MCP6561RT-E/MS [MICROCHIP]

1.8V Low Power Push-Pull Output Comparator; 1.8V低功率推挽输出比较器
MCP6561RT-E/MS
型号: MCP6561RT-E/MS
厂家: MICROCHIP    MICROCHIP
描述:

1.8V Low Power Push-Pull Output Comparator
1.8V低功率推挽输出比较器

比较器
文件: 总42页 (文件大小:698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6561/1R/1U/2/4  
1.8V Low Power Push-Pull Output Comparator  
Description  
Features  
• Propagation Delay at 1.8VDD  
- 56 ns (typical) High to Low  
- 49 ns (typical) Low to High  
:
The Microchip Technology, Inc. MCP6561/1R/1U/2/4  
families of CMOS/TTL compatible comparators are  
offered in single, dual, and quad configurations.  
These comparators are optimized for low power 1.8V,  
single-supply applications with greater than rail-to-rail  
input operation. The internal input hysteresis eliminates  
output switching due to internal input noise voltage,  
reducing current draw. The push-pull output of the  
MCP6561/1R/1U/2/4 family supports rail-to-rail output  
swing, and interfaces with CMOS/TTL logic. The output  
toggle frequency can reach a typical of 4 MHz (typical)  
while limiting supply current surges and dynamic power  
consumption during switching.  
• Low Quiescent Current: 100 µA (typical)  
• Input Offset Voltage: ±3 mV (typical)  
• Rail-to-Rail Input: VSS - 0.3V to VDD + 0.3V  
• CMOS/TTL Compatible Output  
• Wide Supply Voltage Range: 1.8V to 5.5V  
• Available in Single, Dual, and Quad  
• Packages: SC70-5, SOT-23-5, SOIC, MSOP,  
TSSOP  
This family operates with single supply voltage of 1.8V  
to 5.5V while drawing less than 100 µA/comparator of  
quiescent current (typical).  
Typical Applications  
• Laptop computers  
• Mobile Phones  
• Hand-held Electronics  
• RC Timers  
Package Types  
MCP6561  
MCP6562  
• Alarm and Monitoring Circuits  
• Window Comparators  
• Multi-vibrators  
SOT-23-5, SC70-5  
SOIC, MSOP  
VDD  
OUT  
VSS  
VDD  
1
2
3
4
1
2
3
5
8
7
6
5
OUTA  
+
-
OUTB  
-INB  
-INA  
+INA  
VSS  
+IN  
4
-IN  
+
-
Design Aids  
+INB  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP6561R  
MCP6564  
SOT-23-5  
SOIC, TSSOP  
OUT  
VDD  
VSS  
-IN  
1
1
2
3
5
4
14  
OUTD  
OUTA  
Related Devices  
+
2
3
4
-
+
-
-IND  
13  
12  
11  
10  
9
-INA  
+INA  
VDD  
• Open-Drain Output: MCP6566/6R/6U/7/9  
+IN  
+IND  
V
SS  
Typical Application  
+INC  
-INC  
+INB  
-INB  
5
6
7
-
-
+
+
MCP6561U  
VDD  
VIN  
SOT-23-5  
OUTB  
8
OUTC  
VOUT  
VDD  
5
VIN+  
VSS  
1
+
VDD  
MCP656X  
2
3
-
VIN–  
OUT  
4
R2  
RF  
R3  
© 2009 Microchip Technology Inc.  
DS22139B-page 1  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 2  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
*Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Maximum Ratings*  
VDD - VSS ....................................................................... 6.5V  
All other inputs and outputs............VSS - 0.3V to VDD + 0.3V  
Difference Input voltage ......................................|VDD - VSS  
|
Output Short Circuit Current .................................... ±25 mA  
Current at Input Pins .................................................. ±2 mA  
Current at Output and Supply Pins .......................... ±50 mA  
Storage temperature ................................... -65°C to +150°C  
Ambient temp. with power applied.............. -40°C to +125°C  
Junction temp............................................................ +150°C  
ESD protection on all pins (HBM/MM)..................≥ 4 kV/300V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated: VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN- = VSS  
,
RL = 10 kΩ to VDD/2 (see Figure 1-1).  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
60  
63  
100  
70  
5.5  
130  
V
Quiescent Current per comparator  
Power Supply Rejection Ratio  
Input  
µA  
dB  
IOUT = 0  
PSRR  
VCM = VSS  
Input Offset Voltage  
Input Offset Drift  
VOS  
ΔVOS/ΔT  
IOS  
-10  
1.0  
±3  
±2  
±1  
1
+10  
mV  
VCM = VSS (Note 1)  
µV/°C VCM = VSS  
Input Offset Current  
Input Bias Current  
pA  
pA  
VCM = VSS  
IB  
TA = +25°C, VIN- = VDD/2  
TA = +85°C, VIN- = VDD/2  
TA = +125°C, VIN- = VDD/2  
VCM = VSS (Notes 1, 2)  
60  
pA  
1500  
5000  
5.0  
pA  
Input Hysteresis Voltage  
VHYST  
TC1  
mV  
Input Hysteresis Linear Temp. Co.  
10  
µV/°C  
µV/°C2  
Input Hysteresis Quadratic Temp.  
Co.  
TC2  
0.3  
Common-Mode Input Voltage  
Range  
VCMR  
VSS0.2  
VDD+0.2  
V
V
VDD = 1.8V  
VSS0.3  
54  
VDD+0.3  
VDD = 5.5V  
Common-Mode Rejection Ratio  
CMRR  
66  
dB  
VCM= -0.3V to VDD+0.3V, VDD = 5.5V  
