MCP6N11-001E/SN [MICROCHIP]

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3.90 MM, PLASTIC, SOIC-8;
MCP6N11-001E/SN
型号: MCP6N11-001E/SN
厂家: MICROCHIP    MICROCHIP
描述:

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3.90 MM, PLASTIC, SOIC-8

放大器 光电二极管
文件: 总50页 (文件大小:5450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6N11  
500 kHz, 800 µA Instrumentation Amplifier  
Features  
Description  
• Rail-to-Rail Input and Output  
Microchip Technology Inc. offers the single MCP6N11  
instrumentation amplifier (INA) with Enable/VOS Cali-  
bration pin (EN/CAL) and several minimum gain  
options. It is optimized for single-supply operation with  
rail-to-rail input (no common mode crossover distor-  
tion) and output performance.  
• Gain Set by 2 External Resistors  
• Minimum Gain (GMIN) Options:  
1, 2, 5, 10 or 100 V/V  
• Common Mode Rejection Ratio (CMRR): 115 dB  
(typical, GMIN = 100)  
Two external resistors set the gain, minimizing gain  
error and drift-over temperature. The reference voltage  
(VREF) shifts the output voltage (VOUT).  
• Power Supply Rejection Ratio (PSRR): 112 dB  
(typical, GMIN = 100)  
• Bandwidth: 500 kHz (typical, Gain = GMIN  
• Supply Current: 800 μA/channel (typical)  
• Single Channel  
)
The supply voltage range (1.8V to 5.5V) is low enough  
to support many portable applications. All devices are  
fully specified from -40°C to +125°C.  
• Enable/VOS Calibration pin: (EN/CAL)  
• Power Supply: 1.8V to 5.5V  
These parts have five minimum gain options (1, 2, 5, 10  
and 100 V/V). This allows the user to optimize the input  
offset voltage and input noise for different applications.  
• Extended Temperature Range: -40°C to +125°C  
Typical Applications  
Typical Application Circuit  
• High Side Current Sensor  
• Wheatstone Bridge Sensors  
• Difference Amplifier with Level Shifting  
• Power Control Loops  
VBAT  
+1.8V  
to  
10 Ω  
IDD  
VDD  
U1  
+5.5V  
MCP6N11  
VOUT  
Design Aids  
RF  
• Microchip Advanced Part Selector (MAPS)  
• Demonstration Board  
200 kΩ  
VFG  
RG  
10 kΩ  
• Application Notes  
VREF  
Block Diagram  
Package Types  
VDD VSS  
VOUT  
MCP6N11  
MCP6N11  
2×3 TDFN *  
VOUT  
RM4  
SOIC  
I4  
RF  
VFG  
V
V
EN/CAL  
V
EN/CAL  
1
2
8
7
1
2
8
7
FG  
FG  
GM2  
RG  
Σ
V
V
V
V
EP  
9
IM  
DD  
IM  
DD  
VREF  
I2  
I3  
VREF  
VIP  
V
V
3
4
6
5
V
V
3
4
6
5
IP  
OUT  
IP  
OUT  
I1  
V
V
SS  
REF  
V
SS  
REF  
GM3  
VTR  
Low Power  
VIP  
VIM  
GM1  
POR  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
VIM  
VOS Calibration  
EN/CAL  
© 2011 Microchip Technology Inc.  
DS25073A-page 1  
MCP6N11  
Minimum Gain Options  
Table 1 shows key specifications that differentiate  
between the different minimum gain (GMIN) options.  
See Section 1.0 “Electrical Characteristics”,  
Section 6.0 “Packaging Information” and Product  
Identification System for further information on GMIN  
.
TABLE 1:  
Part No.  
KEY DIFFERENTIATING SPECIFICATIONS  
Eni  
(µVP-P  
Nom.  
eni  
(nV/Hz)  
Nom.  
GMIN  
VOS VOS/TA CMRR (dB) PSRR VDMH GBWP  
)
(V/V) (±mV) (±µV/°C)  
Min.  
(dB)  
(V)  
Max.  
(MHz)  
Nom.  
Nom. Max.  
Typ.  
VDD = 5.5V Min.  
(f = 0.1 to 10 Hz) (f = 10 kHz)  
MCP6N11-001  
MCP6N11-002  
MCP6N11-005  
1
2
5
3.0  
2.0  
90  
45  
70  
78  
80  
81  
88  
62  
68  
75  
81  
86  
2.70  
1.35  
0.54  
0.27  
0.027  
0.50  
1.0  
2.5  
5.0  
35  
570  
285  
114  
57  
950  
475  
190  
95  
0.85  
0.50  
0.35  
18  
MCP6N11-010 10  
MCP6N11-100 100  
9.0  
2.7  
18  
35  
DS25073A-page 2  
© 2011 Microchip Technology Inc.  
 
MCP6N11  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other  
conditions above those indicated in the operational  
listings of this specification is not implied. Exposure to  
maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V  
.......................................................................6.5V  
SS  
DD  
Current at Input Pins †† ...............................................±2 mA  
Analog Inputs (V and V ) †† ..... V – 1.0V to V + 1.0V  
IP  
IM  
SS  
DD  
†† See Section 4.2.1.2 “Input Voltage Limits” and  
Section 4.2.1.3 “Input Current Limits”.  
All Other Inputs and Outputs ......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage....................................... |V – V  
|
DD  
SS  
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ...................................-65°C to +150°C  
Max. Junction Temperature ........................................+150°C  
ESD protection on all pins (HBM, CDM, MM).≥ 2 kV, 1.5 kV, 300V  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
TABLE 1-1:  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = 1.8V to 5.5V, V = GND, EN/CAL = V ,  
DD  
A
DD  
SS  
V
= V /2, V  
= 0V, V  
= V /2, V = V /2, R = 10 kΩ to V and G  
= G ; see Figure 1-6 and Figure 1-7.  
CM  
DD  
DM  
REF  
DD  
L
DD  
L
L
DM MIN  
Parameters  
Sym  
Min  
Typ  
Max  
Units GMIN  
Conditions  
Input Offset  
Input Offset Voltage,  
Calibrated  
VOS  
-3.0  
-2.0  
-0.85  
-0.50  
-0.35  
+3.0  
+2.0  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
1
2
(Note 2)  
+0.85  
+0.50  
+0.35  
5
10  
100  
1
Input Offset Voltage  
Trim Step  
VOSTRM  
0.36  
0.21  
0.077  
0.045  
0.014  
2
5
10  
100  
Input Offset Voltage  
Drift  
ΔVOS/ΔTA  
±90/GMIN  
±2.7  
82  
µV/°C 1 to 10 TA= -40°C to +125°C  
(Note 3)  
µV/°C  
dB  
100  
1
Power Supply  
PSRR  
62  
Rejection Ratio  
68  
88  
dB  
2
75  
96  
dB  
5
81  
102  
112  
dB  
10  
100  
86  
dB  
Note 1:  
V
= (V + V ) / 2, V  
= (V – V ) and G  
= 1 + R /R .  
CM  
IP  
IM  
DM  
IP  
IM  
DM F G  
2: The V spec limits include 1/f noise effects.  
OS  
3: This is the input offset drift without V re-calibration; toggle EN/CAL to minimize this effect.  
OS  
4: These specs apply to both the V , V input pair (use V ) and to the V  
, V input pair (V  
takes V ’s place).  
IP IM  
CM  
REF FG  
REF  
CM  
5: This spec applies to the V , V , V  
and V pins individually.  
IP IM  
REF  
FG  
6: Figure 2-11 and Figure 2-19 show the V  
and V  
variation over temperature.  
IVR  
DMR  
7: See Section 1.5 “Explanation of DC Error Specs”.  
© 2011 Microchip Technology Inc.  
DS25073A-page 3  
 
 
 
 
 
 
 
 
MCP6N11  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = 1.8V to 5.5V, V = GND, EN/CAL = V ,  
DD  
A
DD  
SS  
V
= V /2, V  
= 0V, V  
= V /2, V = V /2, R = 10 kΩ to V and G  
= G ; see Figure 1-6 and Figure 1-7.  
DM MIN  
CM  
DD  
DM  
REF  
DD  
L
DD  
L
L
Parameters  
Sym  
Min  
Typ  
Max  
Units GMIN  
Conditions  
Input Current and Impedance (Note 4)  
Input Bias Current  
Across Temperature  
Across Temperature  
Input Offset Current  
Across Temperature  
Across Temperature  
IB  
0
10  
80  
5
pA  
pA  
all  
TA= +85°C  
2
nA  
TA= +125°C  
IOS  
-1  
±1  
+1  
pA  
±5  
pA  
TA= +85°C  
±0.05  
1013||6  
nA  
TA= +125°C  
Common Mode Input  
Impedance  
ZCM  
Ω||pF  
Differential Input  
Impedance  
ZDIFF  
1013||3  
Ω||pF  
Input Common Mode Voltage (VCM or VREF) (Note 4)  
Input Voltage Range  
VIVL  
VIVH  
VDD + 0.15  
62  
VSS 0.2  
V
all  
(Note 5, Note 6)  
V
Common Mode  
Rejection Ratio  
CMRR  
79  
dB  
1
2
VCM = VIVL to VIVH  
VDD = 1.8V  
,
,
,
69  
87  
dB  
75  
101  
107  
119  
94  
dB  
5
79  
dB  
10  
100  
1
86  
dB  
70  
dB  
VCM = VIVL to VIVH  
VDD = 5.5V  
78  
100  
108  
114  
115  
±115  
±27  
±11  
±6  
dB  
2
80  
dB  
5
81  
dB  
10  
100  
1
88  
dB  
Common Mode  
Non-Linearity  
INLCM  
-1000  
-570  
-230  
-125  
-50  
+1000  
+570  
+230  
+125  
+50  
+400  
+220  
+100  
+50  
+30  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
VCM = VIVL to VIVH  
VDM = 0V,  
2
VDD = 1.8V (Note 7)  
5
10  
100  
1
±2  
-400  
-220  
-100  
-50  
±42  
±10  
±4  
VCM = VIVL to VIVH  
VDM = 0V,  
V
,
2
DD = 5.5V (Note 7)  
5
±2  
10  
100  
-30  
±1  
Note 1:  
V
= (V + V ) / 2, V  
= (V – V ) and G  
= 1 + R /R .  
CM  
IP  
IM  
DM  
IP  
IM  
DM F G  
2: The V spec limits include 1/f noise effects.  
OS  
3: This is the input offset drift without V re-calibration; toggle EN/CAL to minimize this effect.  
OS  
4: These specs apply to both the V , V input pair (use V ) and to the V  
, V input pair (V  
takes V ’s place).  
REF CM  
IP IM  
CM  
REF FG  
5: This spec applies to the V , V , V  
and V pins individually.  
IP IM  
REF  
FG  
6: Figure 2-11 and Figure 2-19 show the V  
and V  
variation over temperature.  
IVR  
DMR  
7: See Section 1.5 “Explanation of DC Error Specs”.  
DS25073A-page 4  
© 2011 Microchip Technology Inc.  
MCP6N11  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = 1.8V to 5.5V, V = GND, EN/CAL = V ,  
DD  
A
DD  
SS  
V
= V /2, V  
= 0V, V  
= V /2, V = V /2, R = 10 kΩ to V and G  
= G ; see Figure 1-6 and Figure 1-7.  
DM MIN  
CM  
DD  
DM  
REF  
DD  
L
DD  
L
L
Parameters  
Sym  
Min  
Typ  
Max  
Units GMIN  
Conditions  
Input Differential Mode Voltage (VDM) (Note 4)  
Differential Input  
Voltage Range  
VDML  
VDMH  
gE  
-2.7/GMIN  
V
V
all  
VREF = (VDD – GDMVDM)/2  
(Note 6)  
+2.7/GMIN  
+1  
Differential Gain Error  
Differential Gain Drift  
-1  
±0.13  
±0.0006  
±30  
±40  
±100  
84  
%
VDM = VDML to VDMH,  
ΔgE/ΔTA  
INLDM  
%/°C  
ppm  
ppm  
VREF = (VDD – GDMVDM)/2  
Differential  
Non-Linearity  
-500  
-800  
-2000  
61  
+500  
+800  
+2000  
1
(Note 7)  
2, 5  
ppm 10, 100  
DC Open-Loop Gain  
AOL  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1
2
VDD = 1.8V,  
68  
90  
VOUT = 0.2V to 1.6V  
76  
98  
5
78  
104  
116  
94  
10  
100  
1
86  
70  
VDD = 5.5V,  
77  
100  
108  
114  
125  
2
VOUT = 0.2V to 5.3V  
84  
5
90  
10  
100  
97  
Output  
Minimum Output  
Voltage Swing  
VOL  
VOH  
ISC  
VSS + 15  
VSS + 25  
mV  
mV  
mV  
mV  
all  
VDM = -VDD/(2GDM),  
VDD = 1.8V,  
VREF = VDD/2 – 1V  
VDM = -VDD/(2GDM),  
VDD = 5.5V,  
VREF = VDD/2 – 1V  
Maximum Output  
Voltage Swing  
VDD 15  
VDD 25  
VDM = VDD/(2GDM),  
VDD = 1.8V,  
VREF = VDD/2 + 1V  
VDM = VDD/(2GDM),  
VDD = 5.5V,  
VREF = VDD/2 + 1V  
Output Short Circuit  
Current  
±8  
mA  
mA  
VDD = 1.8V  
VDD = 5.5V  
±30  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
0.5  
5.5  
1.1  
V
all  
Quiescent Current  
per Amplifier  
0.8  
mA  
IO = 0  
POR Trip Voltage  
VPRL  
VPRH  
1.1  
1.4  
1.4  
V
V
1.7  
Note 1:  
V
= (V + V ) / 2, V  
= (V – V ) and G  
= 1 + R /R .  
CM  
IP  
IM  
DM  
IP  
IM  
DM F G  
2: The V spec limits include 1/f noise effects.  
OS  
3: This is the input offset drift without V re-calibration; toggle EN/CAL to minimize this effect.  
OS  
4: These specs apply to both the V , V input pair (use V ) and to the V  
, V input pair (V  
takes V ’s place).  
IP IM  
CM  
REF FG  
REF  
CM  
5: This spec applies to the V , V , V  
and V pins individually.  
IP IM  
REF  
FG  
6: Figure 2-11 and Figure 2-19 show the V  
and V  
variation over temperature.  
IVR  
DMR  
7: See Section 1.5 “Explanation of DC Error Specs”.  
© 2011 Microchip Technology Inc.  
DS25073A-page 5  
MCP6N11  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = 1.8V to 5.5V, VSS = GND,  
EN/CAL = VDD, VCM = VDD/2, VDM = 0V, VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN  
see Figure 1-6 and Figure 1-7.  
;
Parameters  
Sym Min  
Typ  
Max Units  
GMIN  
Conditions  
AC Response  
Gain Bandwidth  
Product  
GBWP  
0.50 GMIN  
MHz  
MHz  
°
1 to 10  
100  
35  
70  
Phase Margin  
PM  
all  
Open-Loop Output  
Impedance  
ROL  
0.9  
0.6  
94  
kΩ  
kΩ  
dB  
1 to 10  
100  
Power Supply  
Rejection Ratio  
PSRR  
CMRR  
all  
f < 10 kHz  
Common Mode  
Rejection Ratio  
104  
94  
dB  
dB  
1 to 10 f < 10 kHz  
100 f < 10 kHz  
Step Response  
Slew Rate  
SR  
3
9
V/µs  
V/µs  
V/µs  
V/µs  
µs  
1 to 10 VDD = 1.8V  
VDD = 5.5V  
2
100 VDD = 1.8V  
VDD = 5.5V  
6
Overdrive Recovery,  
Input Common Mode  
tIRC  
tIRD  
10  
all  
VCM = VSS – 1V (or VDD + 1V) to VDD/2,  
DMVDM = ±0.1V, 90% of VOUT change  
VDM = VDML – (0.5V)/GMIN  
(or VDMH + (0.5V)/GMIN) to 0V,  
REF = (VDD – GDMVDM)/2,  
G
Overdrive Recovery,  
Input Differential  
Mode  
5
8
µs  
V
90% of VOUT change  
Overdrive Recovery,  
Output  
tOR  
µs  
GDM = 2GMIN, GDMVDM = 0.5VDD to 0V,  
VREF = 0.75VDD (or 0.25VDD),  
90% of VOUT change  
Noise  
Input Noise Voltage  
Eni  
eni  
ini  
570/GMIN  
µVP-P 1 to 10 f = 0.1 Hz to 10 Hz  
µVP-P 100  
nV/Hz 1 to 10 f = 100 kHz  
18  
Input Noise Voltage  
Density  
950/GMIN  
35  
1
nV/Hz  
fA/Hz  
100  
all  
Input Current Noise  
Density  
f = 1 kHz  
DS25073A-page 6  
© 2011 Microchip Technology Inc.  
MCP6N11  
TABLE 1-3:  
DIGITAL ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD  
,
V
CM = VDD/2, VDM = 0V, VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN  
;
see Figure 1-6 and Figure 1-7.  
Parameters  
Sym  
Min  
Typ  
Max Units GMIN  
Conditions  
EN/CAL Low Specifications  
EN/CAL Logic  
Threshold, Low  
VIL  
VSS  
0.2 VDD  
V
all  
EN/CAL Input Current,  
Low  
IENL  
-0.1  
nA  
EN/CAL = 0V  
GND Current  
ISS  
-7  
-2.5  
10  
µA  
nA  
EN/CAL = 0V, VDD = 5.5V  
EN/CAL = 0V  
Amplifier Output Leakage  
IO(LEAK)  
EN/CAL High Specifications  
EN/CAL Logic  
Threshold, High  
VIH  
0.8 VDD  
VDD  
V
all  
all  
EN/CAL Input Current,  
High  
IENH  
-0.01  
nA  
EN/CAL = VDD  
EN/CAL Dynamic Specifications  
EN/CAL Input Hysteresis VHYST  
0.2  
3
V
EN/CAL Low to Amplifier  
Output High-Z Turn-off  
Time  
tOFF  
10  
µs  
EN/CAL = 0.2VDD to VOUT = 0.1(VDD/2),  
VDMGDM = 1 V, VL = 0V  
EN/CAL High to  
Amplifier Output  
On Time  
tON  
12  
20  
28  
ms  
EN/CAL = 0.8VDD to VOUT = 0.9(VDD/2),  
VDMGDM = 1 V, VL = 0V  
EN/CAL Low to  
EN/CAL High low time  
tENLH  
tENOL  
100  
µs  
µs  
Minimum time before externally  
releasing EN/CAL (Note 1)  
Amplifier On to  
EN/CAL Low Setup Time  
100  
POR Dynamic Specifications  
VDD to Output Off  
tPHL  
10  
µs  
all VL = 0V, VDD = 1.8V to  
VPRL – 0.1V step,  
90% of VOUT change  
VDD to Output On  
tPLH  
VL = 0V, VDD = 0V to VPRH + 0.1V step,  
90% of VOUT change  
140  
250  
360  
ms  
Note 1: For design guidance only; not tested.  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = 1.8V to 5.5V, VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max Units  
Conditions  
Specified Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-TDFN (2×3)  
θJA  
θJA  
150  
53  
°C/W  
°C/W  
Note 1: Operation must not cause T to exceed the Absolute Maximum Junction Temperature specification (+150°C).  
J
© 2011 Microchip Technology Inc.  
DS25073A-page 7  
 
 
MCP6N11  
1.3  
Timing Diagrams  
tENLH  
±(1V)/GDM  
EN/CAL  
VDM  
tENOL  
tOFF  
tON  
VCM  
High-Z  
VOUT  
tIRC  
FIGURE 1-5:  
EN/CAL Timing Diagram.  
VOUT  
FIGURE 1-1:  
Common Mode Input  
Overdrive Recovery Timing Diagram.  
VDD/2  
VCM  
VDM  
tIRD  
VOUT  
FIGURE 1-2:  
Differential Mode Input  
Overdrive Recovery Timing Diagram.  
VDD/2  
VCM  
VDM  
tOR  
VOUT  
FIGURE 1-3:  
Output Overdrive Recovery  
Timing Diagram.  
1.8V  
VPRH + 0.1V  
VPRL – 0.1V  
VDD  
0V  
tPHL  
tPLH  
High-Z  
VOUT  
FIGURE 1-4:  
POR Timing Diagram.  
DS25073A-page 8  
© 2011 Microchip Technology Inc.  
MCP6N11  
1.4.2  
DIFFERENTIAL GAIN TEST CIRCUIT  
1.4  
DC Test Circuits  
Figure 1-7 is used for testing the INA’s differential gain  
error, non-linearity and input voltage range (gE, INLDM  
1.4.1  
INPUT OFFSET TEST CIRCUIT  
,
Figure 1-6 is used for testing the INA’s input offset  
errors and input voltage range (VE, VIVL and VIVH; see  
Section 1.5.1 “Input Offset Related Errors” and  
Section 1.5.2 “Input Offset Common Mode Non-  
linearity”). U2 is part of a control loop that forces VOUT  
to equal VCNT; U1 can be set to any bias point.  
VDML and VDMH; see Section 1.5.3 “Differential Gain  
Error and Non-linearity”). RF and RG are 0.01% for  
accurate gain error measurements.  
VDD  
VL  
2.2 µF  
100 nF  
VCM + VDM/2  
VDD  
RL  
VOUT  
VL  
2.2 µF  
VCM  
1 kΩ  
100 nF  
U1  
VOUT  
RL  
MCP6N11  
RF  
0.01%  
6.34 kΩ  
1 kΩ  
1 kΩ  
+
VM  
1 kΩ  
U1  
100 nF  
RG  
0.01%  
MCP6N11  
VFG  
VCM – VDM/2  
6.34 kΩ  
VREF  
RG  
RF  
VREF  
Test Circuit for Differential  
U2  
MCP6H01 63.4 kΩ  
FIGURE 1-7:  
Mode.  
RCNT  
63.4 kΩ  
The output voltages are (where VE is the sum of input  
offset errors and gE is the gain error):  
12.7 kΩ  
VM  
CCNT  
10 nF  
100 nF  
EQUATION 1-2:  
VCNT  
GDM = 1 + RF RG  
FIGURE 1-6:  
Mode (Input Offset).  
Test Circuit for Common  
VOUT = VREF + GDM(1 + gE)(VDM + VE)  
VM = VOUT VREF  
When MCP6N11 is in its normal range of operation, the  
DC output voltages are (where VE is the sum of input  
offset errors and gE is the gain error):  
= GDM(1 + gE)(VDM + VE)  
To keep VREF, VFG and VOUT within their ranges, set:  
EQUATION 1-1:  
EQUATION 1-3:  
GDM = 1 + RF RG  
VOUT = VCNT  
VREF = (VDD GDMVDM) 2  
VM = VREF + GDM(1 + gE)VE  
Table 1-6 shows the recommended RF and RG. They  
produce a 10 kΩ load; VL can usually be left open.  
Table 1-5 gives the recommended RF and RG values  
for different GMIN options.  
TABLE 1-6:  
SELECTING RF AND RG  
TABLE 1-5:  
SELECTING RF AND RG  
GMIN  
(V/V)  
Nom.  
RF  
(Ω)  
Nom.  
RG  
(Ω)  
Nom.  
GDM  
(V/V)  
Nom.  
GMIN  
(V/V)  
RF  
(Ω)  
RG  
GDM GDMVOS BW  
(Ω)  
(V/V)  
(±V)  
(kHz)  
Nom.  
Nom. Nom. Nom. Nom.  
Max.  
1
2
0
Open  
4.99k  
2.00k  
1.00k  
100  
1.000  
2.000  
5.030  
10.09  
101.0  
4.99k  
8.06k  
9.09k  
10.0k  
1
2
100k  
100k  
499  
100  
201.4  
1001  
0.60  
0.40  
0.85  
0.50  
0.35  
2.5  
5.0  
2.5  
5.0  
35  
5
10  
100  
5
10  
100  
© 2011 Microchip Technology Inc.  
DS25073A-page 9  
 
 
 
 
 
 
 
 
MCP6N11  
Based on the measured VE data, we obtain the  
following linear fit:  
1.5  
Explanation of DC Error Specs  
1.5.1  
INPUT OFFSET RELATED ERRORS  
EQUATION 1-6:  
The input offset error (VE) is extracted from input offset  
measurements (see Section 1.4.1 “Input Offset Test  
Circuit”), based on Equation 1-1:  
VCM VDD 2  
VE_LIN = VOS + ----------------------------------  
CMRR  
Where:  
EQUATION 1-4:  
VOS = V2  
V3 V1  
VM VREF  
1
---------------- = -----------------------------  
VE = --------------------------------  
CMRR  
VIVH VIVL  
GDM(1 + gE)  
The remaining error (ΔVE) is described by the Common  
Mode Non-Linearity spec:  
VE has several terms, which assume a linear response  
to changes in VDD, VSS, VCM, VOUT and TA (all of which  
are in their specified ranges):  
EQUATION 1-7:  
EQUATION 1-5:  
max ΔVE  
INLCM = -----------------------------  
ΔVDD ΔVSS ΔVCM ΔVREF  
VIVH VIVL  
VE = VOS + --------------------------------- + ---------------- + ----------------  
Where:  
PSRR  
CMRR CMRR  
ΔVE = VE VE_LIN  
ΔVOUT  
ΔVOS  
+ ----------------- + ΔTA -------------  
AOL  
ΔTA  
The same common mode behavior applies to VE when  
VREF is swept, instead of VCM, since both input stages  
are designed the same:  
Where:  
PSRR, CMRR and AOL are in units of V/V  
ΔTA is in units of °C  
EQUATION 1-8:  
VDM = 0  
VREF VDD 2  
VE_LIN = VOS + ------------------------------------  
Equation 1-2 shows how VE affects VOUT  
.
CMRR  
max ΔVE  
1.5.2  
INPUT OFFSET COMMON MODE  
NON-LINEARITY  
INLCM = -----------------------------  
VIVH VIVL  
The input offset error (VE) changes non-linearly with  
VCM. Figure 1-8 shows VE vs. VCM, as well as a linear  
fit line (VE_LIN) based on VOS and CMRR. The op amp  
is in standard conditions (ΔVOUT = 0, VDM = 0, etc.).  
VCM is swept from VIVL to VIVH. The test circuit is in  
Section 1.4.1 “Input Offset Test Circuit” and VE is  
calculated using Equation 1-4.  
1.5.3  
DIFFERENTIAL GAIN ERROR AND  
NON-LINEARITY  
The differential errors are extracted from differential  
gain measurements (see Section 1.4.2 “Differential  
Gain Test Circuit”), based on Equation 1-2. These  
errors are the differential gain error (gE) and the input  
offset error (VE, which changes non-linearly with VDM):  
VE, VE_LIN (V)  
VE_LIN  
VE  
EQUATION 1-9:  
V3  
V2  
GDM = 1 + RF RG  
VM = GDM(1 + gE)(VDM + VE)  
These errors are adjusted for the expected output, then  
referred back to the input, giving the differential input  
error (VED) as a function of VDM  
:
V1  
ΔVE  
VCM (V)  
EQUATION 1-10:  
VIVL  
FIGURE 1-8:  
VDD/2  
VIVH  
VM  
VED = ----------- VDM  
GDM  
Input Offset Error vs.  
Common Mode Input Voltage.  
DS25073A-page 10  
© 2011 Microchip Technology Inc.  
 
 
 
MCP6N11  
Figure 1-9 shows VED vs. VDM, as well as a linear fit  
line (VED_LIN) based on VE and gE. The op amp is in  
standard conditions (ΔVOUT = 0, etc.). VDM is swept  
from VDML to VDMH  
.
VED, VED_LIN (V)  
VED_LIN  
VED  
V3  
V2  
V1  
ΔVED  
VDM (V)  
VDML  
0
VDMH  
FIGURE 1-9:  
Differential Input Error vs.  
Differential Input Voltage.  
Based on the measured VED data, we obtain the  
following linear fit:  
EQUATION 1-11:  
VED_LIN = (1 + gE)VE + gEVDM  
Where:  
V3 V1  
gE = ----------------------------------- 1  
V
DMH VDML  
V2  
VE = ---------------  
1 + gE  
Note that the VE value measured here is not as  
accurate as the one obtained in Section 1.5.1 “Input  
Offset Related Errors”.  
The remaining error (ΔVED) is described by the  
Differential Mode Non-Linearity spec:  
EQUATION 1-12:  
max ΔVED  
INLDM = -----------------------------------  
VDMH VDML  
Where:  
ΔVED = VED VED_LIN  
© 2011 Microchip Technology Inc.  
DS25073A-page 11  
 
MCP6N11  
NOTES:  
DS25073A-page 12  
© 2011 Microchip Technology Inc.  
MCP6N11  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
REF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
V
2.1  
DC Voltages and Currents  
25%  
20%  
15%  
10%  
5%  
35%  
No VOS Re-calibration  
330 Samples  
GMIN = 1 to 10  
VDD = 5.5V  
330 Samples  
TA = +25°C  
30%  
25%  
20%  
15%  
10%  
5%  
V
DD = 1.8V and 5.5V  
RTO  
RTO  
GMIN = 1  
G
MIN
= 2 to 10  
0%  
0%  
Normalized Input Offset Voltage Drift;  
MIN(ꢀVOS/ꢀTA) (μV/°C)  
Normalized Input Offset Voltage; GMINVOS (mV)  
G
FIGURE 2-1:  
Normalized Input Offset  
FIGURE 2-3:  
Normalized Input Offset  
Voltage, with GMIN = 1 to 10.  
Voltage Drift, with GMIN = 1 to 10.  
14%  
12%  
10%  
8%  
18%  
16%  
14%  
12%  
10%  
8%  
330 Samples  
MIN = 100  
No VOS Re-calibration  
G
330 Samples  
TA = +25°C  
VDD = 1.8V and 5.5V  
RTO  
GMIN = 100  
VDD = 5.5V  
RTO  
6%  
6%  
4%  
2%  
0%  
4%  
2%  
0%  
Normalized Input Offset Voltage Drift;  
GMIN(ꢀVOS/ꢀTA) (μV/°C)  
Normalized Input Offset Voltage; GMINVOS (mV)  
FIGURE 2-2:  
Normalized Input Offset  
FIGURE 2-4:  
Normalized Input Offset  
Voltage, with GMIN = 100.  
Voltage Drift, with GMIN = 100.  
© 2011 Microchip Technology Inc.  
DS25073A-page 13  
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
2.5  
2.0  
10  
8
6
Representative Part  
VCM = VDD  
GMIN = 100  
RTO  
1.5  
1.0  
4
0.5  
2
0.0  
0
-2  
-4  
-6  
-8  
-10  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
Representative Part  
VCM = VSS  
GMIN = 1 to 10  
RTO  
+25°C  
+85°C  
+125°C  
Power Supply Voltage  
Power Supply Voltage  
FIGURE 2-5:  
Normalized Input Offset  
FIGURE 2-8:  
Normalized Input Offset  
Voltage vs. Power Supply Voltage, with  
Voltage vs. Power Supply Voltage, with  
VCM = 0V and GMIN = 1 to 10.  
V
CM = VDD and GMIN = 100.  
25  
20  
15  
10  
5
2.0  
1.5  
Representative Part  
GMIN = 1 to 10  
RTO  
VDD = 1.8V  
1.0  
0.5  
0.0  
VDD = 5.5V  
0
-5  
-10  
-15  
-20  
-25  
-0.5  
-1.0  
-1.5  
-2.0  
-40°C  
Representative Part  
VCM = VSS  
GMIN = 100  
RTO  
25°C  
85°C  
125°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Power Supply Voltage  
FIGURE 2-6:  
Normalized Input Offset  
FIGURE 2-9:  
Normalized Input Offset  
Voltage vs. Power Supply Voltage, with  
Voltage vs. Output Voltage, with GMIN = 1 to 10.  
VCM = 0V and GMIN = 100.  
6
5
4
3
2
1
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Representative Part  
VCM = VDD  
Representative Part  
GMIN = 100  
GMIN = 1 to 10  
RTO  
RTO  
VDD = 1.8V  
-40°C  
+25°C  
+85°C  
+125°C  
VDD = 5.5V  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1  
-2  
-3  
-4  
-5  
-6  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Power Supply Voltage  
FIGURE 2-7:  
Normalized Input Offset  
FIGURE 2-10:  
Normalized Input Offset  
Voltage vs. Power Supply Voltage, with  
CM = VDD and GMIN = 1 to 10.  
Voltage vs. Output Voltage, with GMIN = 100.  
V
DS25073A-page 14  
© 2011 Microchip Technology Inc.  
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
0.5  
0.4  
0.3  
0.2  
0.1  
2.0  
1.5  
1 Wafer Lot  
VDD = 5.5V  
VIVH – VDD  
Representative Part  
GMIN = 1 to 10  
RTO  
1.0  
0.5  
VDD = 1.8V  
VDD = 5.5V  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
+125°C  
+85°C  
+25°C  
-40°C  
-0.5  
-1.0  
-1.5  
-2.0  
VIVL – VSS  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Input Common Mode Voltage (V)  
FIGURE 2-11:  
Input Common Mode  
FIGURE 2-14:  
Normalized Input Offset  
Voltage Headroom vs. Ambient Temperature.  
Voltage vs. Common Mode Voltage, with  
V
DD = 5.5V and GMIN = 1 to 10.  
2.0  
15  
10  
5
VDD = 1.8V  
VDD = 5.5V  
Representative Part  
GMIN = 100  
RTO  
Representative Part  
1.5  
GMIN = 1 to 10  
RTO  
1.0  
0.5  
0.0  
0
-0.5  
-5  
+125°C  
+125°C  
-1.0  
+85°C  
+85°C  
+25°C  
-40°C  
-10  
-15  
+25°C  
-1.5  
-40°C  
-2.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Input Common Mode Voltage (V)  
Input Common Mode Voltage (V)  
FIGURE 2-12:  
Normalized Input Offset  
FIGURE 2-15:  
Normalized Input Offset  
Voltage vs. Common Mode Voltage, with  
Voltage vs. Common Mode Voltage, with  
VDD = 1.8V and GMIN = 1 to 10.  
V
DD = 5.5V and GMIN = 100.  
15  
10  
5
110  
VDD = 1.8V  
Representative Part  
GMIN = 100  
RTO  
CMRR / GMIN, VDD = 5.5V:  
G
MIN
= 1 to 10  
CMRR / GMIN, VDD = 1.8V:  
105  
G
MIN = 1, 
100  
GMIN = 100  
GMIN = 2 to 10  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0
-5  
+125°C  
+85°C  
-10  
PSRR / G
MIN  
:
+25°C  
GMIN = 1 to 10  
GMIN = 100  
-40°C  
-15  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-50  
-25  
0
25  
50  
75  
100 125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Voltage vs. Common Mode Voltage, with  
DD = 1.8V and GMIN = 100.  
Normalized Input Offset  
FIGURE 2-16:  
PSRR vs. Ambient Temperature.  
Normalized CMRR and  
V
© 2011 Microchip Technology Inc.  
DS25073A-page 15  
 
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
5
4
3
2
1
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
Representative Part  
VED = (VOUT – VREF)/GDM – VDM  
GMIN = 1  
VDD = 5.5V  
DD = 1.8V  
V
RTO  
VDD = 1.8V  
0
-1  
-2  
-3  
-4  
-5  
VDD = 5.5V  
GMIN = 1 to 10  
GMIN = 100  
60  
-5 -4 -3 -2 -1  
Normalized Differential Input Voltage;  
MINVDM (V)  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
G
FIGURE 2-17:  
Normalized DC Open-Loop  
FIGURE 2-20:  
Normalized Differential Input  
Gain vs. Ambient Temperature.  
Error vs. Differential Voltage, with GMIN = 1.  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
Representative Part  
Representative Part  
VDD = 5.5V  
V
ED
= (V
OUT
– V
REF
)/G
DM
– V
DM  
GMIN = 2 to 100  
RTO  
G
DM
= 100  
GDM  
=
1
VIM = -0.20V  
VIM = VDD + 0.15V  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Normalized Differential Input Voltage;  
Non-inverting Input Voltage; VIP (V)  
GMINVDM (V)  
FIGURE 2-18:  
The MCP6N11 Shows No  
FIGURE 2-21:  
Normalized Differential Input  
Phase Reversal vs. Common Mode Voltage.  
Error vs. Differential Voltage, with  
G
MIN = 2 to 100.  
4.0  
5.5  
1 Wafer Lot  
Representative Part  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
G
MINVDMH = -GMINVDML  
VDD = 5.5V  
RTO  
VREF = (VDD – GDMVDM)/2  
GMIN = 1  
GMIN = 2  
GMIN = 5  
Note: For GMIN = 1,  
VDMH = minimum of plot value and VDD  
G
MIN = 10  
GMIN = 100  
-50  
-25  
0
25  
Axis Title  
50  
75  
100  
125  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
Differential Input Voltage (V)  
FIGURE 2-19:  
Mode Voltage Range vs. Ambient Temperature.  
Normalized Differential  
FIGURE 2-22:  
Phase Reversal vs. Differential Voltage, with  
DD = 5.5V.  
The MCP6N11 Shows No  
V
DS25073A-page 16  
© 2011 Microchip Technology Inc.  
 
 
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
2.5  
2.0  
1.E
10n  
Representative Part  
TA = +125°C  
VDD = 5.5V  
VDD = 5.5V  
VCM = VDD  
1.5  
1.E-
1n  
1.0  
IB  
0.5  
IB  
0.0  
1.
100p  
IOS  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
1.E
10p  
| IOS  
|
1.E-
1p  
25  
45  
65  
85  
105  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-23:  
Input Bias and Offset  
FIGURE 2-26:  
Input Bias and Offset  
Currents vs. Ambient Temperature, with  
Currents vs. Common Mode Input Voltage, with  
TA = +125°C.  
VDD = +5.5V.  
1000  
1.E1m
1.100μ  
1.E10μ  
1.E-1μ  
1100n  
1.E10n  
1.E-019n  
1100p  
1.E10p  
VDD = 5.5V  
VDD = 1.8V  
+125°C  
+85°C  
+25°C  
-40°C  
100  
VDD – VOH  
VOL – VSS  
1p  
1.E-
10  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
0.1  
1
10  
Input Voltage (V)  
Output Current Magnitude (mA)  
FIGURE 2-24:  
Input Bias Current vs.  
FIGURE 2-27:  
Output Voltage Headroom  
Input Voltage (below VSS).  
vs. Output Current.  
100  
10  
9
8
7
6
5
4
3
2
1
0
Representative Part  
TA = +85°C  
VDD = 5.5V  
80  
60  
VDD – VOH  
VDD = 5.5V  
40  
IB  
20  
0
IOS  
-20  
-40  
-60  
-80  
-100  
VDD = 1.8V  
VOL – VSS  
-50  
-25  
0
25  
50  
75  
100  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Input Bias and Offset  
FIGURE 2-28:  
Output Voltage Headroom  
Currents vs. Common Mode Input Voltage, with  
TA = +85°C.  
vs. Ambient Temperature.  
© 2011 Microchip Technology Inc.  
DS25073A-page 17  
 
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
50  
40  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
30  
VDD = 5.5V  
20  
10  
+125°C  
+85°C  
+25°C  
-40°C  
VDD = 1.8V  
0
-10  
-20  
-30  
-40  
-50  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-29:  
Output Short Circuit Current  
FIGURE 2-31:  
Supply Current vs. Common  
vs. Power Supply Voltage.  
Mode Input Voltage.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
+125°C  
+85°C  
+25°C  
-40°C  
Power Supply Voltage (V)  
FIGURE 2-30:  
Supply Current vs. Power  
Supply Voltage.  
DS25073A-page 18  
© 2011 Microchip Technology Inc.  
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
2.2  
Frequency Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
150  
140  
130  
120  
110  
100  
90  
VDD = 5.5V  
GMIN = 1  
G
MIN = 2  
GBWP  
PM  
GMIN = 5  
GMIN = 10  
GMIN = 100  
G
MIN
= 1  
GMIN = 2  
80  
G
MIN = 5  
70  
GMIN = 10  
GMIN = 100  
60  
50  
1k  
1.03  
10k  
14  
100k  
15  
1M  
1.6  
-50 -25  
0
25  
50  
75 100 125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-32:  
CMRR vs. Frequency.  
FIGURE 2-35:  
Normalized Gain Bandwidth  
Product and Phase Margin vs. Ambient  
Temperature.  
120  
110  
100  
90  
80  
70  
1.E
10k  
VDD = 5.5V  
GMIN = 1 to 10  
G
DM
/G
MIN
= 10  
1.E+
1k  
60  
50  
GMIN = 100  
40  
1.E+ 2  
100  
GMIN = 1  
30  
20  
10  
0
GMIN = 2  
GMIN = 5  
GMIN = 10  
GMIN = 100  
GDM/GMIN = 1  
1.E+
1
0  
1k  
10k  
14  
100k  
15  
1M  
1.6  
1.03  
1k  
10k  
14  
100k  
1M  
16  
10M  
17  
1.03  
15  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-33:  
PSRR vs. Frequency.  
FIGURE 2-36:  
Closed-Loop Output  
Impedance vs. Frequency.  
7
120  
100  
80  
-60  
GMIN = 10  
GDM = 20  
= 50  
-90  
GMIN = GDM = 1  
6
-AOL/GMIN  
= 2  
-120  
= 5  
= 10  
5
4
3
2
1
0
60  
-150  
= 100  
40  
| AOL/GMIN  
|
-180  
-210  
-240  
-270  
-300  
-330  
-360  
20  
GMIN = 100  
GDM = 200  
= 500  
0
-20  
-40  
-60  
-80  
GMIN = 1  
G
MIN = 2  
G
MIN
= 5  
GMIN = 10  
MIN = 100  
G
10k  
100k  
1M  
1.E+6  
10M  
1.E+7  
10p  
1.E+1  
100p  
1.E+2  
1n  
1.E+4  
1.E+5  
1.E+3  
Frequency (Hz)  
Normalized Capacitive Load; CL(GMIN/GDM) (F)  
FIGURE 2-34:  
Normalized Open-Loop  
FIGURE 2-37:  
Gain Peaking vs.  
Gain vs. Frequency.  
Normalized Capacitive Load.  
© 2011 Microchip Technology Inc.  
DS25073A-page 19  
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
2.3  
Noise  
0.5  
0.4  
1000  
1m  
Analog NPBW = 0.1 Hz  
Sample Rate = 4 SPS  
Representative Part  
MIN = 1 to 10  
RTO  
RTO  
G
0.3  
100  
100μ  
0.2  
GMIN = 100  
0.1  
1100μ  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
GMIN = 10  
1
1μ  
GMIN = 5  
G
MIN
= 2  
GMIN = 1  
100n  
0.1  
0.1  
1
10  
100  
1k  
10k 100k 1M  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6  
Frequency (Hz)  
0
5
10  
15  
20  
25  
30  
35  
Time (min)  
FIGURE 2-38:  
Normalized Input Noise  
FIGURE 2-41:  
Normalized Input Noise  
Voltage Density vs. Frequency.  
Voltage vs. Time, with GMIN = 1 to 10.  
2.0  
14  
12  
Analog NPBW = 0.1 Hz  
Sample Rate = 4 SPS  
Representative Part  
MIN = 100  
RTO  
G
1.5  
1.0  
10  
GMIN = 100  
GMIN = 10  
VDD = 1.8V  
DD = 5.5V  
0.5  
G
MIN = 5  
8
6
4
2
0
V
G
MIN
= 2  
GMIN = 1  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
f = 100 Hz  
RTO  
0
5
10  
15  
20  
25  
30  
35  
Common Mode Input Voltage (V)  
Time (min)  
FIGURE 2-39:  
Normalized Input Noise  
FIGURE 2-42:  
Normalized Input Noise  
Voltage Density vs. Input Common Mode  
Voltage, with f = 100 Hz.  
Voltage vs. Time, with GMIN = 100.  
4.0  
3.5  
3.0  
GMIN = 100  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 1.8V  
DD = 5.5V  
G
MIN = 10  
V
GMIN = 5  
GMIN = 2  
GMIN = 1  
f = 10 kHz  
RTO  
Common Mode Input Voltage (V)  
FIGURE 2-40:  
Normalized Input Noise  
Voltage Density vs. Input Common Mode  
Voltage, with f = 10 kHz.  
DS25073A-page 20  
© 2011 Microchip Technology Inc.  
 
 
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
2.4  
Time Response  
10  
1
VDD = 5.5V  
GDM = GMIN  
RF + RG = 10 kꢁ  
VDD = 5.5V  
VDD = 1.8V  
G
MIN
= 1 to 10  
GMIN = 100  
GMIN = 1 to 10  
GMIN = 100  
0
10k  
100k  
Frequency (Hz)  
1M  
1.E+6  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1.E+4  
1.E+5  
Time (μs)  
FIGURE 2-43:  
Small Signal Step  
FIGURE 2-46:  
Maximum Output Voltage  
Response.  
Swing vs. Frequency.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
VDD = 5.5V  
GDM = GMIN  
RF + RG = 10 kꢁ  
GDMVDM = 1V  
VDD = 5.5V  
100  
10  
1
VDD = 1.8V  
GMIN = 1 to 10  
MIN = 100  
G
GMIN = 100  
GMIN = 10  
GMIN = 1  
1
10  
100  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Time (μs)  
Normalized Gain; GDM/GMIN  
FIGURE 2-44:  
Large Signal Step  
FIGURE 2-47:  
Common Mode Input  
Response.  
Overdrive Recovery Time vs. Normalized Gain.  
10  
9
8
7
6
5
4
3
2
1
1000  
VDD = 5.5V  
100  
VDD = 1.8V  
VDD = 5.5V  
GMIN = 1 to 10  
GMIN = 100  
VDD = 1.8V  
10  
GMIN = 100  
GMIN = 10  
GMIN = 1  
1
0
1
10  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Normalized Gain; GDM/GMIN  
Ambient Temperature (°C)  
FIGURE 2-45:  
Slew Rate vs. Ambient  
FIGURE 2-48:  
Differential Input Overdrive  
Temperature.  
Recovery Time vs. Normalized Gain.  
© 2011 Microchip Technology Inc.  
DS25073A-page 21  
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
1000  
100  
10  
4
3
GDM = 2GMIN  
VDD = 5.5V  
VIP  
VREF = 0.75VDD  
2
VDD = 5.5V  
VDD = 1.8V  
VOUT, GMIN = 1  
OUT, GMIN = 100  
1
GMIN = 1  
GMIN = 10  
V
0
-1  
-2  
-3  
-4  
GMIN = 100  
VIM  
1
1
10  
Normalized Gain; GDM/GMIN  
100  
0
10 20 30 40 50 60 70 80 90 100  
Time (μs)  
FIGURE 2-49:  
Output Overdrive Recovery  
FIGURE 2-51:  
The MCP6N11 Shows No  
Time vs. Normalized Gain.  
Phase Reversal vs. Differential Input Overdrive,  
with VDD = 5.5V.  
6
VDD = 5.5V  
GDMVDM = +0.1V  
f = 10 kHz  
VCM  
5
4
3
2
VOUT, GMIN = 1  
VOUT, GMIN = 100  
1
0
-1  
0
10 20 30 40 50 60 70 80 90 100  
Time (μs)  
FIGURE 2-50:  
The MCP6N11 Shows No  
Phase Reversal vs. Common Mode Input  
Overdrive, with VDD = 5.5V.  
DS25073A-page 22  
© 2011 Microchip Technology Inc.  
 
 
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
2.5  
Enable/Calibration and POR Responses  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
30  
25  
20  
15  
10  
5
VDD = 1.8V  
VL = 0V  
VDD = 5.5V  
VDD = 1.8V  
INA  
turns off  
Calibration  
Starts  
INA  
turns on  
EN/CAL  
VOUT  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
10 20 30 40 50 60 70 80 90 100  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-52:  
EN/CAL and Output Voltage  
FIGURE 2-55:  
EN/CAL Turn On Time vs.  
vs. Time, with VDD = 1.8V.  
Ambient Temperature.  
6.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
VDD = 5.5V  
5.5  
VL = 0V  
VL = 0V  
5.0  
4.5  
4.0  
INA  
turns off  
Calibration  
3.5  
INA  
turns on  
Starts  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
On  
0.6  
0.4  
0.2  
0.0  
-0.2  
VDD  
VOUT  
EN/CAL  
VOUT  
Off  
Off  
Calibrating  
0
10 20 30 40 50 60 70 80 90 100  
Time (ms)  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Time (s)  
FIGURE 2-53:  
EN/CAL and Output Voltage  
FIGURE 2-56:  
Power Supply On and Off  
vs. Time, with VDD = 5.5V  
and Output Voltage vs. Time.  
0.60  
0.55  
0.50  
1.7  
1.6  
1.5  
1.4  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VDD = 5.5V  
VPRH – VPRL  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
VPRH  
VDD = 1.8V  
VPRL  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-57:  
Hysteresis vs. Temperature.  
POR Trip Voltages and  
FIGURE 2-54:  
Ambient Temperature.  
EN/CAL Hysteresis vs.  
© 2011 Microchip Technology Inc.  
DS25073A-page 23  
MCP6N11  
Note: Unless otherwise indicated, TA = +25°C, VDD = 1.8V to 5.5V, VSS = GND, EN/CAL = VDD, VCM = VDD/2, VDM = 0V,  
VREF = VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF and GDM = GMIN; see Figure 1-6 and Figure 1-7.  
1.E-07  
100n  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
EN/CAL = 0V  
VDD = 5.5V  
EN/CAL = 0V  
1.E-08  
10n  
+125°C  
+85°C  
1.E-09  
1n  
1.E-10  
100p  
+125°C  
+85°C  
+25°C  
-40°C  
1.E-11  
10p  
+25°C  
1.E-12  
1p  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
FIGURE 2-58:  
Quiescent Current in  
FIGURE 2-59:  
Output Leakage Current vs.  
Shutdown vs. Power Supply Voltage.  
Output Voltage.  
DS25073A-page 24  
© 2011 Microchip Technology Inc.  
MCP6N11  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6N11  
PIN FUNCTION TABLE  
Symbol  
Description  
SOIC  
TDFN  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
VFG  
VIM  
Feedback Input  
Inverting Input  
VIP  
Non-inverting Input  
Negative Power Supply  
Reference Input  
Output  
VSS  
VREF  
VOUT  
VDD  
Positive Power Supply  
EN/CAL  
EP  
Enable/VOS Calibrate Digital Input  
Exposed Thermal Pad (EP); must be connected to VSS  
9
3.1  
Analog Signal Inputs  
3.5  
Power Supply Pins  
The non-inverting and inverting inputs (VIP, and VIM  
are high-impedance CMOS inputs with low bias  
currents.  
)
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply; VDD will  
need bypass capacitors.  
3.2  
Analog Feedback Input  
The analog feedback input (VFG) is the inverting input  
of the second input stage. The external feedback  
components (RF and RG) are connected to this pin. It is  
a high-impedance CMOS input with low bias current.  
3.6  
Digital Enable and V Calibration  
OS  
Input  
3.3  
Analog Reference Input  
This input (EN/CAL) is a CMOS, Schmitt-triggered  
input that controls the active, low power and VOS  
calibration modes of operation. When this pin goes low,  
the part is placed into a low power mode and the output  
is high-Z. When this pin goes high, the amplifier’s input  
offset voltage is corrected by the calibration circuitry,  
then the output is re-connected to the VOUT pin, which  
becomes low impedance, and the part resumes normal  
operation.  
The analog reference input (VREF) is the non-inverting  
input of the second input stage; it shifts VOUT to its  
desired range. The external gain resistor (RG) is  
connected to this pin. It is a high-impedance CMOS  
input with low bias current.  
3.4  
Analog Output  
The analog output (VOUT) is a low-impedance voltage  
output. It represents the differential input voltage  
(VDM = VIP – VIM), with gain GDM and is shifted by  
3.7  
Exposed Thermal Pad (EP)  
There is an internal connection between the Exposed  
Thermal Pad (EP) and the VSS pin; they must be  
connected to the same potential on the Printed Circuit  
Board (PCB).  
VREF. The external feedback resistor (RF) is connected  
to this pin.  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (θJA).  
© 2011 Microchip Technology Inc.  
DS25073A-page 25  
 
MCP6N11  
NOTES:  
DS25073A-page 26  
© 2011 Microchip Technology Inc.  
MCP6N11  
The input offset voltage (VOS) is corrected by the  
voltage VTR. Each time a VOS Calibration event occurs,  
VTR is updated to the best value (at that moment).  
These events are triggered by either powering up  
(monitored by the POR) or by toggling the EN/CAL pin  
4.0  
APPLICATIONS  
The MCP6N11 instrumentation amplifier (INA) is  
manufactured using Microchip’s state of the art CMOS  
process. It is low cost, low power and high speed,  
making it ideal for battery-powered applications.  
high. The current out of G  
(I ) is constant and very  
M3  
3
small (assumed to be zero in the following discussion).  
4.1  
Basic Performance  
The input signal is applied to GM1. Equation 4-2 shows  
the relationships between the input voltages (V and  
IP  
4.1.1  
STANDARD CIRCUIT  
V
) and the common mode and differential voltages  
(V and V ).  
CM  
IM  
Figure 4-1 shows the standard circuit configuration for  
these INAs. When the inputs and output are in their  
specified ranges, the output voltage is approximately:  
DM  
EQUATION 4-2:  
VIP = VCM + VDM 2  
EQUATION 4-1:  
VOUT VREF + GDMVDM  
VIM = VCM VDM 2  
VCM = (VIP + VIM) 2  
VDM = VIP VIM  
Where:  
GDM = 1 + RF / RG  
The negative feedback loop includes GM2, RM4, RF and  
RG. These blocks set the DC open-loop gain (AOL) and  
the nominal differential gain (GDM):  
VDD  
U1  
MCP6N11  
VIP  
VOUT  
EQUATION 4-3:  
RF  
VIM  
VFG  
AOL = GM2RM4  
GDM = 1 + RF RG  
RG  
VREF  
Standard Circuit.  
AOL is very high, so I4 is very small and I + I 0. This  
1
2
makes the differential inputs to GM1 and GM2 equal in  
FIGURE 4-1:  
magnitude and opposite in polarity. Ideally, this gives:  
For normal operation, keep:  
• VIP, VIM, VREF and VFG between VIVL and VIVH  
• VIP – VIM (i.e., VDM) between VDML and VDMH  
• VOUT between VOL and VOH  
EQUATION 4-4:  
(VFG VREF) = VDM  
VOUT = VDMGDM + VREF  
4.1.2  
ARCHITECTURE  
For an ideal part, changing VCM, VSS or VDD produces  
no change in VOUT. VREF shifts VOUT as needed.  
Figure 4-2 shows the block diagram for these INAs.  
The different GMIN options change GM1, GM2 and the  
internal compensation capacitor. This results in the  
performance trade-offs shown in Table 1.  
VDD VSS  
VOUT  
VOUT  
RM4  
I4  
RF  
VFG  
GM2  
RG  
Σ
VREF  
I2  
I3  
VREF  
VIP  
I1  
GM3  
VTR  
Low Power  
VIP  
VIM  
GM1  
POR  
VIM  
VOS Calibration  
EN/CAL  
FIGURE 4-2:  
MCP6N11 Block Diagram.  
© 2011 Microchip Technology Inc.  
DS25073A-page 27  
 
 
 
MCP6N11  
4.1.3  
DC ERRORS  
EQUATION 4-6:  
ΔVIP = IBPRIP  
ΔVIM = IBMRIM  
Section 1.5 “Explanation of DC Error Specs”  
defines some of the DC error specifications. These  
errors are internal to the INA, and can be summarized  
as follows:  
IOS  
IB ------- RIP  
=
2
IOS  
IB + ------- RIM  
=
2
ΔVIP + ΔVIM  
EQUATION 4-5:  
ΔVCM = --------------------------------  
2
VOUT = VREF + GDM(1 + gE)(VDM + ΔVED  
+ GDM(1 + gE)(VE + ΔVE)  
)
RIP + RIM  
IOS RIP + RIM  
= IB ------------------------ + ---------- ----------------------------  
2
2
2
Where:  
ΔVDM = ΔVIP ΔVIM  
ΔVDD ΔVSS ΔVCM ΔVREF  
IOS  
VE = VOS + --------------------------------- + ---------------- + ----------------  
PSRR  
CMRR CMRR  
= IB(RIP + RIM) -------(RIP + RIM  
)
2
ΔVOUT  
ΔVOS  
ΔVCM  
+ ----------------- + ΔTA -------------  
AOL  
ΔTA  
ΔVOUT = GDM ΔVDM + ----------------  
CMRR  
ΔVED INLDM(VDMH VDML  
)
Where:  
ΔVE INLCM(VIVH VIVL  
Where:  
)
CMRR is in units of V/V  
The best design results when RIP and RIM are equal  
and small:  
PSRR, CMRR and AOL are in units of V/V  
ΔTA is in units of °C  
EQUATION 4-7:  
The non-linearity specs (INLCM and INLDM) describe  
errors that are non-linear functions of VCM and VDM  
,
ΔVOUT GDMΔVDM  
GDM2IBεRTOL IOS)RIP  
Where:  
respectively. They give the maximum excursion from  
linear response over the entire common mode and  
differential ranges.  
RIP = RIM  
The input bias current and offset current specs (IB and  
IOS), together with a circuit’s external input resistances,  
give an additional DC error. Figure 4-3 shows the  
resistors that set the DC bias point.  
ε
RTOL = tolerance of RIP and RIM  
The resistors at the feedback input (RR, RF and RG)  
and its input bias currents (IBR and IBF) give the  
following changes in the INA’s bias voltages:  
VDD  
U1  
IBP  
RIP  
MCP6N11  
EQUATION 4-8:  
VIP  
VIM  
VOUT  
IOS2  
ΔVREF = –IBRRR  
ΔVFG ≈ ΔVREF  
=
IB2 ---------- RR  
RF  
IBF  
2
RIM  
due to high AOL  
,
IBM  
VFG  
RG  
IOS2  
RR  
ΔVOUT IB2(RF GDMRR) + ---------- (RF + GDMRR)  
IBR  
2
Where:  
VREF  
IB2 meets the IB spec, but is not equal to IB  
IOS2 meets the IOS spec, but is not equal to IOS  
FIGURE 4-3:  
DC Bias Resistors.  
The resistors at the main input (RIP and RIM) and its  
input bias currents (IBP and IBM) give the following  
changes in the INA’s bias voltages:  
The best design results when G RR and RF are equal  
DM  
and small:  
EQUATION 4-9:  
ΔVOUT ≈ (±(2IB2εRTOL + IOS2))RF  
Where:  
GDMRR = RF  
ε
RTOL = tolerance of RR, RF and RG  
DS25073A-page 28  
© 2011 Microchip Technology Inc.  
 
MCP6N11  
4.1.4  
The bandwidth of these amplifiers depends on GDM  
and GMIN  
AC PERFORMANCE  
4.2  
Functional Blocks  
4.2.1  
RAIL-TO-RAIL INPUTS  
:
Each input stage uses one PMOS differential pair at the  
input. The output of each differential pair is processed  
using current mode circuitry. The inputs show no  
crossover distortion vs. common mode voltage.  
EQUATION 4-10:  
fGBWP  
fBW ---------------  
GDM  
With this topology, the inputs (VIP and VIM) operate  
normally down to VSS – 0.2V and up to VDD + 0.15V at  
room temperature (see Figure 2-11). The input offset  
voltage (VOS) is measured at VCM = VSS – 0.2V and  
(0.50 MHz)(GMIN GDM),  
(0.35 MHz)(GMIN GDM),  
Where:  
fBW = -3 dB bandwidth  
GMIN = 1, …, 10  
GMIN = 100  
VDD + 0.15V (at +25°C), to ensure proper operation.  
fGBWP = Gain bandwidth product  
4.2.1.1 Phase Reversal  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figures 2-18 and 2-50 show an input voltage  
exceeding both supplies with no phase inversion.  
The bandwidth at the maximum output swing is called  
the Full Power Bandwidth (fFPBW). It is limited by the  
Slew Rate (SR) for many amplifiers, but is close to fBW  
for these parts:  
The input devices also do not exhibit phase inversion  
when the differential input voltage exceeds its limits;  
see Figures 2-22 and 2-51.  
EQUATION 4-11:  
SR  
fFPBW ----------  
πVO  
4.2.1.2  
Input Voltage Limits  
,
for these parts  
fBW  
Where:  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”). This requirement is independent of the  
current limits discussed later on.  
VO = Maximum output voltage swing  
VOH – VOL  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-4. This structure was chosen to  
protect the input transistors against many (but not all)  
overvoltage conditions, and to minimize input bias  
current (IB).  
CMRR is constant from DC to about 1 kHz.  
4.1.5  
NOISE PERFORMANCE  
As shown in Figures 2-41 and 2-42, the 1/f noise  
causes an apparent wander in the DC output voltage.  
Changing the measurement time or bandwidth has little  
effect on this noise.  
Bond  
VDD  
Pad  
We recommend re-calibrating VOS periodically, to  
reduce 1/f noise wander. For example, VOS could be  
re-calibrated at least once every 15 minutes; more  
often when temperature or VDD change significantly.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
of  
VIP  
VIM  
INA Input  
Bond  
Pad  
VSS  
FIGURE 4-4:  
Simplified Analog Input ESD  
Structures.  
© 2011 Microchip Technology Inc.  
DS25073A-page 29  
 
MCP6N11  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go too far above VDD; their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
overvoltage (beyond VDD) events. Very fast ESD  
events (that meet the spec) are limited so that damage  
does not occur.  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIP and VIM  
)
should be very small.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-25.  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs.  
Figure 4-5 shows one approach to protecting these  
inputs. D1 and D2 may be small signal silicon diodes,  
Schottky diodes for lower clamping voltages or diode-  
connected FETs for low leakage.  
4.2.1.4  
Input Voltage Ranges  
Figure 4-7 shows possible input voltage values  
(VSS = 0V). Lines with a slope of +1 have constant VDM  
(e.g., the VDM = 0 line). Lines with a slope of -1 have  
constant VCM (e.g., the VCM = VDD/2 line).  
VDD  
For normal operation, VIP and VIM must be kept within  
the region surrounded by the thick blue lines. The  
horizontal and vertical blue lines show the limits on the  
individual inputs. The blue lines with a slope of +1 show  
the limits on VDM; the larger GMIN is, the closer they are  
to the VDM = 0 line.  
U1  
D1  
MCP6N11  
V1  
D2  
V2  
The input voltage range specs (VIVL and VIVH) change  
with the supply voltages (VSS and VDD, respectively).  
FIGURE 4-5:  
Protecting the Analog Inputs  
The differential input range specs (VDML and VDMH  
)
Against High Voltages.  
change with minimum gain (GMIN). Temperature also  
affects these specs.  
4.2.1.3  
Input Current Limits  
To take full advantage of VDML and VDMH, set VREF  
(see Figure 1-6 and Figure 1-7) so that the output  
(VOUT) is centered between the supplies (VSS and  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1 “Absolute Maxi-  
mum Ratings †”). This requirement is independent of  
the voltage limits previously discussed.  
VDD).  
VIP  
Figure 4-6 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
current in or out of the input pins (and into D1 and D2).  
VIVH  
VDD  
The diode currents will dump onto VDD  
.
VDD  
U1  
D1  
R1  
MCP6N11  
V1  
V2  
D2  
VIM  
R2  
0
VIVL  
VSS – min(V1, V2)  
min(R1, R2) >  
2 mA  
max(V1, V2) – VDD  
min(R1, R2) >  
FIGURE 4-7:  
Input Voltage Ranges.  
2 mA  
FIGURE 4-6:  
Protecting the Analog Inputs  
Against High Currents.  
DS25073A-page 30  
© 2011 Microchip Technology Inc.  
 
 
 
MCP6N11  
4.2.2  
ENABLE/VOS CALIBRATION  
(EN/CAL)  
4.3  
Applications Tips  
4.3.1  
MINIMUM STABLE GAIN  
These parts have a Normal mode, a Low Power mode  
and a VOS Calibration mode.  
There are different options for different Minimum Stable  
Gains (1, 2, 5, 10 and 100 V/V; see Table 1-1). The  
differential gain (GDM) needs to be greater than or  
equal to GMIN in order to maintain stability.  
When the EN/CAL pin is high and the internal POR  
(with delay) indicates that power is good, the part  
operates in its Normal mode.  
Picking a part with higher GMIN has the advantages of  
lower Input Noise Voltage Density (eni), lower Input  
Offset Voltage (VOS) and increased Gain Bandwidth  
Product (GBWP); see Table 1. The Differential Input  
Voltage Range (VDMR) is lower for higher GMIN, but the  
output voltage range would limit VDMR anyway, when  
GDM 2.  
When the EN/CAL pin is low, the part operates in its  
Low Power mode. The quiescent current (at VSS) drops  
to -2.5 µA (typical), the amplifier output is put into a  
high-impedance state. Signals at the input pins can  
feed through to the output pin.  
When the EN/CAL pin goes high and the internal POR  
(with delay) indicates that power is good, the amplifier  
internally corrects its input offset voltage (VOS) with the  
internal common mode voltage at mid-supply (VDD/2)  
and the output tri-stated (after tOFF). Once VOS Calibra-  
tion is completed, the amplifier is enabled and normal  
operation resumes.  
4.3.2  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for amplifiers. As the load capacitance  
increases, the feedback loop’s phase margin  
decreases, and the closed-loop bandwidth is reduced.  
This produces gain peaking in the frequency response,  
with overshoot and ringing in the step response. Lower  
gains (GDM) exhibit greater sensitivity to capacitive  
loads.  
The EN/CAL pin does not operate normally when left  
floating. Either drive it with a logic output, or tie it high  
so that the part is always on.  
4.2.3  
POR WITH DELAY  
When driving large capacitive loads with these  
instrumentation amps (e.g., > 100 pF), a small series  
resistor at the output (RISO in Figure 4-8) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
The internal POR makes sure that the input offset  
voltage (VOS) is calibrated whenever the supply  
voltage goes from low voltage (< VPRL) to high voltage  
(> VPRH). This prevents corruption of the VOS trim reg-  
isters after a low-power event.  
After the POR goes high, the internal circuitry adds a  
fixed delay (tPLH), before telling the VOS Calibration  
circuitry (see Figure 4-2) to start. If the EN/CAL pin is  
toggled during this time, the fixed delay is restarted  
(takes an additional time tPLH).  
U1  
VDD  
MCP6N11  
RISO  
CL  
V1  
V2  
VOUT  
4.2.4  
PARITY DETECTOR  
RF  
A parity error detector monitors the memory contents  
for any corruption. In the rare event that a parity error is  
detected (e.g., corruption from an alpha particle), a  
POR event is automatically triggered. This will cause  
the input offset voltage to be re-corrected, and the op  
amp will not return to normal operation for a period of  
time (the POR turn on time, tPLH).  
VFG  
RG  
VREF  
FIGURE 4-8:  
Output Resistor, RISO  
stabilizes large capacitive loads.  
4.2.5  
RAIL-TO-RAIL OUTPUT  
Figure 4-9 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL GMIN/GDM), where  
GDM is the circuit’s differential gain (1 + RF / RG) and  
The Minimum Output Voltage (VOL) and Maximum  
Output Voltage (VOH) specs describe the widest output  
swing that can be achieved under the specified load  
conditions.  
GMIN is the minimum stable gain.  
The output can also be limited when VIP or VIM exceeds  
VIVL or VIVH, or when VDM exceeds VDML or VDMH.  
© 2011 Microchip Technology Inc.  
DS25073A-page 31  
 
MCP6N11  
In this data sheet, RF + RG = 10 kΩ for most gains (0Ω  
for GDM = 1); see Table 1-6. This choice gives good  
Phase Margin. In general, RF (Figure 4-10) needs to  
meet the following limits to maintain stability:  
1.E10k
EQUATION 4-12:  
For GDM = 1:  
RF = 0  
1.E+
1k  
GMIN = 1 to 10  
GMIN = 100  
1.E
100  
For GDM > 1:  
100p  
1n  
1.9  
10n  
18  
100n  
1
1μ  
1.6  
Normalized Load Capacitance;  
CL GMIN/GDM (F)  
αG2DM  
RF < ------------------------------  
2πfGBWPCG  
FIGURE 4-9:  
Recommended RISO Values  
for Capacitive Loads.  
Where:  
α ≤ 0.25  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot on the bench. Modify RISO’s value  
until the response is reasonable.  
GDM GMIN  
fGBWP = Gain Bandwidth Product  
CG = CDM + CCM + (PCB stray capacitance)  
4.3.3  
GAIN RESISTORS  
Figure 4-10 shows a simple gain circuit with the INA’s  
input capacitances at the feedback inputs (VREF and  
VFG). These capacitances interact with RG and RF to  
modify the gain at high frequencies. The equivalent  
capacitance acting in parallel to RG is CG = CDM + CCM  
plus any board capacitance in parallel to RG. CG will  
cause an increase in GDM at high frequencies, which  
reduces the phase margin of the feedback loop (i.e.,  
reduce the feedback loop's stability).  
4.3.4  
SUPPLY BYPASS  
With these INAs, the power supply pin (VDD for single  
supply) should have a local bypass capacitor (i.e.,  
0.01 µF to 0.1 µF) within 2 mm for good high frequency  
performance. Surface mount, multilayer ceramic  
capacitors, or their equivalent, should be used.  
These INAs require a bulk capacitor (i.e., 1.0 µF or  
larger) within 100 mm, to provide large, slow currents.  
This bulk capacitor can be shared with other nearby  
analog parts as long as crosstalk through the supplies  
does not prove to be a problem.  
VDD  
U1  
V1  
V2  
MCP6N11  
VOUT  
RF  
VFG  
CCM  
CDM  
CCM  
RG  
VREF  
FIGURE 4-10:  
Simple Gain Circuit with  
Parasitic Capacitances.  
DS25073A-page 32  
© 2011 Microchip Technology Inc.  
 
MCP6N11  
4.4.3  
HIGH SIDE CURRENT DETECTOR  
4.4  
Typical Applications  
Figure 4-13 shows the MCP6N11 INA used as to detect  
and amplify the high side current in a battery powered  
design. The INA gain is set at 21 V/V, so VOUT changes  
210 mV for every 1 mA of IDD current. The best GMIN  
option to pick would be a gain of 10 (MCP6N11-010).  
4.4.1  
HIGH INPUT IMPEDANCE  
DIFFERENCE AMPLIFIER  
Figure 4-11 shows the MCP6N11 used as a difference  
amplifier. The inputs are high impedance and give good  
CMRR performance.  
VBAT  
10 Ω  
VDD  
U1  
+1.8V  
to  
+5.5V  
IDD  
VDD  
U1  
MCP6N11  
VIP  
MCP6N11  
VOUT  
VOUT  
RF  
VIM  
RF  
200 kΩ  
VFG  
VFG  
RG  
RG  
VREF  
Difference Amplifier.  
10 kΩ  
VREF  
FIGURE 4-11:  
(VBAT – VDD  
)
IDD  
=
=
4.4.2  
DIFFERENCE AMPLIFIER FOR  
VERY LARGE COMMON MODE  
SIGNALS  
(10 Ω)  
(VOUT – VREF  
(10 Ω) (21.0 V/V)  
)
Figure 4-12 shows the MCP6N11 INA used as a  
difference amplifier for signals with a very large  
common mode component. The input resistor dividers  
(R1 and R2) ensure that the voltages at the INA’s inputs  
are within their range of normal operation. The  
capacitors C1, with the parasitic capacitances C2 (the  
resistors’ parasitic capacitance plus the INA’s input  
common mode capacitance, CCM), set the same  
division ratio, so that high-frequency signals (e.g., a  
step in voltage) have the same gain. Select the INA  
gain to compensate for R1 and R2’s attenuation. Select  
R1 and R2’s tolerances for good CMRR.  
FIGURE 4-13:  
High Side Current Detector.  
4.4.4  
WHEATSTONE BRIDGE  
shows the MCP6N11  
Figure 4-14  
single  
instrumentation amp used to condition the signal from  
a Wheatstone bridge (e.g., strain gage). The overall  
INA gain is set at 201 V/V. The best GMIN option to pick,  
for this gain, is 100 V/V (MCP6N11-100).  
VDD  
U1  
RW1  
RW2  
R1  
C1  
R2  
C2  
MCP6N11  
V1  
VOUT  
RW2  
RW1  
RF  
VDD  
U1  
200 kΩ  
VFG  
MCP6N11  
RG  
1 kΩ  
VOUT  
RF  
VREF  
VFG  
FIGURE 4-14:  
Amplifier.  
Wheatstone Bridge  
C1  
R1  
C2  
R2  
RG  
V2  
VREF  
FIGURE 4-12:  
Difference Amplifier with  
Very Large Common Mode Component.  
© 2011 Microchip Technology Inc.  
DS25073A-page 33  
 
 
 
 
MCP6N11  
NOTES:  
DS25073A-page 34  
© 2011 Microchip Technology Inc.  
MCP6N11  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP6N11 instrumentation amplifiers.  
5.1  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit particular design  
a
requirement. Available at no cost from the Microchip  
website at www.microchip.com/maps, the MAPS is an  
overall selection tool for Microchip’s product portfolio  
that includes Analog, Memory, MCUs and DSCs. Using  
this tool, a customer can define a filter to sort features  
for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for Data sheets, Purchase and  
Sampling of Microchip parts.  
5.2  
Analog Demonstration Board  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help customers achieve faster time  
to market. For a complete listing of these boards  
and their corresponding user’s guides and technical  
information, visit the Microchip web site at  
www.microchip.com/analog tools.  
5.3  
Application Notes  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
Some of these application notes, and others, are listed  
in the design guide:  
“Signal Chain Design Guide”, DS21825  
© 2011 Microchip Technology Inc.  
DS25073A-page 35  
MCP6N11  
NOTES:  
DS25073A-page 36  
© 2011 Microchip Technology Inc.  
MCP6N11  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead SOIC (150 mil) (MCP6N11)  
Example  
6N11001E  
SN^  
e
^
3
1121  
256  
NNN  
Note:  
The example is for  
MCP6N11-001 part.  
a
8-Lead TDFN (2×3) (MCP6N11)  
Example  
Device  
Code  
MCP6N11-001  
MCP6N11-002  
MCP6N11-005  
MCP6N11-010  
MCP6N11-100  
AAQ  
AAR  
AAS  
AAT  
AAU  
AAQ  
121  
25  
Note:  
Applies to 8-Lead 2x3 TDFN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS25073A-page 37  
MCP6N11  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS25073A-page 38  
© 2011 Microchip Technology Inc.  
MCP6N11  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS25073A-page 39  
MCP6N11  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
DS25073A-page 40  
© 2011 Microchip Technology Inc.  
MCP6N11  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS25073A-page 41  
MCP6N11  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS25073A-page 42  
© 2011 Microchip Technology Inc.  
MCP6N11  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢥꢐꢄꢈꢆꢦꢈꢄꢊꢙꢆꢓꢗꢆꢂꢃꢄꢅꢆꢇꢄꢌꢧꢄꢨꢃꢆꢒꢩꢓꢔꢆꢕꢆꢪꢫꢚꢫꢝꢛꢬꢭꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢮꢥꢦꢓꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
© 2011 Microchip Technology Inc.  
DS25073A-page 43  
MCP6N11  
NOTES:  
DS25073A-page 44  
© 2011 Microchip Technology Inc.  
MCP6N11  
APPENDIX A: REVISION HISTORY  
Revision A (October 2011)  
• Original Release of this Document.  
© 2011 Microchip Technology Inc.  
DS25073A-page 45  
MCP6N11  
NOTES:  
DS25073A-page 46  
© 2011 Microchip Technology Inc.  
MCP6N11  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
–X  
X
/XX  
Examples:  
a)  
b)  
MCP6N11T-001E/MNY: Tape and Reel,  
Gain  
Option  
Temperature  
Range  
Package  
Minimum gain = 1,  
Extended temperature,  
8LD 2×3 TDFN.  
MCP6N11-002E/SN:  
Minimum gain = 2,  
Extended temperature,  
8LD SOIC.  
Device:  
MCP6N11  
Single Instrumentation Amplifier  
MCP6N11T Single Instrumentation Amplifier  
(Tape and Reel)  
Gain Option:  
001 = Minimum gain of 1 V/V  
002 = Minimum gain of 2 V/V  
005 = Minimum gain of 5 V/V  
010 = Minimum gain of 10 V/V  
100 = Minimum gain of 100 V/V  
Temperature Range:  
Package:  
E
= -40°C to +125°C  
MNY  
SN  
=
=
2×3 TDFN, 8-lead *  
Plastic SOIC (150mil Body), 8-lead  
* Y = nickel palladium gold manufacturing designator. Only  
available on the TDFN package.  
© 2011 Microchip Technology Inc.  
DS25073A-page 47  
MCP6N11  
NOTES:  
DS25073A-page 48  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-685-3  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS25073A-page 49  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/02/11  
DS25073A-page 50  
© 2011 Microchip Technology Inc.  

相关型号:

MCP6N11-002

500 kHz, 800 μA Instrumentation Amplifier
MICROCHIP

MCP6N11-002E/SN

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3.90 MM, PLASTIC, SOIC-8
MICROCHIP

MCP6N11-005

500 kHz, 800 μA Instrumentation Amplifier
MICROCHIP

MCP6N11-005E

500 kHz, 800 μA Instrumentation Amplifier
MICROCHIP

MCP6N11-005E/SN

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3.90 MM, PLASTIC, SOIC-8
MICROCHIP

MCP6N11-010

500 kHz, 800 μA Instrumentation Amplifier
MICROCHIP

MCP6N11-010E/SN

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3.90 MM, PLASTIC, SOIC-8
MICROCHIP

MCP6N11-100

500 kHz, 800 μA Instrumentation Amplifier
MICROCHIP

MCP6N11-100E/SN

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3.90 MM, PLASTIC, SOIC-8
MICROCHIP

MCP6N11T-001E/MNY

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3 X 2 MM, 0.75 MM HEIGHT, TDFN-8
MICROCHIP

MCP6N11T-002E/MNY

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3 X 2 MM, 0.75 MM HEIGHT, TDFN-8
MICROCHIP

MCP6N11T-005E/MNY

INSTRUMENTATION AMPLIFIER, 3000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PDSO8, 3 X 2 MM, 0.75 MM HEIGHT, TDFN-8
MICROCHIP