MCP73223-C2MF [MICROCHIP]

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection; 磷酸铁锂锂(LiFePO4 )电池充电管理控制器具有输入过压保护
MCP73223-C2MF
型号: MCP73223-C2MF
厂家: MICROCHIP    MICROCHIP
描述:

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
磷酸铁锂锂(LiFePO4 )电池充电管理控制器具有输入过压保护

电池 控制器
文件: 总34页 (文件大小:562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73123/223  
Lithium Iron Phosphate (LiFePO4) Battery Charge  
Management Controller with Input Overvoltage Protection  
Features  
Description  
• Complete Linear Charge Management Controller:  
- Integrated Input Overvoltage Protection  
- Integrated Pass Transistor  
The MCP73123/223 is a highly integrated Lithium Iron  
Phosphate(LiFePO4) battery charge management  
controller for use in space-limited and cost-sensitive  
applications. The MCP73123/223 provides specific  
charge algorithms for LiFePO4 batteries to achieve  
optimal capacity and safety in the shortest charging  
time possible. Along with its small physical size, the low  
number of external components makes the  
- Integrated Current Sense  
- Integrated Reverse Discharge Protection  
• Constant Current / Constant Voltage Operation  
with Thermal Regulation  
MCP73123/223  
ideally  
suitable  
for  
various  
• 4.15V Undervoltage Lockout (UVLO)  
• 18V Absolute Maximum Input with OVP:  
- 6.5V - MCP73123  
applications. The absolute maximum voltage, up to  
18V, allows the use of MCP73123/223 in harsh  
environments, such as low cost wall wart or voltage  
spikes from plug/unplug.  
- 13V - MCP73223  
• High Accuracy Preset Voltage Regulation  
Through Full Temperature Range (-5°C to +55°C):  
The MCP73123/223 employs a constant current /  
constant voltage charge algorithm. The 3.6V per cell  
factory preset reference voltage simplifies design with  
2V preconditioning threshold. The fast charge,  
constant current value is set with one external resistor  
from 130 mA to 1100 mA. The MCP73123/223 also  
limits the charge current based on die temperature  
during high power or high ambient conditions. This  
thermal regulation optimizes the charge cycle time  
while maintaining device reliability.  
- +0.5% - MCP73123  
- +0.6% - MCP73223  
• Battery Charge Voltage Options:  
- 3.6V - MCP73123  
- 7.2V - MCP73223  
• Resistor Programmable Fast Charge Current:  
- 130 mA - 1100 mA  
• Preconditioning of Deeply Depleted Cells:  
- Available Options: 10% or Disable  
• Integrated Precondition Timer:  
- 32 Minutes or Disable  
The PROG pin of the MCP73123/223 also serves as  
enable pin. When high impedance is applied, the  
MCP73123/223 will be in standby mode.  
The MCP73123/223 is fully specified over the ambient  
temperature range of -40°C to +85°C. The MCP73123/  
223 is available in a 10 lead, DFN package.  
• Automatic End-of-Charge Control:  
- Selectable Minimum Current Ratio:  
5%, 7.5%, 10% or 20%  
Package Types (Top View)  
- Elapse Safety Timer: 4 HR, 6 HR, 8 HR or  
Disable  
MCP73123/223  
3x3 DFN *  
• Automatic Recharge:  
- Available Options: 95% or Disable  
• Factory Preset Charge Status Output:  
- On/Off or Flashing  
VDD  
VDD  
PROG  
VSS  
1
2
10  
9
EP  
11  
VBAT  
VBAT  
NC  
VSS  
STAT  
NC  
3
4
5
8
7
6
• Soft Start  
Temperature Range: -40°C to +85°C  
• Packaging: DFN-10 (3 mm x 3 mm)  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
Applications  
• Low-Cost LiFePO4 Battery Chargers  
• Power Tools  
Toys  
• Backup Energy Storages  
© 2010 Microchip Technology Inc.  
DS22191B-page 1  
MCP73123/223  
Typical Application  
MCP73123 Typical Application  
3
4
1
VDD  
VDD  
VBAT  
Ac-dc Adapter  
2
7
VBAT  
+
-
4.7 µF  
4.7 µF  
1-Cell  
LiFePO4  
Battery  
10  
PROG  
STAT  
NC  
1 kΩ  
1.15 kΩ  
5
6
9
8
VSS  
VSS  
NC  
TABLE 1:  
AVAILABLE FACTORY PRESET OPTIONS  
Pre-  
conditioning  
Charge Current  
Pre-  
conditioning  
Threshold  
End-of-  
Charge  
Control  
Charge  
Voltage  
Precondition  
Timer  
Elapse  
Timer  
Automatic  
Recharge  
Output  
Status  
OVP  
3.6V  
6.5V  
13V  
Disable / 10%  
2V  
Disable /  
32 Minimum  
Disable / 4 HR / 5% / 7.5% /  
6 HR / 8 HR 10% / 20%  
Disable / 4 HR / 5% / 7.5% /  
6 HR / 8 HR 10% / 20%  
No /  
Yes  
Type 1 /  
Type 2  
7.2V  
Disable / 10%  
4V  
Disable /  
32 Minimum  
No /  
Yes  
Type 1 /  
Type 2  
Note 1:  
I
REG: Regulated fast charge current.  
REG: Regulated charge voltage.  
PREG/IREG: Preconditioning charge current; ratio of regulated fast charge current.  
2:  
3:  
V
I
4: ITERM/IREG: End-of-Charge control; ratio of regulated fast charge current.  
5:  
6:  
V
V
RTH/VREG: Recharge threshold; ratio of regulated battery voltage.  
PTH/VREG: Preconditioning threshold voltage  
TABLE 2:  
STANDARD SAMPLE OPTIONS  
Part  
VREG  
OVP IPREG/IREG Pre-charge Elapse ITERM/IREG VRTH/VREG VPTH/VREG Output  
Number  
Timer  
32 Min.  
32 Min.  
Timer  
6 HR  
6 HR  
Status  
Type 1  
