2009 Microchip Technology Inc.  
DS22146A-page 13  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.4  
Input Noise and Distortion  
1.E+4  
10μ  
20  
15  
10  
5
Representative Part  
NPBW = 0.1 Hz  
1.E+3  
1μ  
0
1.E+2  
100n  
-5  
-10  
-15  
-20  
1.E+1  
10n  
1n  
1.E+00.1  
1
10  
100 1k 10k 100k 1M 10M  
0
5
10 15 20 25 30 35 40 45 50  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7  
Time (min)  
Frequency (Hz)  
FIGURE 2-32:  
Input Noise Voltage Density  
FIGURE 2-35:  
Input Noise plus Offset vs.  
vs. Frequency.  
Time with 0.1 Hz Filter.  
160  
1
VDD = 5.0V  
VDD = 2.5V  
140  
120  
100  
80  
0.1  
VDD = 5.5V  
BW = 22 Hz to > 500 kHz  
G = 1 V/V  
G = 11 V/V  
0.01  
60  
40  
0.001  
BW = 22 Hz to 80 kHz  
20  
f = 100 Hz  
0
0.0001  
1.E+2  
100  
1.E+3  
1k  
1.E+4  
10k  
1.E+5  
100k  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-33:  
Input Noise Voltage Density  
FIGURE 2-36:  
THD+N vs. Frequency.  
vs. Input Common Mode Voltage with f = 100 Hz.  
12  
11  
10  
9
VDD = 2.5V  
8
7
VDD = 5.5V  
6
5
4
3
2
1
f = 1 MHz  
0
Common Mode Input Voltage (V)  
FIGURE 2-34:  
Input Noise Voltage Density  
vs. Input Common Mode Voltage with f = 1 MHz.  
DS22146A-page 14  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.5  
Time Response  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = -1  
RF = 499  
VIN  
VIN  
VOUT  
VOUT  
0
20 40 60 80 100 120 140 160 180 200  
Time (ns)  
0
100 200 300 400 500 600 700 800  
Time (ns)  
FIGURE 2-37:  
Non-inverting Small Signal  
FIGURE 2-40:  
Inverting Large Signal Step  
Step Response.  
Response.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7
6
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = 2  
VIN  
5
VOUT  
4
3
2.5  
VIN  
VOUT  
2
2.0  
1.5  
1.0  
0.5  
0.0  
1
0
-1  
0
1
2
3
4
5
6
7
8
9
10  
0
100 200 300 400 500 600 700 800  
Time (ns)  
Time (ms)  
FIGURE 2-38:  
Non-inverting Large Signal  
FIGURE 2-41:  
The MCP651/2/5 family  
Step Response.  
shows no input phase reversal with overdrive.  
60  
Falling Edge  
VDD = 5.5V  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VIN  
VDD = 5.5V  
G = -1  
RF = 499Ω  
VDD = 2.5V  
Rising Edge  
VOUT  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
50  
100 150 200 250 300 350 400  
Time (ns)  
Ambient Temperature (°C)  
FIGURE 2-39:  
Inverting Small Signal Step  
FIGURE 2-42:  
Slew Rate vs. Ambient  
Response.  
Temperature.  
© 2009 Microchip Technology Inc.  
DS22146A-page 15  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
10  
VDD = 5.5V  
VDD = 2.5V  
1
0.1  
100k  
1M  
1.E+06  
10M  
1.E+07  
100M  
1.E+08  
1.E+05  
Frequency (Hz)  
FIGURE 2-43:  
Maximum Output Voltage  
Swing vs. Frequency.  
DS22146A-page 16  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.6  
Calibration and Chip Select Response  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
CAL/CS = VDD  
VDD = 5.5V  
VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-44:  
CAL/CS Current vs. Power  
FIGURE 2-47:  
CAL/CS Hysteresis vs.  
Supply Voltage.  
Ambient Temperature.  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 2.5V  
G = 1  
VL = 0V  
6
4
IDD  
2
0
-2  
Op Amp  
turns off  
Op Amp  
turns on  
Calibration  
starts  
CAL/CS  
3
2
1
VOUT  
0
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-45:  
CAL/CS Voltage, Output  
FIGURE 2-48:  
CAL/CS Turn On Time vs.  
Voltage and Supply Current (for Side A) vs. Time  
Ambient Temperature.  
with V = 2.5V.  
DD  
8
10  
8
6
4
2
Representative Part  
VDD = 5.5V  
7
6
5
4
3
2
1
0
G = 1  
6
5
4
3
2
1
VL = 0V  
IDD  
0
Op Amp  
turns on  
Calibration  
starts  
-2  
Op Amp  
turns off  
CAL/CS  
VOUT  
0
-1  
0
1
2
3
4
5
6
7
8
9
10  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-46:  
CAL/CS Voltage, Output  
FIGURE 2-49:  
CAL/CS’s Pull-down  
Voltage and Supply Current (for Side A) vs. Time  
Resistor (R ) vs. Ambient Temperature.  
PD  
with V = 5.5V.  
DD  
© 2009 Microchip Technology Inc.  
DS22146A-page 17  
MCP651/2/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
