MCP6548-E/LT

更新时间:2024-09-18 07:07:23
品牌:MICROCHIP
描述:Open-Drain Output Sub-Microamp Comparators

MCP6548-E/LT 概述

Open-Drain Output Sub-Microamp Comparators 漏极开路输出亚微安比较 比较器

MCP6548-E/LT 规格参数

生命周期:Active包装说明:,
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:5.67
Is Samacsys:N放大器类型:COMPARATOR
JESD-609代码:e3湿度敏感等级:3
子类别:Comparator端子面层:Matte Tin (Sn)
Base Number Matches:1

MCP6548-E/LT 数据手册

通过下载MCP6548-E/LT数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MCP6546/6R/6U/7/8/9  
Open-Drain Output Sub-Microamp Comparators  
Features  
Description  
• Low Quiescent Current: 600 nA/comparator (typ.)  
• Rail-to-Rail Input: VSS - 0.3V to VDD + 0.3V  
• Open-Drain Output: VOUT 10V  
• Propagation Delay: 4 µs (typ., 100 mV Overdrive)  
• Wide Supply Voltage Range: 1.6V to 5.5V  
• Single available in SOT-23-5, SC-70-5 * packages  
• Available in Single, Dual and Quad  
• Chip Select (CS) with MCP6548  
• Low Switching Current  
The Microchip Technology Inc. MCP6546/7/8/9 family  
of comparators is offered in single (MCP6546,  
MCP6546R, MCP6546U), single with chip select  
(MCP6548), dual (MCP6547) and quad (MCP6549)  
configurations. The outputs are open-drain and are  
capable of driving heavy DC or capacitive loads.  
These comparators are optimized for low power,  
single-supply application with greater than rail-to-rail  
input operation. The output limits supply current surges  
and dynamic power consumption while switching. The  
open-drain output of the MCP6546/7/8/9 family can be  
used as a level-shifter for up to 10V using a pull-up  
resistor. It can also be used as a wired-OR logic. The  
internal Input hysteresis eliminates output switching  
due to internal noise voltage, reducing current draw.  
These comparators operate with a single-supply  
voltage as low as 1.6V and draw a quiescent current of  
less than 1 µA/comparator.  
• Internal Hysteresis: 3.3 mV (typ.)  
Temperature Range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
Typical Applications  
• Laptop Computers  
• Mobile Phones  
The related MCP6541/2/3/4 family of comparators from  
Microchip has a push-pull output that supports rail-to-  
rail output swing and interfaces with CMOS/TTL logic.  
• Metering Systems  
• Hand-held Electronics  
• RC Timers  
* SC-70-5 E-Temp parts not avaliable at this release of  
the data sheet.  
• Alarm and Monitoring Circuits  
• Windowed Comparators  
• Multi-vibrators  
MCP6546U SOT-23-5 is E-Temp only.  
Related Devices  
• CMOS/TTL-Compatible Output: MCP6541/2/3/4  
Package Types  
MCP6549  
MCP6547  
PDIP, SOIC, TSSOP  
PDIP, SOIC, MSOP  
MCP6546  
MCP6546R  
PDIP, SOIC, MSOP  
SOT-23-5  
OUTA 1  
14 OUTD  
VDD  
OUTA 1  
1
VSS  
8
7
6
5
NC  
8
7
6
5
OUT  
VDD  
NC  
1
2
3
5
VINA– 2 - + + 13 VIND  
+
-
+
OUTB  
VINA–  
+
-
2
3
4
VIN– 2  
VIN+ 3  
VSS  
4
-
+
VDD  
OUT  
NC  
-
VINA+ 3  
12 VIND  
VINA  
+
VINB  
VINB  
+
-
VIN+  
4 VIN–  
VSS  
VDD  
4
V
11  
SS  
VINB+ 5  
VINB– 6  
10 VINC  
-
9 VINC  
+
MCP6546  
SOT-23-5, SC-70-5  
MCP6546U  
MCP6548  
PDIP, SOIC, MSOP  
-
+ +  
SOT-23-5  
OUTB  
8
OUTC  
7
NC 1  
VIN– 2  
VIN+ 3  
8
7
CS  
VDD  
VDD  
VDD  
OUT  
VIN–  
VSS  
1
2
3
1
2
3
5
5
4
-
+
-
+
VSS  
-
6 OUT  
5 NC  
VIN+  
4 VIN– VIN+  
OUT  
VSS  
4
© 2006 Microchip Technology Inc.  
DS21714E-page 1  
MCP6546/6R/6U/7/8/9  
† Notice: Stresses above those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the  
device at those or any other conditions above those indicated  
in the operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD - VSS .........................................................................7.0V  
Open-Drain output............................................... VSS + 10.5V  
Analog Input (VIN+, VIN-)††............. VSS - 1.0V to VDD + 1.0V  
All other inputs and outputs ........... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current  
Limits”  
Difference Input voltage ...................................... |VDD – VSS  
|
Output Short-Circuit Current .................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD protection on all pins:  
(HBM;MM) .....................................2 kV;200V (MCP6546U)  
(HBM;MM) ................................ 4 kV; 200V (all other parts)  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = VSS  
PU = 2.74 kΩ to VPU = VDD (Refer to Figure 1-3).  
,
R
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.6  
0.3  
5.5  
1
V
VPU VDD  
Quiescent Current  
(per comparator)  
0.6  
µA IOUT = 0  
Input  
Input Voltage Range  
VCMR  
CMRR  
CMRR  
CMRR  
PSRR  
VOS  
VSS 0.3  
55  
70  
VDD + 0.3  
V
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Offset Voltage  
dB VDD = 5V, VCM = -0.3V to 5.3V  
dB VDD = 5V, VCM = 2.5V to 5.3V  
dB VDD = 5V, VCM = -0.3V to 2.5V  
dB VCM = VSS  
50  
65  
55  
70  
63  
80  
-7.0  
±1.5  
±3  
+7.0  
mV VCM = VSS (Note 1)  
Drift with Temperature  
ΔVOS/ΔTA  
VHYST  
TC1  
µV/°C TA = -40°C to +125°C, VCM = VSS  
mV VCM = VSS (Note 1)  
Input Hysteresis Voltage  
Linear Temp. Co.  