VCM= VDD/2 to VDD+0.3V, VDD = 5.5V  
VCM= -0.3V to VDD/2, VDD = 5.5V  
50  
63  
dB  
54  
65  
dB  
Common Mode Input Impedance  
Differential Input Impedance  
Push-Pull Output  
ZCM  
1013||4  
1013||2  
Ω||pF  
Ω||pF  
ZDIFF  
High Level Output Voltage  
VOH  
VOL  
VDD0.7  
V
V
IOUT = -3 mA/-8 mA with VDD = 1.8V/5.5V  
(Note 3)  
Low Level Output Voltage  
0.6  
IOUT = 3 mA/8 mA with VDD = 1.8V/5.5V  
(Note 3)  
Short Circuit Current  
ISC  
±30  
8
mA  
pF  
Note 3  
Output Pin Capacitance  
COUT  
Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the  
input-referred trip points.  
2:  
V
HYST at different temperatures is estimated using VHYST (TA) = VHYST @ +25°C + (TA - 25°C) TC1 + (TA - 25°C)2 TC2.  
3: Limit the output current to Absolute Maximum Rating of 50 mA.  
© 2009 Microchip Technology Inc.  
DS22139B-page 3  
MCP6561/1R/1U/2/4  
AC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated: VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN- = VSS  
,
RL = 10 kΩ to VDD/2, and CL = 25 pF. (see Figure 1-1).  
Parameters  
Propagation Delay  
Symbol  
tPHL  
Min  
Typ  
Max  
Units  
Conditions  
High-to-Low,100 mV Overdrive  
56  
34  
80  
80  
80  
80  
ns  
ns  
ns  
ns  
ns  
VCM= VDD/2, VDD = 1.8V  
VCM= VDD/2, VDD = 5.5V  
VCM= VDD/2, VDD = 1.8V  
VCM= VDD/2, VDD = 5.5V  
Low-to-High, 100 mV Overdrive  
tPLH  
49  
47  
Skew 1  
tPDS  
±10  
Output  
Rise Time  
tR  
tF  
20  
20  
4
ns  
ns  
Fall Time  
Maximum Toggle Frequency  
fTG  
MHz  
MHz  
VDD = 5.5V  
VDD = 1.8V  
2
Input Voltage Noise 2  
ENI  
350  
µVP-P 10 Hz to 10 MHz  
Note 1: Propagation Delay Skew is defined as: tPDS = tPLH - tPHL  
2: ENI is based on SPICE simulation.  
.
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated: VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, SC70-5  
Thermal Resistance, SOT-23-5  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
220.7  
149.5  
211  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
95.3  
100  
1.2  
Test Circuit Configuration  
This test circuit configuration is used to determine the  
AC and DC specifications.  
VDD  
MCP656X  
200 kΩ  
200 kΩ  
200 kΩ  
IOUT  
VOUT  
25 pF  
200 kΩ  
VSS = 0V  
VIN = VSS  
FIGURE 1-1:  
AC and DC Test Circuit for  
the Push-Pull Output Comparators.  
DS22139B-page 4  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
30%  
50%  
VDD = 1.8V  
VDD = 5.5V  
VDD = 5.5V  
CM = VSS  
Avg. = -0.9 mV  
StDev = 2.1 mV  
3588 units  
VDD = 1.8V  
CM = VSS  
Avg. = -0.1 mV  
StDev = 2.1 mV  
3588 units  
Avg. = 3.4 mV  
StDev = 0.2 mV  
3588 units  
Avg. = 3.6 mV  
StDev = 0.1 mV  
3588 units  
25%  
20%  
15%  
10%  
5%  
V
V
40%  
30%  
20%  
10%  
0%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
HYST (mV)  
V
OS (mV)  
V
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Hysteresis Voltage.  
60%  
60%  
VCM = VSS  
Avg. = 0.9 µV/°C  
StDev = 6.6 µV/°C  
1380 Units  
VDD = 1.8V  
VDD = 5.5V  
50%  
40%  
30%  
20%  
10%  
0%  
50%  
40%  
30%  
20%  
10%  
0%  
Avg. = 12 µV/°C  
StDev = 0.6 µV/°C  
Avg. = 10.4 µV/°C  
StDev = 0.6 µV/°C  
TA = -40°C to +125°C  
1380 Units  
T
A = -40°C to 125°C  
V
CM = VSS  
-60 -48 -36 -24 -12  
0
12 24 36 48 60  
0
2
4
6
8
10 12 14 16 18 20  
V
OS Drift (µV/°C)  
VHYST Drift, TC1 (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Hysteresis Voltage  
Drift - Linear Temp. Co. (TC1).  
7.0  
30%  
VDD = 5.5V  
VIN+ = VDD/2  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VDD = 5.5V  
VDD = 1.8V  
Avg. = 0.25 µV/°C2  
Avg. = 0.3 µV/°C2  
VOUT  
StDev = 0.1 µV/°C2  
StDev = 0.2 µV/°C2  
VIN  
-
20%  
10%  
0%  
1380 Units  
TA = -40°C to +125°C  
VCM = VSS  
-0.50 -0.25 0.00  
0.25  
0.50  
0.75  
1.00  
Time (3 µs/div)  
V
HYST Drift, TC2 (µV/°C2)  
FIGURE 2-3:  
Input vs. Output Signal, No  
FIGURE 2-6:  
Input Hysteresis Voltage  
Phase Reversal.  
Drift - Quadratic Temp. Co. (TC2).  
© 2009 Microchip Technology Inc.  
DS22139B-page 5  
MCP6561/1R/1U/2/4  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
VCM = VSS  
VCM = VSS  
VDD= 5.0V  
VDD= 1.8V  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
VDD= 1.8V  
VDD= 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Hysteresis Voltage vs.  
Temperature.  
Temperature.  
4.0  
5.0  
4.0  
3.0  
2.0  
VDD = 1.8V  
TA= +125°C  
TA= +125°C  
TA= +85°C  
2.0  
0.0  
TA= +25°C  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= -40°C  
-2.0  
-4.0  
VDD = 1.8V  
1.0  
-0.3 0.0  
-0.3 0.0 0.3 0.6  
0.9 1.2 1.5 1.8 2.1  
