MCP6V67-E/MS [MICROCHIP]

80 μA, 1 MHz Zero-Drift Op Amps;
MCP6V67-E/MS
型号: MCP6V67-E/MS
厂家: MICROCHIP    MICROCHIP
描述:

80 μA, 1 MHz Zero-Drift Op Amps

文件: 总46页 (文件大小:1265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6V66/6U/7/9  
80 µA, 1 MHz Zero-Drift Op Amps  
Features  
General Description  
• High DC Precision:  
The Microchip Technology Inc. MCP6V66/6U/7/9  
family of operational amplifiers provides input offset  
voltage correction for very low offset and offset drift.  
These devices have a gain bandwidth product of  
1 MHz (typical). They are unity-gain stable, have  
virtually no 1/f noise and have good Power Supply  
Rejection Ratio (PSRR) and Common Mode Rejection  
Ratio (CMRR). These products operate with a single  
supply voltage as low as 1.8V, while drawing  
80 µA/amplifier (typical) of quiescent current.  
- VOS Drift: ±150 nV/°C (maximum)  
- VOS: ±25 µV (maximum)  
- AOL: 110 dB (minimum, VDD = 5.5V)  
- PSRR: 110 dB (minimum, VDD = 5.5V)  
- CMRR: 111 dB (minimum, VDD = 5.5V)  
- Eni: 0.54 µVP-P (typical), f = 0.1 Hz to 10 Hz  
- Eni: 0.17 µVP-P (typical), f = 0.01 Hz to 1 Hz  
• Enhanced EMI Protection:  
The Microchip Technology Inc. MCP6V66/6U/7/9 op  
amps are offered in single (MCP6V66 and  
MCP6V66U), dual (MCP6V67) and quad (MCP6V69)  
packages. They were designed using an advanced  
CMOS process.  
- Electromagnetic Interference Rejection Ratio  
(EMIRR) at 1.8 GHz: 101 dB  
• Low Power and Supply Voltages:  
- IQ: 80 µA/amplifier (typical)  
- Wide Supply Voltage Range: 1.8V to 5.5V  
• Small Packages:  
Package Types  
- Singles in SC70, SOT-23  
MCP6V66  
SOT-23  
MCP6V67  
MSOP  
- Duals in MSOP-8, 2x3 TDFN  
- Quads in TSSOP-14  
VDD  
1
VDD VOUTA  
8
7
6
5
VOUT  
VSS  
• Easy to Use:  
1
5
4
VOUTB  
2
3
4
- Rail-to-Rail Input/Output  
VINA  
VINA  
+
2
3
VINB  
VINB  
+
- Gain Bandwidth Product: 1 MHz (typical)  
- Unity Gain Stable  
VIN+  
VIN–  
VSS  
• Extended Temperature Range: -40°C to +125°C  
MCP6V66U  
SC70, SOT-23  
MCP6V67  
2×3 TDFN *  
Typical Applications  
• Portable Instrumentation  
• Sensor Conditioning  
VOUTA  
VDD  
1
8
VIN+  
VSS  
VDD  
1
2
3
5
VINA–  
VOUTB  
2
3
4
7
6
5
EP  
9
Temperature Measurement  
• DC Offset Correction  
VINA+  
VINB  
VINB  
+
VIN–  
VOUT  
4
VSS  
• Medical Instrumentation  
Design Aids  
MCP6V69  
TSSOP  
• SPICE Macro Models  
• FilterLab® Software  
V
1
14  
13  
12  
11  
10  
9
VOUTA  
OUTD  
V
V
V
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
2
3
4
5
6
7
VINA  
VINA  
VDD  
VINB  
VINB  
+
IND  
+
IND  
SS  
V
+
+
INC  
Related Parts  
VINC  
• MCP6V11/1U/2/4: Zero-Drift, Low Power  
• MCP6V31/1U/2/4: Zero-Drift, Low Power  
• MCP6V71/1U/2/4: Zero-Drift, 2 MHz  
• MCP6V81/1U: Zero-Drift, 5 MHz  
VOUTC  
VOUTB  
8
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
• MCP6V91/1U: Zero-Drift, 10 MHz  
2019 Microchip Technology Inc.  
DS20006266A-page 1  
MCP6V66/6U/7/9  
Typical Application Circuit  
R1  
R3  
V
VOUT  
IN  
-
R2  
R4  
R5  
C2  
+
U1  
MCP6XXX  
VDD/2  
-
R2  
VDD/2  
+
U2  
MCP6V66  
Offset Voltage Correction for Power Driver  
DS20006266A-page 2  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS .................................................................................................................................................................6.5V  
Current at Input Pins ..............................................................................................................................................±2 mA  
Analog Inputs (VIN+ and VIN-) (Note 1).....................................................................................VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ....................................................................................................VSS – 0.3V to VDD + 0.3V  
Difference Input Voltage .................................................................................................................................|VDD – VSS  
|
Output Short Circuit Current ...........................................................................................................................Continuous  
Current at Output and Supply Pins ......................................................................................................................±30 mA  
Storage Temperature .............................................................................................................................-65°C to +150°C  
Maximum Junction Temperature .......................................................................................................................... +150°C  
ESD protection on all pins (HBM, CDM, MM)  
MCP6V66/6U4 kV, 1.5 kV, 400V  
MCP6V67/9  4 kV, 1.5 kV, 300V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those  
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: See Section 4.2.1 “Rail-to-Rail Inputs”.  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
TABLE 1-1:  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 20 kto VL and CL = 30 pF (refer to Figures 1-4 and 1-5).  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
TC1  
-25  
+25  
µV  
TA = +25°C  
Input Offset Voltage Drift with  
Temperature (Linear Temp. Co.)  
-150  
+150  
nV/°C TA = -40 to +125°C,  
(Note 1)  
Input Offset Voltage Quadratic  
Temp. Co.  
TC2  
-30  
pV/°C2 TA = -40 to +125°C  
Input Offset Voltage Aging  
VOS  
±0.45  
µV  
dB  
408 hours Life Test at  
+150°,  
measured at +25°C.  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
PSRR  
110  
134  
IB  
IB  
-50  
±1  
+20  
+50  
pA  
pA  
Input Bias Current across  
Temperature  
TA = +85°C  
IB  
0
+0.2  
±60  
+1.5  
+200  
nA  
TA = +125°C  
Input Offset Current  
IOS  
IOS  
IOS  
ZCM  
-200  
pA  
Input Offset Current across  
Temperature  
±50  
pA  
TA = +85°C  
-800  
±50  
1013||8  
+800  
pA  
TA = +125°C  
Common Mode Input Impedance  
||pF  
Note 1: For design guidance only; not tested.  
2019 Microchip Technology Inc.  
DS20006266A-page 3  
MCP6V66/6U/7/9  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 20 kto VL and CL = 30 pF (refer to Figures 1-4 and 1-5).  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Differential Input Impedance  
ZDIFF  
1013||8  
||pF  
Common Mode  
Common Mode  
Input Voltage Range Low  
VCML  
VSS-0.2  
V
V
Common Mode  
Input Voltage Range High  
VCMH VDD+0.3  
Common Mode Rejection Ratio  
CMRR  
CMRR  
101  
111  
128  
134  
dB  
dB  
VDD = 1.8V,  
VCM = -0.2V to 2.1V  
V
DD = 5.5V,  
VCM = -0.2V to 5.8V  
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
AOL  
AOL  
95  
146  
158  
dB  
dB  
VDD = 1.8V,  
OUT = 0.3V to 1.6V  
V
110  
VDD = 5.5V,  
VOUT = 0.3V to 5.3V  
Output  
Minimum Output Voltage Swing  
VOL  
VOL  
VSS  
VSS+35  
VSS+3.5  
VDD–35  
VDD–3.5  
VSS+121  
mV  
mV  
mV  
mV  
RL = 2 k, G = +2,  
0.5V input overdrive  
RL = 20 k, G = +2,  
0.5V input overdrive  
Maximum Output Voltage Swing  
Output Short Circuit Current  
VOH VDD-121  
VDD  
RL = 2 k, G = +2,  
0.5V input overdrive  
VOH  
RL = 20 k, G = +2,  
0.5V input overdrive  
ISC  
ISC  
±7  
mA  
mA  
VDD = 1.8V  
VDD = 5.5V  
±23  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
40  
80  
5.5  
130  
1.6  
V
µA  
V
Quiescent Current per Amplifier  
Power-on Reset (POR) Trip Voltage  
IO = 0  
VPOR  
0.9  
Note 1: For design guidance only; not tested.  