1.5  
3.3  
6.5  
6.7  
µV/°C TA = -40°C to +125°C, VCM = VSS (Note 2)  
µV/°C2 TA = -40°C to +125°C, VCM = VSS (Note 2)  
pA VCM = VSS  
Quadratic Temp. Co.  
TC2  
-0.035  
1
Input Bias Current  
IB  
At Temperature (I-Temp parts)  
At Temperature (E-Temp parts)  
Input Offset Current  
IB  
25  
100  
5000  
pA TA = +85°C, VCM = VSS (Note 3)  
pA TA = +125°C, VCM = VSS (Note 3)  
pA VCM = VSS  
IB  
1200  
±1  
IOS  
Common Mode Input Impedance  
Differential Input Impedance  
ZCM  
1013||4  
1013||2  
Ω||pF  
ZDIFF  
Ω||pF  
Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the  
input-referred trip points.  
2:  
V
HYST at differential temperatures is estimated using: VHYST (TA) = VHYST + (TA -25°C) TC1 + (TA - 25°C)2TC2.  
3: Input bias current at temperature is not tested for the SC-70-5 package  
4: Do not short the output above VSS + 10V. Limit the output current to Absolute Maximum Rating of 30 mA. The minimum  
V
PU test limit was VDD before Dec. 2004 (week code 52).  
DS21714E-page 2  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = VSS  
PU = 2.74 kΩ to VPU = VDD (Refer to Figure 1-3).  
,
R
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Open-Drain Output  
Output Pull-Up Voltage  
High-Level Output Current  
Low-Level Output Voltage  
Short-Circuit Current  
VPU  
IOH  
1.6  
-100  
VSS  
10  
V
(Note 4)  
nA VDD = 1.6V to 5.5V, VPU = 10V (Note 4)  
IOUT = 2 mA, VPU = VDD = 5V  
VOL  
ISC  
VSS + 0.2  
V
±1.5  
30  
8
mA VPU = VDD = 1.6V (Note 4)  
mA VPU = VDD = 5.5V (Note 4)  
pF  
ISC  
Output Pin Capacitance  
COUT  
Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the  
input-referred trip points.  
2:  
V
HYST at differential temperatures is estimated using: VHYST (TA) = VHYST + (TA -25°C) TC1 + (TA - 25°C)2TC2.  
3: Input bias current at temperature is not tested for the SC-70-5 package  
4: Do not short the output above VSS + 10V. Limit the output current to Absolute Maximum Rating of 30 mA. The minimum  
V
PU test limit was VDD before Dec. 2004 (week code 52).  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2,  
Step = 200 mV, Overdrive = 100 mV, RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Fall Time  
tF  
0.7  
4.0  
8.0  
8.0  
µs  
µs  
µs  
µs  
(Note 1)  
Propagation Delay (High-to-Low)  
Propagation Delay (Low-to-High)  
Propagation Delay Skew  
tPHL  
tPLH  
tPDS  
fMAX  
fMAX  
Eni  
3.0  
(Note 1)  
-1.0  
225  
165  
200  
(Notes 1 and 2)  
Maximum Toggle Frequency  
kHz VDD = 1.6V  
kHz VDD = 5.5V  
Input Noise Voltage  
µVP-P 10 Hz to 100 kHz  
Note 1: tR and tPLH depend on the load (RL and CL); these specifications are valid for the indicated load only.  
2: Propagation Delay Skew is defined as: tPDS = tPLH - tPHL  
.
MCP6548 CHIP SELECT (CS) CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = VSS  
,
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF (Refer to Figures 1-1 and 1-3).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
VIL  
VSS  
5
0.2 VDD  
V
CS Input Current, Low  
ICSL  
pA  
CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
VIH  
ICSH  
IDD  
0.8 VDD  
1
VDD  
V
CS Input Current, High  
pA  
pA  
pA  
pA  
CS = VDD  
CS = VDD  
CS = VDD  
CS Input High, VDD Current  
CS Input High, GND Current  
Comparator Output Leakage  
CS Dynamic Specifications  
18  
-20  
1
ISS  
IO(LEAK)  
VOUT = VSS+10V, CS = V  
DD  
CS Low to Comparator Output Low  
Turn-on Time  
tON  
tOFF  
2
50  
ms  
µs  
V
CS = 0.2VDD to VOUT = VDD/2,  
IN– = VDD  
CS = 0.8VDD to VOUT = VDD/2,  
IN– = VDD  
VDD = 5V  
V
CS High to Comparator Output  
High Z Turn-off Time  
10  
0.6  
V
CS Hysteresis  
VCS_HYST  
© 2006 Microchip Technology Inc.  
DS21714E-page 3  
MCP6546/6R/6U/7/8/9  
VIL  
tON  
VIH  
tOFF  
High-Z  
CS  
V –  
IN  
100 mV  
V + = V /2  
t
PHL  
100 mV  
IN  
DD  
VOUT  
High-Z  
t
PLH  
V
OH  
V
ISS  
OUT  
-20 pA (typ.) -0.6 µA (typ.)  
-20 pA (typ.)  
1 pA (typ.)  
V
V
OL  
OL  
ICS  
1 pA (typ.)  
5 pA (typ.)  
FIGURE 1-2:  
Propagation Delay Timing  
Diagram.  
FIGURE 1-1:  
Timing Diagram for the CS  
pin on the MCP6548.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC-70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C Note  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
70  
120  
100  
Note:  
The MCP6546/7/8/9 I-temp family operates over this extended temperature range, but with reduced  
performance. In any case, the Junction Temperature (TJ) must not exceed the absolute maximum  
specification of +150°C.  
1.1  
Test Circuit Configuration  
This test circuit configuration is used to determine the  
AC and DC specifications.  
