MCP6H01T-E/LT [MICROCHIP]

OP-AMP, 3500 uV OFFSET-MAX, 1.2 MHz BAND WIDTH, PDSO5, PLASTIC, SC-70, 5 PIN;
MCP6H01T-E/LT
型号: MCP6H01T-E/LT
厂家: MICROCHIP    MICROCHIP
描述:

OP-AMP, 3500 uV OFFSET-MAX, 1.2 MHz BAND WIDTH, PDSO5, PLASTIC, SC-70, 5 PIN

放大器 光电二极管
文件: 总46页 (文件大小:1047K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6H01/2/4  
1.2 MHz, 16V Op Amps  
Features:  
Description:  
• Input Offset Voltage: ±0.7 mV (typical)  
• Quiescent Current: 135 µA (typical)  
• Common Mode Rejection Ratio: 100 dB (typical)  
• Power Supply Rejection Ratio: 102 dB (typical)  
• Rail-to-Rail Output  
Microchip’s MCP6H01/2/4 family of operational amplifi-  
ers (op amps) has a wide supply voltage range of 3.5V  
to 16V and rail-to-rail output operation. This family is  
unity gain stable and has a gain bandwidth product of  
1.2 MHz (typical). These devices operate with a  
single-supply voltage as high as 16V, while only  
drawing 135 µA/amplifier (typical) of quiescent current.  
• Supply Voltage Range:  
- Single-Supply Operation: 3.5V to 16V  
- Dual-Supply Operation: ±1.75V to ±8V  
• Gain Bandwidth Product: 1.2 MHz (typical)  
• Slew Rate: 0.8V/µs (typical)  
The MCP6H01/2/4 family is offered in single  
(MCP6H01), dual (MCP6H02) and quad (MCP6H04)  
configurations. All devices are fully specified in  
extended temperature range from -40°C to +125°C.  
• Unity Gain Stable  
Package Types  
• Extended Temperature Range: -40°C to +125°C  
• No Phase Reversal  
MCP6H01  
SC70-5, SOT 23-5  
Applications:  
V
V
1
2
3
5
OUT  
DD  
V
SS  
• Automotive Power Electronics  
• Industrial Control Equipment  
• Battery Powered Systems  
V
+
V –  
IN  
4
IN  
MCP6H01  
SOIC  
MCP6H02  
• Medical Diagnostic Instruments  
SOIC  
NC  
V
V
1
8
7
6
5
1
2
3
4
8
NC  
V
OUTA  
DD  
Design Aids:  
V
V
V
2
3
4
7
6
5
V
+
V
INA  
DD  
OUTB  
IN  
• SPICE Macro Models  
• FilterLab® Software  
V
V
V
+
INA  
OUT  
INB  
IN  
NC  
+
V
V
INB  
SS  
SS  
• MAPS (Microchip Advanced Part Selector)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP6H02  
2x3 TDFN  
MCP6H01  
2x3 TDFN  
NC  
V
OUTA  
1
8
7
1
8
7
NC  
V
V
V
DD  
Typical Application  
V
+
V
INA  
V
V
2
2
IN  
DD  
OUTB  
EP  
9
EP  
9
V
V
+
INA  
IN  
3
4
6
5
3
4
6
5
OUT  
INB  
R1  
R2  
V
V
NC  
V
+
V1  
VREF  
SS  
SS  
INB  
VDD  
MCP6H04  
SOIC, TSSOP  
VOUT  
MCP6H01  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
OUTD  
OUTA  
V
V
V
V
+
IND  
INA  
+
V
IND  
INA  
V
SS  
V2  
DD  
V
V
V
+
V
V
+
INC  
INB  
R2  
R1  
INB  
INC  
8
V
Difference Amplifier  
OUTC  
OUTB  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 1  
MCP6H01/2/4  
NOTES:  
DS22243D-page 2  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ..........................................................................17V  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
DD  
SS  
Current at Input Pins......................................................±2 mA  
Analog Inputs (V +, V -)††.............V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs ............V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage..........................................V – V  
DD  
SS  
Output Short-Circuit Current...................................continuous  
Current at Output and Supply Pins ..............................±65 mA  
Storage Temperature.....................................-65°C to +150°C  
†† See 4.1.2 “Input Voltage Limits”.  
Maximum Junction Temperature (T )...........................+150°C  
J
ESD protection on all pins (HBM; MM) 2 kV; 200V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +3.5V to +16V, VSS = GND, TA = +25°C,  
VCM = VDD/2 – 1.4V, VOUT VDD/2, VL = VDD/2 and RL = 10 kto VL. (Refer to Figure 1-1).  
Parameters  
Input Offset  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset Voltage  
VOS  
-3.5  
±0.7  
±2.5  
102  
+3.5  
mV  
Input Offset Drift with Temperature  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
VOS/TA  
PSRR  
µV/°C TA = -40°C to +125°C  
dB  
87  
IB  
IB  
10  
600  
25  
pA  
pA TA = +85°C  
IB  
10  
nA TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||6  
||pF  
||pF  
Common Mode Input Voltage Range  
Common Mode Rejection Ratio  
VCMR  
VSS 0.3  
VDD 2.3  
V
CMRR  
78  
93  
dB VCM = -0.3V to 1.2V,  
VDD = 3.5V  
82  
84  
98  
dB  
V
V
CM = -0.3V to 2.7V,  
DD = 5V  
100  
dB VCM = -0.3V to 12.7V,  
VDD = 15V  
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
AOL  
95  
115  
dB 0.2V < VOUT <(VDD  
0.2V)  
2010-2011 Microchip Technology Inc.  
DS22243D-page 3  
MCP6H01/2/4  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, VDD = +3.5V to +16V, VSS = GND, TA = +25°C,  
VCM = VDD/2 – 1.4V, VOUT VDD/2, VL = VDD/2 and RL = 10 kto VL. (Refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output  
High-Level Output Voltage  
Low-Level Output Voltage  
Output Short-Circuit Current  
VOH  
3.490  
4.985  
3.495  
4.993  
V
V
V
V
V
V
VDD = 3.5V  
0.5V input overdrive  
VDD = 5V  
0.5V input overdrive  
14.970 14.980  
VDD = 15V  
0.5V input overdrive  
VOL  
0.005  
0.007  
0.020  
0.010  
0.015  
0.030  
VDD = 3.5V  
0.5 V input overdrive  
VDD = 5V  
0.5 V input overdrive  
V
DD = 15V  
0.5 V input overdrive  
ISC  
±27  
±45  
±50  
mA VDD = 3.5V  
mA VDD = 5V  
mA VDD = 15V  
Power Supply  
Supply Voltage  
VDD  
IQ  
3.5  
±1.75  
16  
±8  
V
V
Single-supply operation  
Dual-supply operation  
Quiescent Current per Amplifier  
125  
175  
µA IO = 0, VDD = 3.5V  
VCM = VDD/4  
130  
135  
180  
185  
µA IO = 0, VDD = 5V  
VCM = VDD/4  
µA IO = 0, VDD = 15V  
VCM = VDD/4  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND,  
VCM = VDD/2 - 1.4V, VOUT VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 60 pF. (Refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1.2  
57  
MHz  
°C  
G = +1V/V  
Slew Rate  
SR  
0.8  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Eni  
eni  
12  
35  
30  
1.9  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
Input Noise Current Density  
ini  
DS22243D-page 4  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +3.5V to +16V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
JA  
JA  
JA  
JA  
JA  
JA  
331  
256  
41  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
149.5  
95.3  
100  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
1.2  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
V
OUT (refer to Equation 1-1). Note that VCM is not the  
RG  
100 k  
RF  
circuit’s common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
100 k  
VDD/2  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
1 µF  
GDM = RF RG  
MCP6H0X  
VCM = VP + VDD 2  2  
VOST = VINVIN+  
VIN–  
VOUT = VDD 2+ VP VM+ VOST  1 + GDM  
VOUT  
VM  
RL  
CL  
Where:  
RG  
RF  
10 k  
60 pF  
100 k  
100 k  
GDM = Differential Mode Gain  
(V/V)  
VCM = Op Amp’s Common Mode  
(V)  
CF  
6.8 pF  
Input Voltage  
VL  
VOST = Op Amp’s Total Input Offset  
(mV)  
Voltage  
FIGURE 1-1:  
AC and DC Test Circuit for  
Most Specifications.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 5  
MCP6H01/2/4  
NOTES:  
DS22243D-page 6  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
21%  
18%  
15%  
12%  
9%  
1000  
800  
TA = +125°C  
TA = +85°C  
2550 Samples  
600  
T
A = +25°C  
TA = -40°C  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
6%  
VDD = 5V  
3%  
Representative Part  
0%  
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
Common Mode Input Voltage (V)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Common Mode Input Voltage.  
35%  
1000  
TA = +125°C  
2550 Samples  
TA = - 40°C to +125°C  
800  
600  
30%  
25%  
20%  
15%  
10%  
5%  
TA = +85°C  
TA = +25°C  
TA = -40°C  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
VDD = 15V  
Representative Part  
0%  
-0.5 1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5  
Common Mode Input Voltage (V)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Common Mode Input Voltage.  
1000  
800  
1000  
TA = +125°C  
Representative Part  
800  
T
T
T
A = +85°C  
A = +25°C  
A = -40°C  
600  
VDD = 15V  
600  
400  
400  
200  
200  
VDD = 5V  
0
0
-200  
-400  
-600  
-800  
-1000  
-0.5  
-200  
-400  
VDD = 3.5V  
Representative Part  
VDD = 3.5V  
-600  
-800  
-1000  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
2
4
6
8
10  
12  
14  
16  
Common Mode Input Voltage (V)  
Output Voltage (V)  
FIGURE 2-3:  
Common Mode Input Voltage.  
Input Offset Voltage vs.  
FIGURE 2-6:  
Output Voltage.  
Input Offset Voltage vs.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 7  
MCP6H01/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
1000  
800  
120  
110  
100  
90  
PSRR+  
Representative Part  
CMRR  
600  
400  
PSRR-  
200  
80  
TA = +125°C  
TA = +85°C  
TA = +25°C  
0
70  
-200  
-400  
-600  
-800  
-1000  
60  
T
A = -40°C  
50  
40  
Representative Part  
30  
20  
10  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10 12 14 16 18  
Power Supply Voltage (V)  
Frequency (Hz)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
CMRR, PSRR vs.  
Power Supply Voltage.  
Frequency.  
1,000  
130  
120  
110  
100  
90  
PSRR  
100  
10  
CMRR @ VDD = 15V  
@ VDD = 5V  
80  
@ VDD = 3.5V  
70  
60  
50  
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k 100k  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
CMRR, PSRR vs. Ambient  
vs. Frequency.  
Temperature.  
50  
45  
40  
35  
30  
25  
100n  
VDD = 15V  
10n  
Input Bias Current  
1n  
100p  
f = 1 kHz  
VDD = 16V  
20  
15  
10  
10p  
Input Offset Current  
1p  
-1  
1
3
5
7
9
11  
13  
15  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Input Noise Voltage Density  
FIGURE 2-12:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage.  
vs. Ambient Temperature.  
DS22243D-page 8  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
100n  
120  
100  
80  
60  
40  
20  
0
0
TA = +125°C  
Open-Loop Gain  
-30  
10n  
-60  
Open-Loop Phase  
1n
100p  
-90  
-120  
-150  
-180  
-210  
TA = +85°C  
10p  
VDD = 15V  
1p  
-20  
1.0E-01 1.0E+00 1.0E+01 1.0E+02  
1.0E+04  
1.0E+06 1.0E+07  
0.1  
1
10 100 11.0Ek+03 10k 110.00E+k05 1M 10M  
0
2
4
6
8
10  
12  
14  
16  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias Current vs.  
FIGURE 2-16:  
Open-Loop Gain, Phase vs.  
Common Mode Input Voltage.  
Frequency.  
200  
190  
180  
160  
150  
140  
130  
120  
110  
100  
VDD = 15V  
170  
VDD = 5V  
160  
150  
140  
130  
120  
110  
100  
90  
VDD = 3.5V  
VSS + 0.2V < VOUT < VDD - 0.2V  
90  
80  
80  
3
5
7
9
11  
13  
15  
17  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Power Supply Voltage (V)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Ambient Temperature.  
Power Supply Voltage.  
200  
180  
160  
140  
120  
100  
80  
150  
140  
130  
120  
110  
100  
90  
VDD = 15V  
DD = 5V  
VDD = 3.5V  
V
TA = +125°C  
60  
T
T
T
A = +85°C  
A = +25°C  
A = -40°C  
40  
80  
20  
0.00  
0.05  
Output Voltage Headroom (V)  
DD - VOH or VOL - VSS  
0.10  
0.15  
0.20  
0.25  
0.30  
0
0
2
4
6
8
10  
12  
14  
16  
V
Power Supply Voltage (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Power Supply Voltage.  
Output Voltage Headroom.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 9  
MCP6H01/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
160  
140  
120  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = +125°C  
A = +85°C  
TA = +25°C  
A = -40°C  
T
T
60  
Input Referred  
40  
0
2
4
6
8
10  
12  
14  
16  
100  
1k  
10k  
100k  
Power Supply Voltage (V)  
Frequency (Hz)  
FIGURE 2-19:  
Channel-to-Channel  
FIGURE 2-22:  
Output Short Circuit Current  
Separation vs. Frequency (MCP6H02 only).  
vs. Power Supply Voltage.  
100  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
180  
160  
140  
120  
100  
80  
Gain Bandwidth Product  
VDD = 15V  
10  
VDD = 5V  
Phase Margin  
VDD = 3.5V  
60  
1
40  
VDD = 3.5V  
20  
0
0.1  
100  
1k  
10k  
100k  
1M  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-20:  
Gain Bandwidth Product,  
FIGURE 2-23:  
Output Voltage Swing vs.  
Phase Margin vs. Ambient Temperature.  
Frequency.  
1.8  
180  
160  
140  
120  
100  
80  
10000  
1000  
100  
1.6  
Gain Bandwidth Product  
VDD = 15V  
1.4  
1.2  
1.0  
VDD - VOH  
Phase Margin  
0.8  
0.6  
0.4  
60  
10  
40  
VOL - VSS  
VDD = 15V  
0.2  
20  
0.0  
0
1
-50 -25  
0
25  
50  
75 100 125  
0.01  
0.1  
1
10  
100  
Ambient Temperature (°C)  
Output Current (mA)  
FIGURE 2-21:  
Gain Bandwidth Product,  
FIGURE 2-24:  
Output Voltage Headroom  
Phase Margin vs. Ambient Temperature.  
vs. Output Current.  
DS22243D-page 10  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5V to +16V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
8
7
6
5
4
3
2
1000  
100  
10  
VDD = 5V  
VDD - VOH  
VDD - VOH  
VOL - VSS  
VOL - VSS  
VDD = 5V  
1
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
0.01  
0.1  
1
10  
100  
Output Current (mA)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Output Voltage Headroom  
FIGURE 2-28:  
Output Voltage Headroom  
vs. Output Current.  
vs. Ambient Temperature.  
8
7
1000  
VDD = 3.5V  
100  
6
VDD - VOH  
5
10  
VOL - VSS  
4
VOL - VSS  
1
VDD = 3.5V  
3
2
VDD - VOH  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.1  
1.0  
10.0  
Output Current (mA)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Output Voltage Headroom  
FIGURE 2-29:  
Output Voltage Headroom  
vs. Output Current.  
vs. Ambient Temperature.  
1.0  
0.9  
0.8  
0.7  
0.6  
22  
21  
20  
VDD - VOH  
19  
18  
17  
16  
15  
Falling Edge, VDD = 15V  
Rising Edge, VDD = 15V  
0.5  
0.4  
0.3  
0.2  
VOL - VSS  
VDD = 15V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-27:  
Output Voltage Headroom  
FIGURE 2-30:  
Slew Rate vs. Ambient  
vs. Ambient Temperature.  
Temperature.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 11  
MCP6H01/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5 V to +16 V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
16  
14  
12  
10  
8
Falling Edge, VDD = 5V  
Rising Edge, VDD = 5V  
6
Falling Edge, VDD = 3.5V  
Rising Edge, VDD = 3.5V  
VDD = 15V  
G = +1V/V  
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Time (20 µs/div)  
FIGURE 2-31:  
Slew Rate vs. Ambient  
FIGURE 2-34:  
Large Signal Non-Inverting  
Temperature.  
Pulse Response.  
16  
14  
12  
10  
8
VDD = 15V  
G = -1V/V  
6
VDD = 15V  
G = +1V/V  
4
2
0
Time (2 µs/div)  
Time (20 µs/div)  
FIGURE 2-32:  
Small Signal Non-Inverting  
FIGURE 2-35:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
17  
15  
13  
VDD = 15V  
G = -1V/V  
VOUT  
VIN  
11  
9
7
5
VDD = 15V  
G = +2V/V  
3
1
-1  
Time (2 µs/div)  
Time (0.1 ms/div)  
FIGURE 2-33:  
Small Signal Inverting Pulse  
FIGURE 2-36:  
The MCP6H01/2/4 Shows  
Response.  
No Phase Reversal.  
DS22243D-page 12  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +3.5 V to +16 V, VSS = GND, VCM = VDD/2 - 1.4V, VOUT VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 60 pF.  
1m  
1000  
100  
10  
100µ  
10µ  
1µ  
100n  
TA = +125°C  
A = +85°C  
T
10n  
TA = +25°C  
TA = -40°C  
1
n
GN:  
101V/V  
11V/V  
1V/V  
100p  
10p  
1p  
1
100  
10k  
1M  
110
1k
100k
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
IN (V)  
V
Frequency (Hz)  
FIGURE 2-37:  
Closed Loop Output  
FIGURE 2-38:  
Measured Input Current vs.  
Impedance vs. Frequency.  
Input Voltage (below VSS).  
2010-2011 Microchip Technology Inc.  
DS22243D-page 13  
MCP6H01/2/4  
NOTES:  
DS22243D-page 14  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6H02  
MCP6H01  
MCP6H04  
Symbol  
Description  
SC70-5,  
SOT-23-5  
SOIC,  
TSSOP  
SOIC 2x3 TDFN SOIC 2x3 TDFN  
1
4
6
2
6
2
1
2
3
8
5
6
1
2
3
8
5
6
1
2
3
4
5
6
VOUT, VOUTA Analog Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VDD  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
5
7
7
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
2
7
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
4
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
4
4
VSS  
9
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
No Internal Connection  
VIND–  
VOUTD  
NC  
1, 5, 8  
1, 5, 8  
9
EP  
Exposed Thermal Pad (EP); must  
be connected to VSS  
.
3.1  
Analog Outputs  
3.3  
Power Supply Pins  
The output pins are low-impedance voltage sources.  
The positive power supply (VDD) is 3.5V to 16V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
3.2  
Analog Inputs  
and VDD  
.
The non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
Typically, these parts can be used in single-supply  
operation or dual-supply operation. Also, VDD will need  
bypass capacitors.  
3.4  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
2010-2011 Microchip Technology Inc.  
DS22243D-page 15  
MCP6H01/2/4  
NOTES:  
DS22243D-page 16  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
4.0  
APPLICATION INFORMATION  
VDD  
The MCP6H01/2/4 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-power, high-precision  
applications.  
D1 D2  
V1  
V2  
VOUT  
4.1  
Inputs  
PHASE REVERSAL  
MCP6H0X  
4.1.1  
The MCP6H01/2/4 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-36 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS), see Figure 2-38.  
4.1.2  
INPUT VOLTAGE LIMITS  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”).  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1 “Absolute  
Maximum Ratings †”).  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors against many (but not all)  
over-voltage conditions, and to minimize the input bias  
current (IB).  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
currents in or out of the input pins (and the ESD diodes,  
D1 and D2). The diode currents will go through either  
VDD or VSS.  
Bond  
VDD  
VDD  
Pad  
D1 D2  
R1  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
V1  
V2  
VIN+  
VIN–  
MCP6H0X  
VOUT  
R2  
Bond  
Pad  
VSS  
R3  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD. Their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
overvoltage (beyond VDD) events. Very fast ESD  
events (that meet the specification) are limited so that  
damage does not occur.  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
4.1.4  
NORMAL OPERATION  
The inputs of the MCP6H01/2/4 op amps connect to a  
differential PMOS input stage. It operates at a low  
common mode input voltage (VCM), including ground.  
With this topology, the device operates with a VCM up  
to VDD – 2.3V and 0.3V below VSS (refer to Figure 2-3  
through 2-5). The input offset voltage is measured at  
VCM = VSS – 0.3V and VDD – 2.3V to ensure proper  
operation.  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-2 shows one approach to protecting these  
inputs.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 17  
MCP6H01/2/4  
For a unity gain buffer, VIN must be maintained below  
VDD – 2.3V for correct operation.  
1000  
1k  
VDD = 16V  
RL = 10 k  
4.2  
Rail-to-Rail Output  
100  
10  
1
GN:  
The output voltage range of the MCP6H01/2/4 op amps  
is 0.020V (typical) and 14.980V (typical) when  
RL = 10 kis connected to VDD/2 and VDD = 15V.  
Refer to Figures 2-24 through 2-29 for more  
information.  
1 V/V  
2 V/V  
5 V/V  
4.3  
Capacitive Loads  
10p  
100p  
1n  
10n  
0.1µ  
1µ  
Normalized Load Capacitance; CL/GN (F)  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1V/V) is the  
most sensitive to capacitive loads, all gains show the  
same general behavior.  
FIGURE 4-5:  
for Capacitive Loads.  
Recommended RISO Values  
4.4  
Supply Bypass  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor can be shared  
with other analog parts.  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = + 1V/V), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will generally be lower than the bandwidth  
with no capacitance load.  
4.5  
Unused Op Amps  
An unused op amp in a quad package (MCP6H04)  
should be configured as shown in Figure 4-6. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp, and the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
RISO  
VOUT  
MCP6H0X  
+
VIN  
CL  
FIGURE 4-4:  
Stabilizes Large Capacitive Loads.  
Output Resistor, RISO  
Figure 4-5 gives the recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1 + |Signal Gain| (e.g., -1V/V gives GN = +2V/V).  
¼ MCP6H04 (A)  
¼ MCP6H04 (B)  
VDD  
VDD  
VDD  
R1  
VREF  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6H01/2/4 SPICE macro  
model are helpful.  
R2  
R
2
V
= V  
--------------------  
REF  
DD  
R
+ R  
1
2
FIGURE 4-6:  
Unused Op Amps.  
DS22243D-page 18  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
4.6  
PCB Surface Leakage  
4.7  
Application Circuits  
DIFFERENCE AMPLIFIER  
In applications where low input bias current is critical,  
PCB surface leakage effects need to be considered.  
Surface leakage is caused by humidity, dust or other  
contamination on the board. Under low-humidity condi-  
tions, a typical resistance between nearby traces is  
1012. A 15V difference would cause 15 pA of current  
to flow; which is greater than the MCP6H01/2/4 family’s  
bias current at +25°C (10 pA, typical).  
4.7.1  
The MCP6H01/2/4 op amps can be used in current  
sensing applications. Figure 4-8 shows a resistor  
(RSEN) that converts the sensor current (ISEN) to  
voltage, as well as a difference amplifier that amplifies  
the voltage across the resistor while rejecting common  
mode noise. R1 and R2 must be well matched to obtain  
an acceptable Common Mode Rejection Ratio  
(CMRR). Moreover, RSEN should be much smaller than  
R1 and R2 in order to minimize the resistive loading of  
the source.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
To ensure proper operation, the op amp common mode  
input voltage must be kept within the allowed range.  
The reference voltage (VREF) is supplied by a  
low-impedance source. In single-supply applications,  
VREF is typically VDD/2.  
Guard Ring  
VIN– VIN+  
VSS  
.
R1  
R2  
VREF  
VDD  
VOUT  
FIGURE 4-7:  
for Inverting Gain.  
Example Guard Ring Layout  
ISEN  
RSEN  
MCP6H01  
1. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
R2  
R1  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
RSEN << R1, R2  
R2  
2. Inverting Gain and Trans-impedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
VOUT = V1 V2----- + VREF  
R1  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
FIGURE 4-8:  
Using Difference Amplifier.  
High Side Current Sensing  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 19  
MCP6H01/2/4  
4.7.2  
TWO OP AMP INSTRUMENTATION  
AMPLIFIER  
4.7.3  
PHOTODETECTOR AMPLIFIER  
The MCP6H01/2/4 op amps can be used to easily  
convert the signal from a sensor that produces an  
output current (such as a photo diode) into voltage (a  
trans-impedance amplifier). This is implemented with a  
single resistor (R2) in the feedback loop of the  
amplifiers shown in Figure 4-10. The optional capacitor  
(C2) sometimes provides stability for these circuits.  
The MCP6H01/2/4 op amps are well suited for  
conditioning sensor signals in battery-powered  
applications. Figure 4-9 shows  
instrumentation amplifier using the MCP6H02, which  
works well for applications requiring rejection of  
common mode noise at higher gains.  
a two op amp  
A photodiode configured in Photovoltaic mode has a  
zero voltage potential placed across it. In this mode,  
the light sensitivity and linearity is maximized, making it  
best suited for precision applications. The key amplifier  
specifications for this application are: low input bias  
current, common mode input voltage range (including  
ground), and rail-to-rail output.  
To ensure proper operation, the op amp common mode  
input voltage must be kept within the allowed range.  
The reference voltage (VREF) is supplied by a low-  
impedance source. In single-supply applications, VREF  
is typically VDD/2.  
RG  
C2  
R1  
R2  
R2  
R1  
VREF  
R2  
VOUT  
VOUT  
V2  
V1  
ID1  
½
VDD  
½
MCP6H02  
MCP6H02  
D1  
Light  
MCP6H01  
+
R1 2R1  
VOUT = V1 V21 + ----- + -------- + VREF  
R2 RG  
VOUT = ID1*R2  
FIGURE 4-9:  
Instrumentation Amplifier.  
Two Op Amp  
FIGURE 4-10:  
Photodetector Amplifier.  
To obtain the best CMRR possible, and not limit the  
performance by the resistor tolerances, set a high gain  
with the RG resistor.  
DS22243D-page 20  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6H01/2/4 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are designed  
to help you achieve faster time to market. For a com-  
plete listing of these boards and their corresponding  
user’s guides and technical information, visit the  
Microchip web site: www.microchip.com/analogtools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6H01/2/4  
op amp is available on the Microchip web site at  
www.microchip.com. The model was written and tested  
in PSPICE owned by Orcad (Cadence). For other  
simulators, it may require translation.  
Some boards that are especially useful include:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
The model covers a wide aspect of the op amp’s  
electrical specifications. Not only does the model cover  
voltage, current and resistance of the op amp, but it  
also covers the temperature and noise effects on the  
behavior of the op amp. The model has not been  
verified outside the specification range listed in the op  
amp data sheet. The model behaviors under these con-  
ditions cannot be guaranteed to match the actual op  
amp performance.  
5.5  
Application Notes  
The following Microchip analog design note and appli-  
cation notes are available on the Microchip web site at  
www.microchip.com/appnotes, and are recommended  
as supplemental reference resources.  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
• AN1297: “Microchip’s Op Amp SPICE Macro  
Models”’ DS01297  
5.2  
FilterLab Software  
Microchip’s FilterLab software is an innovative software  
tool that simplifies analog active filter (using op amps)  
design. Available at no cost from the Microchip web site  
at www.microchip.com/filterlab, the FilterLab design  
tool provides full schematic diagrams of the filter circuit  
with component values. It also outputs the filter circuit  
in SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
5.3  
MAPS (Microchip Advanced Part  
Selector)  
• AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”’ DS01332  
These application notes and others are listed in:  
“Signal Chain Design Guide”, DS21825  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip web site at www.microchip.com/  
maps, MAPS is an overall selection tool for Microchip’s  
product portfolio that includes analog, memory, MCUs  
and DSCs. Using this tool, you can define a filter to sort  
features for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for data sheets, purchases and  
sampling of Microchip parts.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 21  
MCP6H01/2/4  
NOTES:  
DS22243D-page 22  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6H01)  
Example  
Device  
Code  
DH25  
MCP6H01  
DHNN  
Note: Applies to 5-Lead SC-70.  
5-Lead SOT-23 (MCP6H01)  
Example:  
Device  
MCP6H01  
Note: Applies to 5-Lead SOT-23.  
Code  
2ANN  
2A25  
XXNN  
8-Lead SOIC (150 mil) (MCP6H01, MCP6H02)  
Example:  
XXXXXXXX  
MCP6H01E  
e
3
XXXXYYWW  
SN^1103  
NNN  
256  
8-Lead 2x3 TDFN (MCP6H01, MCP6H02)  
Example:  
AAL  
103  
25  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 23  
MCP6H01/2/4  
Package Marking Information  
14-Lead SOIC (150 mil) (MCP6H04)  
Example:  
XXXXXXXXXXX  
XXXXXXXXXXX  
MCP6H04  
e
3
E/SL^
YYWWNNN  
1103256  
Example:  
14-Lead TSSOP (MCP6H04)  
XXXXXXXX  
YYWW  
6H04E/ST  
1103  
256  
NNN  
DS22243D-page 24  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢗꢁꢶꢗ  
ꢗꢁꢶꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢶꢗ  
ꢀꢁꢀꢟ  
ꢀꢁꢶꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢗꢶ  
ꢗꢁꢀꢟ  
ꢘꢁꢀꢗ  
ꢀꢁꢘꢟ  
ꢘꢁꢗꢗ  
ꢗꢁꢘꢗ  
ꢀꢁꢀꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢀꢗ  
ꢘꢁꢞꢗ  
ꢀꢁꢹꢟ  
ꢘꢁꢘꢟ  
ꢗꢁꢞꢴ  
ꢗꢁꢘꢴ  
ꢗꢁꢞꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢴꢀꢠ  
2010-2011 Microchip Technology Inc.  
DS22243D-page 25  
MCP6H01/2/4  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS22243D-page 26  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢞꢟꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢻꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢻꢗꢉꢠꢜꢡ  
ꢗꢁꢻꢗ  
ꢗꢁꢶꢻ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢹꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢹꢟ  
ꢗꢼ  
ꢀꢁꢞꢟ  
ꢀꢁꢹꢗ  
ꢗꢁꢀꢟ  
ꢹꢁꢘꢗ  
ꢀꢁꢶꢗ  
ꢹꢁꢀꢗ  
ꢗꢁꢴꢗ  
ꢗꢁꢶꢗ  
ꢹꢗꢼ  
ꢮꢀ  
ꢗꢁꢗꢶ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢴ  
ꢗꢁꢟꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢻꢀꢠ  
2010-2011 Microchip Technology Inc.  
DS22243D-page 27  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22243D-page 28  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS22243D-page 29  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22243D-page 30  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆꢡꢆꢜꢄꢓꢓꢔꢢꢣꢆꢟꢤꢥꢚꢆꢎꢎꢆꢦꢔꢅꢧꢆꢗꢍꢏꢨꢘꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2010-2011 Microchip Technology Inc.  
DS22243D-page 31  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22243D-page 32  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS22243D-page 33  
MCP6H01/2/4  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢩꢐꢄꢈꢆꢪꢈꢄꢊꢣꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌꢫꢄꢬꢃꢆꢕꢭꢜꢖꢆꢡꢆꢞꢮꢟꢮꢚꢤꢙꢀꢆꢎꢎꢆꢦꢔꢅꢧꢆꢗꢒꢩꢪꢜꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS22243D-page 34  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS22243D-page 35  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22243D-page 36  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2010-2011 Microchip Technology Inc.  
DS22243D-page 37  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22243D-page 38  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS22243D-page 39  
MCP6H01/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22243D-page 40  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
APPENDIX A: REVISION HISTORY  
Revision D (December 2011)  
The following is the list of modifications:  
1. Added the SC70-5 and SOT-23-5 packages for  
the MCP6H01 device and updated all related  
information throughout the document.  
Revision C (March 2011)  
The following is the list of modifications:  
1. Added new device MCP6H04.  
2. Updated Table 3-1 with MCP6H04 pin names  
and details.  
Revision B (October 2010)  
The following is the list of modifications:  
1. Updated Section 4.1 “Inputs”.  
Revision A (March 2010)  
• Original Release of this Document.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 41  
MCP6H01/2/4  
NOTES:  
DS22243D-page 42  
2010-2011 Microchip Technology Inc.  
MCP6H01/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
-X  
PART NO.  
Device  
/XX  
a)  
MCP6H01T-E/LT:  
Tape and Reel,  
5LD SC70 pkg  
Tape and Reel,  
5LD SOT-23 pkg  
8LD SOIC pkg  
Tape and Reel,  
8LD SOIC pkg  
Tape and Reel,  
8LD 2x3 TDFN pkg  
8LD SOIC pkg  
Tape and Reel,  
8LD SOIC pkg  
Tape and Reel  
8LD 2x3 TDFN pkg  
14LD SOIC pkg  
Tape and Reel,  
14LD SOIC pkg  
14LD SOIC pkg  
Tape and Reel,  
14LD TSSOP pkg  
Temperature  
Range  
Package  
b)  
MCP6H01T-E/OT:  
c)  
d)  
MCP6H01-E/SN:  
MCP6H01T-E/SN:  
Device:  
MCP6H01T:  
Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
Single Op Amp  
Single Op Amp (Tape and Reel)  
(SOIC and 2x3 TDFN)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(SOIC and 2x3 TDFN)  
Quad Op Amp  
e)  
MCP6H01T-E/MNY:  
MCP6H01:  
MCP6H01T:  
f)  
g)  
MCP6H02-E/SN:  
MCP6H02T-E/SN:  
MCP6H02:  
MCP6H02T:  
h)  
MCP6H02T-E/MNY:  
MCP6H04:  
MCP6H04T:  
i)  
j)  
MCP6H04-E/SL:  
MCP6H04T-E/SL:  
Quad Op Amp (Tape and Reel) (SOIC  
and TSSOP)  
k)  
l)  
MCP6H04-E/ST:  
MCP6H04T-E/ST:  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
LT  
OT  
=
=
Plastic Package (SC-70), 5-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
MNY *  
= Plastic Dual Flat, No Lead, (2x3 TDFN) 8-lead  
SN  
SL  
ST  
=
=
=
Lead Plastic Small Outline (150 mil Body), 8-lead  
Plastic Small Outline, (150 mil Body), 14-lead  
Plastic Thin Shrink Small Outline (150 mil Body),  
14-lead  
* Y = Nickel palladium gold manufacturing designator. Only  
available on the TDFN package.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 43  
MCP6H01/2/4  
NOTES:  
DS22243D-page 44  
2010-2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010-2011, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-927-4  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010-2011 Microchip Technology Inc.  
DS22243D-page 45  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS22243D-page 46  
2010-2011 Microchip Technology Inc.  

相关型号:

MCP6H01T-E/MNY

OP-AMP, 3500 uV OFFSET-MAX, 1.2 MHz BAND WIDTH, PDSO8, 2 X 3 MM, 0.75 MM HEIGHT, PLASTIC, TDFN-8
MICROCHIP

MCP6H01T-E/OTVAO

Operational Amplifier, 1 Func, 3500uV Offset-Max, CMOS, PDSO5
MICROCHIP

MCP6H01_12

1.2 MHz, 16V Op Amps
MICROCHIP

MCP6H02

1.2 MHz, 16V Op Amps Input Offset Voltage: ±0.7 mV (typical)
MICROCHIP

MCP6H02-E/SNVAO

Operational Amplifier, 2 Func, 3500uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6H02T-E/SNVAO

Operational Amplifier, 2 Func, 3500uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6H04

1.2 MHz, 16V Op Amps Input Offset Voltage: ±0.7 mV (typical)
MICROCHIP

MCP6H04T-E/SLVAO

Operational Amplifier, 4 Func, 3500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6H04T-E/STVAO

Operational Amplifier, 4 Func, 3500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6H71

2.7 MHz, 12V Op Amps
MICROCHIP

MCP6H71-E/SN

2.7 MHz, 12V Op Amps
MICROCHIP

MCP6H71T

2.7 MHz, 12V Op Amps
MICROCHIP