DS20006266A-page 4  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 20 kto VL and CL = 30 pF (refer to Figures 1-4 and 1-5).  
Parameters  
Sym. Min. Typ. Max. Units  
Conditions  
Amplifier AC Response  
Gain Bandwidth Product  
Slew Rate  
GBWP  
SR  
1
MHz  
V/µs  
°C  
0.45  
60  
Phase Margin  
PM  
G = +1  
Amplifier Noise Response  
Input Noise Voltage  
Eni  
Eni  
eni  
ini  
0.17  
0.54  
26  
µVP-P f = 0.01 Hz to 1 Hz  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f < 2 kHz  
Input Noise Voltage Density  
Input Noise Current Density  
Amplifier Distortion (Note 1)  
Intermodulation Distortion (AC)  
5
fA/Hz  
IMD  
48  
µVPK VCM tone = 50 mVPK at 1 kHz,  
GN = 11, RTI  
Amplifier Step Response  
Start-Up Time  
tSTR  
tSTL  
250  
30  
µs  
µs  
G = +1, 0.1% VOUT settling (Note 2)  
Offset Correction Settling Time  
G = +1, VIN step of 2V,  
VOS within 100 µV of its final value  
Output Overdrive Recovery Time  
tODR  
60  
µs  
G = -10, ±0.5V input overdrive to VDD/2,  
VIN 50% point to VOUT 90% point (Note 3)  
EMI Protection  
EMI Rejection Ratio  
EMIRR  
80  
96  
dB  
VIN = 0.1 VPK, f = 400 MHz  
VIN = 0.1 VPK, f = 900 MHz  
VIN = 0.1 VPK, f = 1800 MHz  
VIN = 0.1 VPK, f = 2400 MHz  
101  
102  
Note 1: These parameters were characterized using the circuit in Figure 1-6. In Figures 2-36 and 2-37, there is an  
IMD tone at DC, a residual tone at 1 kHz and other IMD tones and clock tones. IMD is Referred to  
Input (RTI).  
2: High gains behave differently; see Section 4.3.2 “Offset at Power-Up”.  
3:  
TABLE 1-3:  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +1.8V to +5.5V, VSS = GND  
t
STL and tODR include some uncertainty due to clock edge timing.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Note 1  
Thermal Package Resistances  
Thermal Resistance, 5LD-SC70  
JA  
JA  
JA  
JA  
JA  
209  
201  
53  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 5LD-SOT-23  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-TSSOP  
211  
100  
Note 1: Operation must not cause TJ to exceed the Maximum Junction Temperature specification (+150°C).  
2019 Microchip Technology Inc.  
DS20006266A-page 5  
MCP6V66/6U/7/9  
1.3  
Timing Diagrams  
1.4  
Test Circuits  
The circuits used for most DC and AC tests are shown  
in Figures 1-4 and 1-5. Lay the bypass capacitors out  
as discussed in Section 4.3.9 “Supply Bypassing  
and Filtering”. RN is equal to the parallel combination  
of RF and RG to minimize bias current effects.  
1.8V to 5.5V  
1.8V  
0V  
VDD  
tSTR  
1.001(VDD/3)  
0.999(VDD/3)  
VOUT  
VDD  
1 µF  
RN  
VIN  
FIGURE 1-1:  
Amplifier Start-Up.  
RISO  
CL  
VOUT  
+
-
MCP6V6X  
VIN  
RL  
100 nF  
RF  
VDD/3  
tSTL  
VOS + 100 µV  
OS – 100 µV  
VL  
RG  
VOS  
V
FIGURE 1-4:  
AC and DC Test Circuit for  
Most Noninverting Gain Conditions.  
FIGURE 1-2:  
Offset Correction Settling  
Time.  
VDD  
1 µF  
RN  
VDD/3  
VIN  
RISO  
CL  
VOUT  
+
-
MCP6V6X  
tODR  
RL  
100 nF  
RF  
VIN  
VDD  
VL  
RG  
tODR  
VOUT  
VDD/2  
FIGURE 1-5:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
VSS  
The circuit in Figure 1-6 tests the input’s dynamic  
FIGURE 1-3:  
Output Overdrive Recovery.  
behavior (i.e., IMD, tSTR, tSTL and tODR). The  
potentiometer balances the resistor network (VOUT  
should equal VREF at DC). The op amp’s Common  
Mode Input Voltage is VCM = VIN/2. The error at the  
input (VERR) appears at VOUT with a noise gain of  
10 V/V.  
11.0 k100 k500Ω  
0.1%  
0.1% 25 turn  
VREF = VDD/3  
VDD  
RISO  
0Ω  
1 µF  
VOUT  
VIN  
100 nF  
CL  
30 pF  
RL  
open  
MCP6V6X  
VL  
11.0 kΩ  
100 k249Ω  
1%  
0.1%  
0.1%  
FIGURE 1-6:  
Test Circuit for Dynamic  
Input Behavior.  
DS20006266A-page 6  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
2.1  
DC Input Precision  
8
6
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
Representative Part  
VCM = VCML  
28 Samples  
TA = 25ºC  
4
VDD = 5.5V  
2
VDD = 1.8V  
0
-2  
-4  
-6  
-8  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
0%  
-2 -1.5 -1 -0.5 0 0.5  
1
1.5  
2
2.5  
3
3.5  
4
Input Offset Voltage (µV)  
Power Supply Voltage (V)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Power Supply Voltage with VCM = VCML  
.
8
60%  
Representative Part  
VCM = VCMH  
28 Samples  
A = -40°C to +125°C  
6
4
T
50%  
40%  
30%  
20%  
10%  
0%  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
VDD = 5.5V  
2
VDD = 1.8V  
0
-2  
-4  
-6  
-8  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12  
Input Offset Voltage Drift; TC1 (nV/°C)  
Power Supply Voltage (V)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Power Supply Voltage with VCM = VCMH  
.
8
45%  
Representative Part  
VDD = 1.8V  
28 Samples  
TA = -40°C to +125°C  
6
4
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
2
V
DD = 5.5V  
0
VDD = 1.8V  
-2  
-4  
-6  
-8  
TA  
TA  
TA  
=
=
=
- 40°C  
+25°C  
+85°C  
0%  
TA = +125°C  
-80 -60 -40 -20  
0
20  
40  
60  
80  
Input Offset Voltage Quadratric Temp Co;  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
Output Voltage (V)  
TC2 (pV/°C2)  
FIGURE 2-3:  
Input Offset Voltage  
FIGURE 2-6:  
Input Offset Voltage vs.  
Quadratic Temp. Co.  
Output Voltage with VDD = 1.8V.  
2019 Microchip Technology Inc.  
DS20006266A-page 7  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
8
6
160  
150  
140  
130  
120  
110  
Representative Part  
VDD = 5.5V  
4
TA  
TA  
TA  
=
=
=
- 40°C  
+25°C  
+85°C  
2
TA = +125°C  
0
-2  
-4  
-6  
-8  
PSRR  
CMRR @ VDD = 5.5V  
@ VDD = 1.8V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
CMRR and PSRR vs.  
Output Voltage with VDD = 5.5V.  
Ambient Temperature.  
170  
8
6
VDD= 5.5V  
160  
150  
140  
4
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
- 40°C  
2
0
VDD=1.8V  
-2  
-4  
-6  
-8  
130  
120  
110  
Representative Part  
VDD = 1.8V  
-50  
-25  
0
25  
50  
75  
100  
125  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-11:  
Ambient Temperature.  
DC Open-Loop Gain vs.  
FIGURE 2-8:  
Common Mode Voltage with VDD = 1.8V.  
Input Offset Voltage vs.  
8
6
500  
VDD = 5.5 V  
400  
TA = +85 ºC  
300  
4
2
TA = +125°C  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
- 40°C  
Input Offset Current  
0
Input Bias Current  
-2  
-4  
-6  
-8  
Representative Part  
VDD = 5.5V  
Input Common Mode Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-12:  
Input Bias and Offset  
FIGURE 2-9:  
Input Offset Voltage vs.  
Currents vs. Common Mode Input Voltage with  
TA = +85°C.  
Common Mode Voltage with VDD = 5.5V.  
DS20006266A-page 8  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
500  
400  
300  
200  
100  
0
VDD = 5.5 V  
TA = +125 ºC  
Input Bias Current  
Input Offset Current  
-100  
-200  
-300  
-400  
-500  
Input Common Mode Voltage (V)  
FIGURE 2-13:  
Input Bias and Offset  
Currents vs. Common Mode Input Voltage with  
TA = +125°C.  
1n  
VDD = 5.5 V  
100p  
Input Offset Current  
10p  
Input Bias Current  
1p  
0.1p  
Ambient Temperature (°C)  
FIGURE 2-14:  
Currents vs. Ambient Temperature with  
DD = 5.5V.  
Input Bias and Offset  
V
1m  
100
100µ  
10µ  
1µ  
100n  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
10n  
1n  
100p  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-15:  
Input Bias Current vs. Input  
Voltage (Below VSS).  
2019 Microchip Technology Inc.  
DS20006266A-page 9  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
2.2  
Other DC Voltages and Currents  
40  
30  
0.7  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
1 Wafer Lot  
0.6  
0.5  
Upper (VCMH VDD  
)
20  
0.4  
0.3  
10  
0.2  
Representative Part  
0
0.1  
0.0  
-10  
-20  
-30  
-40  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
TA = +125°C  
T
A = +85°C  
Lower (VCML VSS  
)
TA = +25°C  
A = -40°C  
T
0
0.5  
1
1.5  
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Input Common Mode  
FIGURE 2-19:  
Output Short Circuit Current  
Voltage Headroom (Range) vs. Ambient  
Temperature.  
vs. Power Supply Voltage.  
120  
1000  
Representative Part  
100  
80  
60  
40  
20  
0
VDD = 1.8V  
VDD VOH  
100  
VDD = 5.5V  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
10  
VOL VSS  
1
0.1  
1
10  
0
0.5  
1
1.5  
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5  
Power Supply Voltage (V)  
Output Current Magnitude (mA)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Supply Current vs. Power  
vs. Output Current.  
Supply Voltage.  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
90  
RL = 2 kΩ  
80  
VDD VOH  
70  
60  
VDD = 5.5V  
50  
40  
30  
VOL VSS  
20  
VDD = 1.8V  
10  
VDD VOH  
615 Samples  
1 Wafer Lot  
0
0.9  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-18:  
Output Voltage Headroom  
FIGURE 2-21:  
Power-On Reset Voltage vs.  
vs. Ambient Temperature.  
Ambient Temperature.  
DS20006266A-page 10  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
2.3  
Frequency Response  
140  
130  
120  
110  
100  
90  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
Representative Part  
PM  
CMRR  
VDD = 5.5V  
VDD = 1.8V  
80  
70  
GBWP  
60  
50  
PSRR-  
40  
PSRR+  
30  
20  
10  
-50 -25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-22:  
CMRR and PSRR vs.  
FIGURE 2-25:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Ambient Temperature.  
40  
30  
20  
10  
-60  
1.4  
1.2  
1
100  
90  
80  
70  
60  
50  
40  
30  
PM  
-90  
Open-Loop Phase  
-120  
-150  
-180  
-210  
-240  
-270  
0.8  
0.6  
0.4  
0.2  
0
Open-Loop Gain  
GBWP  
0
-10  
-20  
-30  
VDD = 5.5V  
DD = 1.8V  
V
VDD = 1.8V  
CL = 30 pF  
-1  
0
1
2
3
4
5
6
7
1.E+04  
1.E+05  
100k  
1.E+06  
1M  
1.E+07  
10M  
10k  
f (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-23:  
Open-Loop Gain vs.  
FIGURE 2-26:  
Gain Bandwidth Product  
Frequency with VDD = 1.8V.  
and Phase Margin vs. Common Mode Input  
Voltage.  
3
2.5  
2
80  
40  
30  
20  
-60  
-90  
70  
60  
50  
40  
30  
20  
Open-Loop Phase  
-120  
-150  
-180  
-210  
-240  
-270  
VDD = 5.5V  
PM  
10  
Open-Loop Gain  
1.5  
1
GBWP  
0
VDD = 1.8V  
-10  
0.5  
0
VDD = 5.5V  
L = 30 pF  
-20  
C
-30  
1.E+04  
0
1
2
3
4
5
6
10k  
100k  
1.E+05  
1M  
1.E+06  
10M  
1.E+07  
f (Hz)  
Output Voltage (V)  
FIGURE 2-24:  
Open-Loop Gain vs.  
FIGURE 2-27:  
Gain Bandwidth Product  
Frequency with VDD = 5.5V.  
and Phase Margin vs. Output Voltage.  
2019 Microchip Technology Inc.  
DS20006266A-page 11  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
100  
100k  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 1.8V  
00  
10k  
1000  
1k  
GN = 101 V/V  
GN = 11 V/V  
GN = 1 V/V  
100  
10  
VIN = 100 mVPK  
VDD = 5.5V  
.0+03  
1.0+04  
1.E05  
10+06  
10+07  
10M  
100M  
1G  
10G  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-28:  
Closed-Loop Output  
FIGURE 2-31:  
EMIRR vs. Frequency.  
Impedance vs. Frequency with VDD = 1.8V.  
100
100k  
120  
100  
80  
VDD = 5.5V  
VDD = 5.5V  
1
10k  
60  
1k  
EMIRR @ 2400 MHz  
EMIRR @ 1800 MHz  
EMIRR @ 900 MHz  
EMIRR @ 400 MHz  
40  
20  
0
GN = 101 V/V  
100  
GN = 11 V/V  
GN = 1 V/V  
10  
10+03  
10+05  
10+06  
10+07  
10  
1k  
1100+k04  
100k  
1M  
10M  
0.01  
0.1  
1
)
Input Voltage (VPK  
Frequency (Hz)  
FIGURE 2-29:  
Closed-Loop Output  
FIGURE 2-32:  
EMIRR vs. Input Voltage.  
Impedance vs. Frequency with VDD = 5.5V.  
130  
120  
110  
100  
90  
10  
VDD = 5.5V  
VDD = 5.5V  
VDD = 1.8V  
VDD = 1.8V  
1
80  
70  
60  
0.1  
10k  
100k  
Frequency (Hz)  
1M  
1.E+06  
1.E+04  
1.E+05  
1k  
10k  
100k  
1M  
Frequency (Hz)  
FIGURE 2-33:  
Separation vs. Frequency.  
Channel-to-Channel  
FIGURE 2-30:  
Swing vs. Frequency.  
Maximum Output Voltage  
DS20006266A-page 12  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
2.4  
Input Noise and Distortion  
1000  
1000  
100  
10  
1.E-3  
1m  
VDD= 1.8V  
VDD = 5.5V  
G = 11 V/V  
VDD = 1.8V  
VDD = 5.5V  
VDD tone = 100 mVPK, f = 1 kHz  
1.E-4  
100µ  
100  
10  
1
eni  
Residual  
1 kHz tone  
1.E-5  
10µ  
DC tone  
1.E-6  
1µ  
Δf = 2 Hz  
1.E-7  
100n  
Δf = 64 Hz  
Eni(0 Hz to f)  
1
100k  
1.E-8  
10n  
1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5  
1
1.E+0  
10  
1.E+1  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-34:  
Input Noise Voltage Density  
FIGURE 2-37:  
Inter-Modulation Distortion  
and Integrated Input Noise Voltage vs.  
Frequency.  
vs. Frequency with VDD Disturbance  
(see Figure 1-6).  
35  
f < 2 kHz  
9''ꢊ ꢊꢁꢎꢈ9ꢊ  
VDD = 1.8V  
30  
13%:ꢊ ꢊꢁꢀꢊ+]ꢊ  
25  
VDD = 5.5V  
20  
15  
10  
5
13%:ꢊ ꢊꢁꢊ+]ꢊ  
0
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6  
Common Mode Input Voltage (V)  
ꢁꢀ ꢂꢀ ꢃꢀ ꢄꢀ ꢅꢀ ꢆꢀ ꢇꢀ ꢈꢀ ꢉꢀ ꢁꢀꢀ  
7LPHꢊꢌVꢍꢊ  
FIGURE 2-35:  
Input Noise Voltage Density  
FIGURE 2-38:  
Input Noise vs. Time with  
vs. Input Common Mode Voltage.  
1 Hz and 10 Hz Filters and VDD = 1.8V.  
1.E-3  
1m  
G = 11 V/V  
VCM tone = 100 mVPK, f = 1 kHz  
VDD = 5.5V  
VDD = 1.8V  
VDD = 5.5V  
NPBW = 10 Hz  
1.E-4  
100µ  
Residual  
1 kHz tone  
(due to resistor  
mismatch)  
1.E-5  
10µ  
DC tone  
1.E-6  
1µ  
Δf = 2 Hz  
1.E-7  
100n  
NPBW = 1 Hz  
Δf = 64 Hz  
1.E-8  
10n  
0
10 20 30 40 50 60 70 80 90 100  
Time (s)  
1
10  
1.E+1  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
1.E+0  
Frequency (Hz)  
FIGURE 2-36:  
Intermodulation Distortion  
FIGURE 2-39:  
Input Noise vs. Time with  
vs. Frequency with VCM Disturbance (see  
Figure 1-6).  
1 Hz and 10 Hz Filters and VDD = 5.5V.  
2019 Microchip Technology Inc.  
DS20006266A-page 13  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
2.5  
Time Response  
30  
25  
20  
15  
10  
5
6
6
5
4
3
2
1
0
VDD = 5.5 V  
G = +1 V/V  
5
VDD  
4
VDD Bypass = 1 µF  
VDD = 5.5V  
G = 1 V/V  
3
2
1
VOS  
0
0
-5  
-1  
-2  
POR Trip Point  
-10  
0
5
10 15 20 25 30 35 40 45 50  
Time (µs)  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
FIGURE 2-40:  
Time at Power-Up.  
Input Offset Voltage vs.  
FIGURE 2-43:  
Step Response.  
Noninverting Large Signal  
6
VDD = 5.5 V  
G = 1 V/V  
5
VIN  
VOUT  
4
3
2
1
VDD = 5.5 V  
G = -1 V/V  
0
-1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (0.1 ms/div)  
Time (µs)  
FIGURE 2-41:  
The MCP6V66/6U/7/9  
FIGURE 2-44:  
Inverting Small Signal Step  
Family Shows No Input Phase Reversal with  
Overdrive.  
Response.  
VDD = 5.5V  
G = +1 V/V  
0
1
2
3
4
5
6
7
8
9
10  
Time (µs)  
FIGURE 2-42:  
Noniverting Small Signal  
Step Response.  
DS20006266A-page 14  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 20 kto VL and CL = 30 pF.  
6
6
5
5
4
3
2
1
0
GVIN  
VOUT  
VDD = 5.5V  
G = -10 V/V  
0.5V Overdrive  
4
3
2
1
GVIN  
VOUT  
VDD = 5.5 V  
G = -1 V/V  
0
0
5
10 15 20 25 30 35 40 45 50  
-1  
Time (μs)  
Time (50 µs/div)  
FIGURE 2-45:  
Inverting Large Signal Step  
FIGURE 2-47:  
Output Overdrive Recovery  
Response.  
vs. Time with G = -10 V/V.  
1.0  
0.9  
10m  
0.5V Input Overdrive  
Falling Edge, VDD = 5.5V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Rising Edge, VDD = 5.5V  
VDD = 1.8V  
tODR, high  
1m  
100µ  
10µ  
1µ  
Falling Edge, VDD = 1.8V  
Rising Edge, VDD = 1.8V  
tODR, low  
VDD = 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
1000  
Ambient Temperature (°C)  
Inverting Gain Magnitude (V/V)  
FIGURE 2-46:  
Slew Rate vs. Ambient  
FIGURE 2-48:  
Output Overdrive Recovery  
Temperature.  
Time vs. Inverting Gain.  
2019 Microchip Technology Inc.  
DS20006266A-page 15  
MCP6V66/6U/7/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6V66 MCP6V66U  
MCP6V67  
MCP6V69  
TSSOP  
Symbol  
Description  
SOT-23,  
SOT-23  
2×3 TDFN MSOP  
SC-70  
1
4
1
4
1
4
1
11  
3
VOUT, VOUTA Output (Op Amp A)  
2
2
VSS  
Negative Power Supply  
3
1
3
3
VIN+, VINA  
VIN-, VINA  
VDD  
+
Noninverting Input (Op Amp A)  
Inverting Input (Op Amp A)  
Positive Power Supply  
4
3
2
2
2
-
5
5
8
8
4
5
5
5
VINB  
VINB  
VOUTB  
VOUTC  
VINC  
+
Noninverting Input (Op Amp B)  
Inverting Input (Op Amp B)  
Output (Op Amp B)  
6
6
6
-
7
7
7
9
8
Output (Op Amp C)  
9
-
Inverting Input (Op Amp C)  
Noninverting Input (Op Amp C)  
Noninverting Input (Op Amp D)  
Inverting Input (Op Amp D)  
Output (Op Amp D)  
10  
12  
13  
14  
VINC  
+
+
VIND  
VIND  
-
VOUTD  
EP  
Exposed Thermal Pad (EP); must be  
connected to VSS  
3.1  
Analog Outputs  
3.4  
Exposed Thermal Pad (EP)  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
There is an internal connection between the exposed  
thermal pad (EP) and the VSS pin; they must be  
connected to the same potential on the printed circuit  
board (PCB).  
3.2  
Analog Inputs  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (θJA).  
The noninverting and inverting inputs (VIN+, VIN-, …)  
are high-impedance CMOS inputs with low bias  
currents.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
DS20006266A-page 16  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
The Low-Pass Filter reduces high-frequency content,  
including harmonics of the chopping clock.  
4.0  
APPLICATIONS  
The MCP6V66/6U/7/9 family of zero-drift op amps is  
manufactured using Microchip’s state-of-the-art CMOS  
process. It is designed for applications with  
requirements for small packages and low power. Its low  
supply voltage and low quiescent current make the  
MCP6V66/6U/7/9 devices ideal for battery-powered  
applications.  
The Output Buffer drives external loads at the VOUT pin  
(VREF is an internal reference voltage).  
The Oscillator runs at fOSC1 = 200 kHz. Its output is  
divided by two to produce the chopping clock rate of  
fCHOP = 100 kHz.  
The internal Power-on Reset (POR) starts the part in a  
known good state, protecting against power supply  
brown-outs.  
4.1  
Overview of Zero-Drift Operation  
The Digital Control block controls switching and POR  
events.  
Figure 4-1 shows  
a
simplified diagram of the  
MCP6V66/6U/7/9 zero-drift op amps. This diagram will  
be used to explain how slow voltage errors are reduced  
in this architecture (much better VOS, VOS/TA (TC1),  
CMRR, PSRR, AOL and 1/f noise).  
4.1.2  
CHOPPING ACTION  
Figure 4-2 shows the amplifier connections for the first  
phase of the chopping clock, and Figure 4-3 shows the  
connections for the second phase. Its slow voltage  
errors alternate in polarity, making the average error  
small.  
VREF  
-
Output  
Buffer  
VOUT  
VIN+  
+
VIN+  
VIN–  
+
-
+
-
+
-
Main  
Amp.  
+
-
VIN–  
Main  
Amp.  
NC  
+
-
NC  
+
-
Low-Pass  
Filter  
Low-Pass  
Filter  
+
-
+
-
Aux.  
Amp.  
Chopper  
Input  
Switches  
Chopper  
Output  
Switches  
+
-
+
-
Aux.  
Amp.  
FIGURE 4-2:  
First Chopping Clock Phase;  
Equivalent Amplifier Diagram.  
Oscillator  
Digital Control  
POR  
VIN+  
FIGURE 4-1:  
Simplified Zero-Drift Op  
+
-
Amp Functional Diagram.  
+
-
Main  
VIN–  
Amp.  
NC  
4.1.1  
BUILDING BLOCKS  
+
-
The Main Amplifier is designed for high gain and  
bandwidth, with a differential topology. Its main input  
pair (+ and - pins at the top left) is used for the higher  
frequency portion of the input signal. Its auxiliary input  
pair (+ and - pins at the bottom left) is used for the  
low-frequency portion of the input signal, and corrects  
the op amp’s input offset voltage. Both inputs are  
added together internally.  
Low-Pass  
Filter  
+
-
+
-
Aux.  
Amp.  
The Auxiliary Amplifier, Chopper Input Switches and  
Chopper Output Switches provide a high DC gain to the  
input signal. DC errors are modulated to higher  
frequencies, while white noise is modulated to low  
frequency.  
FIGURE 4-3:  
Phase; Equivalent Amplifier Diagram.  
Second Chopping Clock  
2019 Microchip Technology Inc.  
DS20006266A-page 17  
MCP6V66/6U/7/9  
4.1.3  
INTERMODULATION DISTORTION  
(IMD)  
Bond  
Pad  
VDD  
VIN+  
VSS  
These op amps will show intermodulation distortion  
(IMD) products when an AC signal is present.  
The signal and clock can be decomposed into sine  
wave tones (Fourier series components). These tones  
interact with the zero-drift circuitry’s nonlinear response  
to produce IMD tones at sum and difference  
frequencies. Each of the square wave clock’s  
harmonics has a series of IMD tones centered on it.  
See Figures 2-36 and 2-37.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN–  
Bond  
Pad  
4.2  
Other Functional Blocks  
FIGURE 4-4:  
Simplified Analog Input ESD  
Structures.  
4.2.1  
RAIL-TO-RAIL INPUTS  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages well above VDD; their breakdown  
voltage is high enough to allow normal operation but  
not low enough to protect against slow overvoltage  
(beyond VDD) events. Very fast ESD events (that meet  
the specification) are limited so that damage does not  
occur.  
The input stage of the MCP6V66/6U/7/9 op amps uses  
two differential CMOS input stages in parallel. One  
operates at low Common Mode Input Voltage (VCM  
,
which is approximately equal to VIN+ and VIN- in normal  
operation) and the other at high VCM. With this  
topology, the input operates with VCM up to VDD + 0.3V  
and down to VSS – 0.2V, at +25°C (see Figure 2-16).  
The input offset voltage (VOS) is measured at  
VCM = VSS – 0.2V and VDD + 0.3V to ensure proper  
operation.  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-5 shows one approach to protecting these  
inputs. D1 and D2 may be small signal silicon diodes,  
Schottky diodes for lower clamping voltages or  
diode-connected FETs for low leakage.  
4.2.1.1  
Phase Reversal  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-41 shows an input voltage  
exceeding both supplies with no phase inversion.  
VDD  
4.2.1.2  
Input Voltage Limits  
U1  
D1  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”). This requirement is independent of the  
current limits discussed later on.  
MCP6V6X  
V1  
V2  
+
-
D2  
VOUT  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-4. This structure was chosen to  
protect the input transistors against many (but not all)  
overvoltage conditions and to minimize input bias  
current (IB).  
FIGURE 4-5:  
Against High Voltages.  
Protecting the Analog Inputs  
DS20006266A-page 18  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
4.2.1.3  
Input Current Limits  
4.3  
Application Tips  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1 “Absolute  
Maximum Ratings †”). This requirement is  
independent of the voltage limits discussed previously.  
4.3.1  
INPUT OFFSET VOLTAGE OVER  
TEMPERATURE  
Table 1-1 gives both the linear and quadratic  
temperature coefficients (TC1 and TC2) of input offset  
voltage. The input offset voltage, at any temperature in  
the specified range, can be calculated as follows:  
Figure 4-6 shows one approach to protecting these  
inputs. The R1 and R2 resistors limit the possible  
current in or out of the input pins (and into D1 and D2).  
EQUATION 4-1:  
The diode currents will dump onto VDD  
.
VOSTA= VOS + TC1T + TC2T2  
VDD  
Where:  
T  
VOS(TA)  
VOS  
=
=
=
=
=
TA – 25°C  
U1  
D1  
R1  
R2  
Input offset voltage at TA  
Input offset voltage at +25°C  
Linear temperature coefficient  
Quadratic temperature coefficient  
MCP6V6X  
V1  
V2  
+
-
D2  
VOUT  
TC1  
TC2  
4.3.2  
OFFSET AT POWER-UP  
VSS – min(V1, V2)  
2 mA  
max(V1, V2) – VDD  
2 mA  
min(R1, R2) >  
min(R1, R2) >  
When these parts power up, the input offset (VOS  
)
starts at its uncorrected value. Circuits with high DC  
gain can cause the output to reach one of the two rails.  
In this case, the time to a valid output is delayed by an  
output overdrive time (like tODR) in addition to the  
start-up time (like tSTR).  
FIGURE 4-6:  
Against High Currents.  
Protecting the Analog Inputs  
It can be simple to avoid this extra start-up time.  
Reducing the gain is one method. Adding a capacitor  
across the feedback resistor (RF) is another method.  
It is also possible to connect the diodes to the left of the  
R1 and R2 resistors. In this case, the currents through  
the D1 and D2 diodes need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN-) should be very small.  
A significant amount of current can flow out of the inputs  
(through the ESD diodes) when the Common Mode  
Voltage (VCM) is below ground (VSS) (see Figure 2-15).  
4.2.2  
RAIL-TO-RAIL OUTPUT  
The Output Voltage Range of the MCP6V66/6U/7/9  
zero-drift op amps is VDD – 5.9 mV (typical) and  
VSS + 4.7 mV (typical) when RL = 20 kis connected to  
VDD/2 and VDD = 5.5V. Refer to Figures 2-17 and 2-18  
for more information.  
This op amp is designed to drive light loads; use  
another amplifier to buffer the output from heavy loads.  
2019 Microchip Technology Inc.  
DS20006266A-page 19  
MCP6V66/6U/7/9  
GN is the circuit’s noise gain. For noninverting gains,  
GN and the Signal Gain are equal. For inverting gains,  
GN is 1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
4.3.3  
SOURCE RESISTANCES  
The input bias currents have two significant  
components: switching glitches that dominate at room  
temperature and below and input ESD diode leakage  
currents that dominate at +85°C and above.  
10000  
VDD = 5.5V  
RL = 20 kȍ  
Make the resistances seen by the inputs small and  
equal. This minimizes the output offset caused by the  
input bias currents.  
1000  
100  
The inputs should see a resistance on the order of 10Ω  
to 1 kat high frequencies (i.e., above 1 MHz). This  
helps minimize the impact of switching glitches, which  
are very fast, on overall performance. In some cases it  
may be necessary to add resistors in series with the  
inputs to achieve this improvement in performance.  
GN:  
1 V/V  
10 V/V  
10  
1
100 V/V  
100p  
1n
10n
100n  
1µ
Small input resistances may be needed for high gains.  
Without them, parasitic capacitances might cause  
positive feedback and instability.  
Normalized Load Capacitance; CL/—GN (F)  
FIGURE 4-8:  
Recommended RISO Values  
for Capacitive Loads.  
4.3.4  
SOURCE CAPACITANCE  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify the RISO value until the  
response is reasonable. Bench evaluation is helpful.  
The capacitances seen by the two inputs should be  
small. Large input capacitances and source  
resistances, together with high gain, can lead to  
positive feedback and instability.  
4.3.6  
STABILIZING OUTPUT LOADS  
4.3.5  
CAPACITIVE LOADS  
This family of zero-drift op amps has an output  
impedance (Figures 2-28 and 2-29) that has a double  
zero when the gain is low. This can cause a large phase  
shift in feedback networks that have low-impedance  
near the part’s bandwidth. This large phase shift can  
cause stability problems.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. These zero-drift op amps have a different  
output impedance than most op amps, due to their  
unique topology.  
Figure 4-9 shows that the load on the output is  
(RL + RISO)||(RF + RG), where RISO is before the load  
(like Figure 4-7). This load needs to be large enough to  
maintain stability; it should be at least 10 k.  
When driving a capacitive load with these op amps, a  
series resistor at the output (RISO in Figure 4-7)  
improves the feedback loop’s phase margin (stability)  
by making the output load resistive at higher  
frequencies. The bandwidth will be generally lower  
than the bandwidth with no capacitive load.  
RISO  
RG  
RF  
VOUT  
-
RL  
CL  
+
U1  
MCP6V6X  
Output Load.  
RISO  
VOUT  
FIGURE 4-9:  
-
CL  
U1  
+
MCP6V6X  
FIGURE 4-7:  
Output Resistor, RISO,  
Stabilizes Capacitive Loads.  
Figure 4-8 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
load capacitance (CL). The y-axis is the resistance  
(RISO).  
DS20006266A-page 20  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
4.3.7  
GAIN PEAKING  
4.3.8  
REDUCING UNDESIRED NOISE  
AND SIGNALS  
Figure 4-10 shows an op amp circuit that represents  
noninverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The CN and CG capacitances  
represent the total capacitance at the input pins; they  
include the op amp’s Common Mode Input  
Capacitance (CCM), board parasitic capacitance and  
any capacitor placed in parallel. The CFP capacitance  
represents the parasitic capacitance coupling the  
output and noninverting input pins.  
Reduce undesired noise and signals with:  
• Low bandwidth signal filters:  
- Minimize random analog noise  
- Reduce interfering signals  
• Good PCB layout techniques:  
- Minimize crosstalk  
- Minimize parasitic capacitances and  
inductances that interact with fast switching  
edges  
• Good power supply design:  
- Isolation from other parts  
CN  
CFP  
RN  
- Filtering of interference on supply line(s)  
VP  
4.3.9  
SUPPLY BYPASSING AND  
FILTERING  
U1  
+
MCP6V6X  
-
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
of the pin for good high-frequency performance.  
VM  
VOUT  
RG  
RF  
CG  
These parts also need a bulk capacitor (i.e., 1 µF or  
larger) within 100 mm to provide large, slow currents.  
This bulk capacitor can be shared with other low-noise  
analog parts.  
FIGURE 4-10:  
Capacitance.  
Amplifier with Parasitic  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF||RG.  
In some cases, high-frequency power supply noise  
(e.g., switched mode power supplies) may cause  
undue intermodulation distortion with a DC offset shift;  
this noise needs to be filtered. Adding a small resistor  
into the supply connection can be helpful.  
CN and RN form a low-pass filter that affects the signal  
4.3.10  
PCB DESIGN FOR DC PRECISION  
at VP. This filter has a single real pole at 1/(2πRNCN).  
The largest value of RF that should be used depends  
on noise gain (see GN in Section 4.3.5 “Capacitive  
Loads”), CG and the open-loop gain’s phase shift. An  
approximate limit for RF is:  
In order to achieve DC precision on the order of ±1 µV,  
many physical errors need to be minimized. The design  
of the Printed Circuit Board (PCB), the wiring and the  
thermal environment have a strong impact on the  
precision achieved. A poor PCB design can easily be  
more than 100 times worse than the MCP6V66/6U/7/9  
op amps’ minimum and maximum specifications.  
EQUATION 4-2:  
3.5 pF  
RF 10 k  --------------- G N2  
CG  
4.3.10.1  
PCB Layout  
Any time two dissimilar metals are joined together, a  
temperature-dependent voltage appears across the  
junction (the Seebeck or thermojunction effect). This  
effect is used in thermocouples to measure  
temperature. The following are examples of  
thermojunctions on a PCB:  
Some applications may modify these values to reduce  
either output loading or gain peaking (step-response  
overshoot).  
At high gains, RN needs to be small in order to prevent  
positive feedback and oscillations. Large CN values  
can also help.  
• Components (resistors, op amps, …) soldered to  
a copper pad  
• Wires mechanically attached to the PCB  
• Jumpers  
• Solder joints  
• PCB vias  
2019 Microchip Technology Inc.  
DS20006266A-page 21  
MCP6V66/6U/7/9  
Typical thermojunctions have temperature-to-voltage  
conversion coefficients of 1 to 100 µV/°C (sometimes  
higher).  
4.4  
Typical Applications  
4.4.1  
WHEATSTONE BRIDGE  
Microchip’s AN1258 (“Op Amp Precision Design: PCB  
Layout Techniques”) contains in-depth information on  
PCB layout techniques that minimize thermojunction  
effects. It also discusses other effects, such as  
crosstalk, impedances, mechanical stresses and  
humidity.  
Many sensors are configured as Wheatstone bridges.  
Strain gauges and pressure sensors are two common  
examples. These signals can be small and the  
Common mode noise large. Amplifier designs with high  
differential gain are desirable.  
Figure 4-11 shows how to interface to a Wheatstone  
bridge with a minimum of components. Because the  
circuit is not symmetric, the ADC input is single-ended  
and there is a minimum of filtering; the CMRR is good  
enough for moderate Common mode noise.  
4.3.10.2  
Crosstalk  
DC crosstalk causes offsets that appear as a larger  
input offset voltage. Common causes include:  
• Common mode noise (remote sensors)  
• Ground loops (current return paths)  
• Power supply coupling  
0.01C  
100R  
VDD  
1 kΩ  
VDD  
R
R
+
-
ADC  
Interference from the mains (usually 50 Hz or 60 Hz)  
and other AC sources can also affect the DC  
performance. Nonlinear distortion can convert these  
signals to multiple tones, including a DC shift in voltage.  
When the signal is sampled by an ADC, these AC  
signals can also be aliased to DC, causing an apparent  
shift in offset.  
0.2R  
0.2R  
U1  
MCP6V66  
-
R
R
+
FIGURE 4-11:  
4.4.2 RTD SENSOR  
The ratiometric circuit in Figure 4-12 conditions a  
Simple Design.  
To reduce interference:  
- Keep traces and wires as short as possible  
- Use shielding  
two-wire RTD for applications with limited  
a
temperature range. U1 acts as a difference amplifier  
with a low-frequency pole. The sensor’s wiring  
resistance (RW) is corrected in firmware. Failure (open)  
of the RTD is detected by an out-of-range voltage.  
- Use ground plane (at least a star ground)  
- Place the input signal source near the DUT  
- Use good PCB layout techniques  
- Use a separate power supply filter (bypass  
capacitors) for these zero-drift op amps  
VDD  
4.3.10.3  
Miscellaneous Effects  
RT  
34.8 kΩ  
RN  
10.0 kΩ  
Keep the resistances seen by the input pins as small  
and as near to equal as possible to minimize bias  
current-related offsets.  
10 nF  
RF  
2.00 MΩ  
+
RW  
Make the (trace) capacitances seen by the input pins  
small and equal. This is helpful in minimizing switching  
glitch-induced offset voltages.  
U1  
RRTD  
100Ω  
MCP6V66  
-
Bending a coax cable with a radius that is too small  
causes a small voltage drop to appear on the center  
conductor (the triboelectric effect). Make sure the  
bending radius is large enough to keep the conductors  
and insulation in full contact.  
1.00 kΩ  
RG  
RF  
RW  
10.0 k2.00 MΩ  
100 nF  
VDD  
RB  
4.99 kΩ  
10 nF  
1.0 µF  
Mechanical stresses can make some capacitor types  
(such as some ceramics) output small voltages. Use  
more appropriate capacitor types in the signal path and  
minimize mechanical stresses and vibration.  
+
ADC  
-
FIGURE 4-12:  
RTD Sensor.  
Humidity can cause electrochemical potential voltages  
to appear in a circuit. Proper PCB cleaning helps, as  
does the use of encapsulants.  
DS20006266A-page 22  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
4.4.3  
OFFSET VOLTAGE CORRECTION  
Figure 4-13 shows MCP6V66 (U2) correcting the input  
offset voltage of another op amp (U1). R2 and C2  
integrate the offset error seen at U1’s input; the  
integration needs to be slow enough to be stable (with  
the feedback provided by R1 and R3). R4 and R5  
attenuate the integrator’s output; this shifts the  
integrator pole down in frequency.  
R1  
R2  
R3  
VIN  
VOUT  
-
R4  
R5  
C2  
+
U1  
MCP6XXX  
VDD/2  
-
R2  
VDD/2  
+
U2  
MCP6V66  
FIGURE 4-13:  
Offset Correction.  
4.4.4 PRECISION COMPARATOR  
Use high gain before a comparator to improve the  
latter’s performance. Do not use MCP6V66/6U/7/9 as  
a comparator by itself; the VOS correction circuitry does  
not operate properly without a feedback loop.  
U1  
VIN  
MCP6V66  
+
-
R1  
R2  
R3  
R4  
R5  
VOUT  
VDD/2  
+
-
U2  
MCP6541  
FIGURE 4-14:  
Precision Comparator.  
2019 Microchip Technology Inc.  
DS20006266A-page 23  
MCP6V66/6U/7/9  
5.3  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP6V66/6U/7/9 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help customers achieve faster time to  
market. For a complete listing of these boards and their  
corresponding user’s guides and technical information,  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the  
MCP6V66/6U/7/9 op amps is available on the  
Microchip web site at www.microchip.com. This model  
is intended to be an initial design tool that works well in  
the op amp’s linear region of operation over the  
temperature range. See the model file for information  
on its capabilities.  
visit  
the  
Microchip  
web  
site  
at  
www.microchip.com/analog tools.  
Some boards that are especially useful are:  
• MCP6V01 Thermocouple Auto-Zeroed Reference  
Design (P/N MCP6V01RD-TCPL)  
• MCP6XXX Amplifier Evaluation Board 2 (P/N  
DS51668)  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristics curves.  
• MCP6XXX Amplifier Evaluation Board 3 (P/N  
DS51673)  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board  
(P/N SOIC8EV)  
5.2  
Microchip Advanced Part Selector  
(MAPS)  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board (P/N  
SOIC14EV)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit particular design  
5.4  
Application Notes  
a
requirement. Available at no cost from the Microchip  
web site at www.microchip.com/maps, MAPS is an  
overall selection tool for Microchip’s product portfolio  
that includes Analog, Memory, MCUs and DSCs. Using  
this tool, a customer can define a filter to sort features  
for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for data sheets, purchase and  
sampling of Microchip parts.  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
ADN003: “Select the Right Operational Amplifier for  
your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op Amps”,  
DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random Noise”,  
DS01228  
AN1258: “Op Amp Precision Design: PCB Layout  
Techniques”, DS01258  
These Application Notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
DS20006266A-page 24  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6V66U)  
Example  
FT56  
Device  
MCP6V66UT-E/LTY  
Code  
FTNN  
5-Lead SOT-23 (MCP6V66, MCP6V66U)  
Example  
Device  
Code  
RBBEC  
35256  
MCP6V66T-E/OT  
MCP6V66UT-E/OT  
RBBEC  
RBBED  
8-Lead MSOP (3x3 mm) (MCP6V67)  
Example  
6V67E  
935256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2019 Microchip Technology Inc.  
DS20006266A-page 25  
MCP6V66/6U/7/9  
8-Lead TDFN (2x3x0.75 mm) (MCP6V67)  
Example  
Device  
MCP6V67T-E/MNY  
Code  
DM7  
DM7  
935  
25  
Note:  
Applies to 8-Lead 2x3 TDFN.  
14-Lead TSSOP (4.4 mm) (MCP6V69)  
Example  
XXXXXXXX  
YYWW  
6V69E/ST  
1935  
256  
NNN  
DS20006266A-page 26  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
5-Lead Plastic Small Outine Transistor (LTY) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
+ꢆꢃꢍꢇ  
ꢕ,--,ꢕꢌ&ꢌ.ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ-ꢃꢄꢃꢍꢇ  
ꢕ,/  
/0ꢕ  
ꢕꢛ1  
/ꢐꢄ2ꢅꢓꢉꢈꢑꢉ3ꢃꢆꢇ  
3ꢃꢍꢎꢒ  
/
"
ꢗꢁ4"ꢉ#ꢜ$  
0(ꢅꢓꢊꢏꢏꢉ5ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ3ꢊꢎ8ꢊꢚꢅꢉ&ꢒꢃꢎ8ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢗꢁ6ꢗ  
ꢗꢁ6ꢗ  
ꢗꢁꢗꢗ  
ꢀꢁ6ꢗ  
ꢀꢁꢀ"  
ꢀꢁ6ꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢗ6  
ꢗꢁꢀ"  
M
M
M
ꢘꢁꢀꢗ  
ꢀꢁꢘ"  
ꢘꢁꢗꢗ  
ꢗꢁꢘꢗ  
M
ꢀꢁꢀꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢀꢗ  
ꢘꢁ!ꢗ  
ꢀꢁ:"  
ꢘꢁꢘ"  
ꢗꢁ!4  
ꢗꢁꢘ4  
ꢗꢁ!ꢗ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
-
2
0(ꢅꢓꢊꢏꢏꢉ9ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ3ꢊꢎ8ꢊꢚꢅꢉ9ꢃꢋꢍꢒ  
0(ꢅꢓꢊꢏꢏꢉ-ꢅꢆꢚꢍꢒ  
;ꢈꢈꢍꢉ-ꢅꢆꢚꢍꢒ  
-ꢅꢊꢋꢉ&ꢒꢃꢎ8ꢆꢅꢇꢇ  
-ꢅꢊꢋꢉ9ꢃꢋꢍꢒ  
M
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉ ꢀ!ꢁ"ꢕꢁ  
#ꢜ$% #ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ&ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ'ꢉꢅꢖꢊꢎꢍꢉ(ꢊꢏꢐꢅꢉꢇꢒꢈ*ꢆꢉ*ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
B  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ &ꢎꢒꢆꢈꢏꢈꢚ' ꢂꢓꢊ*ꢃꢆꢚ $ꢗ!<ꢗ4ꢀ#  
2019 Microchip Technology Inc.  
DS20006266A-page 27  
MCP6V66/6U/7/9  
5-Lead Plastic Small Outine Transistor (LTY) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006266A-page 28  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 C 2X  
D
e1  
A
D
N
E/2  
E1/2  
E1  
E
(DATUM D)  
(DATUM A-B)  
0.15 C D  
2X  
NOTE 1  
1
2
e
B
NX b  
0.20  
C A-B D  
TOP VIEW  
A
A2  
A1  
A
0.20 C  
SEATING PLANE  
A
SEE SHEET 2  
C
SIDE VIEW  
Microchip Technology Drawing C04-091-OT Rev F Sheet 1 of 2  
2019 Microchip Technology Inc.  
DS20006266A-page 29  
MCP6V66/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
c
T
L
L1  
VIEW A-A  
SHEET 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
5
0.95 BSC  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
-
-
-
-
1.45  
1.30  
0.15  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.30  
-
0.60  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
0.60 REF  
I
0°  
0.08  
0.20  
-
-
-
10°  
0.26  
0.51  
c
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-091-OT Rev E Sheet 2 of 2  
DS20006266A-page 30  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X
SILK SCREEN  
5
Y
Z
C
G
1
2
E
GX  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.95 BSC  
2.80  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width (X5)  
Contact Pad Length (X5)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
X
Y
G
GX  
Z
0.60  
1.10  
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2091-OT Rev F  
2019 Microchip Technology Inc.  
DS20006266A-page 31  
MCP6V66/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006266A-page 32  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006266A-page 33  
MCP6V66/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006266A-page 34  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
8-Lead Plastic Dual Flat, No Lead Package (MNY) – 2x3x0.8 mm Body [TDFN]  
With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
(DATUM A)  
(DATUM B)  
NOTE 1  
2X  
0.15 C  
2X  
1
2
0.15 C  
TOP VIEW  
0.10 C  
(A3)  
C
A
SEATING  
PLANE  
8X  
A1  
L
0.08 C  
C A B  
SIDE VIEW  
0.10  
D2  
1
2
0.10  
C A B  
NOTE 1  
E2  
K
N
8X b  
0.10  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing No. C04-129-MNY Rev E Sheet 1 of 2  
2019 Microchip Technology Inc.  
DS20006266A-page 35  
MCP6V66/6U/7/9  
8-Lead Plastic Dual Flat, No Lead Package (MNY) – 2x3x0.8 mm Body [TDFN]  
With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Length  
Overall Width  
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
N
8
e
0.50 BSC  
0.75  
A
A1  
A3  
D
0.70  
0.00  
0.80  
0.05  
0.02  
0.20 REF  
2.00 BSC  
3.00 BSC  
1.40  
E
D2  
E2  
b
L
K
1.35  
1.25  
0.20  
0.25  
0.20  
1.45  
1.35  
0.30  
0.45  
-
1.30  
0.25  
0.30  
-
Contact-to-Exposed Pad  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04-129-MNY Rev E Sheet 2 of 2  
DS20006266A-page 36  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
8-Lead Plastic Dual Flat, No Lead Package (MNY) – 2x3x0.8 mm Body [TDFN]  
With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X2  
EV  
8
ØV  
C
Y2  
EV  
Y1  
1
2
SILK SCREEN  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.50 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C
1.60  
1.50  
2.90  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
Thermal Via Diameter  
Thermal Via Pitch  
X1  
Y1  
V
0.25  
0.85  
0.30  
1.00  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing No. C04-129-MNY Rev. B  
2019 Microchip Technology Inc.  
DS20006266A-page 37  
MCP6V66/6U/7/9  
Note: ForꢝtheꢝmostꢝcurrentꢝpackageꢝdrawingsꢞꢝpleaseꢝseeꢝtheꢝꢟicrochipꢝPackagingꢝSpecificationꢝlocatedꢝatꢝ  
httpꢠꢡꢡwwwꢢmicrochipꢢcomꢡpackaging  
DS20006266A-page 38  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
Note: ForꢝtheꢝmostꢝcurrentꢝpackageꢝdrawingsꢞꢝpleaseꢝseeꢝtheꢝꢟicrochipꢝPackagingꢝSpecificationꢝlocatedꢝatꢝ  
httpꢠꢡꢡwwwꢢmicrochipꢢcomꢡpackaging  
2019 Microchip Technology Inc.  
DS20006266A-page 39  
MCP6V66/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006266A-page 40  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
APPENDIX A: REVISION HISTORY  
Revision A (October 2019)  
• Original release of this document.  
2019 Microchip Technology Inc.  
DS20006266A-page 41  
MCP6V66/6U/7/9  
NOTES:  
DS20006266A-page 42  
2019 Microchip Technology Inc.  
MCP6V66/6U/7/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
Examples:  
[X]  
PART NO.  
–X  
/XX  
a)  
MCP6V66T-E/OT:  
Tape and Reel,  
Extended temperature,  
5LD SOT-23 package  
Device Tape and Reel  
Temperature  
Range  
Package  
a)  
b)  
MCP6V66UT-E/LTY: Tape and Reel,  
Extended temperature,  
5LD SC70 package  
Device:  
MCP6V66T: Single Op Amp (Tape and Reel)  
(SOT-23 only)  
MCP6V66UT: Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
MCP6V66UT-E/OT:  
Tape and Reel,  
Extended temperature,  
5LD SOT-23 package  
MCP6V67:  
Dual Op Amp (MSOP, 2x3 TDFN)  
MCP6V67T: Dual Op Amp (Tape and Reel) (MSOP,  
2x3 TDFN)  
a)  
b)  
MCP6V67-E/MS:  
MCP6V67T-E/MS:  
Extended temperature,  
8LD MSOP package  
MCP6V69:  
Quad Op Amp (TSSOP)  
MCP6V69T: Quad Op Amp (Tape and Reel) (TSSOP)  
Tape and Reel,  
Extended temperature,  
8LD MSOP package  
Temperature Range:  
Package:  
E
= -40°C to +125°C (Extended)  
c)  
MCP6V67T-E/MNY:  
Tape and Reel,  
Extended temperature,  
8LD 2x3 TDFN package  
LTY*  
OT  
=
Plastic Small Outline Transistor, 5-lead SC70  
= Plastic Small Outline Transistor, 5-lead SOT-23  
a)  
b)  
MCP6V69-E/ST:  
MCP6V69T-E/ST:  
Extended temperature,  
14LD TSSOP package  
MNY* = Plastic Dual Flat, No-Lead - 2×3×0.8 mm Body,  
8-lead, TDFN  
MS  
ST  
Tape and Reel,  
Extended temperature,  
14LD TSSOP package  
= Plastic Micro Small Outline, 8-lead, MSOP  
= Plastic Thin Shrink Small Outline - 4.4 mm  
Body, 14-lead, TSSOP  
*Y  
=
Nickel palladium gold manufacturing designator.  
Only available on the SC70 and TDFN package.  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2019 Microchip Technology Inc.  
DS20006266A-page 43  
MCP6V66/6U/7/9  
NOTES:  
DS20006266A-page 44  
2019 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-5177-8  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2019 Microchip Technology Inc.  
DS20006266A-page 45  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006266A-page 46  
2019 Microchip Technology Inc.  
05/14/19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY