MCP73213T-A21I/MF [MICROCHIP]

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10;
MCP73213T-A21I/MF
型号: MCP73213T-A21I/MF
厂家: MICROCHIP    MICROCHIP
描述:

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10

光电二极管
文件: 总34页 (文件大小:769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73213  
Dual-Cell Li-Ion/Li-Polymer Battery Charge Management  
Controller with Input Overvoltage Protection  
Features  
Description  
• Complete Linear Charge Management Controller:  
- Integrated Input Overvoltage Protection  
- Integrated Pass Transistor  
The MCP73213 is a highly integrated Li-Ion battery  
charge management controller for use in space-limited  
and cost-sensitive applications. The MCP73213  
provides specific charge algorithms for dual-cell Li-Ion/  
Li-Polymer batteries to achieve optimal capacity and  
safety in the shortest charging time possible. Along  
with its small physical size, the low number of external  
components makes the MCP73213 ideally suitable for  
portable applications. The absolute maximum voltage,  
up to 18V, allows the use of MCP73213 in harsh  
environments, such as low-cost wall wart or voltage  
spikes from plug/unplug.  
- Integrated Current Sense  
- Integrated Reverse Discharge Protection  
• Constant Current/Constant Voltage Operation  
with Thermal Regulation  
• 4.15V Undervoltage Lockout (UVLO)  
• 13V Input Overvoltage Protection  
• High Accuracy Preset Voltage Regulation through  
Full Temperature Range (–5°C to +55°C ±0.6%)  
The MCP73213 employs a constant current/constant  
voltage charge algorithm. The various charging voltage  
regulations provide design engineers flexibility to use in  
different applications. The fast charge, constant current  
value is set with one external resistor from 130 mA to  
1100 mA. The MCP73213 limits the charge current  
based on die temperature during high-power or high-  
ambient conditions. This thermal regulation optimizes  
the charge cycle time while maintaining device  
reliability.  
• Battery Charge Voltage Options:  
- 8.20V, 8.40V, 8.7V or 8.8V  
• Resistor Programmable Fast Charge Current:  
- 130 mA-1100 mA  
• Preconditioning of Deeply Depleted Cells:  
- Available Options: 10% or Disable  
• Integrated Precondition Timer:  
- 32 Minutes or Disable  
• Automatic End-of-Charge Control:  
The PROG pin of the MCP73213 also serves as enable  
pin. When high impedance is applied, the MCP73213  
will be in Standby mode.  
- Selectable Minimum Current Ratio:  
5%, 7.5%, 10% or 20%  
- Elapse Safety Timer: 4 hr., 6 hr., 8 hr. or  
Disable  
The MCP73213 is fully specified over the ambient  
temperature range of -40°C to +85°C. The MCP73213  
is available in a 10-lead DFN package.  
• Automatic Recharge:  
- Available Options: 95% or Disable  
• Factory Preset Charge Status Output:  
- On/Off or Flashing  
Package Types (Top View)  
MCP73213  
• Soft Start  
3x3 DFN *  
Temperature Range: –40°C to +85°C  
• Packaging: DFN-10 (3 mm x 3 mm)  
V
V
PROG  
1
10  
DD  
DD  
V
2
3
4
5
9
8
7
6
SS  
EP  
11  
Applications  
V
V
V
BAT  
SS  
STAT  
NC  
BAT  
• Digital Camcorders  
NC  
• Portable Media Players  
• Ultra Mobile Personal Computers  
• Netbook Computers  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
• Handheld Devices  
• Walkie-Talkie  
• Low-Cost 2-Cell Li-Ion/Li-Poly Chargers/Cradles  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 1  
MCP73213  
Typical Application  
3
4
1
VDD  
VBAT  
VBAT  
AC-DC-Adapter  
+
2
7
VDD  
COUT  
C
IN  
RLED  
2-Cell  
Li-Ion  
Battery  
10  
STAT  
PROG  
9
8
RPROG  
5 NC  
VSS  
VSS  
-
6
NC  
DS20002190D-page 2  
2009-2018 Microchip Technology Inc.  
TABLE 1:  
AVAILABLE FACTORY PRESET OPTIONS  
Charge  
Voltage  
Preconditioning  
Charge Current  
Preconditioning  
Threshold  
Precondition  
Timer  
Elapse  
Timer  
End-of-Charge  
Control  
Automatic  
Recharge  
Output  
Status  
OVP  
8.2V  
8.4V  
8.7V  
8.8V  
13V  
Disable/10%  
Disable/10%  
Disable/10%  
Disable/10%  
66.5%/71.5%  
66.5%/71.5%  
66.5%/71.5%  
66.5%/71.5%  
Disable/  
32 Minimum  
Disable/4 hr/  
6 hr/8 hr  
5%/7.5%/  
10%/20%  
No/  
Yes  
Type 1/  
Type 2  
13V  
13V  
13V  
Disable/  
32 Minimum  
Disable/4 hr/  
6 hr/8 hr  
5%/7.5%/  
10%/20%  
No/  
Yes  
Type 1/  
Type 2  
Disable/  
32 Minimum  
Disable/4 hr/  
6 hr/8 hr  
5%/7.5%/  
10%/20%  
No/  
Yes  
Type 1/  
Type 2  
Disable/  
32 Minimum  
Disable/4 hr/  
6 hr/8 hr  
5%/7.5%/  
10%/20%  
No/  
Yes  
Type 1/  
Type 2  
Note 1: IREG: Regulated fast charge current.  
2:  
3:  
4:  
5:  
6:  
VREG: Regulated charge voltage.  
I
I
PREG/IREG: Preconditioning charge current; ratio of regulated fast charge current.  
TERM/IREG: End-of-Charge control; ratio of regulated fast charge current.  