0
1.E-06  
1.E-07  
1.E-08  
1.E-09  
1.E-10  
1.E-11  
CAL/CS = VDD = 5.5V  
CAL/CS = VDD  
-1  
-2  
-3  
+125°C  
+85°C  
-4  
+125°C  
+85°C  
+25°C  
-40°C  
-5  
-6  
+25°C  
-7  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-50:  
Quiescent Current in  
FIGURE 2-51:  
Output Leakage Current vs.  
Shutdown vs. Power Supply Voltage.  
Output Voltage.  
DS22146A-page 18  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP652 MCP655  
SOIC DFN MSOP DFN  
MCP651  
Symbol  
VOUT, VOUTA  
Description  
SOIC  
6
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VSS  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Negative Power Supply  
+
8
5
5
CAL/CS, CALA/CSA  
CALB/CSB  
Calibrate/Chip Select Digital Input (op amp A)  
7
5
5
6
7
6
7
8
9
Calibrate/Chip Select Digital Input (op amp B)  
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
VINB  
+
6
6
8
7
7
9
VOUTB  
Output (op amp B)  
8
8
10  
10 VDD  
Positive Power Supply  
5
9
VCAL  
NC  
Calibration Common Mode Voltage Input  
No Internal Connection  
1
11 EP  
Exposed Thermal Pad (EP);  
must be connected to VSS  
3.1  
Analog Outputs  
3.5  
Calibrate/Chip Select Digital Input  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
This input (CAL/CS, …) is a CMOS, Schmitt-triggered  
input that affects the calibration and low power modes  
of operation. When this pin goes high, the part is placed  
into a low power mode and the output is high-Z. When  
this pin goes low, a calibration sequence is started  
(which corrects VOS). At the end of the calibration  
sequence, the output becomes low impedance and the  
part resumes normal operation.  
3.2  
Analog Inputs  
The non-inverting and inverting inputs (VIN+, VIN–, …)  
are high-impedance CMOS inputs with low bias  
currents.  
An internal POR triggers a calibration event when the  
part is powered on, or when the supply voltage drops  
too low. Thus, the MCP652 parts are calibrated, even  
though they do not have a CAL/CS pin.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 2.5V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
3.6  
Exposed Thermal Pad (EP)  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
There is an internal connection between the Exposed  
Thermal Pad (EP) and the VSS pin; they must be con-  
nected to the same potential on the Printed Circuit  
Board (PCB).  
3.4  
Calibration Common Mode  
Voltage Input  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (θJA).  
A low impedance voltage placed at this input (VCAL  
)
analog input will set the op amps’ common mode input  
voltage during calibration. If this pin is left open, the  
common mode input voltage during calibration is  
approximately VDD/3. The internal resistor divider is  
disconnected from the supplies whenever the part is  
not in calibration.  
© 2009 Microchip Technology Inc.  
DS22146A-page 19  
MCP651/2/5  
NOTES:  
DS22146A-page 20  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
4.1.3  
INTERNAL POR  
4.0  
APPLICATIONS  
This part includes an internal Power On Reset (POR)  
to protect the internal calibration memory cells. The  
POR monitors the power supply voltage (VDD). When  
the POR detects a low VDD event, it places the part into  
the low power mode of operation. When the POR  
detects a normal VDD event, it starts a delay counter,  
then triggers an calibration event. The additional delay  
gives a total POR turn on time of 200 ms (typical); this  
is also the power up time (since the POR is triggered at  
power up).  
The MCP651/2/5 family of self-zeroed op amps is man-  
ufactured using Microchip’s state of the art CMOS  
process. It is designed for low cost, low power and high  
precision applications. Its low supply voltage, low  
quiescent current and wide bandwidth makes the  
MCP651/2/5 ideal for battery-powered applications.  
4.1  
Calibration and Chip Select  
These op amps include circuitry for dynamic calibration  
of the offset voltage (VOS).  
4.1.4  
PARITY DETECTOR  
4.1.1  
mCal CALIBRATION CIRCUITRY  
A parity error detector monitors the memory contents  