VDD  
VPU = VDD  
200 kΩ  
200 kΩ  
RPU  
(2 mA)/ VDD  
=
MCP654X  
VOUT  
36 pF  
100 kΩ  
VSS = 0V  
VIN = VSS  
FIGURE 1-3:  
AC and DC Test Circuit for  
the Open-Drain Output Comparators.  
DS21714E-page 4  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
14%  
18%  
16%  
14%  
12%  
10%  
8%  
1200 Samples  
VCM = VSS  
1200 Samples  
CM = VSS  
12%  
10%  
8%  
V
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0  
Input Hysteresis Voltage (mV)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage at  
FIGURE 2-4:  
Input Hysteresis Voltage at  
V
= V  
.
V
= V  
.
CM  
SS  
CM  
SS  
25%  
20%  
15%  
10%  
5%  
16%  
14%  
12%  
10%  
8%  
596 Samples  
VCM = VSS  
TA = -40°C to +125°C  
1200 Samples  
VCM = VSS  
TA = -40°C to +125°C  
VDD = 5.5V  
VDD = 1.6V  
6%  
4%  
2%  
0%  
0%  
Input Hysteresis Voltage –  
Linear Temp. Co.; TC1 (µV/°C)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift at  
FIGURE 2-5:  
Input Hysteresis Voltage  
V
= V  
.
Linear Temp. Co. (TC ) at V  
= V  
.
CM  
SS  
1
CM  
SS  
20%  
7
6
596 Samples  
18%  
VDD = 5.5V  
VCM = VSS  
16%  
14%  
12%  
10%  
8%  
TA = -40°C to +125°C  
VOUT  
5
VDD = 5.5V  
4
3
VDD = 1.6V  
6%  
4%  
2%  
0%  
2
1
VIN–  
0
-1  
Input Hysteresis Voltage –  
Quadratic Temp. Co.; TC2 (µV/°C2)  
0
1
2
3
4
5
6
7
8
9
10  
Time (1 ms/div)  
FIGURE 2-3:  
The MCP6546/6R/6U/7/8/9  
FIGURE 2-6:  
Input Hysteresis Voltage  
comparators show no phase reversal.  
Quadratic Temp. Co. (TC ) at V  
= V  
.
2
CM  
SS  
© 2006 Microchip Technology Inc.  
DS21714E-page 5  
MCP6546/6R/6U/7/8/9  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
1.0  
6.5  
VCM = VSS  
VCM = VSS  
0.8  
0.6  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
0.4  
VDD = 1.6V  
VDD = 5.5V  
0.2  
0.0  
VDD = 1.6V  
VDD = 5.5V  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Hysteresis Voltage vs.  
Ambient Temperature at V  
= V  
.
Ambient Temperature at V  
= V  
.
CM  
SS  
CM  
SS  
2.0  
6.5  
6.0  
VDD = 1.6V  
VDD = 1.6V  
TA = +125°C  
A = +85°C  
1.5  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
T
1.0  
0.5  
TA = +125°C  
0.0  
T
T
T
A = +85°C  
A = +25°C  
A = -40°C  
-0.5  
TA = +125°C  
-1.0  
TA = +25°C  
A = -40°C  
-1.5  
-2.0  
T
2.0  
1.5  
TA = +125°C  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Hysteresis Voltage vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 1.6V.  
DD  
DD  
2.0  
6.5  
VDD = 5.5V  
1.5  
VDD = 5.5V  
TA = +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
T
T
T
A = +85°C  
A = +25°C  
A = -40°C  
TA = -40°C  
A = +25°C  
1.0  
T
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
TA = +85°C  
A = +125°C  
T
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Hysteresis Voltage vs.  
Common Mode Input Voltage at V = 5.5V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
DS21714E-page 6  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
10n  
10000  
90  
85  
80  
75  
70  
65  
60  
55  
VDD = 5.5V  
Input Referred  
IB, TA = +125°C  
IB, TA = +85°C  
1n  
1000  
100p  
100  
PSRR, VIN+ = VSS, VDD = 1.6V to 5.5V  
CMRR, VIN+ = -0.3 to 5.3V, VDD = 5.0V  
10p  
10  
IOS, TA = +125°C  
IOS, TA = +85°C  
11p  
100.01f  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-13:  
CMRR,PSRR vs. Ambient  
FIGURE 2-16:  
Input Bias Current, Input  
Temperature.  
Offset Current vs. Common Mode Input Voltage.  
1000  
0.7  
0.6  
0.5  
0.4  
VDD = 5.5V  
CM = VDD  
V
100  
10  
1
IB  
TA = +125°C  
0.3  
0.2  
0.1  
0.0  
| IOS  
|
T
T
A = +85°C  
A = +25°C  
T
A = -40°C  
0.1  
55  
65  
75  
85  
95  
105 115 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Input Bias Current, Input  
FIGURE 2-17:  
Quiescent Current vs.  
Offset Current vs. Ambient Temperature.  
Power Supply Voltage.  
0.8  
0.8  
IQ does not include pull-up resistor current  
IQ does not include pull-up resistor current  
0.7  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 1.6V  
VDD = 5.5V  
0.6  
0.5  
0.4  
0.3  
0.2  
Sweep VIN+, VIN– = VDD/2  
Sweep VIN+, VIN– = VDD/2  
0.1  
Sweep VIN–, VIN+ = VDD/2  
Sweep VIN–, VIN+ = VDD/2  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Common Mode Input Voltage (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
Quiescent Current vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21714E-page 7  
MCP6546/6R/6U/7/8/9  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
10  
10  
IDD spike near VPU = 1.3V  
VDD = 5.6V VPU = 1.6V to 10.5V  
VDD = 4.6V  
VDD = 2.1V  
VDD = 2.6V  
VDD = 3.6V  
VDD = 4.6V  
VDD = 5.6V  
V
DD = 3.6V  
VDD = 2.6V  
1
1
VDD = 1.6V  
VDD = 2.1V  
VDD = 1.6V  
0.1  
-4 -3 -2 -1  
Pull-up to Supply Voltage Difference,  
PU – VDD (V)  
0
1
2
3
4
5
6
7
8
9
0.1  
0
1
2
3
4
5
6
7
8
9
10 11  
Pull-Up Voltage, VPU (V)  
V
FIGURE 2-19:  
Supply Current vs. Pull-Up  
FIGURE 2-22:  
Supply Current vs. Pull-Up  
Voltage.  
to Supply Voltage Difference.  