Type 1  
MCP73123-22S/MF  
MCP73223-C2S/MF  
3.6V  
7.2V  
6.5V  
13V  
10%  
10%  
10%  
10%  
95%  
95%  
2V  
4V  
Note 1: Customers should contact their distributor, representatives or field application engineer (FAE) for support and sample.  
Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of  
this document. Technical support is available through the web site at: http//support.microchip.com  
DS22191B-page 2  
© 2010 Microchip Technology Inc.  
MCP73123/223  
Functional Block Diagram  
VOREG  
Direction  
Control  
VBAT  
VDD  
Current  
Limit  
+
-
VREF  
PROG  
CA  
+
Reference,  
Bias, UVLO,  
and SHDN  
VREF (1.21V)  
-
+
VOREG  
UVLO  
-
-
Precondition  
+
Term  
-
+
Charge  
Control,  
Charge  
VA  
STAT  
+
Timer,  
-
and  
Status  
Logic  
VSS  
-
6.5V / 13V  
VDD  
+
Input OverVP  
-
95% VREG  
-
+
110°C  
TSD  
Thermal Regulation  
VBAT  
+
*Recharge  
*Only available on selected options  
© 2010 Microchip Technology Inc.  
DS22191B-page 3  
MCP73123/223  
NOTES:  
DS22191B-page 4  
© 2010 Microchip Technology Inc.  
MCP73123/223  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
V
................................................................................18.0V  
DD  
PROG ..............................................................................6.0V  
All Inputs and Outputs w.r.t. VSS ............... -0.3 to (VDD+0.3)V  
Maximum Junction Temperature, TJ ............Internally Limited  
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins  
Human Body Model (1.5 kΩ in Series with 100 pF).......4 kV  
Machine Model (200pF, No Series Resistance)..............300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typical) + 0.3V] to 12V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Supply Input  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Voltage Range  
Operating Supply Voltage  
Operating Supply Voltage  
Supply Current  
VDD  
VDD  
VDD  
ISS  
4
16  
6.5  
V
V
4.2  
4.2  
MCP73123  
MCP73223  
13.0  
5.5  
V
4
µA  
µA  
µA  
µA  
Shutdown (VDD VBAT - 150 mV)  
Charging  
700  
30  
50  
1500  
100  
150  
Standby (PROG Floating)  
Charge Complete; No Battery;  
VDD < VSTOP  
Battery Discharge Current  
Output Reverse Leakage  
Current  
IDISCHARGE  
0.5  
0.5  
2
2
µA  
µA  
Standby (PROG Floating)  
Shutdown (VDD VBAT  
,
or VDD < VSTOP  
)
6
17  
µA  
Charge Complete; VDD is present  
Undervoltage Lockout  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
VSTART  
VSTOP  
VHYS  
4.10  
4.00  
4.15  
4.05  
100  
4.25  
4.15  
V
V
mV  
Overvoltage Protection  
OVP Start Threshold  
OVP Start Threshold  
OVP Hysteresis  
VOVP  
VOVP  
6.4  
12.8  
6.5  
13  
6.6  
13.2  
V
V
MCP73123  
MCP73223  
VOVPHYS  
150  
mV  
Voltage Regulation (Constant Voltage Mode)  
Regulated Output Voltage  
VREG  
3.582  
3.60  
3.618  
V
TA= -5°C to +55°C, IOUT = 50 mA  
- MCP73123  
Output Voltage Tolerance  
Regulated Output Voltage  
VRTOL  
VREG  
-0.5  
+0.5  
%
V
TA= -5°C to +55°C  
7.157  
7.20  
7.243  
TA= -5°C to +55°C, IOUT = 50 mA  
- MCP73123  
Output Voltage Tolerance  
Line Regulation  
VRTOL  
-0.6  
+0.6  
0.20  
%
TA= -5°C to +55°C  
|(ΔVBAT  
BAT)/ΔVDD|  
/
0.05  
%/V VDD = [VREG(Typical)+1V] to 6V  
- MCP73123  
V
V
DD = [VREG(Typical)+1V] to 12V  
- MCP73223  
OUT = 50 mA  
IOUT = 50 mA - 150 mA  
DD = [VREG(Typical)+1V]  
I
Load Regulation  
VBAT/VBAT  
|
0.05  
0.20  
%
V
Note 1: Not production tested. Ensured by design.  
© 2010 Microchip Technology Inc.  
DS22191B-page 5  
MCP73123/223  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typical) + 0.3V] to 12V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Ripple Attenuation  
PSRR  
-46  
-30  
dB  
dB  
IOUT = 20 mA, 10 Hz to 1 kHz  
IOUT = 20 mA, 10 Hz to 10 kHz  
Battery Short Protection  
BSP Start Threshold  
BSP Start Threshold  
BSP Hysteresis  
VSHORT  
VSHORT  
VBSPHYS  
ISHORT  
1.45  
2.90  
150  
25  
V
V
MCP73123  
MCP73223  
mV  
mA  
BSP Regulation Current  
Current Regulation (Fast Charge, Constant-Current Mode)  
Fast Charge Current  
Regulation  
IREG  
130  
117  
900  
1100  
143  
mA TA=-5°C to +55°C  
mA PROG = 10 kΩ  
mA PROG = 1.1 kΩ  
130  
1000  
1100  
Preconditioning Current Regulation (Trickle Charge Constant Current Mode)  
Precondition Current Ratio  
IPREG / IREG  
10  
%
PROG = 1 kΩ to 10 kΩ  
TA=-5°C to +55°C  
1.9  
3.8  
100  
2.0  
4.0  
100  
2.1  
4.2  
%
V
No Preconditioning  
Precondition Voltage  
Threshold Ratio  
VPTH  
VPTH  
MCP73123, VBAT Low-to-High  
MCP73223, VBAT Low-to-High  
V
Precondition Hysteresis  
VPHYS  
mV VBAT High-to-Low (Note 1)  
Charge Termination  
Charge Termination  
Current Ratio  
ITERM / IREG  
3.7  
5.6  
7.5  
15  
5
6.3  
9.4  
12.5  
25  
%
%
PROG = 1 kΩ to 10 kΩ  
TA=-5°C to +55°C  
7.5  
10  
20  
Automatic Recharge  
Recharge Voltage  
Threshold Ratio  
VRTH / VREG  
93  
95  
0
97  