for any corruption. In the rare event that a parity error is  
detected (e.g., corruption from an alpha particle), a  
POR event is automatically triggered. This will cause  
the input offset voltage to be re-corrected, and the op  
amp will not return to normal operation for a period of  
time (the POR turn on time, tPON).  
The internal mCal circuitry, when activated, starts a  
delay timer (to wait for the op amp to settle to its new  
bias point), then calibrates the input offset voltage  
(VOS). The mCal circuitry is triggered at power-up (and  
after some power brown out events) by the internal  
POR, and by the memory’s Parity Detector. The power  
up time, when the mCal circuitry triggers the calibration  
sequence, is 200 ms (typical).  
4.1.5  
CALIBRATION INPUT PIN  
A VCAL pin is available in some options (e.g., the single  
MCP651) for those applications that need the calibra-  
tion to occur at an internally driven common mode  
voltage other than VDD/3.  
4.1.2  
CAL/CS PIN  
The CAL/CS pin gives the user a means to externally  
demand a low power mode of operation, then to  
calibrate VOS. Using the CAL/CS pin makes it possible  
to correct VOS as it drifts over time (1/f noise and aging;  
see Figure 2-35) and across temperature.  
Figure 4-1 shows the reference circuit that internally  
sets the op amp’s common mode reference voltage  
(VCM_INT) during calibration (the resistors are discon-  
nected from the supplies at other times). The 5 kΩ  
resistor provides over-current protection for the buffer.  
The CAL/CS pin performs two functions: it places the  
op amp(s) in a low power mode when it is held high,  
and starts a calibration event (correction of VOS) after a  
rising edge.  
To op amp during  
VDD  
calibration  
While in the low power mode, the quiescent current is  
quite small (ISS = -3 µA, typical). The output is also is in  
a High-Z state.  
VCM_INT  
300 kΩ  
5 kΩ  
During the calibration event, the quiescent current is  
near, but smaller than, the specified quiescent current  
(6 mA, typical). The output continues in the High-Z  
state, and the inputs are disconnected from the  
external circuit, to prevent internal signals from  
affecting circuit operation. The op amp inputs are inter-  
nally connected to a common mode voltage buffer and  
feedback resistors. The offset is corrected (using a  
digital state machine, logic and memory), and the  
calibration constants are stored in memory.  
VCAL  
BUFFER  
150 kΩ  
VSS  
FIGURE 4-1:  
Input Circuitry.  
Common-Mode Reference’s  
When the VCAL pin is left open, the internal resistor  
divider generates a VCM_INT of approximately VDD/3,  
which is near the center of the input common mode  
voltage range. It is recommended that an external  
capacitor from VCAL to ground be added to improve  
noise immunity.  
Once the calibration event is completed, the amplifier is  
reconnected to the external circuitry. The turn on time,  
when calibration is started with the CAL/CS pin, is 3 ms  
(typical).  
There is an internal 5 MΩ pull-down resistor tied to the  
CAL/CS pin. If the CAL/CS pin is left floating, the ampli-  
fier operates normally.  
When the VCAL pin is driven by an external voltage  
source, which is within its specified range, the op amp  
will have its input offset voltage calibrated at that com-  
mon mode input voltage. Make sure that VCAL is within  
its specified range.  
© 2009 Microchip Technology Inc.  
DS22146A-page 21  
MCP651/2/5  
It is possible to use an external resistor voltage divider  
to modify VCM_INT; see Figure 4-2. The internal circuitry  
at the VCAL pin looks like 100 kΩ tied to VDD/3. The  
parallel equivalent of R1 and R2 should be much  
smaller than 100 kΩ to minimize differences in match-  
ing and temperature drift between the internal and  
external resistors. Again, make sure that VCAL is within  
its specified range.  
Bond  
Pad  
VDD  
VIN+  
VSS  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN–  
VDD  
Bond  
Pad  
MCP65X  
R1  
