MCP6S92-E/MS [MICROCHIP]

暂无描述;
MCP6S92-E/MS
型号: MCP6S92-E/MS
厂家: MICROCHIP    MICROCHIP
描述:

暂无描述

文件: 总40页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6S91/2/3  
Single-Ended, Rail-to-Rail I/O, Low-Gain PGA  
Description  
Features  
• Multiplexed Inputs: 1 or 2 channels  
• 8 Gain Selections:  
The Microchip Technology Inc. MCP6S91/2/3 are  
analog Programmable Gain Amplifiers (PGAs). They  
can be configured for gains from +1 V/V to +32 V/V and  
the input multiplexer can select one of up to two chan-  
nels through a SPI port. The serial interface can also  
put the PGA into shutdown to conserve power. These  
PGAs are optimized for high-speed, low offset voltage  
and single-supply operation with rail-to-rail input and  
output capability. These specifications support single-  
supply applications needing flexible performance or  
multiple inputs.  
- +1, +2, +4, +5, +8, +10, +16 or +32 V/V  
• Serial Peripheral Interface (SPI)  
• Rail-to-Rail Input and Output  
• Low Gain Error: ±1% (max.)  
• Offset Mismatch Between Channels: 0 µV  
• High Bandwidth: 1 to 18 MHz (typ.)  
• Low Noise: 10 nV/Hz @ 10 kHz (typ.)  
• Low Supply Current: 1.0 mA (typ.)  
• Single Supply: 2.5V to 5.5V  
The one-channel MCP6S91 and the two-channel  
MCP6S92 are available in 8-pin PDIP, SOIC and MSOP  
packages. The two-channel MCP6S93 is available in a  
10-pin MSOP package. All parts are fully specified from  
-40°C to +125°C.  
• Extended Temperature Range: -40°C to +125°C  
Typical Applications  
• A/D Converter Driver  
• Multiplexed Analog Applications  
• Data Acquisition  
Package Types  
MCP6S91  
PDIP, SOIC, MSOP  
MCP6S93  
MSOP  
• Industrial Instrumentation  
Test Equipment  
V
1
V
DD  
8
7
OUT  
V
OUT  
V
1
10  
9
DD  
SCK  
• Medical Instrumentation  
CH0 2  
CH0  
CH1  
2
3
4
5
SCK  
SO  
SI  
V
3
4
6 SI  
REF  
8
Block Diagram  
V
5 CS  
SS  
V
7
REF  
V
6
CS  
VDD  
SS  
MCP6S92  
PDIP, SOIC, MSOP  
CH0  
V
1
V
DD  
8
7
OUT  
MUX  
CH1  
VOUT  
SCK  
CH0 2  
CH1  
3
4
6 SI  
5
CS  
SI  
SPI™  
Logic  
V
SS  
CS  
SO  
RF  
SCK  
8
Gain  
Switches  
RG  
VREF  
VSS  
2004 Microchip Technology Inc.  
DS21908A-page 1  
MCP6S91/2/3  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
VOUT  
Analog Output  
Absolute Maximum Ratings †  
CH0, CH1 Analog Inputs  
V
– V ........................................................................7.0V  
SS  
DD  
VREF  
VSS  
External Reference Pin  
Negative Power Supply  
SPI Chip Select  
All inputs and outputs..................... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input voltage ....................................... |V – V  
|
SS  
DD  
CS  
SI  
Output Short Circuit Current ..................................continuous  
Current at Input Pin .............................................................±2 mA  
Current at Output and Supply Pins................................ ±30 mA  
Storage temperature .....................................-65°C to +150°C  
Junction temperature ..................................................+150°C  
ESD protection on all pins (HBM; MM) ................ ≥ 4 kV; 200V  
SPI Serial Data Input  
SPI Serial Data Output  
SPI Clock Input  
SO  
SCK  
VDD  
Positive Power Supply  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V , G = +1 V/V,  
SS  
A
DD  
SS  
REF  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, R = 10 kto V /2, SI and SCK are tied low and CS is tied high.  
L
DD  
Parameters  
Amplifier Inputs (CH0, CH1)  
Input Offset Voltage  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
V
-4  
70  
0
+4  
mV  
µV  
G = +1  
Between inputs (CH0, CH1)  
= -40°C to +125°C  
OS  
Input Offset Voltage Mismatch  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Bias Current  
V  
OS  
V /T  
±1.8  
90  
µV/°C  
dB  
T
A
OS  
A
PSRR  
G = +1 (Note 1)  
CHx = V /2  
I
I
I
±1  
pA  
B
B
B
DD  
Input Bias Current at  
Temperature  
30  
pA  
CHx = V /2, T = +85°C  
DD A  
600  
pA  
CHx = V /2, T = +125°C  
DD A  
13  
Input Impedance  
Z
10 ||7  
||pF  
V
IN  
Input Voltage Range  
V
V
0.3  
V + 0.3  
DD  
(Note 2)  
IVR  
SS  
Reference Input (V  
Input Impedance  
Voltage Range  
Amplifier Gain  
Nominal Gains  
DC Gain Error  
)
REF  
Z
(5/G)||6  
k||pF  
IN_REF  
V
V
V
DD  
V
(Note 2)  
IVR_REF  
SS  
G
-0.2  
-1.0  
1 to 32  
+0.2  
+1.0  
V/V  
%
+1, +2, +4, +5, +8, +10, +16 or +32  
G = +1  
G +2  
G = +1  
G +2  
g
g
V
V
0.3V to V 0.3V  
DD  
E
E
OUT  
OUT  
%
0.3V to V 0.3V  
DD  
DC Gain Drift  
G/T  
±0.0002  
±0.0004  
%/°C  
%/°C  
T
= -40°C to +125°C  
T = -40°C to +125°C  
A
A
A
G/T  
A
Note 1:  
R
(R +R in Figure 4-1) connects V  
, V  
and the inverting input of the internal amplifier. The MCP6S92 has  
LAD  
F
G
REF OUT  
V
tied internally to V , so V is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. It is  
REF  
SS SS  
recommended that the MCP6S92’s V pin be tied directly to ground to avoid noise problems.  
SS  
2: The MCP6S92’s V  
and V  
are not tested in production; they are set by design and characterization.  
IVR  
IVR_REF  
3:  
I
includes current in R  
(typically 60 µA at V  
= 0.3V). Both I and I  
exclude digital switching currents.  
Q_SHDN  
Q
LAD  
OUT  
Q
2004 Microchip Technology Inc.  
DS21908A-page 2  
 
 
 