V
V
RTH/VREG: Recharge threshold; ratio of regulated battery voltage.  
PTH/VREG: Preconditioning threshold voltage.  
7: Type 1: On/Off; Type 2: Flashing. Please refer to Table 5-2.  
TABLE 2:  
STANDARD SAMPLE OPTIONS  
Part  
Number  
VREG  
OVP  
IPREG/IREG  
Precharge  
Timer  
Elapse  
Timer  
ITERM/IREG  
VRTH/VREG  
VPTH/VREG  
Output  
Status  
MCP73213-B6S/MF  
MCP73213-A6S/MF  
8.20V  
8.40V  
13V  
13V  
10%  
10%  
32 Minimum  
32 Minimum  
6 hr  
6 hr  
10%  
10%  
95%  
95%  
71.5%  
71.5%  
Type 1  
Type 1  
Note 1: Customers should contact their distributor, representatives or field application engineer (FAE) for support and sample. Local sales offices are also avail-  
able to help customers. A listing of sales offices and locations is included at the back of this document. Technical support is available through the web site  
at: http://www.microchip.com/support  
MCP73213  
Functional Block Diagram  
VO  
REG  
DIRECTION  
CONTROL  
V
BAT  
V
DD  
CURRENT  
LIMIT  
+
-
V
REF  
G=0.001  
PROG  
CA  
+
-
REFERENCE,  
BIAS, UVLO,  
AND SHDN  
V
(1.21V)  
REF  
+
VO  
UVLO  
REG  
-
-
PRECONDITION  
+
TERM  
-
+
CHARGE  
CHARGE  
CONTROL,  
TIMER,  
AND  
VA  
STAT  
+
-
STATUS  
LOGIC  
V
SS  
-
13V  
+
V
DD  
Input OverVP  
-
95% V  
REG  
-
+
110°C  
V
BAT  
+
*Recharge  
T
SD  
Thermal Regulation  
*Only available on selected options  
DS20002190D-page 4  
2009-2018 Microchip Technology Inc.  
MCP73213  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
VDD......................................................................18.0V  
VPROG ...................................................................6.0V  
All Inputs and Outputs w.r.t. VSS .....-0.3 to (VDD+0.3)V  
Maximum Junction Temperature, TJ .Internally Limited  
Storage Temperature ........................65°C to +150°C  
ESD Protection on All Pins  4 kV HBM  
ESD Protection on All Pins  300V MM  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typical) + 0.3V] to 12V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Supply Input  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Voltage Range  
Operating Supply Voltage  
Supply Current  
VDD  
VDD  
ISS  
4
4.2  
16  
13  
V
V
4
5.5  
μA Shutdown (VDD VBAT – 150 mV)  
μA Charging  
700  
50  
50  
1500  
125  
150  
μA Standby (PROG Floating)  
μA Charge Complete; No Battery;  
VDD < VSTOP  
Battery Discharge Current  
Output Reverse Leakage  
Current  
IDISCHARGE  
0.5  
0.5  
2
2
μA Standby (PROG Floating)  
μA Shutdown (VDD VBAT  
or VDD < VSTOP  
)
10  
17  
μA Charge Complete; VDD is present  
Undervoltage Lockout  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
VSTART  
VSTOP  
VHYS  
4.10  
4.00  
4.15  
4.05  
100  
4.25  
4.10  
V
V
mV  
Overvoltage Protection  
OVP Start Threshold  
OVP Hysteresis  
VOVP  
12.8  
13  
13.2  
V
VOVPHYS  
150  
mV  
Voltage Regulation (Constant Voltage Mode)  
Regulated Output Voltage  
Options  
VREG  
8.15  
8.35  
8.65  
8.75  
–0.6  
8.20  
8.40  
8.70  
8.80  
8.25  
8.45  
8.75  
8.85  
0.6  
V
V
V
V
%
TA= –5°C to +55°C  
DD = [VREG(Typical)+1V]  
OUT = 50 mA  
V
I
Output Voltage Tolerance  
Line Regulation  
VRTOL  
VBAT  
BAT)/VDD  
/
0.05  
0.20  
%/V VDD = [VREG(Typical)+1V] to 12V  
OUT = 50 mA  
IOUT = 50 mA – 150 mA  
DD = [VREG(Typical)+1V]  
V
|
I
Load Regulation  
VBAT/VBAT  
|
0.05  
0.20  
%
V
Note 1: Not production tested. Ensured by design.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 5  
MCP73213  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typical) + 0.3V] to 12V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Ripple Attenuation  
PSRR  
–46  
–30  
dB IOUT = 20 mA, 10 Hz to 1 kHz  
dB  
IOUT = 20 mA, 10 Hz to 10 kHz  
Battery Short Protection  
BSP Start Threshold  
BSP Hysteresis  
VSHORT  
VBSPHYS  
ISHORT  
3.4  
150  
25  
V
mV  
mA  
BSP Regulation Current  
Current Regulation (Fast Charge, Constant-Current Mode)  
Fast Charge Current  
Regulation  
IREG  
130  
117  
900  
1100  
143  
mA TA = –5°C to +55°C  
130  
1000  
mA  
mA  
PROG = 10 k  
PROG = 1.1 k  
1100  
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current  
Ratio  
IPREG REG  
/I  
10  
%
PROG = 1 kto 10 k  
TA=-5°C to +55°C  
64  
69  
100  
66.5  
71.5  
100  
69  
74  
%
%
%
No Preconditioning  
VBAT Low-to-High  
VBAT Low-to-High  
Precondition Voltage  
Threshold Ratio  
V
PTH/VREG  
VPHYS  
ITERM/IREG  
Precondition Hysteresis  
mV VBAT High-to-Low (Note 1)  
Charge Termination  
Charge Termination  
Current Ratio  
3.7  
5.6  
7.5  
15  
5
6.3  
9.4  
12.5  
25  
%
%
%
%
PROG = 1 kto 10 k  
TA=–5°C to +55°C  
7.5  
10  
20  
Automatic Recharge  
Recharge Voltage  
Threshold Ratio  
VRTH/VREG  
93  
95.0  
0
97  
%
%
VBAT High-to-Low  