FIGURE 4-3:  
Structures.  
Simplified Analog Input ESD  
VCAL  
C1  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Section 1.1  
“Absolute Maximum Ratings †”). Figure 4-4 shows  
the recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN–) from going too far above VDD, and  
dump any currents onto VDD. When implemented as  
shown, resistors R1 and R2 also limit the current  
through D1 and D2.  
R2  
VSS  
FIGURE 4-2:  
Resistors.  
Setting V  
with External  
CM  
For instance, a design goal to set VCM_INT = 0.1V when  
VDD = 2.5V could be met with: R1 = 24.3 kΩ,  
R2 = 1.00 kΩ and C1 = 100 nF. This will keep VCAL  
within its range for any VDD, and should be close  
enough to 0V for ground based applications.  
4.2  
Input  
VDD  
4.2.1  
PHASE REVERSAL  
D1  
R1  
D2  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-41 shows an input voltage  
exceeding both supplies with no phase inversion.  
MCP65X  
V1  
V2  
VOUT  
R2  
4.2.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-3. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
FIGURE 4-4:  
Protecting the Analog  
Inputs.  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-15. Applications that are high impedance may  
need to limit the usable voltage range.  
DS22146A-page 22  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
4.2.3  
NORMAL OPERATION  
4.3.0.3  
Power Dissipation  
The input stage of the MCP651/2/5 op amps uses a dif-  
ferential PMOS input stage. It operates at low common  
mode input voltage (VCM), with VCM up to VDD – 1.3V  
Since the output short circuit current (ISC) is specified  
at ±100 mA (typical), these op amps are capable of  
both delivering and dissipating significant power. Two  
common loads, and their impact on the op amp’s power  
dissipation, will be discussed.  
and down to VSS – 0.3V. The input offset voltage (VOS  
)
is measured at VCM = VSS – 0.3V and VDD – 1.3V to  
ensure proper operation. See Figure 2-6 and  
Figure 2-7 for temperature effects.  
Figure 4-7 shows a resistive load (RL) with a DC output  
voltage (VOUT). VL is RL’s ground point, VSS is usually  
ground (0V) and IOUT is the output current. The input  
currents are assumed to be negligible.  
When operating at very low non-inverting gains, the  
output voltage is limited at the top by the VCM range  
(< VDD – 1.3V); see Figure 4-5  
VDD  
VDD  
IDD  
IOUT  
MCP65X  
VIN  
VOUT  
VOUT  
MCP65X  
RL  
ISS  
VSS < VIN, VOUT VDD – 1.3V  
VSS  
VL  
FIGURE 4-5:  
Unity Gain Voltage  
Limitations for Linear Operation.  
FIGURE 4-7:  
Diagram for Resistive Load  
Power Calculations.  
4.3  
Rail-to-Rail Output  
The DC currents are:  
4.3.0.1  
Maximum Output Voltage  
EQUATION 4-1:  
The Maximum Output Voltage (see Figure 2-16 and  
Figure 2-17) describes the output range for a given  
load. For instance, the output voltage swings to within  
15 mV of the negative rail with a 1 kΩ load tied to  
VDD/2.  
VOUT VL  
IOUT = -------------------------  
RL  
IDD IQ + max(0, IOUT  
ISS IQ + min(0, IOUT  
)
)
Where:  
4.3.0.2  
Output Current  
IQ = Quiescent supply current for one  
Figure 4-6 shows the possible combinations of output  
voltage (VOUT) and output current (IOUT). IOUT is  
positive when it flows out of the op amp into the  
external circuit.  
op amp (mA/amplifier)  
VOUT = A DC value (V)  
The DC op amp power is:  
6.0  
VOH Limited  
EQUATION 4-2:  
5.5  
(VDD = 5.5V)  
5.0  
4.5  
POA = IDD(VDD VOUT) + ISS(VSS VOUT  
)
RL = 1 kΩ  
RL = 100Ω  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
RL = 10Ω  
The maximum op amp power, for resistive loads at DC,  
occurs when VOUT is halfway between VDD and VL or  
halfway between VSS and VL:  
VOL Limited  
EQUATION 4-3:  
max(POA) = IDD(VDD VSS  
)
IOUT (mA)  
max2(VDD VL, VL VSS  
)
+ -----------------------------------------------------------------  
FIGURE 4-6:  
Output Current.  
4RL  
© 2009 Microchip Technology Inc.  
DS22146A-page 23  
MCP651/2/5  
Figure 4-7 shows a capacitive load (CL), which is  
driven by a sine wave with DC offset. The capacitive  