VCM (V)  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
VCM (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Hysteresis Voltage vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
3.0  
5.0  
4.0  
VDD = 5.5V  
2.0  
1.0  
TA= -40°C  
TA= +25°C  
0.0  
3.0  
TA= -40°C  
-1.0  
-2.0  
-3.0  
TA= +25°C  
2.0  
TA= +85°C  
TA= +85°C  
TA= +125°C  
VDD = 5.5V  
TA= +125°C  
1.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-0.5  
0.5  
1.5  
2.5  
CM (V)  
3.5  
4.5  
5.5  
VCM (V)  
V
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Hysteresis Voltage vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
DS22139B-page 6  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
TA= +125°C  
TA= +85°C  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= +125°C  
1.0  
TA= +25°C  
TA= -40°C  
0.0  
-1.0  
-2.0  
-3.0  
1.5  
2.5  
3.5  
4.5  
5.5  
1.5  
2.5  
3.5  
4.5  
5.5  
VDD (V)  
VDD (V)  
FIGURE 2-13:  
Input Offset Voltage vs.  
FIGURE 2-16:  
Input Hysteresis Voltage vs.  
Supply Voltage vs. Temperature.  
Supply Voltage vs. Temperature.  
50%  
140.0  
120.0  
100.0  
80.0  
VDD = 5.5V  
VDD = 1.8V  
40%  
Avg. = 97 µA  
StDev= 4 µA  
1794 units  
Avg. = 88 µA  
StDev= 4 µA  
1794 units  
30%  
60.0  
20%  
10%  
0%  
TA= -40°C  
TA= +25°C  
40.0  
TA= +85°C  
TA= +125°C  
20.0  
0.0  
60  
70  
80  
90  
100 110 120 130  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
IQ (µA)  
VDD (V)  
FIGURE 2-14:  
Quiescent Current.  
FIGURE 2-17:  
Quiescent Current vs.  
Supply Voltage vs Temperature.  
130  
130  
VDD = 1.8V  
VDD = 5.5V  
120  
120  
110  
100  
90  
Sweep VIN+ ,VIN- = VDD/2  
110  
100  
90  
Sweep VIN+ ,VIN- = VDD/2  
Sweep VIN- ,VIN+ = VDD/2  
Sweep VIN- ,VIN+ = VDD/2  
80  
80  
70  
70  
60  
60  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VCM (V)  
VCM (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
Quiescent Current vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
© 2009 Microchip Technology Inc.  
DS22139B-page 7  
MCP6561/1R/1U/2/4  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
400  
350  
300  
250  
200  
150  
100  
50  
120  
80  
0dB Output Attenuation  
VDD = 5.5V  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= +125°C  
100 mV Over-Drive  
CM = VDD/2  
L = Open  
V
R
40  
0
-40  
-80  
-120  
TA= -40°C  
VDD = 1.8V  
TA= +25°C  
TA= +85°C  
TA= +125°C  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
10  
10  
100  
100  
1k  
10k  
100k  
1M  
0
10M  
1000 10000 100000 100000 1E+07  
V
DD (V)  
Toggle Frequency (Hz)  
FIGURE 2-19:  
Quiescent Current vs.  
FIGURE 2-22:  
Short Circuit Current vs.  
Toggle Frequency.  
Supply Voltage vs. Temperature.  
1000  
1400  
VDD= 1.8V  
VDD= 5.5V  
VDD - VOH  
1200  
1000  
800  
600  
400  
200  
0
VDD - VOH  
800  
VOL  
TA = 125°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
600  
400  
200  
0
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VOL  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
0
5
10  
15  
20  
25  
IOUT (mA)  
I
OUT (mA)  
FIGURE 2-20:  
Output Headroom Vs Output  
FIGURE 2-23:  
Output Headroom Vs Output  
Current.  
Current.  
50%  
50%  
40%  
30%  
20%  
10%  
0%  
VDD= 1.8V  
100 mV Over-Drive  
tPHL  
VDD= 5.5V  
Avg. = 33 ns  
StDev= 1 ns  
198 units  
100mV Over-Drive  
CM = VDD/2  
40%  
tPLH  
V
CM = VDD/2  
V
tPHL  
Avg. = 47 ns  
StDev= 2 ns  
198 units  
Avg. = 54.4 ns  
StDev= 2 ns  
198 units  
30%  
20%  
10%  
0%  
tPLH  
Avg. = 44.6 ns  
StDev= 2.7 ns  
198 units  
30 35 40 45 50 55 60 65 70 75 80  
Prop. Delay (ns)  
30 35 40 45 50 55 60 65 70 75 80  
Prop. Delay (ns)  
FIGURE 2-21:  
Low-to-High and High-to-  
FIGURE 2-24:  
Low-to-High and High-to-  
Low Propagation Delays.  
Low Propagation Delays .  
DS22139B-page 8  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
80  
70  
60  
50  
40  
30  
20  
50%  
40%  
30%  
20%  
10%  
0%  
100 mV Over-Drive  
CM = VDD/2  
100 mV Over-Drive  
VCM = VDD/2  
V
tPLH , VDD = 1.8V  
VDD= 1.8V  
t
PHL , VDD = 1.8V  
Avg. = -7.3 ns  
StDev= 0.8 ns  
198 units  
VDD= 5.5V  
Avg. = 11.6 ns  
StDev= 2 ns  
198 units  
tPLH , VDD = 5.5V  
PHL , VDD = 5.5V  
t
-20 -15 -10  
-5  
0
5
10  
15  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Prop. Delay Skew (ns)  
FIGURE 2-25:  
Propagation Delay Skew.  
FIGURE 2-28:  
Propagation Delay vs.  
Temperature.  
260  
210  
160  
110  
60  
140  
120  
100  
80  
VCM = VDD/2  
VCM = VDD/2  
tPHL , 10 mV Over-Drive  
t
PLH , 10 mV Over-Drive  
tPLH , VDD = 1.8V  
t