No Automatic Recharge  
Pass Transistor ON-Resistance  
ON-Resistance  
RDSON  
350  
mVDD = 4.5V, TJ = 105°C (Note 1)  
Status Indicator - STAT  
Sink Current  
ISINK  
VOL  
ILK  
20  
0.2  
35  
0.5  
1
mA  
Low Output Voltage  
Input Leakage Current  
PROG Input  
V
ISINK = 4 mA  
0.001  
μA High Impedance, VDD on pin  
Charge Impedance  
Range  
RPROG  
RPROG  
VPDENTRY  
VPDEXIT  
1
22  
k  
Shutdown Impedance  
200  
kImpedance for Shutdown  
Automatic Power-Down  
Automatic Power-Down  
Entry Threshold  
V
+ 10  
V
+ 50  
V
V
VDD Falling  
VDD Rising  
BAT  
BAT  
mV  
mV  
+ 150  
Automatic Power-Down  
Exit Threshold  
V
V
+ 250  
BAT  
BAT  
mV  
mV  
Note 1: Not production tested. Ensured by design.  
DS20002190D-page 6  
2009-2018 Microchip Technology Inc.  
MCP73213  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typical) + 0.3V] to 12V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Thermal Shutdown  
Die Temperature  
TSD  
150  
10  
C  
C  
Die Temperature  
Hysteresis  
TSDHYS  
Note 1: Not production tested. Ensured by design.  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typical)+0.3V] to 12V,  
TA=–40°C to +85°C. Typical values are at +25°C, VDD= [VREG(Typical)+1.0V]  
Parameters  
Elapsed Timer  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Elapsed Timer Period  
tEL-  
0
Hours Timer Disabled  
APSED  
3.6  
5.4  
7.2  
4.0  
6.0  
8.0  
4.4  
6.6  
8.8  
Hours  
Hours  
Hours  
Preconditioning Timer  
Preconditioning Timer Period  
tPRECHG  
0
Hours Disabled Timer  
Hours  
0.4  
0.5  
0.6  
Status Indicator  
Status Output Turn-Off  
tOFF  
tON  
500  
500  
μs  
μs  
ISINK = 1 mA to 0 mA  
(Note 1)  
Status Output Turn-On  
ISINK = 0 mA to 1 mA  
(Note 1)  
Note 1: Not production tested. Ensured by design.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (Typical) + 0.3V] to 6V.  
Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
TA  
TJ  
TA  
–40  
–40  
–65  
+85  
+125  
+150  
°C  
°C  
°C  
Thermal Resistance, DFN-10LD  
(3x3)  
JA  
JC  
62  
°C/W 4-Layer JC51-7 Standard  
Board, Natural Convection  
20.5  
°C/W  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 7  
MCP73213  
NOTES:  
DS20002190D-page 8  
2009-2018 Microchip Technology Inc.  
MCP73213  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = [VREG(Typical) + 1V], TA= +25°C, Constant Voltage mode.  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Battery Regulation Voltage  
(V ) vs. Supply Voltage (V ).  
(V ) vs. Ambient Temperature (T ).  
BAT  
DD  
BAT  
A
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Charge Current (I  
) vs.  
OUT  
(V ) vs. Supply Voltage (V ).  
Programming Resistor (R  
).  
BAT  
DD  
PROG  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6:  
Charge Current (I  
) vs.  
OUT  
(V ) vs. Ambient Temperature (T ).  
Supply Voltage (V ).  
BAT  
A
DD  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 9  
MCP73213  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, VDD = [VREG(Typical) + 1V], TA= +25°C, Constant-voltage mode.  
FIGURE 2-7:  
Charge Current (I  
) vs.  
FIGURE 2-10:  
Charge Current (I  
) vs.  
OUT  
OUT  
Supply Voltage (V ).  
Ambient Temperature (T ).  
DD  
A
FIGURE 2-8:  
Supply Voltage (V ).  
Charge Current (I  
) vs.  
FIGURE 2-11:  
Regulation Current (I  
Battery Short Protection  
) vs. Ambient  
OUT  
DD  
SHORT  
Temperature (T ).  
A
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
End of Charge  
VDD < VBAT  
VDD < VSTOP  
-5.0  
5.0  
15.0  
25.0  
35.0  
45.0  
55.0  
Ambient Temperature (°C)  
FIGURE 2-9:  
Charge Current (I  
) vs.  
FIGURE 2-12:  
Output Leakage Current  
OUT  
Ambient Temperature (T ).  
(I  
) vs. Ambient Temperature (T ).  
A
DISCHARGE  
A
DS20002190D-page 10  
2009-2018 Microchip Technology Inc.  
MCP73213  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, VDD = [VREG(Typical) + 1V], TA= +25°C, Constant-voltage mode.  
200 mA/div  
5V/div  
2V/div  
FIGURE 2-16:  
Input Overvoltage Protection  
FIGURE 2-13:  
Battery Voltage Accuracy  
(V ) vs. Supply Voltage (V ).  
(VIN= 5V/Div, VBAT= 2V/Div, ILOAD= 200 mA/Div, Time:  
200 ms/Div)  
RTOL  
DD  
12V  
Output Ripple (V)  
Source Voltage (V)  
9.2V  
Output Current (mA)  
Output Ripple (V)  
FIGURE 2-14:  
(ILOAD = 50 mA/Div, Output: 100 mV/Div, Time:  
100 μs/Div).  
Load Transient Response  
FIGURE 2-17:  
(I = 10 mA, V = 1V/Div, V  
OUT  
Time: 100 μs/Div).  
Line Transient Response  
= 100 mV/Div,  
LOAD  
IN  
12V  
Source Voltage (V)  
9.2V  
Output Ripple (V)  
FIGURE 2-15:  
Complete Charge Cycle.  
FIGURE 2-18:  
Line Transient Response  
= 100 mA, V = 1V/Div, V = 100 mV/  
IN OUT  
(I  
LOAD  
Div, Time:100 μs/Div).  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 11  