VBAT High-to-Low  
No Automatic Recharge  
Pass Transistor ON-Resistance  
ON-Resistance  
RDSON  
350  
mΩ VDD = 4.5V, TJ = 105°C (Note 1)  
Status Indicator - STAT  
Sink Current  
ISINK  
VOL  
ILK  
20  
0.2  
35  
0.5  
1
mA  
Low Output Voltage  
Input Leakage Current  
PROG Input  
V
ISINK = 4 mA  
0.001  
μA  
High Impedance, VDD on pin  
Charge Impedance Range  
Shutdown Impedance  
PROG Voltage Range  
Automatic Power Down  
RPROG  
RPROG  
VPROG  
1
0
200  
21  
5
kΩ  
kΩ  
V
Impedance for Shutdown  
Automatic Power Down  
Entry Threshold  
VPDENTRY  
VPDEXIT  
VBAT  
10 mV  
+
VBAT  
50 mV  
+
V
V
VDD Falling  
VDD Rising  
Automatic Power Down  
Exit Threshold  
VBAT  
150 mV  
+
VBAT +  
250 mV  
Thermal Shutdown  
Die Temperature  
TSD  
150  
10  
°C  
°C  
Die Temperature  
Hysteresis  
TSDHYS  
Note 1: Not production tested. Ensured by design.  
DS22191B-page 6  
© 2010 Microchip Technology Inc.  
MCP73123/223  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typical)+0.3V] to 6V, TA=-40°C to +85°C.  
Typical values are at +25°C, VDD= [VREG(Typical)+1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Elapsed Timer  
Elapsed Timer Period  
tELAPSED  
0
Hours  
Hours  
Hours  
Hours  
Timer Disabled  
3.6  
5.4  
7.2  
4.0  
6.0  
8.0  
4.4  
6.6  
8.8  
Preconditioning Timer  
Preconditioning Timer Period  
tPRECHG  
0
Hours  
Hours  
Disabled Timer  
0.4  
0.5  
0.6  
Status Indicator  
Status Output turn-off  
tOFF  
tON  
500  
500  
µs  
ISINK = 1 mA to 0 mA  
(Note 1)  
Status Output turn-on,  
ISINK = 0 mA to 1 mA  
(Note 1)  
Note 1: Not production tested. Ensured by design.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (Typical) + 0.3V] to 6V.  
Typical values are at +25°C, VDD = [VREG (Typical) + 1.0V]  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, DFN-10 (3x3)  
TA  
TJ  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
43  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
© 2010 Microchip Technology Inc.  
DS22191B-page 7  
MCP73123/223  
NOTES:  
DS22191B-page 8  
© 2010 Microchip Technology Inc.  
MCP73123/223  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = [VREG(Typical) + 1V], IOUT = 50 mA and TA= +25°C, Constant-voltage mode.  
7.24  
3.66  
3.65  
3.64  
3.63  
3.62  
3.61  
3.60  
3.59  
3.58  
3.57  
3.56  
3.55  
7.23  
7.22  
7.21  
7.20  
7.19  
7.18  
7.17  
7.16  
ILOAD = 150 mA  
BAT = 3.6V  
ILOAD = 50 mA  
VDD = 9.2V  
V
TA = +25°C  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
-5  
0
5
10 15 20 25 30 35 40 45 50 55  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
(V  
Battery Regulation Voltage  
(V ) vs. Supply Voltage (V ).  
) vs. Ambient Temperature (T ).  
BAT  
DD  
BAT  
A
3.620  
3.615  
3.610  
3.605  
3.600  
3.595  
3.590  
3.585  
3.580  
3.65  
3.64  
3.63  
3.62  
3.61  
3.60  
3.59  
3.58  
3.57  
3.56  
3.55  
ILOAD = 50 mA  
BAT = 3.6V  
V
ILOAD = 150 mA  
DD = 5.2V  
TA = +25°C  
V
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
-5  
0
5
10 15 20 25 30 35 40 45 50 55  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
(V  
Battery Regulation Voltage  
(V ) vs. Supply Voltage (V ).  
) vs. Ambient Temperature (T ).  
BAT  
DD  
BAT  
A
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
7.24  
7.23  
7.22  
7.21  
7.20  
7.19  
7.18  
7.17  
7.16  
VDD = 5.2V  
TA = +25°C  
ILOAD = 50 mA  
VBAT = 7.2V  
T
A = +25°C  
8.4  
9.0  
9.6  
10.2  
10.8  
11.4  
12.0  
1 2 3 4 5 6 7 8 9 1011121314151617181920  
Supply Voltage (V)  
Programming Resistor (k)  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6: Charge Current (I  
Programming Resistor (R ).  
PROG  
) vs.  
OUT  
(V ) vs. Supply Voltage (V ).  
BAT  
DD  
© 2010 Microchip Technology Inc.  
DS22191B-page 9  
MCP73123/223  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, VDD = [VREG(Typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
950  
930  
910  
150  
144  
138  
890  
870  
850  
830  
810  
790  
770  
750  
132  
126  
120  
114  
108  
102  
96  
RPROG = 10 k  
TA = +25°C  
RPROG = 1.33 k  
T
A = +25°C  
90  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-7:  
Programming Resistor (R  
Charge Current (I  
) vs.  
FIGURE 2-10:  
Programming Resistor (R  
Charge Current (I  
) vs.  
OUT  
OUT  
OUT  
OUT  
).  
).  
PROG  
PROG  
675  
655  
635  
615  
595  
575  
555  
535  
950  
930  
910  
890  
870  
850  
830  
810  
515 RPROG = 2 k  
RPROG = 1.33 k  
VDD = 5.2V  
790  
770  
750  
T
A = +25°C  
495  
475  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
-5  
5
15  
25  
35  
45  
55  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Programming Resistor (R  
Charge Current (I  
) vs.  
FIGURE 2-11:  
Ambient Temperature (T ).  
Charge Current (I  
) vs.  
OUT  
).  
PROG  
A
9.0  
8.0  
7.0  
6.0  
350  
330  
310  
290  
270  
250  
230  
210  