PHL , VDD = 1.8V  
tPLH , VDD = 5.5V  
PHL , VDD = 5.5V  
tPHL , 100 mV Over-Drive  
PLH , 100 mV Over-Drive  
t
60  
t
40  
20  
10  
1
1.5  
2.5  
3.5  
4.5  
5.5  
10  
100  
1000  
VDD (V)  
Over-Drive (mV)  
FIGURE 2-26:  
Propagation Delay vs.  
FIGURE 2-29:  
Propagation Delay vs. Input  
Supply Voltage.  
Over-Drive.  
80  
80  
VDD= 1.8V  
VDD= 5.5V  
100 mV Over-Drive  
100 mV Over-Drive  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
tPHL  
tPLH  
tPHL tPLH  
0.00  
0.50  
1.00  
1.50  
2.00  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VCM (V)  
VCM (V)  
FIGURE 2-27:  
Propagation Delay vs.  
FIGURE 2-30:  
Propagation Delay vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
© 2009 Microchip Technology Inc.  
DS22139B-page 9  
MCP6561/1R/1U/2/4  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
1000  
100  
10  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VSS  
100mV Over-Drive  
VCM = VDD/2  
Avg. = 200 µV/V  
StDev= 94 µV/V  
3588 units  
VDD = 1.8V, tPLH  
VDD = 1.8V, tPHL  
VDD = 5.5V, tPLH  
VDD = 5.5V, tPHL  
1
0.1  
0.01  
0%  
0.001 0.01  
0.1  
100  
1
10  
10  
1000  
1
10  
1000 10000 100000 1E+06  
-600  
-400  
-200  
0
200  
400  
600  
Capacitive Load (nf)  
PSRR (µV/V)  
FIGURE 2-31:  
Propagation Delay vs.  
FIGURE 2-34:  
Power Supply Rejection  
Capacitive Load.  
Ratio (PSRR).  
10m  
1E+11  
30%  
VCM = -0.2V to VDD + 0.2V  
VCM = VDD/2 to VDD+ 0.2V  
Avg. = 0.6 mV  
StDev= 0.1 mV  
Avg. = 0.7 mV  
StDev= 1 mV  
1E+10m9  
10µ  
1E+07  
20%  
10%  
0%  
100n  
TA= -40°C  
TA= +25°C  
TA= +85°C  
VCM = -0.2V to VDD/2  
Avg. = 0.5 mV  
1E+05  
1n  
StDev= 0.1 mV  
1E+03  
VDD= 1.8V  
3588 units  
TA= +125°C  
10p  
1E+01  
0.1p  
1E-01  
-0.8  
-0.6  
-0.4  
-0.2  
0
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Input Voltage (V)  
CMRR (mV/V)  
FIGURE 2-32:  
Input Bias Current vs. Input  
FIGURE 2-35:  
Common-mode Rejection  
Voltage vs Temperature.  
Ratio (CMRR).  
80  
30%  
VCM = -0.3V to VDD + 0.3V  
Avg. = 0.1 mV  
StDev= 0.4 mV  
VCM = VDD/2 to VDD+ 0.3V  
Input Referred  
Avg. = 0.03 mV  
StDev= 0.7 mV  
78  
VCM = VSS  
VDD = 1.8V to 5.5V  
20%  
10%  
0%  
PSRR  
CMRR  
76  
74  
72  
70  
VCM = -0.3V to VDD/2  
Avg. = 0.2 mV  
StDev= 0.4 mV  
VDD= 5.5V  
3588 units  
VCM = -0.3V to VDD + 0.3V  
VDD = 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5  
CMRR (mV/V)  
Temperature (°C)  
FIGURE 2-33:  
Common-mode Rejection  
FIGURE 2-36:  
Common-mode Rejection  
Ratio and Power Supply Rejection Ratio vs.  
Temperature.  
Ratio (CMRR).  
DS22139B-page 10  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 10 kΩ to VDD/2, and CL = 25 pF.  
10000  
10000  
1000  
100  
10  
VDD = 5.5V  
IB @ TA=  
IB @ TA=  
VDD = 5.5V  
1000  
100  
10  
VIN+ = 2Vpp (sine)  
1
|IOS| @ TA= 125°C  
|IOS|@ TA= 85°C  
0.1  
1
0.01  
0.001  
0.1  
1k  
10M  
100  
10k  
100k  
1M  
0
1
2
3
4
5
6
100  
1000  
10000 100000 1000000 1E+07  
Input Frequency (Hz)  
V
CM (V)  
FIGURE 2-37:  
Output Jitter vs. Input  
FIGURE 2-39:  
Input Offset Current and  
Frequency.  
Input Bias Current vs. Common-mode Input  
Voltage Vs Temperature.  
1000  
100  
IB  
10  
1
|IOS|  
0.1  
25  
50  
75  
100  
125  
Temperature (°C)  
FIGURE 2-38:  
Input Offset Current and  
Input Bias Current vs. Temperature.  
© 2009 Microchip Technology Inc.  
DS22139B-page 11  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 12  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6561 MCP6561R MCP6561U  
SC70-5,  
MCP6562  
MCP6564  
Symbol  
Description  
MSOP,  
SOIC  
SOIC,  
TSSOP  
SOT-23-5  
SOT-23-5  
SOT-23-5  
1
1
4
1
2
1
2
OUT, OUTA Digital Output (comparator A)  
4
4
3
VIN–, VINA  
VIN+, VINA  
VDD  
+
Inverting Input (comparator A)  
Non-inverting Input (comparator A)  
Positive Power Supply  
3
3
1
3
3
5
2
5
8
4
2
5
2
5
5
VINB  
+
Non-inverting Input (comparator B)  
Inverting Input (comparator B)  
Digital Output (comparator B)  
Digital Output (comparator C)  
Inverting Input (comparator C)  
Non-inverting Input (comparator C)  
Negative Power Supply  
6
6
VINB  
7
7
OUTB  
OUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (comparator D)  
Inverting Input (comparator D)  
Digital Output (comparator D)  
VIND  
OUTD  
3.1  
Analog Inputs  
3.3  
Power Supply (VSS and VDD)  
The comparator non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
The positive power supply pin (VDD) is 1.8V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.2  
Digital Outputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These can share a  