load causes the op amp to output higher currents at  
EQUATION 4-7:  
n
PPKG  
=
POA  
higher frequencies. Because the output rectifies IOUT  
,
k = 1  
the op amp’s dissipated power increases (even though  
the capacitor does not dissipate power).  
Where:  
n = Number of op amps in package (1 or 2)  
VDD  
The maximum ambient to junction temperature rise  
(ΔTJA) and junction temperature (TJ) can be calculated  
using the maximum expected package power (PPKG),  
ambient temperature (TA) and the package thermal  
resistance (θJA) found in Table 1-4:  
IDD  
IOUT  
VOUT  
MCP65X  
CL  
ISS  
EQUATION 4-8:  
VSS  
ΔTJA = PPKGθJA  
TJ = TA + ΔTJA  
FIGURE 4-8:  
Power Calculations.  
Diagram for Capacitive Load  
The output voltage is assumed to be:  
The worst case power de-rating for the op amps in a  
particular package can be easily calculated:  
EQUATION 4-4:  
EQUATION 4-9:  
VOUT = VDC + VAC sin(ωt)  
Where:  
TJmax TA  
--------------------------  
PPKG  
θJA  
VDC = DC offset (V)  
Where:  
VAC = Peak output swing (VPK  
)
ω = Radian frequency (2π f) (rad/s)  
TJmax = Absolute maximum junction  
temperature (°C)  
TA = Ambient temperature (°C)  
The op amp’s currents are:  
EQUATION 4-5:  
Several techniques are available to reduce ΔTJA for a  
given package:  
dVOUT  
----------------  
dt  
IOUT = CL ⋅  
= VACωCL cos(ωt)  
• Reduce θJA  
- Use another package  
IDD IQ + max(0, IOUT  
ISS IQ + min(0, IOUT  
Where:  
)
)
- Improve the PCB layout (ground plane, etc.)  
- Add heat sinks and air flow  
• Reduce max(PPKG  
- Increase RL  
)
IQ = Quiescent supply current for one  
op amp (mA/amplifier)  
- Decrease CL  
- Limit IOUT using RISO (see Figure 4-9)  
- Decrease VDD  
The op amp’s instantaneous power, average power  
and peak power are:  
EQUATION 4-6:  
POA = IDD(VDD VOUT) + ISS(VSS VOUT  
)
4VAC fCL  
ave(POA) = (VDD VSS) IQ + -----------------------  
π
max(POA) = (VDD VSS)(IQ + 2VAC fCL)  
The power dissipated in a package depends on the  
powers dissipated by each op amp in that package:  
DS22146A-page 24  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
4.4.2  
GAIN PEAKING  
4.4  
Improving Stability  
Figure 4-11 shows an op amp circuit that represents  
non-inverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The capacitances CN and CG  
represent the total capacitance at the input pins; they  
include the op amp’s common mode input capacitance  
(CCM), board parasitic capacitance and any capacitor  
placed in parallel.  
4.4.1  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. See Figure 2-30. A unity gain buffer (G = +1)  
is the most sensitive to capacitive loads, though all  
gains show the same general behavior.  
CN  
RN  
When driving large capacitive loads with these op  
amps (e.g., > 20 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-9) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
MCP65X  
VP  
VOUT  
VM  
RG  
RF  
CG  
FIGURE 4-11:  
Amplifier with Parasitic  
RISO  
CL  
RG  
RF  
Capacitance.  
VOUT  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF.  
MCP65X  
RN  
FIGURE 4-9:  
Output Resistor, R  
ISO  
CN and RN form a low-pass filter that affects the signal  
Stabilizes Large Capacitive Loads.  
at VP. This filter has a single real pole at 1/(2πRNCN).  
The largest value of RF that should be used depends  
on noise gain (see GN in Section 4.4.1 “Capacitive  
Loads”) and CG. Figure 4-12 shows the maximum  
recommended RF for several CG values.  
Figure 4-10 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
1.E+05  
100k  
GN > +1 V/V  
CG = 10 pF  
CG = 32 pF  
CG = 100 pF  
CG = 320 pF  
CG = 1 nF  
100  
1.E+04  
10k  
1.E+013k  
1.E+10020  
10  
GN = +1  
GN +2  
1
10  
100  
Noise Gain; GN (V/V)  
1
10p  
100p  
1.E-10  
1n  
1.E-09  
10n  
1.E-11  
1.E-08  
FIGURE 4-12:  
R vs. Gain.  
Maximum Recommended  
Normalized Capacitance; CL/GN (F)  
F
FIGURE 4-10:  
for Capacitive Loads.  
Recommended R  
Values  
ISO  
Figure 2-37 and Figure 2-38 show the small signal and  
large signal step responses at G = +1 V/V. The unity  