End of Charge  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VDD < VBAT  
VDD < VSTOP  
RPROG = 5 kΩ  
190  
170  
150  
T
A = +25°C  
4.5  
4.8  
5.1  
5.4  
5.7  
6.0  
-5.0  
5.0  
15.0  
25.0  
35.0  
45.0  
55.0  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Charge Current (I  
) vs.  
FIGURE 2-12:  
Output Leakage Current  
Programming Resistor (R  
).  
(I  
) vs. Ambient Temperature (T ).  
PROG  
DISCHARGE  
A
DS22191B-page 10  
© 2010 Microchip Technology Inc.  
MCP73123/223  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, VDD = [VREG(Typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
1
Thermal Regulation  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Charge Current  
Input Voltage  
Battery Voltage  
VDD = 5V  
PROG = 1 k  
1100 mAh LiFePO4 Battery  
R
0
10  
20  
30  
40  
50  
60  
70  
Time (Minutes)  
FIGURE 2-13:  
Overvoltage Protection Start  
FIGURE 2-16:  
Complete Charge Cycle  
(50 ms/Div).  
(1100 mAh LiFePO Battery).  
4
Input Voltage  
Source Voltage (V)  
Output Ripple (mV)  
Battery Voltage  
Charge Current  
FIGURE 2-14:  
Overvoltage Protection Stop  
FIGURE 2-17:  
Line Transient Response  
(50 ms/Div).  
(I = 10 mA, Source Voltage: 2V/Div, Output  
LOAD  
Ripple: 100 mV/Div, Time: 100 µs/Div).  
Output Ripple (mV)  
Output Current (mA)  
Source Voltage (V)  
Output Ripple (mV)  
FIGURE 2-15:  
Load Transient Response  
FIGURE 2-18:  
Line Transient Response  
(I  
= 50 mA, Output Ripple: 100 mV/Div,  
(I = 100 mA, Source Voltage: 2V/Div, Output  
LOAD  
LOAD  
Output Current: 50 mA/Div, Time: 100 µs/Div).  
Ripple: 100 mV/Div, Time: 100 µs/Div).  
© 2010 Microchip Technology Inc.  
DS22191B-page 11  
MCP73123/223  
NOTES:  
DS22191B-page 12  
© 2010 Microchip Technology Inc.  
MCP73123/223  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP73123/223  
Symbol  
I/O  
Description  
DFN-10  
1, 2  
3, 4  
5, 6  
7
VDD  
VBAT  
NC  
I
Battery Management Input Supply  
I/O Battery Charge Control Output  
O
No Connection  
STAT  
VSS  
Battery Charge Status Output  
8, 9  
10  
Battery Management 0V Reference  
PROG  
EP  
I/O Battery Charge Current Regulation Program and Charge Control Enable  
Exposed Pad  
11  
3.1  
Battery Management Input Supply  
(VDD  
3.5  
Battery Management 0V Reference  
(VSS  
)
)
A supply voltage of [VREG (Typical) + 0.3V] to 6.0V is  
recommended for MCP73123, while a supply voltage  
of [VREG (Typical) + 0.3V] to 12.0V is recommended for  
MCP73223. Bypass to VSS with a minimum of 1 µF.  
The VDD pin is rated 18V absolute maximum to prevent  
sudden rise of input voltage from spikes or low cost  
ac-dc wall adapter.  
Connect to the negative terminal of the battery and  
input supply.  
3.6  
Current Regulation Set (PROG)  
The fast charge current is set by placing a resistor from  
PROG to VSS during constant current (CC) mode.  
PROG pin also serves as charge control enable.  
When a typical 200 kΩ impedance is applied to PROG  
pin, the MCP73123/223 is disabled until the high  
impedance is removed. Refer to Section 5.5  
“Constant Current MODE - Fast Charge” for details.  
3.2  
Battery Charge Control Output  
(VBAT  
)
Connect to the positive terminal of the battery. Bypass  
to VSS with a minimum of 1 µF to ensure loop stability  
when the battery is disconnected. The MCP73123 is  
designed to provide 3.6V battery regulation voltage for  
LiFePO4 batteries. Undercharge may occur if a typical  
Li-Ion or Li-Poly battery is used.  
3.7  
Exposed Pad (EP)  
The Exposed Thermal Pad (EP) shall be connected to  
the exposed copper area on the Printed Circuit Board  
(PCB) for the thermal enhancement. Additional vias on  
the copper area under the MCP73123/223 device can  
improve the performance of heat dissipation and  
simplify the assembly process.  
3.3  
No Connect (NC)  
No connect.  
3.4  
Status Output (STAT)  
STAT is an open-drain logic output for connection to an  
LED for charge status indication in stand-alone  
applications. Alternatively, a pull-up resistor can be  
applied for interfacing to a host microcontroller. Refer to  
Table 5-1 for a summary of the status output during a  
charge cycle.  
© 2010 Microchip Technology Inc.  
DS22191B-page 13  
MCP73123/223  
NOTES:  
DS22191B-page 14  
© 2010 Microchip Technology Inc.  
MCP73123/223  
4.0  
DEVICE OVERVIEW  
The MCP73123/223 are simple, but fully integrated  
linear charge management controllers. Figure 4-1  
depicts the operational flow algorithm.  
SHUTDOWN MODE  
< V  
V
DD  
UVLO  
V
< V  
PD  
DD  
or  
PROG > 200 kΩ  
STAT = HI-Z  
V
< V  
PTH  
BAT  
TIMER FAULT  
No Charge Current  
STAT = Flashing (Op.1)  
STAT = Hi-Z (Op.2)  
Timer Suspended  
V
< V  
OVP  
DD  
PRECONDITIONING MODE  
Timer Expired  
Charge Current = I  
PREG  
STAT = LOW  
Timer Reset  
Timer Enable  
V
> V  
OVP  
DD  
V
> V  
OVP  
V
> V  
PTH  
DD  
BAT  
V
> V  
PTH  
BAT  
FAST CHARGE MODE  
OVERVOLTAGE PROTECTION  
Charge Current = I  
Timer Expired  
< V  
REG  
No Charge Current  
STAT = Hi-Z  
Timer Suspended  
STAT = LOW  
Timer Reset  
Timer Enabled  
TIMER FAULT  
No Charge Current  
V
BAT  
RTH  
STAT = Flashing (Op.1)  
STAT = Hi-Z (Op.2)  
Timer Suspended  
V
< V  
OVP  
V
= V  
REG  
DD  
BAT  
V
> V  
OVP  
DD  
V
< V  
OVP  
DD  
CONSTANT VOLTAGE MODE  
Charge Voltage = V  
REG  
STAT = LOW  
V
< I  
TERM  
BAT  
Die Temperature < T  
SDHYS  
CHARGE COMPLETE MODE  
V
> V  
SHORT  
BAT  
Charge Mode Resume  
No Charge Current  
Charge Mode Resume  
STAT = HI-Z  
Timer Reset  
Die Temperature > T  
SD  
V
< V  
SHORT  
BAT  
TEMPERATURE FAULT  
No Charge Current  
BATTERY SHORT PROTECTION  
Charge Current = I  
STAT = Flashing (Op.1)  
SHORT  
STAT = Flashing (Op.1)  
STAT = Hi-Z (Op.2)  
Timer Suspended  
STAT = Hi-Z (Op.2)  
Timer Suspended  
FIGURE 4-1:  
The MCP73123/223 Flow Chart.  
© 2010 Microchip Technology Inc.  
DS22191B-page 15  
MCP73123/223  
NOTES:  
DS22191B-page 16  
© 2010 Microchip Technology Inc.  
MCP73123/223  
5.3.2  
BATTERY CHARGE CONTROL  
5.0  
5.1  
DETAILED DESCRIPTION  
Undervoltage Lockout (UVLO)  
OUTPUT (V  
)
BAT  
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73123/223  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
An internal undervoltage lockout (UVLO) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode until the input supply rises above the  
UVLO threshold. In the event a battery is present when  
the input power is applied, the input supply must rise  
approximately 150 mV above the battery voltage  
before the MCP73123/223 becomes operational.  
5.3.3  
BATTERY DETECTION  
The MCP73123/223 detects the battery presence with  
charging of the output capacitor. The charge flow will  
initiate when the voltage on VBAT is pulled below the  
The UVLO circuit places the device in shutdown mode  
if the input supply falls to approximately 150 mV above  
the battery voltage.The UVLO circuit is always active.  
At any time, the input supply is below the UVLO  
threshold or approximately 150 mV of the voltage at the  
VBAT pin, the MCP73123/223 device is placed in a  
shutdown mode.  
VRECHARGE threshold.  
Refer  
to  
Section 1.0  
“Electrical Characteristics” for VRECHARGE values.  
The value will be the same for non-rechargeable  
device.  
When VBAT > VREG + Hysteresis, the charge will be  
suspended or not started, depending on the condition  
to prevent over charge that may occur.  
5.2  
Overvoltage Protection (OVP)  
An internal overvoltage protection (OVP) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode when the input supply rises above  
the OVP threshold. The hysteresis of OVP is  
approximately 150 mV for the MCP73123/223 device.  
5.4  
Preconditioning  
If the voltage at the VBAT pin is less than the  
preconditioning threshold, the MCP73123/223 device  
enters a preconditioning mode. The preconditioning  
threshold is factory set. Refer to Section 1.0  
“Electrical Characteristics” for preconditioning  
threshold options.  
The MCP73123/223 device is operational between  
UVLO and OVP threshold. The OVP circuit is also  
recognized as overvoltage lockout (OVLO).  
In this mode, the MCP73123/223 device supplies 10%  
of the fast charge current (established with the value of  
the resistor connected to the PROG pin) to the battery.  
5.3  
Charge Qualification  
When the input power is applied, the input supply must  
rise 150 mV above the battery voltage before the  
MCP73123/223 becomes operational.  
When the voltage at the VBAT pin rises above the  
preconditioning threshold, the MCP73123/223 device  
enters the constant current (fast charge) mode.  
The automatic power down circuit places the device in  
a shutdown mode if the input supply falls to within  
+50 mV of the battery voltage.  
Note:  
5.4.1  
The MCP73123/223 also offer options  
with no preconditioning.  
The automatic circuit is always active. At any time the  
input supply is within +50 mV of the voltage at the  
VBAT pin, the MCP73123/223 is placed in a shutdown  
mode.  
TIMER EXPIRED DURING  
PRECONDITIONING MODE  
If the internal timer expires before the voltage threshold  
is reached for fast charge mode, a timer fault is  
indicated and the charge cycle terminates. The  
MCP73123/223 device remains in this condition until  
the battery is removed or input power is cycled. If the  
battery is removed, the MCP73123/223 device enters  
the Standby mode where it remains until a battery is  
reinserted.  
For a charge cycle to begin, the automatic power  
down conditions must be met and the charge enable  
input must be above the input high threshold.  
Note:  
In order to extend the battery cycle life, the  
charge will initiate only when battery  
voltage is below 3.4V per cell.  
5.3.1  
BATTERY MANAGEMENT INPUT  
Note:  
The typical preconditioning timer for  
MCP73123/223 is 32 minutes. The  
MCP73123/223 also offers options with no  
preconditioning timer.  
SUPPLY (V  
)
DD  
The VDD input is the input supply to the MCP73123/  
223. The MCP73123/223 automatically enters  
a
Power-down mode if the voltage on the VDD input falls  
to within +50 mV of the battery voltage. This feature  
prevents draining the battery pack when the VDD  
supply is not present.  
© 2010 Microchip Technology Inc.  
DS22191B-page 17  
MCP73123/223  
Constant current mode is maintained until the voltage  
at the VBAT pin reaches the regulation voltage, VREG  
When constant current mode is invoked, the internal  
timer is reset.  
5.5  
Constant Current MODE - Fast  
Charge  
.
During the constant current mode, the programmed  
charge current is supplied to the battery or load.  
5.5.1  
TIMER EXPIRED DURING  
CONSTANT CURRENT - FAST  
CHARGE MODE  
The charge current is established using a single  
resistor from PROG to VSS. The program resistor and  
the charge current are calculated using Equation 5-1:  
If the internal timer expires before the recharge voltage  
threshold is reached, a timer fault is indicated and the  
charge cycle terminates. The MCP73123/223 device  
remains in this condition until the battery is removed. If  
the battery is removed or input power is cycled, the  
MCP73123/223 device enters the Stand-by mode  
where it remains until a battery is reinserted.  
EQUATION 5-1:  
IREG = 1104 × R0.93  
Where:  
RPROG  
IREG  
=
=
kilo-ohms (kΩ)  
milliampere (mA)  
5.6  
Constant Voltage Mode  
When the voltage at the VBAT pin reaches the  
regulation voltage, VREG, constant voltage regulation  
begins. The regulation voltage is factory set to 3.6V for  
single cell with a tolerance of ±0.5% or 7.2V for dual cell  
with a tolerance of ±0.6%.  
EQUATION 5-2:  
RPROG = 10(log1104) (0.93)  
Where:  
RPROG  
IREG  
=
=
kilo-ohms (kΩ)  
5.7  
Charge Termination  
milliampere (mA)  
The charge cycle is terminated when, during constant  
voltage mode, the average charge current diminishes  
below a threshold established with the value of 5%,  
7.5%, 10% or 20% of fast charge current or internal  
timer has expired. A 1 ms filter time on the termination  
comparator ensures that transient load conditions do  
not result in premature charge cycle termination. The  
timer period is factory set and can be disabled. Refer to  
Section 1.0 “Electrical Characteristics” for timer  
period options.  
Table 5-1 provides commonly seen E96 (1%) and E24  
(5%) resistors for various charge current to reduce  
design time.  
TABLE 5-1:  
Charge  
RESISTOR LOOKUP TABLE  
Recommended Recommended  
Current (mA) E96 Resistor (Ω) E24 Resistor (Ω)  
130  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
1100  
10k  
10k  
8.45k  
6.20k  
4.99k  
4.02k  
3.40k  
3.00k  
2.61k  
2.32k  
2.10k  
1.91k  
1.78k  
1.62k  
1.50k  
1.40k  
1.33k  
1.24k  
1.18k  
1.10k  
1.00k  
8.20k  
6.20k  
5.10k  
3.90k  
3.30k  
3.00k  
2.70k  
2.37k  
2.20k  
2.00k  
1.80k  
1.60k  
1.50k  
1.50k  
1.30k  
1.20k  
1.20k  
1.10k  
1.00k  
5.8  
Automatic Recharge  
The MCP73123/223 device continuously monitors the  
voltage at the VBAT pin in the charge complete mode. If  
the voltage drops below the recharge threshold,  
another charge cycle begins and current is once again  
supplied to the battery or load. The recharge threshold  
is factory set. Refer to Section 1.0 “Electrical  
Characteristics” for recharge threshold options.  
Note:  
The MCP73123/223 also offer options  
with no automatic recharge.  
For the MCP73123/223 device with no recharge option,  
the MCP73123/223 will go into standby mode when the  
termination condition is met. The charge will not restart  
until the following conditions have been met:  
• Battery is removed from the system and inserted  
again  
• VDD is removed and plugged in again  
RPROG is disconnected (or high impedance) and  
reconnected  
DS22191B-page 18  
© 2010 Microchip Technology Inc.  
MCP73123/223  
5.9  
Thermal Regulation  
5.11 Status Indicator  
The MCP73123/223 shall limit the charge current  
based on the die temperature. The thermal regulation  
optimizes the charge cycle time while maintaining  
device reliability. Figure 5-1 depicts the thermal  
regulation for the MCP73123/223 device. Refer to  
Section 1.0 “Electrical Characteristics” for thermal  
package resistances and Section 6.1.1.2 “Thermal  
Considerations” for calculating power dissipation.  
.
The charge status outputs are open-drain outputs with  
two different states: Low (L), and High Impedance  
(Hi-Z). The charge status outputs can be used to  
illuminate LEDs. Optionally, the charge status outputs  
can be used as an interface to a host microcontroller.  
Table 5-2 summarizes the state of the status outputs  
during a charge cycle.  
TABLE 5-2:  
STATUS OUTPUTS  
CHARGE CYCLE  
600  
500  
400  
300  
200  
STAT  
STATE  
Shutdown  
Standby  
Hi-Z  
Hi-Z  
L
Preconditioning  
Constant Current Fast  
Charge  
L
VDD = 5.2V  
100  
Constant Voltage  
L
RPROG = 2 k  
Charge Complete - Standby  
Temperature Fault  
Hi-Z  
0
1.6 second 50% D.C.  
Flashing (Type 2)  
Hi-Z (Type 1)  
25 35 45 55 65 75 85 95 105 115 125 135 145  
Junction Temperature (°C)  
FIGURE 5-1:  
Thermal Regulation.  
Timer Fault  
1.6 second 50% D.C.  
Flashing (Type 2)  
Hi-Z (Type 1)  
5.10 Thermal Shutdown  
Preconditioning Timer Fault  
1.6 second 50% D.C.  
Flashing (Type 2)  
Hi-Z (Type 1)  
The MCP73123/223 suspends charge if the die  
temperature exceeds +150°C. Charging will be  
resumed when the die temperature has cooled by  
approximately 10°C. The thermal shutdown is a  
secondary safety feature in the event that there is a  
failure within the thermal regulation circuitry.  
5.12 BATTERY SHORT PROTECTION  
Once a lithium iron phosphate battery is detected, an  
internal battery short protection (BSP) circuit starts  
monitoring the battery voltage. When VBAT falls below  
a typical 1.7V battery short protection threshold voltage  
per cell, the charging behavior is postponed.  
25 mA (typical) detection current is supplied for  
recovering from battery short condition.  
Preconditioning mode resumes when VBAT raises  
above battery short protection threshold. The battery  
voltage must rise approximately 150 mV above the  
battery short protection voltage before the MCP73123/  
223 device becomes operational.  
© 2010 Microchip Technology Inc.  
DS22191B-page 19  
MCP73123/223  
NOTES:  
DS22191B-page 20  
© 2010 Microchip Technology Inc.  
MCP73123/223  
6.0  
APPLICATIONS  
The MCP73123/223 is designed to operate in  
conjunction with host microcontroller or in  
a
stand-alone applications. The MCP73123/223  
provides the preferred charge algorithm for lithium  
iron phosphate cells Constant-current followed by  
Constant-voltage. Figure 6-1 depicts  
a
typical  
stand-alone application circuit, while Figure 6-2  
depicts the accompanying charge profile.  
MCP73123 Typical Application  
3
1
VDD  
VDD  
VBAT  
Ac-dc Adapter  
4
2
7
VBAT  
+
4.7 µF  
4.7 µF  
1-Cell  
10  
PROG  
STAT  
NC  
LiFePO4  
Battery  
1 kΩ  
1.15 kΩ  
-
5
6
9
8
VSS  
VSS  
NC  
FIGURE 6-1:  
Typical Application Circuit.  
7.0  
6.0  
5.0  
4.0  
3.0  
1
Thermal Regulation  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.0  
VDD = 5V  
R
PROG = 1 kΩ  
1100 mAh LiFePO4 Battery  
1.0  
0.0  
0
10  
20  
30  
40  
50  
60  
70  
Time (Minutes)  
FIGURE 6-2:  
Typical Charge Profile for  
Single-Cell LiFePO Battery).  
4
© 2010 Microchip Technology Inc.  
DS22191B-page 21  
MCP73123/223  
Power dissipation with a 5V, ±10% input voltage  
source, 500 mA ±10% and preconditioning threshold  
voltage at 2V is:  
6.1  
Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
preconditioning mode to the constant-current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
EQUATION 6-2:  
PowerDissipation = (5.5V 2V) × 550mA = 1.925W  
This power dissipation with the battery charger in the  
DFN-10 package will result approximately 83°C above  
room temperature.  
6.1.1.3  
External Capacitors  
6.1.1  
COMPONENT SELECTION  
The MCP73123/223 is stable with or without a battery  
load. In order to maintain good AC stability in the  
Constant-voltage mode, a minimum capacitance of  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
1 µF is recommended to bypass the VBAT pin to VSS  
.
This capacitance provides compensation when there is  
no battery load. In addition, the battery and  
interconnections appear inductive at high frequencies.  
These elements are in the control feedback loop during  
Constant-voltage mode. Therefore, the bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
6.1.1.1  
Charge Current  
The recommended fast charge current should be  
obtained from battery manufacturer. For example, a  
1000 mAh battery pack with 2C preferred fast charge  
current has a charge current of 1000 mA. Charging at  
this rate provides the shortest charge cycle times  
without degradation to the battery pack performance or  
life.  
A minimum of 16V rated 1 µF, is recommended to apply  
for output capacitor and a minimum of 25V rated 1 µF,  
is recommended to apply for input capacitor for typical  
applications.  
Note:  
Please consult with your battery supplier  
or refer to battery data sheet for preferred  
charge rate.  
TABLE 6-1:  
MLCC CAPACITOR EXAMPLE  
MLCC  
Capacitors  
Temperature  
Tolerance  
Range  
6.1.1.2  
Thermal Considerations  
X7R  
X5R  
-55°C to +125°C  
-55°C to +85°C  
±15%  
±15%  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
Preconditioning mode to the Constant-current mode.  
In this case, the power dissipation is:  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 1 µF ceramic,  
tantalum or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability.  
EQUATION 6-1:  
PowerDissipation = (V  
V  
) × I  
PTHMIN REGMAX  
DDMAX  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
6.1.1.4  
Reverse-Blocking Protection  
the maximum fast charge current  
The MCP73123/223 provides protection from a faulted  
or shorted input. Without the protection, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the internal pass transistor.  
the minimum transition threshold  
voltage  
DS22191B-page 22  
© 2010 Microchip Technology Inc.  
MCP73123/223  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins,  
recommended to minimize voltage drops along the  
high current-carrying PCB traces.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature. Figure 6-4 and Figure 6-5 depict  
a typical layout with PCB heatsinking.  
FIGURE 6-5:  
Typical Layout (Bottom).  
MCP73X23EV-LFP  
FIGURE 6-3:  
Typical Layout (Top).  
FIGURE 6-4:  
Typical Layout (Top Metal).  
© 2010 Microchip Technology Inc.  
DS22191B-page 23  
MCP73123/223  
NOTES:  
DS22191B-page 24  
© 2010 Microchip Technology Inc.  
MCP73123/223  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN (3x3)  
Example:  
Standard *  
Part Number  
MCP73123-22SI/MF  
MCP73223-C2SI/MF  
XXXX  
77HI  
0923  
Code  
YYWW  
NNN  
77HI  
X7HI  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2010 Microchip Technology Inc.  
DS22191B-page 25  
MCP73123/223  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢐꢘꢇMꢇꢙꢚꢙꢚꢁꢛꢜꢇ  ꢇ!ꢓꢆ"ꢇ#ꢎꢐꢒ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢓꢏ  
,
ꢚꢁ:ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ+.  
+ꢁꢚꢚꢅ/ꢕ0  
ꢀꢁ.:  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
ꢏꢁꢏꢚ  
ꢏꢁꢒ:  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
,ꢏ  
(
5
ꢀꢁꢒꢚ  
ꢚꢁꢀ:  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁꢜ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
<
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚ>+/  
DS22191B-page 26  
© 2010 Microchip Technology Inc.  
MCP73123/223  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢐꢘꢇMꢇꢙꢚꢙꢚꢁꢛꢜꢇ  ꢇ!ꢓꢆ"ꢇ#ꢎꢐꢒ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2010 Microchip Technology Inc.  
DS22191B-page 27  
MCP73123/223  
NOTES:  
DS22191B-page 28  
© 2010 Microchip Technology Inc.  
MCP73123/223  
APPENDIX A: REVISION HISTORY  
Revision B (January 2010)  
The following is the list of modifications:  
1. Updated the OVP value for MCP73223-C2S/MF  
in Table 2.  
2. Updated the Battery Short Protection values in  
the DC Characteristics table.  
Revision A (July 2009)  
• Original Release of this Document.  
© 2010 Microchip Technology Inc.  
DS22191B-page 29  
MCP73123/223  
NOTES:  
DS22191B-page 30  
© 2010 Microchip Technology Inc.  
MCP73123/223  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
a)  
MCP73123-22SI/MF: Single Cell Lithium Iron  
Phosphate Battery Device  
MCP73123T-22SI/MF: Tape and Reel,  
Temperature Package  
Range  
b)  
Single Cell Lithium Iron  
Phosphate Battery Device  
Device:  
MCP73123:  
Single Cell Lithium Iron Phosphate Battery  
Device  
a)  
b)  
MCP73223-C2SI/MF: Dual Cell Lithium Iron  
Phosphate Battery Device  
MCP73223T-C2SI/MF:Tape and Reel,  
Dual Cell Lithium Iron  
MCP73123T: Single Cell Lithium Iron Phosphate Battery  
Device, Tape and Reel  
MCP73223:  
Dual Cell Lithium Iron Phosphate Battery  
Device  
Phosphate Battery Device  
MCP73223T: Dual Cell Lithium Iron Phosphate Battery  
Device, Tape and Reel  
Temperature  
Range:  
I
= -40°C to +85°C (Industrial)  
Package:  
MF  
=
Plastic Dual Flat No Lead, 3x3 mm Body (DFN),  
10-Lead  
© 2010 Microchip Technology Inc.  
DS22191B-page 31  
MCP73123/223  
NOTES:  
DS22191B-page 32  
© 2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2010 Microchip Technology Inc.  
DS22191B-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
12/30/09  
DS22191B-page 34  
© 2010 Microchip Technology Inc.  

相关型号:

MCP73223-C2S/MF

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223-C2SI

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223-C2SI/MF

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223-C2TI/MF

MCP73223-C2TI/MF
MICROCHIP

MCP73223-CAHI/MF

Power Supply Support Circuit, Adjustable, 1 Channel, PDSO10
MICROCHIP

MCP73223-I/MF

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223T

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223T-22SI/MF

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223T-C2AI/MF

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73223T-C2HI/MF

MCP73223T-C2HI/MF
MICROCHIP

MCP73223T-C2SI/MF

Lithium Iron Phosphate (LiFePO4) Battery Charge Management Controller with Input Overvoltage Protection
MICROCHIP

MCP73223T-C2TI/MF

MCP73223T-C2TI/MF
MICROCHIP