MCP73213  
NOTES:  
DS20002190D-page 12  
2009-2018 Microchip Technology Inc.  
MCP73213  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP73213  
PIN FUNCTION TABLE  
Symbol  
I/O  
Description  
DFN-10  
1, 2  
3, 4  
5, 6  
7
VDD  
VBAT  
NC  
I
Battery Management Input Supply Pin  
I/O Battery Charge Control Output Pin  
O
No Connection Pin  
STAT  
VSS  
Battery Charge Status Output Pin  
Battery Management 0V Reference Pin  
8, 9  
10  
PROG  
EP  
I/O Battery Charge Current Regulation Program and Charge Control Enable Pin  
Exposed Pad Pin  
11  
3.1  
Battery Management Input Supply  
(V  
3.5  
Battery Management 0V Reference  
(V )  
)
DD  
SS  
A supply voltage of [VREG (Typical) + 0.3V] to 13.0V is  
recommended. Bypass to VSS with a minimum of 1 μF.  
The VDD pin is rated 18V absolute maximum to prevent  
a sudden rise in input voltage from spikes or low-cost  
AC-DC wall adapters from causing an over-voltage  
condition and damaging the device.  
Connect to the negative terminal of the battery and  
input supply.  
3.6  
Current Regulation Set (PROG)  
The fast charge current is set by placing a resistor from  
PROG to VSS during constant current (CC) mode.  
PROG pin also serves as charge control enable. When  
a typical 200 kimpedance is applied to the PROG  
pin, the MCP73213 will go into standby mode until the  
high impedance is removed. Refer to Section 5.5  
“Constant-Current Mode - Fast Charge” for details.  
3.2  
Battery Charge Control Output  
(V  
)
BAT  
Connect to the positive terminal of the battery. Bypass  
to VSS with a minimum of 1 μF to ensure loop stability  
when the battery is disconnected.  
3.7  
Exposed Pad (EP)  
3.3  
No Connection (NC)  
Connect the Exposed Thermal Pad (EP) to the  
exposed copper area on the Printed Circuit Board  
(PCB) for thermal enhancement. Additional vias in the  
copper area under the MCP73213 device can improve  
heat dissipation performance and simplify the  
assembly process.  
No connection.  
3.4  
Status Output (STAT)  
STAT is an open-drain logic output for connection to an  
LED for charge status indication in stand-alone  
applications. Alternatively, a pull-up resistor can be  
applied for interfacing to a host microcontroller. Refer to  
Table 5-2 for a summary of the status output during a  
charge cycle.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 13  
MCP73213  
NOTES:  
DS20002190D-page 14  
2009-2018 Microchip Technology Inc.  
MCP73213  
4.0  
DEVICE OVERVIEW  
The MCP73213 are simple, but fully integrated linear charge management controllers. Figure 4-1 depicts the  
operational flow algorithm.  
SHUTDOWN MODE  
V
DD < VUVLO  
VDD < VPD  
or  
PROG > 200 k  
STAT = High Z  
VBAT < VPTH  
TIMER FAULT  
No Charge Current  
STAT = Flashing (Type 2)  
STAT = High Z (Type 1)  
Timer Suspended  
VDD < VOVP  
PRECONDITIONING MODE  
Charge Current = IPREG  
Timer Expired  
STAT = LOW  
Timer Reset  
Timer Enable  
VDD > VOVP  
VDD > VOVP  
VBAT > VPTH  
VBAT > VPTH  
FAST CHARGE MODE  
Charge Current = IREG  
OVERVOLTAGE PROTECTION  
Timer Expired  
VBAT < VRTH  
No Charge Current  
STAT = High Z  
Timer Suspended  
STAT = LOW  
Timer Reset  
Timer Enabled  
TIMER FAULT  
No Charge Current  
STAT = Flashing (Type 2)  
STAT = High Z (Type 1)  
Timer Suspended  
VDD < VOVP  
VBAT = VREG  
VDD > VOVP  
VDD < VOVP  
CONSTANT VOLTAGE MODE  
Charge Voltage = VREG  
STAT = LOW  
VBAT < ITERM  
Die Temperature < TSDHYS  
Charge Mode Resume  
CHARGE COMPLETE MODE  
VBAT > VSHORT  
No Charge Current  
STAT = High Z  
Timer Reset  
Charge Mode Resume  
Die Temperature > TSD  
VBAT < VSHORT  
TEMPERATURE FAULT  
No Charge Current  
BATTERY SHORT PROTECTION  
Charge Current = ISHORT  
STAT = Flashing (Type 2)  
STAT = Flashing (Type 2)  
STAT = High Z (Type 1)  
Timer Suspended  
STAT = High Z (Type 1)  
Timer Suspended  
FIGURE 4-1:  
The MCP73213 Flow Chart.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 15  
MCP73213  
NOTES:  
DS20002190D-page 16  
2009-2018 Microchip Technology Inc.  
MCP73213  
5.3.2  
BATTERY CHARGE CONTROL  
5.0  
5.1  
DETAILED DESCRIPTION  
Undervoltage Lockout (UVLO)  
OUTPUT (V  
)
BAT  
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73213  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
An internal undervoltage lockout (UVLO) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode until the input supply rises above the  
UVLO threshold. In the event a battery is present when  
the input power is applied, the input supply must rise  
approximately 150 mV above the battery voltage  
before the MCP73213 device becomes operational.  
5.3.3  
BATTERY DETECTION  
The MCP73213 detects the battery presence with  