gain buffer usually has RF = 0Ω and RG open.  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP651/2/5 SPICE macro model  
are helpful.  
Figure 2-39 and Figure 2-40 show the small signal and  
large signal step responses at G = -1 V/V. Since the  
noise gain is 2 V/V and CG 10 pF, the resistors were  
chosen to be RF = RG = 499Ω and RN = 249Ω.  
© 2009 Microchip Technology Inc.  
DS22146A-page 25  
MCP651/2/5  
It is also possible to add a capacitor (CF) in parallel with  
RF to compensate for the de-stabilizing effect of CG.  
This makes it possible to use larger values of RF. The  
conditions for stability are summarized in  
Equation 4-10.  
Use coax cables, or low inductance wiring, to route  
signal and power to and from the PCB. Mutual and self  
inductance of power wires is often a cause of crosstalk  
and unusual behavior.  
4.7  
Typical Applications  
EQUATION 4-10:  
4.7.1  
POWER DRIVER WITH HIGH GAIN  
Given:  
Figure 4-13 shows a power driver with high gain  
(1 + R2/R1). The MCP651/2/5 op amp’s short circuit  
current makes it possible to drive significant loads. The  
calibrated input offset voltage supports accurate  
response at high gains. R3 should be small, and equal  
to R1||R2, in order to minimize the bias current induced  
offset.  
GN1 = 1 + RF RG  
GN2 = 1 + CG CF  
fF = 1 (2πRFCF)  
fZ = fF(GN1 GN2  
We need:  
)
fF fGBWP (2GN2), GN1 < GN2  
fF fGBWP (4GN1), GN1 > GN2  
R1  
R3  
R2  
VDD/2  
VOUT  
RL  
4.5  
Power Supply  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. Surface mount,  
multilayer ceramic capacitors, or their equivalent,  
should be used.  
VIN  
MCP65X  
FIGURE 4-13:  
Power Driver.  
4.7.2  
OPTICAL DETECTOR AMPLIFIER  
These op amps require a bulk capacitor (i.e., 2.2 µF or  
larger) within 50 mm to provide large, slow currents.  
Tantalum capacitors, or their equivalent, may be a good  
choice. This bulk capacitor can be shared with other  
nearby analog parts as long as crosstalk through the  
supplies does not prove to be a problem.  
Figure 4-14 shows a transimpedance amplifier, using  
the MCP651 op amp, in a photo detector circuit. The  
photo detector is a capacitive current source. The op  
amp’s input common mode capacitance (5 pF, typical)  
acts in parallel with CD. RF provides enough gain to  
produce 10 mV at VOUT. CF stabilizes the gain and lim-  
its the transimpedance bandwidth to about 1.1 MHz.  
RF’s parasitic capacitance (e.g., 0.2 pF for a 0805  
SMD) acts in parallel with CF.  
4.6  
High Speed PCB Layout  
These op amps are fast enough that a little extra care  
in the PCB (Printed Circuit Board) layout can make a  
significant difference in performance. Good PC board  
layout techniques will help you achieve the  
performance shown in the specifications and Typical  
Performance Curves; it will also help you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
CF  
1.5 pF  
Photo  
Detector  
RF  
100 kΩ  
Use a solid ground plane. Connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
VOUT  
ID  
CD  
100 nA  
30pF  
Separate digital from analog, low speed from high  
speed, and low power from high power. This will reduce  
interference.  
MCP651  
VDD/2  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high frequency (low rise time)  
signals.  
FIGURE 4-14:  
for an Optical Detector.  
Transimpedance Amplifier  
Sometimes, it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect guard traces  
to ground plane at both ends, and in the middle for long  
traces.  
DS22146A-page 26  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
4.7.3  
H-BRIDGE DRIVER  
Figure 4-15 shows the MCP652 dual op amp used as  
a H-bridge driver. The load could be a speaker or a DC  
motor.  
½ MCP652  
VIN  
VOT  
RF  
RF  
RF  
RL  
RGT  
RGB  
VOB  
VDD/2  
½ MCP652  
H-Bridge Driver.  
FIGURE 4-15:  
This circuit automatically makes the noise gains (GN)  
equal, when the gains are set properly, so that the fre-  
quency responses match well (in magnitude and in  
phase). Equation 4-11 shows how to calculate RGT and  
RGB so that both op amps have the same DC gains;  
GDM needs to be selected first.  
EQUATION 4-11:  
V
VOB  
--------O---T---------------------  
2 V/V  
GDM  
VIN VDD 2  
RF  
RGT = --------------------------------  
(GDM 2) 1  
RF  
RGB = ------------------  
GDM 2  
Equation 4-12 gives the resulting common mode and  
differential mode output voltages.  
EQUATION 4-12:  
VOT + VOB  
-------------------------- = ----------  
VDD  
2
2
VDD  
VOT VOB = GDM VIN ----------  
2
© 2009 Microchip Technology Inc.  
DS22146A-page 27  
MCP651/2/5  
NOTES:  
DS22146A-page 28  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP651/2/5 family of op amps.  
Microchip offers a broad spectrum of Analog Demon-  
stration and Evaluation Boards that are designed to  
help customers achieve faster time to market. For a  
complete listing of these boards and their correspond-  
ing user’s guides and technical information, visit the  
Microchip web site at www.microchip.com/analog  
tools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP651/2/5 op  
amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the Micro-  
chip web site at www.microchip.com/filterlab, the Fil-  
ter-Lab design tool provides full schematic diagrams of  
the filter circuit with component values. It also outputs  
the filter circuit in SPICE format, which can be used  
with the macro model to simulate actual filter perfor-  
mance.  
5.6  
Application Notes  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
5.3  
Mindi™ Circuit Designer &  
Simulator  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams, and  
simulate circuits. Circuits developed using the Mindi  
Circuit Designer & Simulator can be downloaded to a  
personal computer or workstation.  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
Some of these application notes, and others, are listed  
in the design guide:  
• “Signal Chain Design Guide”, DS21825  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit a particular design require-  
ment. Available at no cost from the Microchip website  
at www.microchip.com/maps, the MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, a customer can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for Data sheets, Purchase and Sampling of  
Microchip parts.  
© 2009 Microchip Technology Inc.  
DS22146A-page 29  
MCP651/2/5  
NOTES:  
DS22146A-page 30  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead DFN (3x3) (MCP652)  
Device  
MCP652  
Code  
XXXX  
DABP  
0913  
256  
DABP  
YYWW  
NNN  
Note: Applies to 8-Lead  
3x3 DFN  
8-Lead SOIC (150 mil) (MCP651, MCP652)  
Example:  
MCP651E  
XXXXXXXX  
e
3
SN 0910  
XXXXYYWW  
256  
NNN  
10-Lead DFN (3x3) (MCP655)  
Example:  
XXXX  
YYWW  
NNN  
BAFC  
0910  
256  
Example:  
10-Lead MSOP (MCP655)  
655EUN  
XXXXXX  
YWWNNN  
910256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22146A-page 31  
MCP651/2/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
e
D
b
N
N
L
EXPOSED PAD  
E
E2  
K
NOTE 1  
NOTE 1  
1
2
2
1
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
9
ꢚꢁ:.ꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
,ꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
M
+ꢁꢚꢚꢅ/ꢕ0  
M
ꢚꢁ+ꢚ  
ꢚꢁ+ꢚ  
M
ꢚꢁꢚꢚ  
ꢀꢁ:ꢚ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
ꢓꢏ  
(
5
ꢚꢁꢚꢚ  
ꢚꢁꢏ.  
ꢚꢁꢏꢚ  
ꢚꢁꢏꢚ  
ꢏꢁꢒꢚ  
ꢚꢁ+.  
ꢚꢁ..  
M
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:ꢏ/  
DS22146A-page 32  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22146A-page 33  
MCP651/2/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ& ꢄꢈꢈꢆ'ꢎꢊꢈꢋ(ꢃꢆꢕ&ꢑꢗꢆMꢆꢑꢄ))ꢒ*ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#&'+,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢀꢁꢏꢞꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
M
ꢀꢁꢏ.  
ꢚꢁꢀꢚ  
M
M
M
ꢀꢁꢞ.  
M
ꢚꢁꢏ.  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅꢅ  
ꢔꢏ  
ꢔꢀ  
,
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
:ꢁꢚꢚꢅ/ꢕ0  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
0ꢎꢇ&$ꢉꢊꢅ@ꢌꢑ%ꢃꢌꢄꢇꢈA  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
,ꢀ  
+ꢁꢛꢚꢅ/ꢕ0  
ꢒꢁꢛꢚꢅ/ꢕ0  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
M
ꢚꢁ.ꢚ  
ꢀꢁꢏꢞ  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ/ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢚꢒꢅꢘ,2  
ꢚꢟ  
ꢚꢁꢀꢞ  
ꢚꢁ+ꢀ  
.ꢟ  
M
M
M
M
M
9ꢟ  
(
ꢚꢁꢏ.  
ꢚꢁ.ꢀ  
ꢀ.ꢟ  
.ꢟ  
ꢀ.ꢟ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢝꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ.ꢞ/  
DS22146A-page 34  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ& ꢄꢈꢈꢆ'ꢎꢊꢈꢋ(ꢃꢆꢕ&ꢑꢗꢆMꢆꢑꢄ))ꢒ*ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#&'+,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22146A-page 35  
MCP651/2/5  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢓꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ+.  
+ꢁꢚꢚꢅ/ꢕ0  
ꢀꢁ.9  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
ꢏꢁꢏꢚ  
ꢏꢁꢒ9  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
,ꢏ  
(
5
ꢀꢁꢒꢚ  
ꢚꢁꢀ9  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁꢞ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:+/  
DS22146A-page 36  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22146A-page 37  
MCP651/2/5  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ)ꢒꢆ& ꢄꢈꢈꢆ'ꢎꢊꢈꢋ(ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕ.ꢑꢗꢆ#ꢖ&'ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢞ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ9.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ:ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ9ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢟ  
9ꢟ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
(
ꢚꢁꢚ9  
ꢚꢁꢀ.  
M
M
ꢚꢁꢏ+  
ꢚꢁ++  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚꢏꢀ/  
DS22146A-page 38  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
APPENDIX A: REVISION HISTORY  
Revision A (April 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22146A-page 39  
MCP651/2/5  
NOTES:  
DS22146A-page 40  
© 2009 Microchip Technology Inc.  
MCP651/2/5  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a) MCP651T-E/SN:  
Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
Temperature  
Range  
Package  
a) MCP652T-E/MF:  
b) MCP652T-E/SN:  
Tape and Reel,  
Extended Temperature,  
8LD DFN package.  
Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
Device:  
MCP651:  
MCP651T:  
Single Op Amp  
Single Op Amp (Tape and Reel)  
(DFN and SOIC)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and SOIC)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and MSOP)  
MCP652:  
MCP652T:  
a) MCP655T-E/MF:  
b) MCP655T-E/UN:  
Tape and Reel,  
MCP655:  
MCP655T:  
Extended Temperature,  
10LD DFN package.  
Tape and Reel,  
Extended Temperature,  
10LD MSOP package.  
Temperature Range:  
Package:  
E
=
=
-40°C to +125°C  
MF  
Plastic Dual Flat, No Lead (3x3 DFN),  
8-lead, 10-lead  
SN  
UN  
=
=
Plastic Small Outline, (3.90 mm), 8-lead  
Plastic Micro Small Outline, (MSOP), 10-lead  
© 2009 Microchip Technology Inc.  
DS22146A-page 41  
MCP651/2/5  
NOTES:  
DS22146A-page 42  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22146A-page 43  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22146A-page 44  
© 2009 Microchip Technology Inc.  

相关型号:

MCP651_11

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP651_14

Unity-Gain Stable
MICROCHIP

MCP652

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP652-E/MF

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP652-E/ML

DUAL OP-AMP, 200 uV OFFSET-MAX, 50 MHz BAND WIDTH, PQCC16, 4 X 4 MM, 0.90 MM HEIGHT, PLASTIC, QFN-16
MICROCHIP

MCP652-E/SL

DUAL OP-AMP, 200 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, 3.90 MM, PLASTIC, SOIC-14
MICROCHIP

MCP652-E/SN

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP652-E/ST

DUAL OP-AMP, 200 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, 4.40 MM, PLASTIC, TSSOP-14
MICROCHIP

MCP652-E/UN

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP652T

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP652T-E/MF

50 MHz, 6 mA Op Amps with mCal
MICROCHIP

MCP652T-E/SN

50 MHz, 6 mA Op Amps with mCal
MICROCHIP