MCP6S91/2/3  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V , G = +1 V/V,  
SS  
A
DD  
SS  
REF  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, R = 10 kto V /2, SI and SCK are tied low and CS is tied high.  
L
DD  
Parameters  
Ladder Resistance  
Ladder Resistance  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
R
3.4  
4.9  
6.4  
kΩ  
(Note 1)  
= -40°C to +125°C (Note 1)  
LAD  
Ladder Resistance across  
Temperature  
R  
/T  
+0.028  
%/°C  
T
A
LAD  
A
Amplifier Output  
DC Output Non-linearity G = +1  
G +2  
V
±0.18  
±0.050  
% of FSR  
% of FSR  
mV  
V
V
0.3V to V 0.3V, V = 5.0V  
DD DD  
ONL  
OUT  
OUT  
V
0.3V to V 0.3V, V = 5.0V  
DD DD  
ONL  
Maximum Output Voltage Swing  
V
V
,
V
V
+ 20  
V – 100  
DD  
G +2; 0.5V output overdrive  
G +2; 0.5V output overdrive,  
OH_ANA  
SS  
SS  
OL_ANA  
+ 60  
V
– 60  
DD  
V
= V /2  
DD  
REF  
Short Circuit Current  
Power Supply  
I
±25  
mA  
SC  
Supply Voltage  
V
2.5  
0.4  
1.0  
30  
5.5  
2.0  
1.6  
V
V
DD  
Minimum Valid Supply Voltage  
Quiescent Current  
V
Register data still valid  
DD_VAL  
I
0.4  
mA  
pA  
I
I
= 0 (Note 3)  
= 0 (Note 3)  
Q
O
O
Quiescent Current, Shutdown  
Mode  
I
Q_SHDN  
Note 1:  
R
(R +R in Figure 4-1) connects V  
, V  
and the inverting input of the internal amplifier. The MCP6S92 has  
LAD  
F
G
REF OUT  
V
tied internally to V , so V is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. It is  
REF  
SS SS  
recommended that the MCP6S92’s V pin be tied directly to ground to avoid noise problems.  
SS  
2: The MCP6S92’s V  
and V are not tested in production; they are set by design and characterization.  
IVR_REF  
IVR  
3:  
I
includes current in R  
(typically 60 µA at V  
= 0.3V). Both I and I  
exclude digital switching currents.  
Q_SHDN  
Q
LAD  
OUT  
Q
2004 Microchip Technology Inc.  
DS21908A-page 3  
MCP6S91/2/3  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V , G = +1 V/V,  
SS  
A
DD  
SS  
REF  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, R = 10 kto V /2, C = 60 pF, SI and SCK are tied low and CS is tied high.  
L
DD  
L
Parameters  
Frequency Response  
-3 dB Bandwidth  
Sym  
Min  
Typ  
Max Units  
Conditions  
BW  
1 to 18  
0
MHz All gains; V  
< 100 mV  
< 100 mV  
(Note 1)  
OUT  
OUT  
P-P  
P-P  
Gain Peaking  
GPK  
dB  
All gains; V  
Total Harmonic Distortion plus Noise  
f = 20 kHz, G = +1 V/V THD+N  
f = 20 kHz, G = +1 V/V THD+N  
f = 20 kHz, G = +4 V/V THD+N  
f = 20 kHz, G = +16 V/V THD+N  
0.0011  
0.0089  
0.0045  
0.028  
%
%
%
%
V
= 1.5V ± 1.0 V , V = 5.0V,  
OUT PK DD  
BW = 80 kHz, R = 10 kto 1.5V  
L
V
= 2.5V ± 1.0 V , V = 5.0V,  
PK DD  
OUT  
BW = 80 kHz  
V
= 2.5V ± 1.0 V , V = 5.0V,  
OUT  
PK  
DD  
BW = 80 kHz  
V
= 2.5V ± 1.0 V , V = 5.0V,  
OUT  
PK  
DD  
BW = 80 kHz  
Step Response  
Slew Rate  
SR  
4.0  
11  
V/µs G = 1, 2  
V/µs G = 4, 5, 8, 10  
V/µs G = 16, 32  
22  
Noise  
Input Noise Voltage  
E
4.5  
30  
10  
4
µV  
f = 0.1 Hz to 10 Hz (Note 2)  
f = 0.1 Hz to 200 kHz (Note 2)  
ni  
P-P  
Input Noise Voltage Density  
Input Noise Current Density  
e
nV/Hz f = 10 kHz (Note 2)  
fA/Hz f = 10 kHz  
ni  
i
ni  
Note 1: See Table 4-1 for a list of typical numbers and Figure 2-25 for the frequency response versus gain.  
2: and e include ladder resistance noise. See Figure 2-12 for e versus G data.  
E
ni  
ni  
ni  
2004 Microchip Technology Inc.  
DS21908A-page 4  
 
 
MCP6S91/2/3  
DIGITAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = 25°C, V = +2.5V to +5.5V, V = GND, V  
= V , G = +1 V/V,  
SS  
A
DD  
SS  
REF  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, R = 10 kto V /2, C = 60 pF, SI and SCK are tied low and CS is tied high.  
L
DD  
L
Parameters  
SPI Inputs (CS, SI, SCK)  
Logic Threshold, Low  
Sym  
Min  
Typ  
Max Units  
Conditions  
V
0
0.3V  
V
µA  
V
IL  
DD  
Input Leakage Current  
Logic Threshold, High  
Amplifier Output Leakage Current  
SPI Output (SO, for MCP6S93)  
Logic Threshold, Low  
I
-1.0  
+1.0  
IL  
V
0.7 V  
V
DD  
IH  
DD  
-1.0  
1.0  
µA  
In Shutdown mode  
V
V
V
+0.4  
V
V
I
I
= 2.1 mA, V = 5V  
OL_DIG  
SS  
SS  
OL  
DD  
Logic Threshold, High  
SPI Timing  
V
V
– 0.5  
V
= -400 µA  
OH_DIG  
DD  
DD  
OH  
Pin Capacitance  
C
10  
5
pF  
µs  
ns  
ns  
All digital I/O pins  
(Note 1)  
PIN  
Input Rise/Fall Times (CS, SI, SCK)  
Output Rise/Fall Times (SO)  
CS High Time  
t
2
RFI  
t
t
10  
80  
80  
MCP6S93  
RFO  
CSH  
40  
10  
40  
SCK Edge to CS Fall Setup Time  
CS Fall to First SCK Edge Setup Time  
SCK Frequency  
t
ns  
SCK edge when CS is high  
CS0  
t
ns  
CSSC  
f
MHz  
ns  
V
= 5V (Note 2)  
DD  
SCK  
SCK High Time  
t
40  
40  
30  
100  
40  
10  
HI  
SCK Low Time  
t
ns  
LO  
SCK Last Edge to CS Rise Setup Time  
CS Rise to SCK Edge Setup Time  
SI Setup Time  
t
ns  
SCCS  
t
ns  
SCK edge when CS is high  
CS1  
t
ns  
SU  
HD  
DO  
SI Hold Time  
t
ns  
SCK to SO Valid Propagation Delay  
CS Rise to SO Forced to Zero  
Channel and Gain Select Timing  
Channel Select Time  
t
ns  
MCP6S93  
MCP6S93  
t
ns  
SOZ  
t
1.5  
1
µs  
µs  
CHx = 0.6V, CHy = 0.3V, G = 1,  
CHx to CHy select,  
CH  
CS = 0.7 V to V  
90% point  
DD  
OUT  
Gain Select Time  
t
CHx = CHy = 0.3V,  
G
G = 5 to G = 1 select,  
CS = 0.7 V to V  
90% point  
DD  
OUT  
Shutdown Mode Timing  
Out of Shutdown mode (CS goes high)  
to Amplifier Output Turn-on Time  
t
3.5  
1.5  
10  
µs  
µs  
CS = 0.7 V to V  
90% point  
90% point  
ON  
DD  
OUT  
OUT  
Into Shutdown mode (CS goes high) to  
Amplifier Output High-Z Turn-off Time  
t
CS = 0.7 V to V  
DD  
OFF  
Note 1: Not tested in production. Set by design and characterization.  
2: When using the device in the daisy-chain configuration, maximum clock frequency is determined by a combination of  
propagation delay time (t 80 ns), data input set-up time (t 40 ns), SCK high time (t 40 ns) and SCK rise and  
DO  
SU  
HI  
fall times of 5 ns. Maximum f  
is therefore 5.8 MHz.  
SCK  
2004 Microchip Technology Inc.  
DS21908A-page 5  
 
 
MCP6S91/2/3  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 10L-MSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
θJA  
θJA  
θJA  
θJA  
85  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
143  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
2004 Microchip Technology Inc.  
DS21908A-page 6  
 
MCP6S91/2/3  
CS  
CS  
tCH  
tG  
0.6V  
1.5V  
0.3V  
VOUT  
VOUT  
0.3V  
FIGURE 1-1:  
Channel Select Timing  
FIGURE 1-3:  
Gain Select Timing  
Diagram.  
Diagram.  
CS  
tON  
tOFF  
Hi-Z  
Hi-Z  
VOUT  
0.3V  
1.0 mA (typ.)  
ISS  
30 pA (typ.)  
FIGURE 1-2:  
PGA Shutdown Timing  
Diagram (must enter correct commands before  
CS goes high).  
tCSH  
CS  
tCSSC  
tSCCS tCS1  
tCS0  
tLO tHI  
SCK  
SI  
1/fSCK  
tHD  
tSU  
tSOZ  
tDO  
SO  
(first 16 bits out are always zeros)  
Detailed SPI™ Serial Interface Timing; SPI 0,0 Mode.  
FIGURE 1-4:  
2004 Microchip Technology Inc.  
DS21908A-page 7  
 
MCP6S91/2/3  
tCSH  
CS  
SCK  
SI  
tCSSC  
tSCCS tCS1  
tCS0  
tHI tLO  
1/fSCK  
tSU tHD  
tSOZ  
tDO  
SO  
(first 16 bits out are always zeros)  
Detailed SPI™ Serial Interface Timing; SPI 1,1 Mode.  
FIGURE 1-5:  
The end points of this line are at VO_ID = 0.3V and  
VDD – 0.3V. Figure 1-6 shows the relationship between  
the gain and offset specifications referred to in the  
electrical specifications as follows:  
1.1  
DC Output Voltage Specs / Model  
IDEAL MODEL  
1.1.1  
The ideal PGA output voltage (VOUT) is:  
EQUATION 1-3:  
EQUATION 1-1:  
V2 V1  
-------------------------------------  
gE = 100%  
VO_ID = GVIN  
VREF = VSS = 0V  
G(VDD 0.6V)  
Where:  
V1  
------------------------  
VOS  
=
G = +1  
G(1 + gE)  
G is the nominal gain  
(see Figure 1-6). This equation holds when there are  
no gain or offset errors and when the VREF pin is tied to  
a low-impedance source (<< 0.1) at ground potential  
(VSS = 0V).  
The DC Gain Drift (G/TA) can be calculated from the  
change in gE across temperature. This is shown in the  
following equation:  
EQUATION 1-4:  
1.1.2  
LINEAR MODEL  
gE  
The PGA’s linear region of operation, including offset  
and gain errors, is modeled by the line VO_LIN shown in  
Figure 1-6.  
---------  
=
G ⁄ ∆TA  
TA  
EQUATION 1-2:  
0.3V  
G
----------  
VO_LIN = G(1 + gE) VIN  
+ VOS + 0.3V  
VREF = VSS = 0V  
2004 Microchip Technology Inc.  
DS21908A-page 8  
 
MCP6S91/2/3  
1.1.4  
DIFFERENT VREF CONDITIONS  
VOUT (V)  
Some of the plots in Section 2.0 “Typical Performance  
Curves”, have the conditions VREF = VDD/2 or  
VREF = VDD. The equations and figures above are easily  
modified for these conditions. The ideal VOUT equation  
becomes:  
VDD  
V2  
VDD – 0.3  
EQUATION 1-7:  
VO_ID = VREF + G(VIN VREF  
VDD VREF > VSS = 0V  
)
V1  
VIN (V)  
The complete linear model is:  
EQUATION 1-8:  
0.3  
0
0.3  
G
VDD – 0.3 VDD  
0
VON_LIN = G(1 + gE)(VIN VIN_L + VOS) + 0.3V  
VREF = VSS = 0V  
G
G
FIGURE 1-6:  
Output Voltage Model with  
the standard condition VREF = VSS = 0V.  
where the new VIN end points are:  
1.1.3 OUTPUT NON-LINEARITY  
Figure 1-7 shows the Integral Non-Linearity (INL) of the  
output voltage.  
EQUATION 1-9:  
0.3V VREF  
------------------------------  
+ VREF  
VIN_L  
=
G
EQUATION 1-5:  
VDD 0.3V VREF  
-----------------------------------------------  
G
INL = VOUT VO_LIN  
VIN_H  
=
+ VREF  
The output non-linearity specification in the Electrical  
Specifications (with units of: % of FSR) is related to  
Figure 1-7 by:  
The equations for extracting the specifications do not  
change.  
EQUATION 1-6:  
max(V3, V4)  
------------------------------  
100%  
VONL  
=
V
DD 0.6V  
The Full-Scale Range (FSR) is VDD – 0.6V  
(0.3V to VDD – 0.3V).  
INL (V)  
V4  
0
V3  
VIN (V)  
0.3  
G
VDD – 0.3 VDD  
0
G
G
FIGURE 1-7:  
Output Voltage INL with the  
standard condition VREF = VSS = 0 V.  
2004 Microchip Technology Inc.  
DS21908A-page 9  
 
MCP6S91/2/3  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
24%  
22%  
600 Samples  
G = +1  
TA = -40 to +125°C  
600 Samples  
20% G = +1  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
0%  
2%  
0%  
DC Gain Error (%)  
DC Gain Drift (%/°C)  
FIGURE 2-1:  
DC Gain Error, G = +1.  
FIGURE 2-4:  
DC Gain Drift, G = +1.  
18%  
26%  
600 Samples  
G +2  
600 Samples  
G +2  
TA = -40 to +125°C  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
16%  
14%  
12%  
10%  
8%  
6%  
6%  
4%  
4%  
2%  
0%  
2%  
0%  
DC Gain Drift (%/°C)  
DC Gain Error (%)  
FIGURE 2-2:  
DC Gain Error, G +2.  
FIGURE 2-5:  
DC Gain Drift, G +2.  
-10  
16%  
VDD = 5.0V  
G = +32 V/V  
CH0 selected  
597 Samples  
A = -40 to +125°C  
RS = 10 kΩ  
14%  
12%  
10%  
8%  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
T
RS = 1 kΩ  
6%  
4%  
RS = 100 Ω  
2%  
0%  
RS = 0 Ω  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
100k  
1M  
10M  
100M  
Ladder Resistance Drift (%/°C)  
Frequency (Hz)  
FIGURE 2-3:  
Ladder Resistance Drift.  
FIGURE 2-6:  
Crosstalk vs. Frequency  
(circuit in Figure 6-4).  
2004 Microchip Technology Inc.  
DS21908A-page 10  
 
MCP6S91/2/3  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
30%  
25%  
20%  
15%  
10%  
5%  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
600 Samples  
G = +1  
VDD = 4.0V  
600 Samples  
TA = -40 to +125°C  
G = +1  
6%  
4%  
2%  
0%  
0%  
-3  
-2  
-1  
0
1
2
3
Input Offset Voltage (mV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-7:  
Input Offset Voltage,  
FIGURE 2-10:  
Input Offset Voltage Drift.  
VDD = 4.0V.  
35%  
3.0  
2.5  
2.0  
1.5  
1.0  
32 Samples  
DD = 5.5V  
VIN = 0.3V  
G = +1  
IN = VREF  
σ = 10.0 µVRMS  
30%  
25%  
20%  
15%  
10%  
5%  
V
V
Measurement  
Repeatability:  
10.4 µVRMS  
VDD = 5.5V  
0.5  
0.0  
VDD = 2.5V  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
0%  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VREF Voltage (V)  
Input Offset Voltage Mismatch (µV)  
FIGURE 2-8:  
Input Offset Voltage  
FIGURE 2-11:  
Input Offset Voltage vs.  
Mismatch.  
VREF Voltage.  
1000  
100  
10  
13  
12  
11  
10  
9
8
7
6
5
f = 10 kHz  
4
3
2
1
0
0.1  
1
10  
100  
1000  
10000  
100000  
1
1
2
4
5
8
10  
16  
32  
0.1  
1
10 100  
Frequency (Hz)  
1k  
10k  
100k  
Gain (V/V)  
FIGURE 2-9:  
Input Noise Voltage Density  
FIGURE 2-12:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Gain.  
2004 Microchip Technology Inc.  
DS21908A-page 11  
 
 
MCP6S91/2/3  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
120  
110  
100  
90  
VDD = 2.5V  
Input Referred  
VDD = 5.5V  
80  
70  
10  
100  
1000  
10000  
100000  
1000000  
-50  
-25  
0
25  
50  
75  
100 125  
10  
100  
1k  
10k  
100k  
1M  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-13:  
PSRR vs. Ambient  
FIGURE 2-16:  
PSRR vs. Frequency.  
Temperature.  
1,000  
10,000  
VDD = 5.5V  
CH0 = 5.0V  
MCP6S92/3  
VDD = 5.5V  
1,000  
100  
10  
100  
10  
1
MCP6S91  
TA = +125°C  
TA = +85°C  
MCP6S92/3  
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Voltage (V)  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-14:  
Input Bias Current vs.  
FIGURE 2-17:  
Input Bias Current vs. Input  
Ambient Temperature.  
Voltage.  
25%  
1.E-07  
100n  
39 Samples  
VDD = 5.5V  
CH0 = VDD/2  
In Shutdown Mode  
CH0 = VDD/2  
1.E1-00n8  
1.E-10n9  
1.1E0-01p0  
20%  
15%  
10%  
5%  
VDD = 5.5V  
VDD = 2.5V  
10p  
1.E-11  
1p  
1.E-12  
0%  
100f  
1.E-13  
-50 -25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Quiescent Current in Shutdown (pA)  
FIGURE 2-15:  
Quiescent Current in  
FIGURE 2-18:  
Quiescent Current in  
Shutdown Mode vs. Ambient Temperature.  
Shutdown Mode.  
2004 Microchip Technology Inc.  
DS21908A-page 12  
MCP6S91/2/3  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
35  
30  
25  
20  
15  
10  
5
TA = +125°C  
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
FIGURE 2-19:  
Quiescent Current vs.  
FIGURE 2-22:  
Output Short Circuit Current  
Supply Voltage.  
vs. Supply Voltage.  
1
0.1  
1
VOUT = 0.3V to VDD - 0.3V  
VDD = 5.5V  
0.1  
VONL/G:  
G = +1  
G = +2  
G +4  
0.01  
0.01  
VONL/G, G = +1  
G = +2  
G +4  
0.001  
2.5  
0.001  
1
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
Output Voltage Swing (VP-P  
)
Power Supply Voltage (V)  
FIGURE 2-20:  
DC Output Non-Linearity vs.  
FIGURE 2-23:  
DC Output Non-Linearity vs.  
Supply Voltage.  
Output Swing.  
10  
1000  
100  
10  
VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 2.5V  
1
G = 1, 2  
G = 4 to 10  
G = 16, 32  
1
1.E+05  
1.E+06  
1.E+07  
0.1  
100k  
1M  
10M  
0.1  
1
10  
Output Plus Ladder Current Magnitude (mA)  
Frequency (Hz)  
FIGURE 2-21:  
Output Voltage Headroom  
vs. Output Plus Ladder Current (circuit in  
Figure 4-2).  
FIGURE 2-24:  
Frequency.  
Output Voltage Swing vs.  
2004 Microchip Technology Inc.  
DS21908A-page 13  
 
MCP6S91/2/3  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
40  
30  
20  
10  
0
7
6
5
4
3
2
1
0
G = +32  
G = +16  
G = +16  
G = +4  
G = +1  
G = +10  
G = +8  
G = +5  
G = +4  
G = +2  
G = +1  
-10  
-20  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
10  
100  
1000  
100k  
1M  
10M  
100M  
Capacitive Load (pF)  
Frequency (Hz)  
FIGURE 2-25:  
Gain vs. Frequency.  
FIGURE 2-28:  
Gain Peaking vs. Capacitive  
Load.  
100  
10  
6
5
4
3
2
1
0
VIN  
VDD = 5.0V  
G = +1 V/V  
VOUT  
G = +1  
G = +4  
G = +16  
1
0
1
2
3
4
5
6
7
8
9
10  
-1  
10  
100  
1000  
Capacitive Load (pF)  
Time (1 µs/div)  
FIGURE 2-26:  
Bandwidth vs. Capacitive  
FIGURE 2-29:  
The MCP6S91/2/3 family  
Load.  
shows no phase reversal under overdrive.  
1
1
Measurement BW = 80 kHz  
Measurement BW = 80 kHz  
VOUT = 4 VP-P  
V
OUT = 2.0VP-P  
VDD = 5.0V  
0.1  
VDD = 5.0V  
0.1  
G = +16  
G = +16  
0.01  
G = +1  
G = +4  
0.01  
0.001  
0.001  
G = +4  
G = +1  
G = +1, RL = 10 kto 1.5V  
0.0001 1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
0.0001  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27:  
THD plus Noise vs.  
FIGURE 2-30:  
THD plus Noise vs.  
Frequency, VOUT = 2 VP-P  
.
Frequency, VOUT = 4 VP-P.  
2004 Microchip Technology Inc.  
DS21908A-page 14  
 
 
 
MCP6S91/2/3  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
60  
300  
250  
200  
150  
100  
50  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
-0.5  
-1.5  
-2.5  
VDD = 5.0V  
50  
VDD = 5.0V  
40  
30  
20  
GVIN  
10  
0
0
GVIN  
-10  
-20  
-30  
-40  
-50  
-60  
-50  
VOUT  
VOUT  
-100  
-150  
-200  
-250  
-300  
G = +1  
G = +5  
G = +32  
G = +1  
G = +5  
G = +32  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.000  
0.200  
0.400  
0.600  
0.800  
1.000  
1.200  
1.400  
1.600  
1.800  
2.000  
Time (200 ns/div)  
Time (500 ns/div)  
FIGURE 2-31:  
Small-Signal Pulse  
FIGURE 2-34:  
Large-Signal Pulse  
Response.  
Response.  
20  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
20  
15  
10  
5
VOUT  
VOUT  
(CH0 = 0.6V,  
G = +1)  
15  
10  
5
(CH0 = 0.3V, G = +5)  
5
0
CS  
CS  
CS  
CS  
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
VOUT  
VOUT  
(CH1 = 0.3V, G = +1)  
(CH0 = 0.3V, G = +1)  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
4.50  
5.00  
0.25  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
0.0  
Time (500 ns/div)  
Time (500 ns/div)  
FIGURE 2-32:  
Channel Select Timing.  
FIGURE 2-35:  
Gain Select Timing.  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
3.0  
32 Samples  
1st Wafer Lot  
VDD = 5.0V  
Shutdown  
Shutdown  
CS  
CH0 = 0.3V  
2.5  
G = +1  
2.0  
5
CS  
1.5  
0
1.0  
VOUT is "ON"  
0.5  
0.0 0.E+00  
1.E+00  
2.E+00  
3.E+00  
4.E+00  
5.E+00  
6.E+00  
7.E+00  
8.E+00  
9.E+00  
1.E+01  
1.E+01  
1.E+01
Minimum Valid Supply Voltage (V)  
Time (1 µs/div)  
FIGURE 2-33:  
Shutdown Mode.  
Output Voltage vs.  
FIGURE 2-36:  
Voltage (register data still valid).  
Minimum Valid Supply  
2004 Microchip Technology Inc.  
DS21908A-page 15  
MCP6S91/2/3  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VREF = VSS, G = +1 V/V,  
Input = CH0 = (0.3V)/G, CH1 = 0.3V, RL = 10 kto VDD/2 and CL = 60 pF.  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
G = 1 V/V  
DD = 2.5V  
G = 1 V/V  
VDD = 5.5V  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
V
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-37:  
Input Offset Voltage vs.  
FIGURE 2-39:  
Input Offset Voltage vs.  
Input Voltage, VDD = 2.5V.  
Input Voltage, VDD = 5.5V.  
35  
VREF = VSS  
30  
VDD = 5.5V: VDD–VOH  
25  
20  
15  
10  
5
VOL–VSS  
VDD = 2.5V: VDD–VOH  
VOL–VSS  
0
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-38:  
Output Voltage Headroom  
vs. Ambient Temperature.  
2004 Microchip Technology Inc.  
DS21908A-page 16  
MCP6S91/2/3  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6S91 MCP6S92 MCP6S93  
Symbol  
VOUT  
CH0  
Description  
1
2
1
2
1
2
3
4
5
6
Analog Output  
Analog Input  
3
3
CH1  
Analog Input  
4
VREF  
VSS  
External Reference Pin  
Negative Power Supply  
SPI™ Chip Select  
4
5
5
CS  
SI  
6
7
6
7
7
8
SPI Serial Data Input  
SPI Serial Data Output  
SPI Clock Input  
SO  
9
SCK  
VDD  
8
8
10  
Positive Power Supply  
3.1  
Analog Output  
3.4  
Power Supply (V and V  
)
DD  
SS  
The output pin (VOUT) is a low-impedance voltage  
source. The selected gain (G), selected input (CH0,  
CH1) and voltage at VREF determine its value.  
The Positive Power Supply Pin (VDD) is 2.5V to 5.5V  
higher than the Negative Power Supply Pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.2  
Analog Inputs (CH0, CH1)  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts can  
share a bulk capacitor with analog parts (typically  
2.2 µF to 10 µF) within 100 mm of the VDD pin.  
The inputs CH0 and CH1 connect to the signal  
sources. They are high-impedance CMOS inputs with  
low bias currents. The internal MUX selects which one  
is amplified to the output.  
3.3  
External Reference Voltage (V  
)
REF  
3.5  
Digital Inputs  
The VREF pin, which is an analog input, should be at a  
voltage between VSS and VDD (the MCP6S92 has  
VREF tied internally to VSS). The voltage at this pin  
shifts the output voltage.  
The SPI interface inputs are: Chip Select (CS), Serial  
Input (SI) and Serial Clock (SCK). These are Schmitt-  
triggered, CMOS logic inputs.  
3.6  
Digital Output  
The MCP6S93 device has a SPI interface Serial Output  
(SO) pin. This is a CMOS push-pull output and does  
not ever go High-Z. Once the device is deselected (CS  
goes high), SO is forced low. This feature supports  
daisy-chaining, as explained in Section 5.3 “Daisy-  
Chain Configuration”.  
2004 Microchip Technology Inc.  
DS21908A-page 17  
 
MCP6S91/2/3  
4.2  
Internal Op Amp  
4.0  
ANALOG FUNCTIONS  
The internal op amp gives the right combination of  
bandwidth, accuracy and flexibility.  
The MCP6S91/2/3 family of Programmable Gain  
Amplifiers (PGA) is based on simple analog building  
blocks (see Figure 4-1). Each of these blocks will be  
explained in more detail in the following subsections.  
4.2.1  
COMPENSATION CAPACITORS  
The internal op amp has three compensation capaci-  
tors (comp. caps.) connected to a switching network.  
They are selected to give good small-signal bandwidth  
at high gains and good slew rates (full-power band-  
width) at low gains. The change in bandwidth as gain  
changes is between 2 and 12 MHz. Refer to Table 4-1  
for more information.  
VDD  
CH0  
MUX  
CH1  
VOUT  
CS  
SI  
SPI™  
Logic  
SO  
RF  
TABLE 4-1:  
GAIN VS. INTERNAL  
COMPENSATION  
CAPACITOR  
SCK  
8
Gain  
Switches  
RG  
Internal GBWP  
SR  
FPBW  
BW  
Gain  
(V/V)  
Comp.  
(MHz) (V/µs) (MHz) (MHz)  
Cap.  
Typ.  
12  
12  
20  
20  
20  
20  
64  
64  
Typ.  
4.0  
4.0  
11  
Typ.  
0.30  
0.30  
0.70  
0.70  
0.70  
0.70  
1.6  
Typ.  
12  
6
1
2
Large  
VREF  
MCP6S91 – One input (CH0), no SO pin  
VSS  
Large  
4
Medium  
Medium  
Medium  
Medium  
Small  
10  
7
MCP6S92 – Two inputs (CH0, CH1), VREF tied  
5
11  
internally to VSS, no SO pin  
8
11  
2.4  
2.0  
5
MCP6S93 – Two inputs (CH0, CH1)  
10  
16  
32  
11  
22  
FIGURE 4-1:  
PGA Block Diagram.  
Small  
22  
1.6  
2.0  
4.1 Input MUX  
Note 1: FPBW is the Full-Power Bandwidth.  
These numbers are based on VDD = 5.0V.  
The MCP6S91 has one input, while the MCP6S92 and  
MCP6S93 have two inputs (see Figure 4-1).  
2: No changes in DC performance  
(e.g., VOS) accompany a change in  
compensation capacitor.  
For the lowest input current, float unused inputs. Tying  
these pins to a voltage near the active channel’s bias  
voltage also works well. For simplicity, they can be tied  
to VSS or VDD, but the input current may increase.  
3: BW is the closed-loop, small signal -3 dB  
bandwidth.  
The one-channel MCP6S91 has approximately the  
same input bias current as the two-channel MCP6S92  
and MCP6S93.  
4.2.2  
RAIL-TO-RAIL CHANNEL INPUTS  
The input stage of the internal op amp uses two differ-  
ential input stages in parallel; one operates at low VIN  
(input voltage), while the other operates at high VIN.  
With this topology, the internal inputs can operate to  
0.3V past either supply rail. The input offset voltage is  
measured at both VIN = VSS – 0.3V and VDD + 0.3V to  
ensure proper operation.  
The input offset voltage mismatch between channels  
(VOS) is, ideally, 0 µV. The input MUX uses CMOS  
transmission gates that have drain-source (channel)  
resistance, but no offset voltage. The histogram in  
Figure 2-8 reflects the measurement repeatability  
(i.e., noise power bandwidth) rather than the actual  
mismatch. Reducing the measurement bandwidth will  
produce a more narrow histogram and give an aver-  
age closer to 0 µV.  
The transition between the two input stages occurs  
when VIN VDD – 1.5V. For the best distortion and gain  
linearity, avoid this region of operation.  
2004 Microchip Technology Inc.  
DS21908A-page 18  
 
 
MCP6S91/2/3  
4.2.3  
RAIL-TO-RAIL OUTPUT  
MCP6S9X  
The maximum output voltage swing is the maximum  
swing possible under a particular amplifier load current.  
The amplifier load current is the sum of the external  
load current (IOUT) and the current through the ladder  
resistance (ILAD); see Figure 4-2.  
RIN  
VOUT  
VIN  
CHx  
EQUATION 4-1:  
(Maximum expected VIN) – VDD  
2 mA  
RIN  
RIN  
Amplifier Load Current = IOUT + ILAD  
VSS – (Maximum expected VIN)  
Where:  
2 mA  
(VOUT VREF  
)
-------------------------------------  
=
ILAD  
RLAD  
FIGURE 4-3:  
into an input pin.  
RIN limits the current flow  
4.3  
Resistor Ladder  
IOUT  
The  
resistor  
ladder  
shown  
in  
Figure 4-1  
VOUT  
(RLAD = RF + RG) sets the gain. Placing the gain  
switches in series with the inverting input reduces the  
parasitic capacitance, distortion and gain mismatch.  
ILAD  
RLAD  
RLAD is an additional load on the output of the PGA and  
causes additional current draw from the supplies. It is  
also a load (ZIN_REF) on the external circuitry driving  
the VREF pin.  
VREF  
FIGURE 4-2:  
Amplifier Load Current.  
In Shutdown mode, RLAD is still attached to the VOUT  
and VREF pins. Thus, these pins and the internal ampli-  
fier’s inverting input are all connected through RLAD  
and the output is not High-Z (unlike the internal op  
amp).  
See Figure 2-21 for the typical output headroom  
(VDD – VOH or VOL – VSS) as a function of amplifier  
load current.  
The specification table states the output can reach  
within 60 mV of either supply rail when RL = 10 kand  
VREF = VDD/2.  
While RLAD contributes to the output noise, its effect is  
small. Refer to Figure 2-12.  
4.2.4  
INPUT VOLTAGE AND PHASE  
REVERSAL  
The MCP6S91/2/3 amplifier family is designed with  
CMOS input devices. It is designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-29 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
The maximum voltage that can be applied to the input  
pins (CHx) is VSS – 0.3V to VDD + 0.3V. Voltages on  
the inputs that exceed this absolute maximum rating  
can cause excessive current to flow into or out of the  
input pins. Current beyond ±2 mA can cause possible  
reliability problems. Applications that exceed this rating  
must be externally limited with an input resistor, as  
shown in Figure 4-3.  
2004 Microchip Technology Inc.  
DS21908A-page 19  
 
 
MCP6S91/2/3  
4.4  
Rail-to-Rail V  
Input  
REF  
The VREF input is intended to be driven by a low-  
impedance voltage source. The source driving the  
VREF pin should have an output impedance less than  
0.1to maintain reasonable gain accuracy. The supply  
voltage VSS and VDD usually meet this requirement.  
RLAD presents a load at the VREF pin to the external  
circuit (ZIN_REF (5 k/G)||(6 pF)), which depends on  
the gain. Any source driving the VREF pin must be  
capable of driving a load as heavy as 0.16 k||6 pF  
(G = 32).  
The absolute maximum voltages that can be applied to  
the reference input pin (VREF) are VSS – 0.3V and  
VDD + 0.3V. Voltages on the inputs that exceed this  
absolute maximum rating can cause excessive current  
to flow into or out of this pin. Current beyond ±2 mA can  
cause possible reliability problems. Because an  
external series resistor cannot be used (for low gain  
error), the external circuit must ensure that VREF is  
between VSS – 0.3V and VDD + 0.3V.  
The VIVR_REF spec shows the region of normal  
operation for the VREF pin (VSS to VDD). Staying within  
this region ensures proper operation of the PGA and its  
surrounding circuitry.  
4.5  
Shutdown Mode  
These PGAs use a software shutdown command.  
When the SPI interface sends a shutdown command,  
the internal op amp is shut down and its output placed  
in a High-Z state.  
The resistive ladder is always connected between  
VREF and VOUT; even in shutdown. This means that the  
output resistance will be on the order of 5 k, with a  
path for output signals to appear at the input.  
2004 Microchip Technology Inc.  
DS21908A-page 20  
 
MCP6S91/2/3  
Chain Configuration”, covers applications using  
multiple 16-bit words. SO goes low after CS goes  
high; it has a push-pull output that does not go into a  
high-Z state.  
5.0  
DIGITAL FUNCTIONS  
The MCP6S91/2/3 PGAs use  
a standard SPI  
compatible serial interface to receive instructions from  
a controller. This interface is configured to allow daisy-  
chaining with other SPI devices.  
The MCP6S91/2/3 devices operate in SPI modes 0,0  
and 1,1. In 0,0 mode, the clock idles in the low state  
(Figure 5-1). In 1,1 mode, the clock idles in the high  
state (Figure 5-2). In both modes, SI data is loaded into  
the PGA on the rising edge of SCK, while SO data is  
clocked out on the falling edge of SCK. In 0,0 mode, the  
falling edge of CS also acts as the first falling edge of  
SCK (see Figure 5-1). There must be multiples of 16  
clocks (SCK) while CS is low or commands will abort  
(see Section 5.3 “Daisy-Chain Configuration”).  
5.1  
SPI Timing  
Chip Select (CS) toggles low to initiate communica-  
tion with these devices. The first byte of each SI word  
(two bytes long) is the instruction byte, which goes  
into the Instruction register. The Instruction register  
points the second byte to its destination. In a typical  
application, CS is raised after one word (16 bits) to  
implement the desired changes. Section 5.3 “Daisy-  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
SI  
Instruction Byte  
Data Byte  
SO  
(first 16 bits out are always zeros)  
Serial Bus Sequence for the PGA; SPI™ 0,0 Mode (see Figure 1-4).  
FIGURE 5-1:  
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
SI  
Instruction Byte  
Data Byte  
SO  
(first 16 bits out are always zeros)  
Serial Bus Sequence for the PGA; SPI™ 1,1 Mode (see Figure 1-5).  
FIGURE 5-2:  
2004 Microchip Technology Inc.  
DS21908A-page 21  
 
 
 
MCP6S91/2/3  
After power-up, and when the power supply voltage  
dips below the minimum valid VDD (VDD_VAL), the inter-  
nal register data and state machine may need to be  
reset. This is accomplished as described before. Use  
an external system supervisor to detect these events  
so that the microcontroller will reset the PGA state and  
registers.  
5.2  
Registers  
The analog functions are programmed through the SPI  
interface using 16-bit words (see Figure 5-1 and  
Figure 5-2). This data is sent to two of three 8-bit regis-  
ters: Instruction register (Register 5-1), Gain register  
(Register 5-2) and Channel register (Register 5-3).  
There are no power-up defaults for these three  
registers.  
A 0.1 µF bypass capacitor mounted as close as  
possible to the VDD pin provides additional transient  
immunity.  
5.2.1  
ENSURING VALID DATA IN THE  
REGISTERS  
5.2.2  
INSTRUCTION REGISTER  
After power up, the registers contain random data that  
must be initialized. Sending valid gain and channel  
selection commands to the internal registers puts valid  
data into those registers. Also, the internal state  
machine starts in an arbitrary state. Toggling the Chip  
Select pin (CS) from high to low, then back to high  
again, puts the internal state machine in a known, valid  
condition (this can be done by entering any valid  
command).  
The Instruction register has 3 command bits and 1 indi-  
rect address bit; see Register 5-1. The command bits  
include a NOP (000) to support daisy-chaining (see  
Section 5.3 “Daisy-Chain Configuration”); the other  
NOP commands shown should not be used (they are  
reserved for future use). The device is brought out of  
Shutdown mode when a valid command, other than  
NOPor Shutdown, is sent and CS is raised.  
REGISTER 5-1:  
W-0  
M2  
bit 7  
INSTRUCTION REGISTER  
W-0  
M1  
W-0  
M0  
U-x  
U-x  
U-x  
U-x  
W-0  
A0  
bit 0  
bit 7-5  
M2-M0: Command bits  
000= NOP(Note 1)  
001= PGA enters Shutdown mode as soon as a full 16-bit word is sent and CS is raised.  
(Notes 1 and 2)  
010= Write to register.  
011= NOP(reserved for future use) (Note 1)  
1XX= NOP(reserved for future use) (Note 1)  
bit 4-1  
bit 0  
Unimplemented: Read as ‘0’ (reserved for future use)  
A0: Indirect Address bit  
1= Addresses the Channel register  
0= Addresses the Gain register  
Note 1: All other bits in the 16-bit word (including A0) are “don’t cares.”  
2: The device exits Shutdown mode when a valid command (other than NOPor  
Shutdown) is sent and CS is raised; that valid command will be executed.  
Shutdown does not toggle.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2004 Microchip Technology Inc.  
DS21908A-page 22  
 
 
 
 
MCP6S91/2/3  
5.2.3  
SETTING THE GAIN  
The amplifier can be programmed to produce binary  
and decimal gain settings between +1 V/V and +32 V/V.  
Register 5-2 shows the details. At the same time, differ-  
ent compensation capacitors are selected to optimize  
the bandwidth vs. slew rate trade-off (see Table 4-1).  
REGISTER 5-2:  
U-x  
GAIN REGISTER  
U-x  
U-x  
U-x  
U-x  
W-0  
G2  
W-0  
G1  
W-0  
G0  
bit 7  
bit 0  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’ (reserved for future use)  
G2-G0: Gain Select bits  
000= Gain of +1  
001= Gain of +2  
010= Gain of +4  
011= Gain of +5  
100= Gain of +8  
101= Gain of +10  
110= Gain of +16  
111= Gain of +32  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2004 Microchip Technology Inc.  
DS21908A-page 23  
 
MCP6S91/2/3  
5.2.4  
CHANGING THE CHANNEL  
If the Instruction register is programmed to address the  
Channel register, the multiplexed inputs of the  
MCP6S92 and MCP6S93 can be changed using  
Register 5-3.  
REGISTER 5-3:  
U-x  
CHANNEL REGISTER  
U-x  
U-x  
U-x  
U-x  
U-x  
U-x  
W-0  
C0  
bit 7  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’ (reserved for future use)  
C0: Channel Select bit  
MCP6S91  
MCP6S92  
CH0  
MCP6S93  
CH0  
0=  
1=  
CH0  
CH0  
CH1  
CH1  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
2004 Microchip Technology Inc.  
DS21908A-page 24  
 
MCP6S91/2/3  
The example in Figure 5-3 shows a daisy-chain  
configuration with two devices, although any number of  
devices can be configured this way. The MCP6S91 and  
MCP6S92 can only be used at the far end of the daisy-  
chain, because they do not have a serial data out (SO)  
pin. As shown in Figure 5-4 and Figure 5-5, both SI and  
SO data are sent in 16-bit (2 byte) words. These  
devices abort any command that is not a multiple of 16  
bits.  
5.2.5  
The software shutdown command allows the user to  
put the amplifier into low-power mode (see  
Register 5-1). In this Shutdown mode, most pins are  
high-impedance (Section 4.5 “Shutdown Mode” and  
Section 5.1 “SPI Timing” cover the exceptions at pins  
VREF, VOUT and SO).  
SHUTDOWN COMMAND  
a
Once the PGA has entered Shutdown mode, it will  
remain in this mode until either a valid command is sent  
to the device (other than NOP or Shutdown) or the  
device is powered down and back up again. The  
internal registers maintain their values while in  
shutdown.  
When using the daisy-chain configuration, the maxi-  
mum clock speed possible is reduced to 5.8 MHz due  
to the SO pin’s propagation delay (see Electrical  
Specifications).  
The internal SPI shift register is automatically loaded  
with zeros whenever CS goes high (a command is  
executed). Thus, the first 16-bits out of the SO pin after  
the CS line goes low are always zeros. This means that  
the first command loaded into the next device in the  
daisy-chain is a NOP. This feature makes it possible to  
send shorter command and data byte strings when the  
farthest devices do not need to change. For example, if  
there were three devices on the chain, and only the  
middle device needed changing, then only 32 bytes of  
data need to be transmitted (for the first and middle  
devices). The last device on the chain would receive a  
NOP when the CS pin is raised to execute the  
command.  
Once brought out of Shutdown mode, the part returns  
to its previous state (see Section 5.2.1 “Ensuring  
Valid Data in the Registers” for exceptions to this  
rule). This makes it possible to bring the device out of  
shutdown mode using one command; send a com-  
mand to select the current channel (or gain) and the  
device will exit shutdown with the same state that  
existed before shutdown.  
5.3  
Daisy-Chain Configuration  
Multiple MCP6S91/2/3 devices can be connected in a  
daisy-chain configuration by connecting the SO pin  
from one device to the SI pin on the next device and  
using common SCK and CS lines (Figure 5-3). This  
approach reduces PCB layout complexity and uses  
fewer PICmicro® microcontroller I/O pins.  
CS  
SCK  
SO  
CS  
CS  
PICmicro®  
SCK  
SCK  
SI  
SO  
SI  
SO  
Microcontroller  
Device 1  
Device 2  
1. Set CS low.  
2. Clock out the instruction and data  
for device 2 (16 clocks) to Device 1.  
3. Device 1 automatically clocks out all  
zeros (first 16 clocks) to Device 2.  
Device 1  
Device 2  
00100000 00000000  
00000000 00000000  
4. Clock out the instruction and data  
for Device 1 (16 clocks) to Device 1.  
5. Device 1 automatically shifts data  
from Device 1 to Device 2 (16 clocks).  
6. Raise CS.  
Device 1  
Device 2  
01000001 00000111  
00100000 00000000  
FIGURE 5-3:  
Daisy-Chain Configuration.  
2004 Microchip Technology Inc.  
DS21908A-page 25  
 
 
MCP6S91/2/3  
CS  
1 2 3 4 5 6 7 8 9 10111213141516 1 2 3 4 5 6 7 8 9 10111213141516  
SCK  
SI  
Instruction Byte  
for Device 2  
Data Byte  
for Device 2  
Instruction Byte  
for Device 1  
Data Byte  
for Device 1  
SO  
(first 16 bits out are always zeros)  
Instruction Byte  
for Device 2  
Data Byte  
for Device 2  
FIGURE 5-4:  
Serial Bus Sequence for Daisy-Chain Configuration; SPI™ 0,0 Mode.  
CS  
1 2 3 4 5 6 7 8 9 10111213141516 1 2 3 4 5 6 7 8 9 10111213141516  
SCK  
SI  
Instruction Byte  
for Device 2  
Data Byte  
for Device 2  
Instruction Byte  
for Device 1  
Data Byte  
for Device 1  
SO  
(first 16 bits out are always zeros)  
Instruction Byte  
for Device 2  
Data Byte  
for Device 2  
FIGURE 5-5:  
Serial Bus Sequence for Daisy-Chain Configuration; SPI™ 1,1 Mode.  
2004 Microchip Technology Inc.  
DS21908A-page 26  
MCP6S91/2/3  
6.0  
6.1  
APPLICATIONS INFORMATION  
RISO  
Changing External Reference  
Voltage  
VOUT  
VIN  
MCP6S9X  
CL  
Figure 6-1 shows a MCP6S91 with the VREF pin at  
2.5V and VDD = 5.0V. This allows the PGA to amplify  
signals centered on 2.5V, instead of ground-referenced  
signals. The voltage reference MCP1525 is buffered by  
a MCP6021, which gives a low output impedance  
reference voltage from DC to high frequencies. The  
source driving the VREF pin should have an output  
impedance less than 0.1to maintain reasonable gain  
accuracy.  
FIGURE 6-2:  
Capacitive Loads.  
PGA Circuit for Large  
Figure 6-3 gives recommended RISO values for  
different capacitive loads. After selecting RISO for your  
circuit, double-check the resulting frequency response  
peaking and step response overshoot on the bench.  
Modify RISO’s value until the response is reasonable at  
all gains.  
VDD  
1,000  
VOUT  
VIN  
MCP6S91  
VREF  
VDD  
100  
VDD  
MCP1525  
2.5V  
REF  
1µF  
10  
100  
1,000  
10,000  
10  
10  
MCP6021  
p
100  
p
1n  
10n  
L
oad Capacitance (F)  
FIGURE 6-3:  
Recommended RISO.  
FIGURE 6-1:  
Reference Voltage.  
PGA with Different External  
6.3 Layout Considerations  
Good PC board layout techniques will help achieve the  
performance shown in the Electrical Characteristics  
and Typical Performance Curves. It will also help  
minimize Electromagnetic Compatibility (EMC) issues.  
6.2  
Capacitive Load and Stability  
Large capacitive loads can cause stability problems  
and reduced bandwidth for the MCP6S91/2/3 family of  
PGAs (Figure 2-26 and Figure 2-28). As the load  
capacitance increases, there is a corresponding  
increase in frequency response peaking and step  
response overshoot and ringing. This happens  
because a large load capacitance decreases the  
internal amplifier’s phase margin and bandwidth.  
6.3.1  
COMPONENT PLACEMENT  
Separate different circuit functions: digital from analog,  
low-speed from high-speed, and low-power from high-  
power. This will reduce crosstalk.  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high-frequency (low rise time)  
signals.  
When driving large capacitive loads with these PGAs  
(i.e., > 60 pF), a small series resistor at the output  
(RISO in Figure 6-2) improves the internal amplifier’s  
stability by making the load resistive at higher  
frequencies. The bandwidth will be generally lower  
than the bandwidth with no capacitive load.  
2004 Microchip Technology Inc.  
DS21908A-page 27  
 
 
 
MCP6S91/2/3  
6.3.2  
SUPPLY BYPASS  
6.3.4  
SIGNAL COUPLING  
Use a local bypass capacitor (0.01 µF to 0.1 µF) within  
2 mm of the VDD pin. It must connect directly to the  
ground plane. A multi-layer ceramic chip capacitor, or  
high-frequency equivalent, works best.  
The input pins of the MCP6S91/2/3 family of PGAs are  
high-impedance. This makes them especially suscepti-  
ble to capacitively-coupled noise. Using a ground plane  
helps reduce this problem.  
Use a bulk bypass capacitor (2.2 µF to 10 µF) within  
100 mm of the VDD pin. It needs to connect to the  
ground plane. A multi-layer ceramic chip capacitor,  
tantalum or high-frequency equivalent, works best.  
This capacitor may be shared with other nearby analog  
parts.  
When noise is capacitively coupled, the ground plane  
provides additional shunt capacitance to ground. When  
noise is magnetically coupled, the ground plane  
reduces the mutual inductance between traces.  
Increasing the separation between traces makes a  
significant difference.  
Changing the direction of one of the traces can also  
reduce magnetic coupling. It may help to locate guard  
traces next to the victim trace. They should be on both  
sides of, and as close as possible to, the victim trace.  
Connect the guard traces to the ground plane at both  
ends. Also connect long guard traces to the ground  
plane in the middle.  
6.3.3  
INPUT SOURCE IMPEDANCE  
The sources driving the inputs of the PGAs need to  
have reasonably low source impedance at higher  
frequencies. Figure 6-4 shows how the external source  
impedance (RS), PGA package pin capacitance (CP1  
)
and PGA package pin-to-pin capacitance (CP2) form a  
positive feedback voltage divider network. Feedback to  
the selected channel may cause frequency response  
peaking and step response overshoot and ringing.  
Feedback to an unselected channel will produce  
crosstalk.  
6.3.5  
HIGH-FREQUENCY ISSUES  
Because the MCP6S91/2/3 PGAs’ frequency response  
reaches unity gain at 64 MHz when G = 16 and 32, it is  
important to use good PCB layout techniques. Any  
parasitic-coupling at high-frequency might cause  
undesired peaking. Filtering high-frequency signals  
(i.e., fast edge rates) can help. To minimize high-  
frequency problems:  
CP2  
• Use complete ground and power planes  
• Use HF, surface-mount components  
• Provide clean supply voltages and bypassing  
• Keep traces short and straight  
RS  
VIN  
VOUT  
MCP6S9X  
CP1  
• Try a linear power supply (e.g., a LDO)  
FIGURE 6-4:  
Positive Feedback Path.  
Figure 2-6 shows the crosstalk (referred to input) that  
results when a hostile signal is connected to CH1, input  
CH0 is selected and RS is connected from CH0 to  
GND. A gain of +32 was chosen for this plot because it  
demonstrates the worst-case behavior. Increasing RS  
increases the crosstalk as expected. At a source  
impedance of 10 kΩ, there is noticeable peaking in the  
response; this is due to positive feedback.  
Most designs should use a source resistance (RS) no  
larger than 10 k. Careful attention to layout parasitics  
and proper component selection will help minimize this  
effect. When a source impedance larger than 10 kΩ  
must be used, place a capacitor in parallel to CP1 to  
reduce the positive feedback. This capacitor needs to  
be large enough to overcome gain (or crosstalk) peak-  
ing, yet small enough to allow a reasonable signal  
bandwidth.  
2004 Microchip Technology Inc.  
DS21908A-page 28  
 
MCP6S91/2/3  
6.4  
Typical Applications  
VIN  
6.4.1  
GAIN RANGING  
MCP6291  
Figure 6-5 shows a circuit that measures the current IX.  
The circuit’s performance benefits from changing the  
gain on the PGA. Just as a hand-held multimeter uses  
different measurement ranges to obtain the best  
results, this circuit makes it easy to set a high gain for  
small signals and a low gain for large signals. As a  
result, the required dynamic range at the PGA’s output  
is less than at its input (by up to 30 dB).  
10.0 kΩ  
VOUT  
MCP6S91  
1.11 kΩ  
FIGURE 6-7:  
Range.  
PGA with Lower Gain  
VOUT  
MCP6S9X  
IX  
RS  
6.4.3  
EXTENDED GAIN RANGE PGA  
Figure 6-8 gives a +1 V/V to +1024 V/V gain range,  
which is much greater than the range for a single PGA  
(+1 V/V to +32 V/V). The first PGA provides input  
multiplexing capability, while the second PGA only  
needs one input. These devices can be daisy-chained  
(Section 5.3 “Daisy-Chain Configuration”).  
FIGURE 6-5:  
Current Measurement Circuit.  
Wide Dynamic Range  
6.4.2  
SHIFTED GAIN RANGE PGA  
Figure 6-6 shows a circuit using a MCP6291 at a gain  
of +10 in front of a MCP6S91. This shifts the overall  
gain range to +10 V/V to +320 V/V (from +1 V/V to  
+32 V/V).  
VOUT  
VIN  
MCP6S92  
MCP6S91  
VIN  
FIGURE 6-8:  
Range.  
PGA with Extended Gain  
VOUT  
MCP6291  
MCP6S91  
6.4.4  
MULTIPLE SENSOR AMPLIFIER  
The multiple-channel PGAs (MCP6S92 and MCP6S93)  
allow the user to select which sensor appears on the  
output (see Figure 6-9). These devices can also change  
the gain to optimize performance for each sensor.  
10.0 kΩ  
1.11 kΩ  
FIGURE 6-6:  
Range.  
PGA with Higher Gain  
Sensor # 0  
MCP6S93  
VOUT  
It is also easy to shift the gain range to lower gains (see  
Figure 6-7). The MCP6291 acts as a unity gain buffer,  
and the resistive voltage divider shifts the gain range  
down to +0.1 V/V to +3.2 V/V (from +1 V/V to +32 V/V).  
Sensor # 1  
FIGURE 6-9:  
Inputs.  
PGA with Multiple Sensor  
2004 Microchip Technology Inc.  
DS21908A-page 29  
 
 
 
 
 
 
MCP6S91/2/3  
6.4.5  
EXPANDED INPUT PGA  
6.4.7  
ADC DRIVER  
Figure 6-10 shows cascaded MCP6S28 and  
MCP6S92s PGAs that provide up to 9 input channels.  
Obviously, Sensors #1-8 have a high total gain range  
available, as explained in Section 6.4.3 “Extended  
Gain Range PGA”. These devices can be daisy-  
chained (Section 5.3 “Daisy-Chain Configuration”).  
This family of PGAs is well suited for driving Analog-to-  
Digital Converters (ADCs). The binary gains (1, 2, 4, 8,  
16 and 32) effectively add five more bits to the input  
range (see Figure 6-12). This works well for applica-  
tions needing relative accuracy more than absolute  
accuracy (e.g., power monitoring).  
Low-pass  
Filter  
Sensor  
# 0  
MCP3201  
12-bit  
ADC  
3
MCP6S92  
VOUT  
VIN  
MCP6S92  
OUT  
Sensors  
# 1-8  
MCP6S28  
FIGURE 6-12:  
PGA as an ADC driver.  
At low gains, the ADC’s Signal-to-Noise Ratio (SNR)  
will dominate since the PGA’s input noise voltage  
density is so low (10 nV/Hz @ 10 kHz, typ.). At high  
gains, the PGA’s noise will dominate the SNR, but it is  
low enough to support most applications. These PGAs  
add the flexibility of selecting the best gain for an  
application.  
FIGURE 6-10:  
PGA with Expanded Inputs.  
6.4.6  
PICmicro® MCU WITH EXPANDED  
INPUT CAPABILITY  
Figure 6-11 shows a MCP6S93 driving an analog input  
to a PICmicro microcontroller. This greatly expands the  
input capacity of the microcontroller, while adding the  
ability to select the appropriate gain for each source.  
The low-pass filter in the block diagram reduces the  
integrated noise at the MCP6S92’s output and serves  
as an anti-aliasing filter. This filter may be designed  
using Microchip’s FilterLab® software, available at  
www.microchip.com.  
PICmicro®  
Microcontroller  
VIN  
MCP6S93  
SPI™  
Expanded Input for a  
FIGURE 6-11:  
PICmicro® Microcontroller.  
2004 Microchip Technology Inc.  
DS21908A-page 30  
 
 
 
MCP6S91/2/3  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil) (MCP6S91, MCP6S92)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6S91  
E/P256  
YYWW  
0424  
8-Lead SOIC (150 mil) (MCP6S91, MCP6S92)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6S91  
E/SN0424  
NNN  
256  
Example:  
8-Lead MSOP (MCP6S91, MCP6S92)  
6S91E  
XXXXX  
424256  
YWWNNN  
Example:  
10-Lead MSOP (MCP6S93)  
XXXXX  
6S93E  
YWWNNN  
424256  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note:  
In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office.  
2004 Microchip Technology Inc.  
DS21908A-page 31  
MCP6S91/2/3  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
2004 Microchip Technology Inc.  
DS21908A-page 32  
MCP6S91/2/3  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
Overall Height  
A
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.32  
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2004 Microchip Technology Inc.  
DS21908A-page 33  
MCP6S91/2/3  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
p
E1  
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026  
0.65  
Overall Height  
A
A2  
A1  
E
.044  
1.18  
Molded Package Thickness  
Standoff  
.030  
.034  
.038  
.006  
.200  
.122  
.122  
.028  
.039  
0.76  
0.86  
0.97  
0.15  
.5.08  
3.10  
3.10  
0.70  
1.00  
§
.002  
.184  
.114  
.114  
.016  
.035  
0.05  
4.67  
2.90  
2.90  
0.40  
0.90  
Overall Width  
.193  
.118  
.118  
.022  
.037  
4.90  
3.00  
3.00  
0.55  
0.95  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Footprint (Reference)  
Foot Angle  
F
φ
0
6
0
6
c
Lead Thickness  
Lead Width  
.004  
.010  
.006  
.012  
.008  
.016  
0.10  
0.25  
0.15  
0.30  
0.20  
0.40  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
7
7
β
7
7
*Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
Drawing No. C04-111  
2004 Microchip Technology Inc.  
DS21908A-page 34  
MCP6S91/2/3  
10-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
1
B
n
α
A
φ
c
A2  
A1  
L
(F)  
β
L1  
Units  
Dimension Limits  
INCHES  
MILLIMETERS*  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
10  
10  
.020 TYP  
0.50 TYP.  
Overall Height  
Molded Package Thickness  
Standoff  
A
A2  
A1  
E
-
-
.033  
-
.043  
-
-
1.10  
.030  
.000  
.037  
.006  
0.75  
0.00  
0.85  
0.95  
0.15  
-
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint  
F
.037 REF  
0.95 REF  
φ
c
Foot Angle  
0°  
.003  
.006  
5°  
-
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
-
8°  
0.23  
0.30  
15°  
Lead Thickness  
Lead Width  
-
-
B
α
β
.009  
0.23  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-021  
2004 Microchip Technology Inc.  
DS21908A-page 35  
MCP6S91/2/3  
NOTES:  
2004 Microchip Technology Inc.  
DS21908A-page 36  
MCP6S91/2/3  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
b)  
c)  
MCP6S91-E/P:  
One-channel PGA,  
PDIP package.  
Temperature Package  
Range  
MCP6S91-E/SN: One-channel PGA,  
SOIC package.  
MCP6S91-E/MS: One-channel PGA,  
MSOP package.  
Device:  
MCP6S91: One-channel PGA  
MCP6S91T: One-channel PGA  
(Tape and Reel for SOIC and MSOP-8)  
MCP6S92: Two-channel PGA  
MCP6S92T: Two-channel PGA  
a)  
b)  
MCP6S92-E/MS: Two-channel PGA,  
MSOP-8 package.  
MCP6S92T-E/MS: Tape and Reel,  
Two-channel PGA,  
(Tape and Reel for SOIC and MSOP-8)  
MSOP-8 package.  
MCP6S93: Two-channel PGA  
MCP6S93T: Two-channel PGA  
a)  
b)  
MCP6S93-E/UN: Two-channel PGA,  
MSOP-10 package.  
MCP6S93T-E/UN: Tape and Reel,  
Two-channel PGA,  
(Tape and Reel for MSOP-10)  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
MSOP-10 package.  
MS  
P
SN  
UN  
=
=
=
=
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21908A-page 37  
MCP6S91/2/3  
NOTES:  
DS21908A-page 38  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,  
SmartSensor and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,  
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,  
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,  
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,  
SmartTel and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS21908A-page 39  
2004 Microchip Technology Inc.  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http:\\support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4420-9895  
Fax: 45-4420-9910  
India - New Delhi  
Tel: 91-11-5160-8632  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-750-3506  
Fax: 86-591-750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
09/27/04  
DS21908A-page 40  
2004 Microchip Technology Inc.  

相关型号:

MCP6S92-E/P

暂无描述
MICROCHIP

MCP6S92-E/SN

SPECIALTY ANALOG CIRCUIT, PDSO8, 0.150 MM INCH, PLASTIC, MS-012, SOIC-8
MICROCHIP

MCP6S92E-SN

Single-Ended, Rail-to-Rail I/O, Low-Gain PGA
MICROCHIP

MCP6S92T-E/MS

暂无描述
MICROCHIP

MCP6S92T-E/MSVAO

Analog Circuit, 1 Func, PDSO8
MICROCHIP

MCP6S93

Single-Ended, Rail-to-Rail I/O, Low-Gain PGA
MICROCHIP

MCP6S93-E/UN

SPECIALTY ANALOG CIRCUIT, PDSO10, PLASTIC, MO-187, MSOP-10
MICROCHIP

MCP6S93T-E/UN

SPECIALTY ANALOG CIRCUIT, PDSO10, PLASTIC, MO-187, MSOP-10
MICROCHIP

MCP6V01

300 μA, Auto-Zeroed Op Amps
MICROCHIP

MCP6V01-E/MD

300 μA, Auto-Zeroed Op Amps
MICROCHIP

MCP6V01-E/MNY

300 μA, Auto-Zeroed Op Amps
MICROCHIP

MCP6V01-E/SN

300 μA, Auto-Zeroed Op Amps
MICROCHIP