35  
10  
TA = -40°C  
100 mV Overdrive  
VCM = VDD/2  
IDD does not include  
pull-up resistor current  
30  
25  
20  
15  
10  
5
TA = +25°C  
TA = +85°C  
TA = +125°C  
1
VDD = 5.5V  
DD = 1.6V  
V
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.1  
1
10  
100  
Toggle Frequency (kHz)  
FIGURE 2-20:  
Supply Current vs. Toggle  
FIGURE 2-23:  
Output Short Circuit Current  
Frequency.  
Magnitude vs. Power Supply Voltage.  
1.0  
0.8  
VDD = 5.5V  
0.9  
VDD = 1.6V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VOL–VSS:  
0.8  
0.7  
0.6  
T
A = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
VOL – VSS  
:
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
5
10  
15  
20  
25  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-21:  
Output Voltage Headroom  
FIGURE 2-24:  
Output Voltage Headroom  
vs. Output Current at V = 1.6V.  
vs. Output Current at V = 5.5V.  
DD  
DD  
DS21714E-page 8  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
65%  
60%  
55%  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
408 Samples  
100 mV Overdrive  
VCM = VDD/2  
408 Samples  
100 mV Overdrive  
VCM = VDD/2  
VDD = 1.6V  
VDD = 5.5V  
VDD = 1.6V  
VDD = 5.5V  
0%  
0%  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
High-to-Low Propagation Delay (µs)  
Low-to-High Propagation Delay (µs)  
FIGURE 2-25:  
High-to-Low Propagation  
FIGURE 2-28:  
Low-to-High Propagation  
Delay.  
Delay.  
50%  
45%  
8
100 mV Overdrive  
VCM = VDD/2  
408 Samples  
100 mV Overdrive  
7
6
5
4
3
2
1
0
VDD = 5.5V  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VDD/2  
tPHL  
VDD = 5.5V  
VDD = 1.6V  
VDD = 1.6V  
tPLH  
0%  
-50  
-25  
0
25  
50  
75  
100  
125  
Propagation Delay Skew (µs)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Propagation Delay Skew.  
FIGURE 2-29:  
Propagation Delay vs.  
Ambient Temperature.  
100  
14  
VCM = VDD/2  
VCM = VDD/2  
13  
12  
11  
10  
9
tPHL  
8
7
10  
VDD = 5.5V  
6
10 mV Overdrive  
tPHL  
5
4
3
2
tPLH  
VDD = 1.6V  
1
tPLH  
1000  
100 mV Overdrive  
0
1
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
Power Supply Voltage (V)  
Input Overdrive (mV)  
FIGURE 2-27:  
Propagation Delay vs.  
FIGURE 2-30:  
Propagation Delay vs. Input  
Power Supply Voltage.  
Overdrive.  
© 2006 Microchip Technology Inc.  
DS21714E-page 9  
MCP6546/6R/6U/7/8/9  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
VDD = 1.6V  
100 mV Overdrive  
VDD = 5.5V  
100 mV Overdrive  
tPHL  
tPLH  
tPHL  
tPLH  
0.8  
0.0  
0.2  
0.4  
0.6  
1.0  
1.2  
1.4  
1.6  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-31:  
Propagation Delay vs.  
FIGURE 2-34:  
Propagation Delay vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
8
200  
VIN– = 100 mV Overdrive  
100 mV Overdrive  
VCM = VDD/2  
180  
160  
140  
120  
100  
80  
tPLH  
7
VCM = VDD/2  
VIN+ = VCM  
tPLH  
VDD = 5.5V  
6
5
4
3
2
1
0
VDD = 5.5V  
tPHL  
60  
VDD = 1.6V  
40  
tPHL  
VDD = 1.6V  
20  
0
0
10 20 30 40 50 60 70 80 90  
Load Capacitance (nF)  
0
10 20 30 40 50 60 70 80 90 100  
Pull-up Resistor, RPU (k:)  
FIGURE 2-32:  
Propagation Delay vs.  
FIGURE 2-35:  
Propagation Delay vs. Load  
Pull-up Resistor.  
Capacitance.  
10n  
1.E+04  
8
VIN– = 100 mV Overdrive  
VCM = VDD/2  
IN+ = VCM  
TA = +125°C  
TA = +85°C  
7
6
5
4
3
2
1
0
1n  
1.E+03  
V
tPHL  
100p  
1.E+02  
VDD = 5.5V  
CS = VDD  
VIN+ = VDD/2  
IN– = VSS  
1.E+01  
10p  
V
1.E+00  
1p  
TA = +25°C  
VDD = 1.6V  
tPLH  
1.E-01  
100f  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
6
7
8
9
10 11  
Pull-up Voltage (V)  
Output Voltage (V)  
FIGURE 2-33:  
Propagation Delay vs.  
FIGURE 2-36:  
Output Leakage Current  
Pull-up Voltage.  
(CS = V ) vs. Output Voltage (MCP6548 only).  
DD  
DS21714E-page 10  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN– = GND,  
RPU = 2.74 kΩ to VPU = VDD, and CL = 36 pF.  
1.E-10m3  
1.E10-004µ  
1.E1-005µ  
1.E-10m3  
Comparator  
Turns On  
Comparator  
Shuts Off  
Comparator  
Turns On  
Comparator  
Shuts Off  
1.E-04  
100µ  
1.E1-005µ  
1.E-016µ  
1.1E0-07n  
1µ  
1.E-06  
CS Hysteresis  
CS  
Hysteresis  
100n  
1.E-07  
10n  
1.E-08  
1.E- 8  
10n  
CS  
High-to-Low  
CS  
CS  
CS  
1n  
1.E-09  
1.E-09  
1n  
Low-to-High  
High-to-Low  
Low-to-High  
100p  
1.E-10  
1.E-10  
100p  
VDD = 1.6V  
VDD = 5.5V  
10p  
1.E-11  
1.E1-101p  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Chip Select (CS) Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select (CS) Voltage (V)  
FIGURE 2-37:  
Supply Current (shoot  
FIGURE 2-40:  
Supply Current (shoot  
through current) vs. Chip Select (CS) Voltage at  
through current) vs. Chip Select (CS) Voltage at  
V
= 1.6V (MCP6548 only).  