bulk capacitor with nearby analog parts (within  
100 mm), but it is not required.  
The comparator outputs are CMOS, push-pull digital  
outputs. They are designed to be compatible with  
CMOS and TTL logic and are capable of driving heavy  
DC or capacitive loads.  
© 2009 Microchip Technology Inc.  
DS22139B-page 13  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 14  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
4.0  
APPLICATIONS INFORMATION  
The MCP6561/1R/1U/2/4 family of push-pull output  
comparators are fabricated on Microchip’s state-of-the-  
art CMOS process. They are suitable for a wide range  
of high speed applications requiring low power  
consumption.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-2. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass ESD  
events within the specified limits.  
4.1  
Comparator Inputs  
4.1.1  
NORMAL OPERATION  
The input stage of this family of devices uses three  
differential input stages in parallel: one operates at low  
input voltages, one at high input voltages, and one at  
mid input voltage. With this topology, the input voltage  
range is 0.3V above VDD and 0.3V below VSS, while  
providing low offset voltage through out the common  
mode range. The input offset voltage is measured at  
both VSS - 0.3V and VDD + 0.3V to ensure proper  
operation.  
Bond  
VDD  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
The MCP6561/1R/1U/2/4 family has internally-set  
hysteresis VHYST that is small enough to maintain input  
offset accuracy and large enough to eliminate output  
chattering caused by the comparator’s own input noise  
voltage ENI. Figure 4-1 depicts this behavior. Input  
offset voltage (VOS) is the center (average) of the  
(input-referred) low-high and high-low trip points. Input  
hysteresis voltage (VHYST) is the difference between  
the same trip points.  
Bond  
Pad  
VSS  
FIGURE 4-2:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuits they are in must limit the  
currents (and voltages) at the VIN+ and VIN– pins (see  
Maximum Ratings* at the beginning of Section 1.0  
“Electrical Characteristics”). Figure 4-3 shows the  
recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pin. Diodes D1 and D2 prevent the input pin  
(VIN+ and VIN–) from going too far above VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
25  
20  
15  
10  
5
VDD = 5.0V  
VIN  
5
VOUT  
4
3
0
2
-5  
Hysteresis  
1
-10  
-15  
-20  
-25  
-30  
0
VDD  
Time (100 ms/div)  
FIGURE 4-1:  
The MCP6561/1R/1U/2/4  
D1  
comparators’ internal hysteresis eliminates  
output chatter caused by input noise voltage.  
+
V1  
R1  
VOUT  
MCP656X  
D2  
V2  
R2  
R3  
VSS – (minimum expected V1)  
2 mA  
R1 ≥  
R2 ≥  
VSS – (minimum expected V2)  
2 mA  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
© 2009 Microchip Technology Inc.  
DS22139B-page 15  
MCP6561/1R/1U/2/4  
It is also possible to connect the diodes to the left of the  
resistors R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistor then serves as in-rush current  
limiter; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
4.3.1  
NON-INVERTING CIRCUIT  
Figure 4-4 shows a non-inverting circuit for single-  
supply applications using just two resistors. The  
resulting hysteresis diagram is shown in Figure 4-5.  
VDD  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-32. Applications that are  
high impedance may need to limit the usable voltage  
range.  
VREF  
-
VOUT  
MCP656X  
+
4.1.3  
PHASE REVERSAL  
The MCP6561/1R/1U/2/4 comparator family uses  
CMOS transistors at the input. They are designed to  
prevent phase inversion when the input pins exceed  
the supply voltages. Figure 2-3 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
VIN  
R1  
RF  
Non-Inverting Circuit with  
FIGURE 4-4:  
Hysteresis for Single-Supply.  
VOUT  
4.2  
Push-Pull Output  
VDD  
VOH  
The push-pull output is designed to be compatible with  
CMOS and TTL logic, while the output transistors are  
configured to give rail-to-rail output performance. They  
are driven with circuitry that minimizes any switching  
current (shoot-through current from supply-to-supply)  
when the output is transitioned from high-to-low, or  
from low-to-high (see Figure 2-15 and Figure 2-18 for  
more information).  
High-to-Low  
Low-to-High  
VIN  
VOL  
VSS  
VSS  
VTHL VTLH  
VDD  
FIGURE 4-5:  
Non-Inverting Circuit.  
Hysteresis Diagram for the  
4.3  
Externally Set Hysteresis  
Greater flexibility in selecting hysteresis (or input trip  
points) is achieved by using external resistors.  
Hysteresis reduces output chattering when one input is  
slowly moving past the other. It also helps in systems  
where it is best not to cycle between high and low  
states too frequently (e.g., air conditioner thermostatic  
control). Output chatter also increases the dynamic  
supply current.  
The trip points for Figure 4-4 and Figure 4-5 are:  
EQUATION 4-1:  
R
R
1
1
------  
V
= V  
1 +------ V  
TLH  
REF  
OL  
R
R
F
F
R
R
1
1
------  
V
= V  
1 +------ V  
THL  
REF  
OH  
R
F
R
F
Where:  
VTLH  
VTHL  
=
trip voltage from low to high  
trip voltage from high to low  
=
DS22139B-page 16  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
Where:  
4.3.2  
INVERTING CIRCUIT  
Figure 4-6 shows an inverting circuit for single-supply  
using three resistors. The resulting hysteresis diagram  
is shown in Figure 4-7.  
R2R3  
R23 = ------------------  
R2 + R3  
R3  
VDD  
------------------  
V23  
=
× VDD  
R2 + R3  
VIN  
Using this simplified circuit, the trip voltage can be  
calculated using the following equation:  
VDD  
MCP656X  
VOUT  
R2  
R3  
EQUATION 4-2:  
R23  
RF  
----------------------  
---------------------  
R23 + RF  
VTHL = VOH  
+ V  
+ V  
23  
RF  
R
23 + R  
F
R23  
RF  
----------------------  
---------------------  
VTLH = VOL  
23  
R
23 + R  
R23 + RF  
F
FIGURE 4-6:  
Inverting Circuit With  
Where:  
Hysteresis.  
VTLH  
VTHL  
=
=
trip voltage from low to high  
trip voltage from high to low  
VOUT  
Figure 2-20, and Figure 2-23 can be used to determine  
typical values for VOH and VOL  
VDD  
VOH  
.
Low-to-High  
High-to-Low  
4.4  
Bypass Capacitors  
With this family of comparators, the power supply pin  
(VDD for single supply) should have a local bypass  
capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
edge rate performance.  
VIN  
VOL  
VSS  
VSS  
VTLH VTHL  
VDD  
FIGURE 4-7:  
Inverting Circuit.  
Hysteresis Diagram for the  
4.5  
Capacitive Loads  
Reasonable capacitive loads (e.g., logic gates) have  
little impact on propagation delay (see Figure 2-31).  
The supply current increases with increasing toggle  
frequency (Figure 2-19), especially with higher  
capacitive loads. The output slew rate and propagation  
delay performance will be reduced with higher  
capacitive loads.  
In order to determine the trip voltages (VTHL and VTLH  
)
for the circuit shown in Figure 4-6, R2 and R3 can be  
simplified to the Thevenin equivalent circuit with  
respect to VDD, as shown in Figure 4-8.  
VDD  
-
MCP656X  
VOUT  
+
VSS  
V23  
R23  
RF  
Thevenin Equivalent Circuit.  
FIGURE 4-8:  
© 2009 Microchip Technology Inc.  
DS22139B-page 17  
MCP6561/1R/1U/2/4  
4.6  
PCB Surface Leakage  
4.7  
PCB Layout Technique  
In applications where low input bias current is critical,  
PCB (Printed Circuit Board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow. This is greater than the  
MCP6561/1R/1U/2/4 family’s bias current at +25°C  
(1 pA, typical).  
When designing the PCB layout it is critical to note that  
analog and digital signal traces are adequately  
separated to prevent signal coupling. If the comparator  
output trace is at close proximity to the input traces  
then large output voltage changes from, VSS to VDD or  
visa versa, may couple to the inputs and cause the  
device output to oscillate. To prevent such oscillation,  
the output traces must be routed away from the input  
pins. The SC70-5 and SOT-23-5 are relatively immune  
because the output pin OUT (pin 1) is separated by the  
power pin VDD/VSS (pin 2) from the input pin +IN (as  
long as the analog and digital traces remain separated  
through out the PCB). However, the pinouts for the dual  
and quad packages (SOIC, MSOP, TSSOP) have OUT  
and -IN pins (pin 1 and 2) close to each other. The  
recommended layout for these packages is shown in  
Figure 4-10.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-9.  
IN-  
IN+  
VSS  
OUTA  
-INA  
VDD  
OUTB  
-INB  
+INA  
Guard Ring  
Example Guard Ring Layout  
VSS  
+INB  
FIGURE 4-9:  
for Inverting Circuit.  
FIGURE 4-10:  
Recommended Layout.  
1. Inverting Configuration (Figures 4-6 and 4-9):  
4.8  
Unused Comparators  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the  
comparator (e.g., VDD/2 or ground).  
An unused amplifier in a quad package (MCP6564)  
should be configured as shown in Figure 4-11. This  
circuit prevents the output from toggling and causing  
crosstalk. It uses the minimum number of components  
and draws minimal current (see Figure 2-15 and  
Figure 2-18).  
b) Connect the inverting pin (VIN-) to the input  
pad without touching the guard ring.  
2. Non-inverting Configuration (Figure 4-4):  
a) Connect the non-inverting pin (VIN+) to the  
input pad without touching the guard ring.  
¼ MCP6564  
b) Connect the guard ring to the inverting input  
pin (VIN-).  
VDD  
+
FIGURE 4-11:  
Unused Comparators.  
DS22139B-page 18  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
4.9.3  
BISTABLE MULTI-VIBRATOR  
4.9  
Typical Applications  
A simple bistable multi-vibrator design is shown in  
Figure 4-14. VREF needs to be between the power  
supplies (VSS = GND and VDD) to achieve oscillation.  
4.9.1  
PRECISE COMPARATOR  
Some applications require higher DC precision. An  
easy way to solve this problem is to use an amplifier  
(such as the MCP6291) to gain-up the input signal  
before it reaches the comparator. Figure 4-12 shows  
an example of this approach.  
The output duty cycle changes with VREF  
.
R1  
R2  
VREF  
VDD  
VDD  
VREF  
MCP6561  
VOUT  
MCP6291  
VDD  
MCP656X  
VIN  
C1  
R3  
R1  
R2  
VREF  
VOUT  
FIGURE 4-14:  
Bistable Multi-vibrator.  
FIGURE 4-12:  
Precise Inverting  
Comparator.  
4.9.2  
WINDOWED COMPARATOR  
Figure 4-13 shows one approach to designing a  
windowed comparator. The AND gate produces a logic  
1’ when the input voltage is between VRB and VRT  
(where VRT > VRB).  
VDD  
VRT  
1/2  
MCP6562  
VIN  
1/2  
MCP6562  
VRB  
FIGURE 4-13:  
Windowed Comparator.  
© 2009 Microchip Technology Inc.  
DS22139B-page 19  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 20  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
5.3  
Application Notes  
5.0  
5.1  
DESIGN AIDS  
The following Microchip Application Notes are  
available  
www.microchip.com and are recommended as  
supplemental reference resources:  
Microchip Advanced Part Selector  
(MAPS)  
on  
the  
Microchip  
web  
site  
at  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip web site at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data sheets,  
Purchase, and Sampling of Microchip parts.  
• AN895, “Oscillator Circuit For RTD Temperature  
Sensors”, DS00895  
5.2  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
a
complete listing of these boards and their  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools. Three of our boards that are especially  
useful are:  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board,  
P/N SOIC14EV  
• 5/6-Pin SOT23 Evaluation Board, P/N VSUPEV2  
© 2009 Microchip Technology Inc.  
DS22139B-page 21  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 22  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6561)  
Example:  
BC25  
XXNN  
5-Lead SOT-23 (MCP6561, MCP6561R, MCP6561U)  
Example:  
Device  
MCP6561T  
Code  
WBNN  
WANN  
WKNN  
XXNN  
WA25  
MCP6561RT  
MCP6561UT  
Note: Applies to 5-Lead SOT-23.  
Example:  
8-Lead MSOP (MCP6562)  
XXXXXX  
YWWNNN  
6562E  
933256  
8-Lead SOIC (150 mil) (MCP6562)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6562E  
SN^0933  
e3  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22139B-page 23  
MCP6561/1R/1U/2/4  
Package Marking Information (Continued)  
14-Lead SOIC (150 mil) (MCP6564)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
MCP6564  
E/SL^  
0933256  
e3  
YYWWNNN  
14-Lead TSSOP (MCP6564)  
Example:  
MCP6564E  
XXXXXXXX  
YYWW  
0933  
256  
NNN  
DS22139B-page 24  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
© 2009 Microchip Technology Inc.  
DS22139B-page 25  
MCP6561/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22139B-page 26  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁ !ꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢝ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢐꢁ;ꢝ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢛꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢐꢁ;ꢐ  
ꢛꢐꢞ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢝꢀ)  
© 2009 Microchip Technology Inc.  
DS22139B-page 27  
MCP6561/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ$ꢄ%ꢃꢆꢕ#ꢍꢖꢆꢗ#ꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁꢒ(  
ꢐꢁꢐꢐ  
M
ꢐꢁ;(  
ꢀꢁꢀꢐ  
ꢐꢁꢝ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
M
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢐꢁ9ꢐ  
4
ꢐꢁꢖꢐ  
ꢐꢁ;ꢐ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢀ  
ꢐꢁꢝ(ꢈꢚ".  
M
ꢐꢞ  
;ꢞ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢑ  
M
M
ꢐꢁꢑꢛ  
ꢐꢁꢖꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢀꢀ)  
DS22139B-page 28  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22139B-page 29  
MCP6561/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ'(ꢆ!)*ꢚꢆꢎꢎꢆ+ꢔꢅ,ꢆꢗꢍꢏ-ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈ@ꢇꢎ#ꢃꢇꢆꢉꢋA  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ(ꢒ)  
DS22139B-page 30  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ'(ꢆ!)*ꢚꢆꢎꢎꢆ+ꢔꢅ,ꢆꢗꢍꢏ-ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS22139B-page 31  
MCP6561/1R/1U/2/4  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢜꢄꢓꢓꢔ'(ꢆ!)*ꢚꢆꢎꢎꢆ+ꢔꢅ,ꢆꢗꢍꢏ-ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈ@ꢇꢎ#ꢃꢇꢆꢉꢋA  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
;ꢁ9(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9()  
DS22139B-page 32  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS22139B-page 33  
MCP6561/1R/1U/2/4  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ0ꢋꢑꢆꢍ0ꢓꢋꢑ$ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ/)/ꢆꢎꢎꢆ+ꢔꢅ,ꢆꢗꢒꢍꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
9ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ9ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢛꢐ  
ꢖꢁꢝꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢞ  
ꢐꢁꢐꢝ  
ꢐꢁꢀꢝ  
M
M
M
;ꢞ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ;ꢒ)  
DS22139B-page 34  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22139B-page 35  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 36  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
APPENDIX A: REVISION HISTORY  
Revision B (August 2009)  
The following is the list of modifications:  
1. Added MCP6561U throughout the document.  
2. Updated package drawing section.  
Revision A (March 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22139B-page 37  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 38  
© 2009 Microchip Technology Inc.  
MCP6561/1R/1U/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
a)  
MCP6561T-E/LT: Tape and Reel,  
Temperature  
Range  
Package  
Extended Temperature,  
5LD SC70 package.  
b)  
MCP6561T-E/OT: Tape and Reel  
Extended Temperature,  
5LD SOT-23 package.  
Device  
MCP6561T:  
Single Comparator (Tape and Reel)  
(SC70, SOT-23)  
MCP6561RT: Single Comparator (Tape and Reel)  
(SOT-23 only)  
MCP6561UT: Single Comparator (Tape and Reel)  
(SOT-23 only)  
a)  
a)  
MCP6561RT-E/OT: Tape and Reel  
Extended Temperature,  
5LD SOT-23 package.  
MCP6562:  
MCP6562T:  
MCP6564:  
MCP6564T:  
Dual Comparator  
Dual Comparator(Tape and Reel)  
Quad Comparator  
MCP6561UT-E/OT: Tape and Reel  
Extended Temperature,  
5LD SOT-23 package.  
Quad Comparator(Tape and Reel)  
a)  
b)  
MCP6562-E/MS:  
MCP6562-E/SN:  
Extended Temperature  
8LD MSOP package.  
Extended Temperature  
8LD SOIC package.  
°
°
Temperature Range  
Package  
E
=
-40 C to +125 C  
LT  
=
Plastic Small Outline Transistor (SC70), 5-lead  
OT = Plastic Small Outline Transistor, 5-lead  
MS = Plastic Micro Small Outline Transistor, 8-lead  
SN = Plastic Small Outline Transistor, 8-lead  
ST = Plastic Thin Shrink Small Outline Transistor, 14-lead  
a)  
b)  
MCP6564T-E/SL: Tape and Reel  
Extended Temperature  
14LD SOIC package.  
SL  
=
Plastic Small Outline Transistor, 14-lead  
MCP6564T-E/ST:  
Tape and Reel  
Extended Temperature  
14LD TSSOP package.  
© 2009 Microchip Technology Inc.  
DS22139B-page 39  
MCP6561/1R/1U/2/4  
NOTES:  
DS22139B-page 40  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22139B-page 41  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22139B-page 42  
© 2009 Microchip Technology Inc.  

相关型号:

MCP6561RT-E/OT

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561RT-E/SL

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561RT-E/SN

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561RT-E/ST

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561T-E/LT

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561T-E/LTVAO

Comparator, 1 Func, 10000uV Offset-Max, 56ns Response Time, CMOS, PDSO5
MICROCHIP

MCP6561T-E/MS

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561T-E/OT

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561T-E/OTVAO

Comparator, 1 Func, 10000uV Offset-Max, 56ns Response Time, CMOS, PDSO5
MICROCHIP

MCP6561T-E/SL

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561T-E/SN

1.8V Low Power Push-Pull Output Comparator
MICROCHIP

MCP6561T-E/ST

1.8V Low Power Push-Pull Output Comparator
MICROCHIP