charging of the output capacitor. The charge flow will  
initiate when the voltage on VBAT is pulled below the  
The UVLO circuit places the device in shutdown mode  
if the input supply falls to approximately 150 mV above  
the battery voltage.The UVLO circuit is always active.  
Any time the input supply is below the UVLO threshold  
or approximately 150 mV of the voltage at the VBAT pin,  
the MCP73213 device is placed in a shutdown mode.  
VRECHARGE threshold. Refer to Section 1.0 “Electrical  
Characteristics” for VRECHARGE values. The value will  
be the same for nonrechargeable devices.  
When VBAT > VREG + Hysteresis, the charge will be  
suspended (or not started, depending on the condition)  
to prevent overcharging.  
5.2  
Overvoltage Protection (OVP)  
An internal overvoltage protection (OVP) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode when the input supply rises above the  
typical 13V OVP threshold. The OVP hysteresis is  
approximately 150 mV for the MCP73213 device.  
5.4  
Preconditioning  
If the voltage at the VBAT pin is less than the  
preconditioning threshold, the MCP73213 device  
enters a preconditioning mode. The preconditioning  
threshold is factory set. Refer to Section 1.0  
“Electrical Characteristics” for preconditioning  
threshold options.  
The MCP73213 device is operational between UVLO  
and OVP thresholds. The OVP circuit is also recog-  
nized as overvoltage lockout (OVLO).  
In this mode, the MCP73213 device supplies 10% of  
the fast charge current (established with the value of  
the resistor connected to the PROG pin) to the battery.  
5.3  
Charge Qualification  
When the input power is applied, the input supply must  
rise 150 mV above the battery voltage before the  
MCP73213 becomes operational.  
When the voltage at the VBAT pin rises above the  
preconditioning threshold, the MCP73213 device  
enters the Constant Current (Fast Charge) mode.  
The automatic power-down circuit places the device in  
a shutdown mode if the input supply falls to within  
+50 mV of the battery voltage.  
Note:  
The MCP73213 device also offers options  
with no preconditioning.  
The automatic circuit is always active. At any time the  
input supply is within +50 mV of the voltage at the VBAT  
pin, the MCP73213 is placed in a shutdown mode.  
5.4.1  
TIMER EXPIRED DURING  
PRECONDITIONING MODE  
For  
a
charge cycle to begin, the automatic  
If the internal timer expires before the voltage threshold  
is reached for Fast Charge mode, a timer fault is  
indicated and the charge cycle terminates. The  
MCP73213 device remains in this condition until the bat-  
tery is removed or input power is cycled. If the battery is  
removed, the MCP73213 device enters the Standby  
mode, where it remains until a battery is reinserted.  
power-down conditions must be met and the charge  
enable input must be above the input high threshold.  
5.3.1  
BATTERY MANAGEMENT INPUT  
SUPPLY (V  
)
DD  
The VDD input is the input supply to the MCP73213. The  
MCP73213 automatically enters a power-down mode if  
the voltage on the VDD input falls to within +50 mV of the  
battery voltage. This feature prevents draining the  
battery pack when the VDD supply is not present.  
Note:  
The typical preconditioning timer for  
MCP73213 is 32 minutes. The  
MCP73213 also offers options with no  
preconditioning timer.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 17  
MCP73213  
Constant-Current mode is maintained until the voltage  
at the VBAT pin reaches the regulation voltage, VREG  
When Constant Current mode is invoked, the internal  
timer is reset.  
5.5  
Constant-Current Mode - Fast  
Charge  
.
During Constant-Current mode, the programmed  
charge current is supplied to the battery or load.  
5.5.1  
TIMER EXPIRED DURING  
CONSTANT-CURRENT - FAST  
CHARGE MODE  
The charge current is established using a single  
resistor from PROG to VSS. The program resistor and  
the charge current are calculated using the following  
equation:  
If the internal timer expires before the recharge voltage  
threshold is reached, a timer fault is indicated and the  
charge cycle terminates. The MCP73213 device  
remains in this condition until the battery is removed. If  
the battery is removed or input power is cycled, the  
MCP73213 device enters the Standby mode where it  
remains until a battery is reinserted.  
EQUATION 5-1:  
0.93  
IREG = 1104 RPROG  
Where:  
RPROG  
IREG  
=
=
kilohm (k)  
milliampere (mA)  
5.6  
Constant-Voltage Mode  
When the voltage at the VBAT pin reaches the  
regulation voltage, VREG, constant voltage regulation  
begins. The regulation voltage is factory set to 8.2V,  
8.4V, 8.7V or 8.8V with a tolerance of ± 0.5%.  
EQUATION 5-2:  
IREG  
  
  
RPROG = 10log -----------  0.93  
1104  
5.7  
Charge Termination  
Where:  
RPROG  
IREG  
=
=
kilohm (k)  
The charge cycle is terminated when, during Constant-  
Voltage mode, the average charge current diminishes  
below a threshold established with the value of 5%,  
7.5%, 10% or 20% of fast charge current or the internal  
timer expires. A 1 ms filter time on the termination com-  
parator ensures that transient load conditions do not  
result in premature charge cycle termination. The timer  
period is factory set and can be disabled. Refer to  
Section 1.0 “Electrical Characteristics” for timer  
period options.  
milliampere (mA)  
Table 5-1 provides commonly seen E96 (1%) and E24  
(5%) resistors for various charge current to reduce  
design time.  
TABLE 5-1:  
Charge  
RESISTOR LOOKUP TABLE  
Recommended Recommended  
Current (mA) E96 Resistor () E24 Resistor ()  
5.8  
Automatic Recharge  
130  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
1100  
10k  
10k  
8.45k  
6.20k  
4.99k  
4.02k  
3.40k  
3.00k  
2.61k  
2.32k  
2.10k  
1.91k  
1.78k  
1.62k  
1.50k  
1.40k  
1.33k  
1.24k  
1.18k  
1.10k  
1.00k  
8.20k  
6.20k  
5.10k  
3.90k  
3.30k  
3.00k  
2.70k  
2.37k  
2.20k  
2.00k  
1.80k  
1.60k  
1.50k  
1.50k  
1.30k  
1.20k  
1.20k  
1.10k  
1.00k  
The MCP73213 device continuously monitors the  
voltage at the VBAT pin in the charge complete mode. If  
the voltage drops below the recharge threshold,  
another charge cycle begins and current is once again  
supplied to the battery or load. The recharge threshold  
is factory set. Refer to Section 1.0 “Electrical  
Characteristics” for recharge threshold options.  
Note:  
The MCP73213 also offers options with  
no automatic recharge.  
For the MCP73213 device with no recharge option, the  
MCP73213 will go into Standby mode when the termi-  
nation condition is met. The charge will not restart until  
the following conditions have been met:  
• Battery is removed from the system and inserted  
again  
• VDD is removed and plugged in again  
R
PROG is disconnected (or high-impedance) and  
reconnected  
DS20002190D-page 18  
2009-2018 Microchip Technology Inc.  
MCP73213  
5.9  
Thermal Regulation  
TABLE 5-2:  
STATUS OUTPUTS  
The MCP73213 shall limit the charge current based on  
the die temperature. The thermal regulation optimizes  
the charge cycle time while maintaining device  
reliability. Figure 5-1 depicts the thermal regulation for  
the MCP73213 device. Refer to Section 1.0  
“Electrical Characteristics” for thermal package  
CHARGE CYCLE  
STATE  
STAT  
Shutdown  
Standby  
High Z  
High Z  
Preconditioning  
L
L
resistances  
and  
Section 6.1.1.2  
“Thermal  
Constant Current Fast  
Charge  
Considerations” for calculating power dissipation.  
.
Constant Voltage  
L
Charge Complete - Standby  
Temperature Fault  
High Z  
1.6 second 50% D.C.  
Flashing (Type 2)  
High Z (Type 1)  
Timer Fault  
1.6 second 50% D.C.  
Flashing (Type 2)  
High Z (Type 1)  
Preconditioning Timer Fault  
1.6 second 50% D.C.  
Flashing (Type 2)  
High Z (Type 1)  
5.12 Battery Short Protection  
FIGURE 5-1:  
Thermal Regulation.  
Once a single-cell Li-Ion battery is detected, an internal  
battery short protection (BSP) circuit starts monitoring  
the battery voltage. When VBAT falls below a typical  
1.7V battery short protection threshold voltage, the  
charging behavior is postponed. A typical 25 mA  
detection current is supplied for recovering from the  
battery short condition.  
5.10 Thermal Shutdown  
The MCP73213 suspends charge if the die  
temperature exceeds +150°C. Charging will resume  
when the die temperature has cooled by approximately  
10°C. The thermal shutdown is a secondary safety  
feature in the event that there is a failure within the  
thermal regulation circuitry.  
Preconditioning mode resumes when VBAT raises  
above the battery short protection threshold. The bat-  
tery voltage must rise approximately 150 mV above the  
battery short protection voltage before the MCP73213  
device becomes operational.  
5.11 Status Indicator  
The charge status outputs are open-drain outputs with  
two different states: Low (L), and High-Impedance  
(High Z). The charge status outputs can be used to  
illuminate LEDs. Optionally, the charge status outputs  
can be used as an interface to a host microcontroller.  
Table 5-2 summarizes the state of the status outputs  
during a charge cycle.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 19  
MCP73213  
NOTES:  
DS20002190D-page 20  
2009-2018 Microchip Technology Inc.  
MCP73213  
6.0  
APPLICATIONS  
The MCP73213 is designed to operate in conjunction  
with host microcontroller or in stand-alone  
applications. The MCP73213 provides the preferred  
charge algorithm for dual Lithium-Ion or  
Lithium-Polymer cells: Constant Current followed by  
Constant Voltage. Figure 6-1 depicts typical  
a
a
stand-alone application circuit, while Figure 6-2  
depicts the accompanying charge profile.  
3
4
1
VDD  
VBAT  
VBAT  
AC-DC-Adapter  
+
2
7
VDD  
COUT  
C
IN  
RLED  
2-Cell  
Li-Ion  
Battery  
10  
STAT  
PROG  
9
8
RPROG  
5 NC  
VSS  
VSS  
-
6
NC  
FIGURE 6-1:  
Typical Application Circuit.  
FIGURE 6-2:  
Typical Charge Profile  
(875 mAh Li-Ion Battery).  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 21  
MCP73213  
Power dissipation with a 9V, ±10% input voltage  
source, 350 mA ±10% and preconditioning threshold  
voltage at 6V is:  
6.1  
Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
Preconditioning mode to the Constant Current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
EQUATION 6-2:  
Power dissipation = 9.9V 6.0V   385 mA = 1.50W  
This power dissipation with the battery charger in the  
DFN-10 package will result approximately 93C above  
room temperature.  
6.1.1.3  
External Capacitors  
6.1.1  
COMPONENT SELECTION  
The MCP73213 is stable with or without a battery load.  
In order to maintain good AC stability in Constant-Volt-  
age mode, a minimum capacitance of 1 μF is  
recommended to bypass the VBAT pin to VSS. This  
capacitance provides compensation when there is no  
battery load. In addition, the battery and  
interconnections appear inductive at high frequencies.  
These elements are in the control feedback loop during  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
6.1.1.1  
Charge Current  
The preferred fast charge current for Li-Ion/Li-Poly cells  
is below the 1C rate, with an absolute maximum current  
at the 2C rate. The recommended fast charge cur-  
rent should be obtained from the battery  
manufacturer. For example, a 500 mAh battery pack  
with 0.7C preferred fast charge current has a charge  
current of 350 mA. Charging at this rate provides the  
shortest charge cycle times without degradation to the  
battery pack performance or life.  
Constant  
Voltage  
mode.  
Therefore,  
bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
For typical applications, it is recommended to apply a  
minimum of 16V rated 1 μF to the output capacitor and  
a minimum of 25V rated 1 μF to the input capacitor.  
TABLE 6-1:  
MLCC CAPACITOR EXAMPLE  
MLCC  
Capacitors  
Temperature  
Tolerance  
Range  
Note:  
Please consult with your battery supplier  
or refer to the battery data sheet for the  
preferred charge rate.  
X7R  
X5R  
-55C to +125C  
-55C to +85C  
±15%  
±15%  
6.1.1.2  
Thermal Considerations  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from  
Preconditioning mode to Constant-Current mode. In  
this case, the power dissipation is:  
Virtually any good quality output filter capacitor can be  
used independent of the capacitor’s minimum Effective  
Series Resistance (ESR) value. The actual value of the  
capacitor (and its associated ESR) depends on the out-  
put load current. A 1 μF ceramic, tantalum or aluminum  
electrolytic capacitor at the output is usually sufficient  
to ensure stability.  
EQUATION 6-1:  
PowerDissipation = V  
V  
  I  
PTHMIN REGMAX  
DDMAX  
6.1.1.4  
Reverse-Blocking Protection  
Where:  
The MCP73213 provides protection from a faulted or  
shorted input. Without the protection, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the internal pass transistor.  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
the maximum fast charge current  
the minimum transition threshold  
voltage  
DS20002190D-page 22  
2009-2018 Microchip Technology Inc.  
MCP73213  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins  
to minimize voltage drops along the high-current-  
carrying PCB traces.  
If the PCB layout is used as a heatsink, adding multiple  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the junction  
temperature. Figures 6-4 and 6-5 depict a typical layout  
with PCB heatsinking.  
FIGURE 6-5:  
Typical Layout (Bottom).  
102-00261  
MCP73213EV  
FIGURE 6-3:  
Typical Layout (Top).  
FIGURE 6-4:  
Typical Layout (Top Metal).  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 23  
MCP73213  
NOTES:  
DS20002190D-page 24  
2009-2018 Microchip Technology Inc.  
MCP73213  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN (3x3)  
Example:  
Standard *  
Part Number  
MCP73213-A6SI/MF  
Z3HI  
1443  
256  
XXXX  
Code  
YYWW  
NNN  
Z3HI  
Z3HI  
Y3HI  
Y3HI  
MCP73213T-A6SI/MF  