V
= 5.5V (MCP6548 only).  
DD  
DD  
20  
1.6  
6
VOUT  
CS  
3
0.0  
VOUT  
0
CS  
140  
120  
VDD = 1.6V  
15  
Start-up IDD  
100  
80  
60  
40  
20  
0
VDD = 5.5V  
Start-up  
IDD  
10  
Charging output  
capacitance  
Charging output  
capacitance  
5
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Time (0.5 ms/div)  
Time (1 ms/div)  
FIGURE 2-38:  
Supply Current (charging  
FIGURE 2-41:  
Supply Current (charging  
current) vs. Chip Select (CS) pulse at V = 1.6V  
current) vs. Chip Select (CS) pulse at V = 5.5V  
DD  
DD  
(MCP6548 only).  
(MCP6548 only).  
6.0  
1.E-02  
10m  
1.E-03  
1m  
1.E-04  
100µ  
1.E1-005µ  
1.E-016µ  
100n  
1.E-07  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
VDD = 5.5V  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VOUT  
CS  
+125°C  
+85°C  
+25°C  
-40°C  
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
FIGURE 2-39:  
Response (MCP6548 only).  
Chip Select (CS) Step  
FIGURE 2-42:  
Voltage.  
Input Bias Current vs. Input  
© 2006 Microchip Technology Inc.  
DS21714E-page 11  
MCP6546/6R/6U/7/8/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6546  
(PDIP,  
SOIC,  
MCP6546  
(SOT-23-5,  
SC-70-5)  
Symbol  
Description  
MSOP)  
6
2
1
1
4
1
2
6
2
1
2
OUT, OUTA Digital Output (comparator A)  
VIN–, VINA– Inverting Input (comparator A)  
VIN+, VINA+ Non-inverting Input (comparator A)  
4
4
1
3
3
3
3
3
3
3
7
5
2
5
8
7
4
VDD  
Positive Power Supply  
4
2
5
2
5
4
5
VINB  
+
Non-inverting Input (comparator B)  
Inverting Input (comparator B)  
Digital Output (comparator B)  
Digital Output (comparator C)  
Inverting Input (comparator C)  
Non-inverting Input (comparator C)  
Negative Power Supply  
6
6
VINB  
7
7
OUTB  
OUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
1, 5, 8  
8
VIND  
VIND  
+
Non-inverting Input (comparator D)  
Inverting Input (comparator D)  
Digital Output (comparator D)  
Chip Select  
OUTD  
CS  
1, 5  
NC  
No Internal Connection  
3.1  
Analog Inputs  
3.4  
Power Supply (VSS and VDD)  
The comparator non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
The positive power supply pin (VDD) is 1.6V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD, except the output pins which  
3.2  
CS Digital Input  
can be as high as 10V above VSS  
.
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These can share a  
bulk capacitor with nearby analog parts (within  
100 mm), but it is not required.  
3.3  
Digital Outputs  
The comparator outputs are CMOS, open-drain digital  
outputs. They are designed to make level shifting and  
wired-OR easy to implement.  
DS21714E-page 12  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
4.0  
APPLICATIONS INFORMATION  
VDD  
The MCP6546/7/8/9 family of push-pull output  
comparators are fabricated on Microchip’s state-of-the-  
art CMOS process. They are suitable for a wide range  
of applications requiring very low power consumption.  
D1  
+
V1  
R1  
VOUT  
MCP6G0X  
4.1  
Comparator Inputs  
D2  
4.1.1  
PHASE REVERSAL  
V2  
The MCP6546/6R/6U/7/8/9 comparator family uses  
CMOS transistors at the input. They are designed to  
prevent phase inversion when the input pins exceed  
the supply voltages. Figure 2-3 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
R2  
R3  
VSS – (minimum expected V1)  
2 mA  
R1 ≥  
R2 ≥  
VSS – (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
FIGURE 4-2:  
Protecting the Analog Inputs.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to pro-  
tect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass ESD  
events within the specified limits.  
It is also possible to connect the diodes to the left of the  
resistors R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistor then serves as in-rush current  
limiter; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-42. Applications that are  
high impedance may need to limit the useable voltage  
range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
The input stage of this family of devices uses two  
differential input stages in parallel: one operates at low  
input voltages and the other at high input voltages.  
With this topology, the input voltage is 0.3V above VDD  
and 0.3V below VSS. The input offset voltage is  
measured at both VSS - 0.3V and VDD + 0.3V to ensure  
proper operation.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
Bond  
Pad  
VSS  
The MCP6546/6R/6U/7/8/9 family has internally-set  
hysteresis that is small enough to maintain input offset  
accuracy (<7 mV), and large enough to eliminate  
output chattering caused by the comparator’s own  
input noise voltage (200 µVP-P). Figure 4-3 illustrates  
this capability.  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuits they are in must limit the  
currents (and voltages) at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-3  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pin. Diodes D1 and D2 prevent the input  
pin (VIN+ and VIN–) from going too far above VDD  
.
When implemented as shown, resistors R1 and R2 also  
limit the current through D1 and D2.  
© 2006 Microchip Technology Inc.  
DS21714E-page 13  
MCP6546/6R/6U/7/8/9  
4.4.1  
INVERTING CIRCUIT  
25  
20  
15  
10  
5
Figure 4-4 shows an inverting circuit for a single-supply  
application using three resistors, besides the pull-up  
resistor. The resulting hysteresis diagram is shown in  
Figure 4-5.  
VDD = 5.0V  
VIN  
5
VOUT  
4
3
0
2
-5  
VDD  
VPU  
RPU  
Hysteresis  
1
-10  
-15  
-20  
-25  
-30  
0
I
PU  
VIN  
VOUT  
MCP654X  
VDD  
R2  
I
Time (100 ms/div)  
OL  
I
RF  
FIGURE 4-3:  
comparators’ internal hysteresis eliminates  
output chatter caused by input noise voltage.  
The MCP6546/7/8/9  
RF  
R3  
4.2  
Open-Drain Output  
The open-drain output is designed to make level-  
shifting and wired-OR logic easy to implement. The  
output can go as high as 10V for 9V battery-powered  
applications. The output stage minimizes switching cur-  
rent (shoot-through current from supply-to-supply)  
when the output changes state. See Figures 2-15, 2-18  
and 2-37 through 2-41, for more information.  
FIGURE 4-4:  
hysteresis.  
Inverting circuit with  
VOUT  
VPU  
VOH  
4.3  
MCP6548 Chip Select (CS)  
Low-to-High  
High-to-Low  
The MCP6548 is a single comparator with a Chip  
Select (CS) pin. When CS is pulled high, the total  
current consumption drops to 20 pA (typ.). 1 pA (typ.)  
flows through the CS pin, 1 pA (typ.) flows through the  
output pin and 18 pA (typ.) flows through the VDD pin,  
as shown in Figure 1-1. When this happens, the  
comparator output is put into a high-impedance state.  
By pulling CS low, the comparator is enabled. If the CS  
pin is left floating, the comparator will not operate  
properly. Figure 1-1 shows the output voltage and  
supply current response to a CS pulse.  
VIN  
VOL  
VSS  
VSS  
VTLH VTHL  
VDD  
VTLH = trip voltage from low to high  
VTHL = trip voltage from high to low  
FIGURE 4-5:  
inverting circuit.  
Hysteresis diagram for the  
In order to determine the trip voltages (VTHL and VTLH  
)
The internal CS circuitry is designed to minimize  
glitches when cycling the CS pin. This helps conserve  
power, which is especially important in battery-powered  
applications.  
for the circuit shown in Figure 4-4, R2 and R3 can be  
simplified to the Thevenin equivalent circuit with  
respect to VDD, as shown in Figure 4-6.  
VPU  
4.4  
Externally Set Hysteresis  
RPU  
VOUT  
Greater flexibility in selecting hysteresis, or input trip  
points, is achieved by using external resistors.  
-
MCP654X  
Input offset voltage (VOS) is the center (average) of the  
(input-referred) low-high and high-low trip points. Input  
hysteresis voltage (VHYST) is the difference between  
the same trip points. Hysteresis reduces output  
chattering when one input is slowly moving past the  
other, thus reducing dynamic supply current. It also  
helps in systems where it is best not to cycle between  
states too frequently (e.g., air conditioner thermostatic  
control).  
+
V23  
R23  
RF  
FIGURE 4-6:  
Thevenin Equivalent Circuit.  
DS21714E-page 14  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
EQUATION 4-1:  
4.6  
Capacitive Loads  
Reasonable capacitive loads (e.g., logic gates) have  
little impact on propagation delay (see Figure 2-27).  
The supply current increases with increasing toggle  
frequency (Figure 2-30), especially with higher  
capacitive loads.  
R2R3  
R23 = ------------------  
R2 + R3  
R3  
------------------  
V23  
=
× VDD  
R2 + R3  
4.7  
Battery Life  
Using this simplified circuit, the trip voltage can be  
calculated using the following equation:  
In order to maximize battery life in portable  
applications, use large resistors and small capacitive  
loads. Avoid toggling the output more than necessary.  
Do not use Chip Select (CS) too frequently in order to  
conserve power. Capacitive loads will draw additional  
power at start-up.  
EQUATION 4-2:  
R23  
RF + RPU  
---------------------------------------  
----------------------------------------  
VTHL = VPU  
+ V  
+ V  
23  
23  
R23 + RF + RPU  
R
23 + R + RPU  
F
R23  
RF  
---------------------  
R23 + RF  
4.8  
PCB Surface Leakage  
----------------------  
VTLH = VOL  
R
23 + R  
F
In applications where low input bias current is critical,  
PCB (Printed Circuit Board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low-humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference  
would cause 5 pA of current to flow. This is greater  
than the MCP6546/6R/6U/7/8/9 family’s bias current at  
25°C (1 pA, typ.).  
VTLH = trip voltage from low to high  
VTHL = trip voltage from high to low  
Figure 2-21 and Figure 2-24 can be used to determine  
typical values for VOL. This voltage is dependent on the  
output current IOL as shown in Figure 4-4. This current  
can be determined using the equation below:  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
EQUATION 4-3:  
IOL = IPU + IRF  
VPU VOL  
--------------------------  
RPU  
V23 VOL  
------------------------  
IOL  
=
+
R
23 + RF  
VIN-  
VIN+  
VSS  
VOH can be calculated using the equation below:  
EQUATION 4-4:  
R
23 + RF  
--------------------------------------  
VOH = (VPU V23) ×  
R
23 + RF + RPU  
Guard Ring  
Example Guard Ring Layout  
As explained in Section 4.1 “Comparator Inputs”, it  
is important to keep the non-inverting input below  
FIGURE 4-7:  
VDD+0.3V when VPU > VDD  
.
for Inverting Circuit.  
4.5  
Supply Bypass  
1. Inverting Configuration (Figures 4-4 and 4-7):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the  
comparator (e.g., VDD/2 or ground).  
With this family of comparators, the power supply pin  
(VDD for single supply) should have a local bypass  
capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
edge rate performance.  
b. Connect the inverting pin (VIN–) to the input  
pad without touching the guard ring.  
© 2006 Microchip Technology Inc.  
DS21714E-page 15  
MCP6546/6R/6U/7/8/9  
4.9  
Unused Comparators  
4.10 Typical Applications  
An unused amplifier in a quad package (MCP6549)  
should be configured as shown in Figure 4-8. This  
circuit prevents the output from toggling and causing  
crosstalk. It uses the minimum number of components  
and draws minimal current (see Figure 2-15 and  
Figure 2-18).  
4.10.1  
PRECISE COMPARATOR  
Some applications require higher DC precision. An  
easy way to solve this problem is to use an amplifier  
(such as the MCP6041) to gain-up the input signal  
before it reaches the comparator. Figure 4-9 shows an  
example of this approach.  
¼ MCP6549  
VDD  
VDD  
VREF  
MCP6041  
VPU  
VDD  
+
RPU  
VOUT  
VIN  
R1  
R2  
VREF  
MCP6546  
FIGURE 4-9:  
Precise Inverting  
Comparator.  
FIGURE 4-8:  
Unused Comparators.  
4.10.2  
WINDOWED COMPARATOR  
Figure 4-10 shows one approach to designing a  
windowed comparator. The wired-OR connection  
produces a high output (logic 1) when the input voltage  
is between VRB and VRT (where VRT > VRB).  
VPU  
1/2  
MCP6547  
RPU  
VRT  
VOUT  
VIN  
VRB  
1/2  
MCP6547  
FIGURE 4-10:  
Windowed Comparator.  
DS21714E-page 16  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6546)  
Example: (I-temp)  
I-Temp  
Code  
E-Temp  
Code  
Device  
XXNN (Front)  
YWW (Back)  
AC25(Front)  
636 (Back)  
MCP6546  
ACNN  
Note 2  
Note 1: I-Temp parts prior to March  
2005 are marked “ACN”  
2: SC-70-5 E-Temp parts not  
available at this release of  
the data sheet.  
Example: (I-temp)  
5-Lead SOT-23 (MCP6546, MCP6546R, MCP6546U)  
I-Temp  
Code  
E-Temp  
Code  
Device  
MCP6546  
ACNN  
AHNN  
GWNN  
GXNN  
AWNN  
XXNN  
AC25  
MCP6546R  
MCP6546U  
Note: Applies to 5-Lead SOT-23  
8-Lead PDIP (300 mil)  
Example:  
MCP6546  
I/P^^256  
0636  
XXXXXXXX  
XXXXXNNN  
MCP6546  
I/P256  
0636  
e
3
OR  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
MCP6546I  
XXXXXXXX  
XXXXYYWW  
MCP6546  
I/SN0636  
e
3
SN0636  
OR  
256  
NNN  
256  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6546I  
636256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS21714E-page 17  
MCP6546/6R/6U/7/8/9  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6549)  
Example:  
MCP6549-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0636256  
e
3
MCP6549E/P  
OR  
OR  
0636256  
MCP6549  
I/P^  
e
3
0636256  
14-Lead SOIC (150 mil) (MCP6549)  
Example:  
MCP6549ISL  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0636256  
MCP6549  
e
3
E/SL^
OR  
0636256  
Example:  
14-Lead TSSOP (MCP6549)  
XXXXXXXX  
YYWW  
MCP6549I  
0636  
NNN  
256  
DS21714E-page 18  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
5-Lead Plastic Package (LT) (SC-70)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
D
p
B
n
1
Q1  
A2  
A
c
A1  
L
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
Overall Height  
5
5
.026 (BSC)  
0.65 (BSC)  
A
A2  
A1  
E
.031  
.043  
0.80  
1.10  
Molded Package Thickness  
Standoff  
.031  
.000  
.071  
.045  
.071  
.004  
.039  
.004  
.094  
.053  
.087  
.012  
0.80  
0.00  
1.80  
1.15  
1.80  
0.10  
1.00  
0.10  
2.40  
1.35  
2.20  
0.30  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Top of Molded Pkg to  
Lead Shoulder  
Q1  
.004  
.016  
0.10  
0.40  
c
Lead Thickness  
Lead Width  
.004  
.006  
.007  
.012  
0.10  
0.15  
0.18  
0.30  
B
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
JEITA (EIAJ) Standard: SC-70  
Revised 07-19-05  
Drawing No. C04-061  
© 2006 Microchip Technology Inc.  
DS21714E-page 19  
MCP6546/6R/6U/7/8/9  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
B
p1  
D
n
1
α
c
A
φ
A2  
A1  
β
L
Units  
INCHES  
NOM  
*
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
6
MAX  
n
p
Number of Pins  
Pitch  
6
.038 BSC  
.075 BSC  
0.95 BSC  
1.90 BSC  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
p1  
Outside lead pitch  
Overall Height  
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
.059  
.110  
.014  
Foot Length  
L
φ
Foot Angle  
0
5
0
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
5
0.20  
0.50  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
0
10  
10  
10  
5
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
JEITA (formerly EIAJ) equivalent: SC-74A  
Drawing No. C04-120  
Revised 09-12-05  
DS21714E-page 20  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
8-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
p
eB  
B
Units  
INCHES*  
NOM  
8
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2006 Microchip Technology Inc.  
DS21714E-page 21  
MCP6546/6R/6U/7/8/9  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21714E-page 22  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
n
1
B
α
c
φ
A2  
A
L
F
A1  
β
Units  
INCHES  
NOM  
MILLIMETERS  
*
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
0.95  
0.15  
Molded Package Thickness  
Standoff  
.030  
.033  
.037  
.006  
0.75  
0.85  
.000  
-
0.00  
-
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
Foot Length  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint (Reference)  
Foot Angle  
F
φ
0°  
-
8°  
0°  
-
-
-
-
-
8°  
c
Lead Thickness  
Lead Width  
.003  
.009  
.006  
.012  
.009  
.016  
0.08  
0.22  
0.23  
0.40  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5°  
5°  
-
15°  
15°  
5°  
5°  
15°  
15°  
-
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
Revised 07-21-05  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
© 2006 Microchip Technology Inc.  
DS21714E-page 23  
MCP6546/6R/6U/7/8/9  
14-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
14  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS21714E-page 24  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
1
B
n
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
14  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
A2  
A1  
E
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
© 2006 Microchip Technology Inc.  
DS21714E-page 25  
MCP6546/6R/6U/7/8/9  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
1
n
B
α
A
c
φ
β
L
A1  
A2  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
14  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026 BSC  
.041  
0.65 BSC  
1.05  
Overall Height  
A
A2  
A1  
E
.039  
.033  
.002  
.246  
.169  
.193  
.020  
.043  
1.00  
1.10  
Molded Package Thickness  
Standoff  
.035  
.004  
.251  
.173  
.197  
.024  
.037  
.006  
.256  
.177  
.201  
.028  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0.90  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
0.10  
Overall Width  
6.38  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
4.40  
5.00  
L
0.60  
φ
Foot Angle  
0°  
4°  
8°  
0°  
4°  
0.15  
0.25  
12° REF  
12° REF  
8°  
c
Lead Thickness  
.004  
.007  
.006  
.010  
.008  
.012  
0.09  
0.19  
0.20  
0.30  
Lead Width  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
12° REF  
12° REF  
β
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold fla sh or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tole rance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-153 AB-1  
Drawing No. C04-087  
Revised: 08-17-05  
DS21714E-page 26  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
APPENDIX A: REVISION HISTORY  
Revision E (September 2006)  
The following is the list of modifications:  
1. Added MCP6546U pinout for the SOT-23-5  
package.  
2. Clarified Absolute Maximum Analog Input  
Voltage and Current Specifications.  
3. Added applications writeups on unused  
comparators.  
4. Added disclaimer to package outline drawings.  
Revision D (May 2006)  
The following is the list of modifications:  
1. Added E-temp parts.  
2. Changed minimum pull-up voltage specification  
(VPU) to 1.6V for parts starting Dec. 2004 (week  
code 52); previous parts are specified at a  
minimum of VDD  
.
3. Changed VHYST temperature specifications to  
linear and quadratic temperature coefficients.  
4. Changed specifications and plots to include E-  
Temp parts.  
5. Added Section 3.0 “Pin Descriptions”.  
6. Corrected package markings (Section 5.1  
“Package Marking Information”).  
7. Added Appendix A: “Revision History”.  
Revision C (May 2003)  
Revision B (December 2002)  
Revision A (February 2002)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS21714E-page 27  
MCP6546/6R/6U/7/8/9  
NOTES:  
DS21714E-page 28  
© 2006 Microchip Technology Inc.  
MCP6546/6R/6U/7/8/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
–X  
/XX  
a)  
b)  
MCP6546T-I/LT: Tape and Reel,  
Temperature Package  
Range  
Industrial Temperature,  
5LD SC-70.  
MCP6546T-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT-23.  
Device:  
MCP6546: Single Comparator  
MCP6546T: Single Comparator (Tape and Reel)  
(SC-70, SOT-23, SOIC, MSOP)  
MCP6546RT: Single Comparator (Rotated - Tape and  
Reel) (SOT-23 only)  
MCP6546UT: Single Comparator (Tape and Reel)  
(SOT-23-5 is E-Temp only)  
c)  
d)  
MCP6546-E/P:  
Extended Temperature,  
8LD PDIP.  
MCP6546RT-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT23.  
MCP6546-E/SN: Extended Temperature,  
8LD SOIC.  
MCP6547: Dual Comparator  
MCP6547T: Dual Comparator  
e)  
f)  
(Tape and Reel for SOIC and MSOP)  
MCP6548: Single Comparator with CS  
MCP6548T: Single Comparator with CS  
(Tape and Reel for SOIC and MSOP)  
MCP6549: Quad Comparator  
MCP6546UT-E/OT:Tape and Reel,  
Extended Temperature,  
5LD SOT23.  
MCP6549T: Quad Comparator  
(Tape and Reel for SOIC and TSSOP)  
a)  
b)  
MCP6547-I/MS: Industrial Temperature,  
8LD MSOP.  
MCP6547T-I/MS: Tape and Reel,  
Industrial Temperature,  
8LD MSOP.  
Temperature Range:  
Package:  
I
=
=
-40°C to +85°C  
-40°C to +125°C  
E *  
* SC-70-5 E-Temp parts not available at this release of the  
data sheet.  
c)  
d)  
MCP6547-I/P:  
Industrial Temperature,  
8LD PDIP.  
LT  
=
=
=
=
=
=
=
Plastic Package (SC-70), 5-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic MSOP, 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead (MCP6549)  
Plastic TSSOP (4.4mm Body), 14-lead (MCP6549)  
MCP6547-E/SN: Extended Temperature,  
8LD SOIC.  
OT  
MS  
P
SN  
SL  
ST  
a)  
b)  
MCP6548-I/SN: Industrial Temperature,  
8LD SOIC.  
MCP6548T-I/SN: Tape and Reel,  
Industrial Temperature,  
8LD SOIC.  
c)  
d)  
MCP6548-I/P:  
Industrial Temperature,  
8LD PDIP.  
MCP6548-E/SN: Extended Temperature,  
8LD SOIC.  
a)  
b)  
MCP6549T-I/SL: Tape and Reel,  
Industrial Temperature,  
14LD SOIC.  
MCP6549T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC.  
c)  
d)  
MCP6549-I/P:  
Industrial Temperature,  
14LD PDIP.  
MCP6549-E/ST: Extended Temperature,  
14LD TSSOP.  
© 2006 Microchip Technology Inc.  
DS21714E-page 29  
MCP6546/6R/6U/7/8/9  
NOTES:  
DS21714E-page 30  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21714E-page 31  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
08/29/06  
DS21714E-page 32  
© 2006 Microchip Technology Inc.  

MCP6548-E/LT 相关器件

型号 制造商 描述 价格 文档
MCP6548-E/MS MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-E/OT MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-E/P MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-E/SL MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-E/SN MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-E/ST MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-I/LT MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-I/MS MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-I/OT MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格
MCP6548-I/P MICROCHIP Open-Drain Output Sub-Microamp Comparators 获取价格

MCP6548-E/LT 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6