MCP73213-B6SI/MF  
MCP73213T-B6SI/MF  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 25  
MCP73213  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002190D-page 26  
2009-2018 Microchip Technology Inc.  
MCP73213  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 27  
MCP73213  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002190D-page 28  
2009-2018 Microchip Technology Inc.  
MCP73213  
APPENDIX A: REVISION HISTORY  
Revision D (January 2018)  
The following is the list of modifications:  
1. Changed captions for Figure 2-16, Figure 2-17,  
Figure 2-18.  
2. Minor typographical corrections.  
Revision C (December 2014)  
The following is the list of modifications:  
1. Added Note 7 in Table 1 regarding the Type 1  
and Type 2 descriptions.  
2. Updated the Functional Block Diagram.  
3. Updated the thermal resistances in the  
Temperature Specifications.  
4. Changed captions for the Figures 2-7, 2-8, 2-15,  
2-16.  
5. Updated Figure 4-1.  
6. Updated Section 6.1.1.2, Thermal Considerations.  
7. Updated  
Section 7.1,  
Package  
Marking  
Information.  
8. Minor typographical corrections.  
Revision B (December 2009)  
The following is the list of modifications:  
1. Updated the Battery Short Protection values in  
the DC Characteristics table.  
Revision A (July 2009)  
• Original Release of this Document.  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 29  
MCP73213  
NOTES:  
DS20002190D-page 30  
2009-2018 Microchip Technology Inc.  
MCP73213  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
(1)  
X
/XX  
XXX  
[X]  
PART NO.  
Device  
a)  
b)  
c)  
MCP73213-A6SI/MF: Dual Cell Li-Ion/  
Li-Polymer Battery Device  
MCP73213-B6SI/MF: Dual Cell Li-Ion/  
Li-Polymer Battery Device  
MCP73213T-A6SI/MF: Tape and Reel,  
Temperature Package Pattern  
Range  
Tape and Reel  
Option  
Device:  
MCP73213-xxx: Dual Cell Li-Ion/Li-Polymer Battery Device  
MCP73213T-xxx: Dual Cell Li-Ion/Li-Polymer Battery Device,  
Tape and Reel  
Dual Cell Li-Ion/  
Li-Polymer Battery Device  
d)  
MCP73213T-B6SI/MF: Tape and Reel,  
Dual Cell Li-Ion/  
Li-Polymer Battery Device  
Tape and Reel  
Option:  
T
=
Tape and Reel(1)  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Temperature  
Range:  
I
=
-40C to +85C (Industrial)  
Package:  
MF  
=
10-Lead Plastic Dual Flat, No Lead - 3x3 mm Body  
(DFN)  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 31  
MCP73213  
NOTES:  
DS20002190D-page 32  
2009-2018 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT  
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,  
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK  
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST  
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32  
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,  
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are  
registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoCompanion, CryptoController,  
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,  
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-  
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,  
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix,  
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial  
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II,  
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2018, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-2559-5  
2009-2018 Microchip Technology Inc.  
DS20002190D-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7289-7561  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20002190D-page 34  
2009-2018 Microchip Technology Inc.  
10/25/17  

相关型号:

MCP73213T-A5JI/MF

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10
MICROCHIP

MCP73213T-A61I/MF

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10
MICROCHIP

MCP73213T-A6AI/MF

暂无描述
MICROCHIP

MCP73213T-A6BI/MF

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10
MICROCHIP

MCP73213T-A6SI-MF

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73213T-A6SI/MF

Dual-Cell Li-Ion / Li-Polymer Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73213T-A6W/MF

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10
MICROCHIP

MCP73213T-A6X/MF

Power Supply Support Circuit, Fixed, 1 Channel, PDSO10
MICROCHIP

MCP73213T-B6AI/MF

IC,BATTERY MANAGEMENT,LLCC,10PIN,PLASTIC
MICROCHIP

MCP73213T-B6SI/MF

Dual-Cell Li-Ion / Li-Polymer Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73213T-G6AI/MF

IC,BATTERY MANAGEMENT,LLCC,10PIN,PLASTIC
MICROCHIP

MCP73213T-I/MF

Dual-Cell Li-Ion / Li-Polymer Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP