MCP73834T [MICROCHIP]

Stand-Alone Linear Li-Ion / Li-Polymer Charge Management Controller;
MCP73834T
型号: MCP73834T
厂家: MICROCHIP    MICROCHIP
描述:

Stand-Alone Linear Li-Ion / Li-Polymer Charge Management Controller

文件: 总26页 (文件大小:1456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73833/4  
Stand-Alone Linear Li-Ion / Li-Polymer Charge  
Management Controller  
Features  
Description  
• Complete Linear Charge Management Controller  
The MCP73833/4 is a highly advanced linear charge  
management controller for use in space-limited, cost  
sensitive applications. The MCP73833/4 is available in  
a 10-Lead, 3mm x 3mm DFN package or a 10-Lead,  
MSOP package. Along with its small physical size, the  
low number of external components required makes  
the MCP73833/4 ideally suited for portable applica-  
tions. For applications charging from a USB port, the  
MCP73833/4 can adhere to all the specifications  
governing the USB power bus.  
- Integrated Pass Transistor  
- Integrated Current Sense  
- Integrated Reverse Discharge Protection  
• Constant Current / Constant Voltage Operation  
with Thermal Regulation  
• High Accuracy Preset Voltage Regulation:  
- 4.2V, 4.35V, 4.4V, or 4.5V, + 0.75%  
• Programmable Charge Current: 1A Maximum  
• Preconditioning of Deeply Depleted Cells  
- Selectable Current Ratio  
The MCP73833/4 employs a constant current/constant  
voltage charge algorithm with selectable precondition-  
ing and charge termination. The constant voltage  
regulation is fixed with four available options: 4.20V,  
4.35V, 4.40V, or 4.50V, to accomodate new, emerging  
battery charging requirements. The constant current  
value is set with one external resistor. The  
MCP73833/4 limits the charge current based on die  
temperature during high power or high ambient condi-  
tions. This thermal regulation optimizes the charge  
cycle time while maintaining device reliability.  
- Selectable Voltage Threshold  
• Automatic End-of-Charge Control  
- Selectable Current Threshold  
- Selectable Safety Time Period  
• Automatic Recharge  
- Selectable Voltage Threshold  
• Two Charge Status Outputs  
• Cell Temperature Monitor  
Several options are available for the preconditioning  
threshold, preconditioning current value, charge  
termination value, and automatic recharge threshold.  
The preconditioning value and charge termination  
value are set as a ratio, or percentage, of the  
programmed constant current value. Preconditioning  
can be set to 100%. Refer to Section 1.0 “Electrical  
Characteristics” for available options and the  
“Product Indentification System” for standard  
options.  
• Low-Dropout Linear Regulator Mode  
• Automatic Power-Down when Input Power  
Removed  
• Under Voltage Lockout  
• Numerous Selectable Options Available for a  
Variety of Applications:  
- Refer to Section 1.0 “Electrical  
Characteristics” for Selectable Options  
- Refer to the ”Product Identification  
System” for Standard Options  
The MCP73833/4 is fully specified over the ambient  
temperature range of -40°C to +85°C.  
• Available Packages:  
- 3mm x 3mm DFN-10  
- MSOP-10  
Package Types  
DFN-10  
V
V
1
2
3
4
5
10  
9
V
V
DD  
DD  
BAT  
BAT  
Applications  
THERM  
STAT1  
STAT2  
8
7
PG(TE)  
PROG  
• Lithium-Ion / Lithium-Polymer Battery Chargers  
• Personal Data Assistants  
• Cellular Telephones  
6
V
SS  
MSOP-10  
V
V
1
10  
V
V
DD  
BAT  
• Digital Cameras  
2
3
4
5
9
8
7
6
DD  
BAT  
• MP3 Players  
STAT1  
STAT2  
THERM  
PG(TE)  
PROG  
• Bluetooth Headsets  
• USB Chargers  
V
SS  
© 2006 Microchip Technology Inc.  
DS22005A-page 1  
MCP73833/4  
Typical Application  
1A Li-Ion Battery Charger  
1,2  
9,10  
VIN  
VDD  
VBAT  
Single  
Li-Ion  
Cell  
+
-
1 µF  
1 µF  
3
4
7
8
6
5
THERM  
STAT1  
470Ω  
470Ω  
470Ω  
STAT2 PROG  
1 kΩ  
T
10 kΩ  
PG  
VSS  
MCP73833  
Functional Block Diagram  
V
DD  
Direction  
Control  
10 µA  
6 µA  
V
BAT  
CURRENT  
LIMIT  
G=0.001  
+
-
1 kΩ  
G=0.001  
PROG  
CA  
+
-
Reference  
Generator  
111 kΩ  
V
(1.21V)  
REF  
310 kΩ  
72.7 kΩ  
10 kΩ  
+
-
PRECONDITION  
470.6 kΩ  
48 kΩ  
6 µA  
+
-
TERMINATIO N  
CHARGE  
+
-
6 kΩ  
VA  
+
-
157.3 kΩ  
50 µA  
+
-
SHDN  
LDO  
175 kΩ  
+
-
STAT1  
STAT2  
PG (TE)  
Charge  
Control,  
Timer,  
and  
Status  
Logic  
54 kΩ  
+
-
121 kΩ  
UVLO  
HTVT  
LTVT  
V
SS  
+
-
470.6kΩ  
THERM  
+
-
121 kΩ  
1 MΩ  
DS22005A-page 2  
© 2006 Microchip Technology Inc.  
MCP73833/4  
*Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings  
VDD........................................................................7.0V  
All Inputs and Outputs w.r.t. VSS .....-0.3 to (VDD+0.3)V  
Maximum Junction Temperature, TJ . Internally Limited  
Storage temperature ..........................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (HBM)  
(1.5 kΩ in Series with 100 pF)............................... ≥ 4 kV  
Machine Model (MM)  
(200 pF, No Series Resistance) ...........................300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typ)+0.3V] to 6V, TA=-40°C to 85°C.  
Typical values are at +25°C, VDD= [VREG(Typ)+1.0V]  
Parameters  
Supply Input  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
3.75  
6
6
V
V
Charging  
VREG(Typ)  
+0.3V  
Charge Complete, Standby  
Supply Current  
ISS  
2000  
150  
3000  
300  
µA  
µA  
µA  
Charging  
Charge Complete  
100  
300  
Standby (No Battery or PROG  
Floating)  
50  
100  
µA  
Shutdown (VDD < VBAT, or  
V
DD < VSTOP)  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
VSTART  
VSTOP  
VHYS  
3.4  
3.3  
3.55  
3.45  
100  
3.7  
3.6  
V
V
VDD Low to High  
VDD High to Low  
mV  
Voltage Regulation (Constant Voltage Mode, System Test Mode)  
Regulated Output Voltage  
VREG  
4.168  
4.318  
4.367  
4.467  
4.20  
4.35  
4.40  
4.50  
0.10  
4.232  
4.382  
4.433  
4.533  
0.30  
V
V
VDD=[VREG(Typ)+1V]  
IOUT=10 mA  
V
TA=-5°C to +55°C  
V
Line Regulation  
|(ΔVBAT/VBAT  
)
|
%/V  
VDD=[VREG(Typ)+1V] to 6V  
/ΔVDD  
|
I
OUT=10 mA  
IOUT=10 mA to 100 mA  
DD=[VREG(Typ)+1V]  
Load Regulation  
VBAT/ VBAT  
0.10  
0.30  
%
V
Supply Ripple Attenuation  
PSRR  
58  
47  
25  
dB  
dB  
dB  
IOUT=10 mA, 10Hz to 1 kHz  
IOUT=10 mA, 10Hz to 10 kHz  
IOUT=10 mA, 10Hz to 1 MHz  
Current Regulation (Fast Charge Constant Current Mode)  
Fast Charge Current Regulation  
IREG  
90  
100  
110  
mA  
mA  
PROG = 10 kΩ  
PROG = 1.0 kΩ  
TA=-5°C to +55°C  
PROG < 833Ω  
900  
1000  
1100  
Maximum Output Current Limit  
IMAX  
1200  
mA  
© 2006 Microchip Technology Inc.  
DS22005A-page 3  
MCP73833/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typ)+0.3V] to 6V, TA=-40°C to 85°C.  
Typical values are at +25°C, VDD= [VREG(Typ)+1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Preconditioning Current Regulation (Trickle Charge Constant Current Mode)  
Precondition Current Ratio  
IPREG / IREG  
7.5  
15  
30  
10  
20  
12.5  
25  
50  
%
%
PROG = 1.0 kΩ to 10 kΩ  
TA=-5°C to +55°C  
40  
%
100  
66.5  
71.5  
100  
%
Precondition Voltage Threshold  
Ratio  
VPTH / VREG  
64  
69  
70  
75  
%
VBAT Low to High  
VBAT High to Low  
%
Precondition Hysteresis  
VPHYS  
mV  
Charge Termination  
Charge Termination Current Ratio  
ITERM / IREG  
3.75  
5.6  
7.5  
15  
5
6.25  
9.4  
%
%
%
%
PROG = 1.0 kΩ to 10 kΩ  
7.5  
10  
20  
TA=-5°C to +55°C  
12.5  
25  
Automatic Recharge  
Recharge Voltage Threshold Ratio  
VRTH / VREG  
94.0  
96.5  
%
%
VBAT High to Low  
Pass Transistor ON-Resistance  
ON-Resistance  
RDSON  
300  
mΩ  
VDD = 3.75V  
TJ = 105°C  
Battery Discharge Current  
Output Reverse Leakage Current  
IDISCHARGE  
0.15  
0.25  
0.15  
-5.5  
2
2
µA  
µA  
µA  
µA  
PROG Floating  
VDD < VBAT  
2
VDD < VSTOP  
-15  
Charge Complete  
Status Indicators - STAT1, STAT2, PG  
Sink Current  
ISINK  
VOL  
ILK  
15  
0.4  
25  
1
mA  
V
Low Output Voltage  
ISINK = 4 mA  
Input Leakage Current  
PROG Input  
0.01  
1
µA  
High Impedance, 6V on pin  
Charge Impedance Range  
Standy Impedance  
RPROG  
RPROG  
1
20  
kΩ  
kΩ  
70  
200  
Minimum Impedance for  
Standby  
Thermistor Bias  
Thermistor Current Source  
Thermistor Comparator  
Upper Trip Threshold  
ITHERM  
47  
50  
53  
µA  
2 kΩ < RTHERM < 50 kΩ  
VTHERM Low to High  
VTHERM High to Low  
VT1  
VT1HYS  
VT2  
1.20  
1.23  
-50  
1.26  
V
mV  
V
Upper Trip Point Hysteresis  
Lower Trip Threshold  
0.235  
0.25  
50  
0.265  
Lower Trip Point Hysteresis  
System Test (LDO) Mode  
Input High Voltage Level  
THERM Input Sink Current  
Bypass Capacitance  
VT2HYS  
mV  
(V -0.1)  
DD  
VIH  
6
20  
V
ISINK  
CBAT  
3
1
µA  
µF  
µF  
Stand-by or system test mode  
IOUT < 250 mA  
4.7  
IOUT > 250 mA  
DS22005A-page 4  
© 2006 Microchip Technology Inc.  
MCP73833/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typ)+0.3V] to 6V, TA=-40°C to 85°C.  
Typical values are at +25°C, VDD= [VREG(Typ)+1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Automatic Power Down  
Automatic Power Down Entry  
Threshold  
VPD  
VBAT  
50 mV  
+
V
V
2.3V < VBAT < VREG  
VDD Falling  
Automatic Power Down Exit Thresh-  
old  
VPDEXIT  
VBAT  
150 mV  
+
2.3V < VBAT < VREG  
VDD Rising  
Timer Enable Input (TE)  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Thermal Shutdown  
VIH  
VIL  
ILK  
2.0  
0.6  
1
V
V
0.01  
µA  
VTE = 6V  
Die Temperature  
TSD  
150  
10  
°C  
°C  
Die Temperature Hysteresis  
TSDHYS  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typ)+0.3V] to 6V, TA=-40°C to 85°C.  
Typical values are at +25°C, VDD= [VREG(Typ)+1.0V]  
Parameters  
UVLO Start Delay  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
tSTART  
5
ms  
VDD Low to High  
Current Regulation  
Transition Time Out of Preconditioning  
Current Rise Time Out of Preconditioning  
Preconditioning Comparator Filter Time  
Termination Comparator Filter Time  
Charge Comparator Filter Time  
Thermistor Comparator Filter Time  
Elapsed Timer  
tDELAY  
tRISE  
tPRECON  
tTERM  
tCHARGE  
tTHERM  
1
ms  
ms  
ms  
ms  
ms  
ms  
VBAT<VPTH to VBAT>VPTH  
IOUT Rising to 90% of IREG  
Average VBAT Rise/Fall  
Average IOUT Falling  
1
0.4  
0.4  
0.4  
0.4  
1.3  
1.3  
1.3  
1.3  
3.2  
3.2  
3.2  
3.2  
Average VBAT Falling  
Average THERM Rise/Fall  
Elapsed Timer Period  
tELAPSED  
0
0
0
Hours Timer Disabled  
3.6  
5.4  
7.2  
4.0  
6.0  
8.0  
4.4  
6.6  
8.8  
Hours  
Hours  
Hours  
Status Indicators  
Status Output turn-off  
Status Output turn-on  
tOFF  
tON  
200  
200  
µs  
µs  
ISINK = 1 mA to 0 mA  
ISINK = 0 mA to 1 mA  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typ)+0.3V] to 6V.  
Typical values are at +25°C, VDD= [VREG(Typ)+1.0V]  
Parameters  
Temperature Ranges  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, MSOP-10  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
113  
41  
°C/W  
°C/W  
4-Layer JC51-7 Standard  
Board, Natural Convection  
Thermal Resistance, 3mm x 3mm DFN-10  
4-Layer JC51-7 Standard  
Board, Natural Convection  
© 2006 Microchip Technology Inc.  
DS22005A-page 5  
MCP73833/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = 5.2V, VREG = 4.20V, IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
1000  
100  
10  
MCP73833  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 500 mA  
IOUT = 900 mA  
1
3
5
7
9
11 13 15 17 19 21  
4.50  
4.75  
5.00  
5.25  
5.50  
5.75  
6.00  
Programming Resistor (k:)  
Supply Voltage (V)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Charge Current (I  
) vs.  
OUT  
(V  
) vs. Supply Voltage (V ).  
Programming Resistor (R  
).  
BAT  
DD  
PROG  
4.220  
104  
103  
102  
101  
100  
99  
MCP73833  
RPROG = 10 k:  
IOUT = 10 mA  
IOUT = 100 mA  
4.210  
4.200  
4.190  
4.180  
IOUT = 500 mA  
98  
4.170  
IOUT = 900 mA  
97  
4.160  
96  
4.50  
4.75  
5.00  
5.25  
5.50  
5.75  
6.00  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Charge Current (I  
) vs.  
OUT  
(V ) vs. Ambient Temperature (T ).  
Supply Voltage (V ).  
BAT  
A
DD  
1004  
1002  
1000  
998  
996  
994  
992  
990  
988  
986  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
RPROG = 1 k:  
+85°C  
-40°C  
+25°C  
3.00  
3.20  
3.40  
3.60  
3.80  
4.00  
4.20  
4.50  
4.75  
5.00  
5.25  
5.50  
5.75  
6.00  
Battery Regulation Voltage (V)  
Supply Voltage (V)  
FIGURE 2-3:  
Output Leakage Current  
FIGURE 2-6:  
Charge Current (I  
) vs.  
OUT  
(I ) vs. Battery Regulation Voltage  
Supply Voltage (V ).  
DISCHARGE  
DD  
(V  
).  
BAT  
DS22005A-page 6  
© 2006 Microchip Technology Inc.  
MCP73833/4  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, VDD = 5.2V, VREG = 4.20V, IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
120  
100  
80  
60  
40  
20  
0
RPROG = 10 k:  
Junction Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Charge Current (I  
) vs.  
FIGURE 2-10:  
Thermistor Bias Current  
OUT  
Junction Temperature (T ).  
(I  
) vs. Ambient Temperature (T ).  
J
THRERM  
A
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
1200  
1000  
800  
600  
400  
200  
0
VAC = 100 mVp-p  
IOUT = 10 mA  
COUT = 4.7 µF, X7R  
Ceramic  
RPROG = 1 k:  
0.01  
0.1  
1
10  
100  
1000  
Junction Temperature (°C)  
Frequency (kHz)  
FIGURE 2-8:  
Charge Current (I  
) vs.  
FIGURE 2-11:  
Power Supply Ripple  
OUT  
Junction Temperature (T ).  
Rejection (PSRR).  
J
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
0
VAC = 100 mVp-p  
IOUT = 100 mA  
COUT = 4.7 µF, X7R  
Ceramic  
-10  
-20  
-30  
-40  
-50  
-60  
4.50  
4.75  
5.00  
5.25  
5.50  
5.75  
6.00  
0.01  
0.1  
1
10  
100  
1000  
Supply Voltage (V)  
Frequency (kHz)  
FIGURE 2-9:  
Thermistor Bias Current  
FIGURE 2-12:  
Power Supply Ripple  
(I  
) vs. Supply Voltage (V ).  
Rejection (PSRR).  
THRERM  
DD  
© 2006 Microchip Technology Inc.  
DS22005A-page 7  
MCP73833/4  
TYPICAL PERFORMANCE CURVES (Continued)  
Note: Unless otherwise indicated, VDD = 5.2V, VREG = 4.20V, IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
14  
12  
10  
8
0.10  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
0.10  
0.05  
0.05  
0.00  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
6
4
2
IOUT = 10 mA  
COUT = 4.7 µF, X7R  
Ceramic  
COUT = 4.7 µF, X7R  
Ceramic  
0
-2  
Time (µs)  
Time (µs)  
FIGURE 2-13:  
Line Transient Response.  
FIGURE 2-16:  
Load Transient Response.  
14  
12  
10  
8
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
5.0  
4.0  
3.0  
2.0  
200  
160  
120  
80  
6
4
MCP73833-FCI/MF  
DD = 5.2V  
RPROG = 10.0 k:  
2
IOUT = 100 mA  
COUT = 4.7 µF, X7R  
Ceramic  
-0.20  
-0.25  
-0.30  
1.0  
0.0  
40  
V
0
-2  
0
Time (Minutes)  
Time (µs)  
FIGURE 2-14:  
Line Transient Response.  
FIGURE 2-17:  
Complete Charge Cycle  
(180 mA Li-Ion Battery).  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
200  
160  
120  
80  
-0.08  
MCP73833-FCI/MF  
VDD = 5.2V 40  
RPROG = 10.0 k:  
COUT = 4.7 µF, X7R  
Ceramic  
-0.10  
-0.12  
0
0
2
4
6
8
10  
Time (µs)  
Time (Minutes)  
FIGURE 2-15:  
Load Transient Response.  
FIGURE 2-18:  
Charge Cycle Start -  
Preconditioning (180 mAh Li-Ion Battery).  
DS22005A-page 8  
© 2006 Microchip Technology Inc.  
MCP73833/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
Symbol  
Function  
DFN  
MSOP  
1
2
1
2
VDD  
VDD  
Battery Management Input Supply  
Battery Management Input Supply  
Charge Status Output  
3
3
STAT1  
STAT2  
VSS  
4
4
Charge Status Output  
5
5
Battery Management 0V Reference  
6
6
PROG  
PG, TE  
THERM  
VBAT  
Current Regulation Set and Charge Control Enable  
7
7
MCP73833: Power Good output, MCP73834: Timer Enable input  
Thermistor input  
8
8
9
9
Battery Charge Control Output  
10  
10  
VBAT  
Battery Charge Control Output  
3.1  
Battery Management Input Supply  
(VDD  
3.6  
Timer Enable Input (TE)  
MCP73834 Only  
)
A supply voltage of [VREG (typ.) + 0.3V] to 6V is  
recommended. Bypass to VSS with a minimum of 1 µF.  
The timer enable (TE) input option is used to enable or  
disable the internal timer. A low signal on this pin  
enables the internal timer and a high signal disables  
the internal timer. The TE input can be used to disable  
the timer when the charger is supplying current to  
charge the battery and power the system load. The TE  
input is compatible with 1.8V logic.  
3.2  
Charge Status Outputs (STAT1,  
STAT2)  
STAT1 and STAT2 are open-drain logic outputs for con-  
nection to a LED for charge status indication.  
Alternatively, a pull-up resistor can be applied for  
interfacing to a host microcontroller.  
3.7  
Thermistor Input (THERM)  
An internal 50 µA current source provides the bias for  
most common 10 kΩ negative-temperature coefficient  
thermistors (NTC). The MCP73833/4 compares the  
voltage at the THERM pin to factory set thersholds of  
1.20V and 0.25V, typically.  
3.3  
Battery Management 0V Reference  
(VSS)  
Connect to negative terminal of battery and input  
supply.  
3.8  
Battery Charge Control Output  
(VBAT  
3.4  
Current Regulation Set (PROG)  
)
Preconditioning, fast charge, and termination currents  
are scaled by placing a resistor from PROG to VSS  
Connect to positive terminal of battery. Drain terminal  
of internal P-channel MOSFET pass transistor. Bypass  
to VSS with a minimum of 1 µF to ensure loop stability  
when the battery is disconnected.  
.
The charge management controller can be disabled by  
allowing the PROG input to float.  
3.5  
Power Good Indication (PG)  
MCP73833 Only  
The power good (PG) option is a pseudo open-drain  
output. The PG output can sink current, but not source  
current. However, there is a diode path back to the  
input, and, as such, the PG output should only be  
pulled up to the input. The PG output is low whenever  
the input to the MCP73833 is above the UVLO  
threshold and greater than the battery voltage.  
© 2006 Microchip Technology Inc.  
DS22005A-page 9  
MCP73833/4  
4.0  
FUNCTIONAL DESCRIPTION  
The MCP73833/4 is a highly advanced linear charge  
management controller. Refer to the functional block  
diagram and Figure 4-1 that depicts the operational  
flow algorithm from charge initiation to completion and  
automatic recharge.  
* Continuously Monitored  
SHUTDOWN MODE *  
< V  
V
DD  
UVLO  
V
< V  
BAT  
DD  
STAT1 = HI-Z  
STAT2 = HI-Z  
PG = HI-Z  
SYSTEM TEST (LDO) MODE  
> (V - 100 mv)  
STANDBY MODE *  
V
THERM  
DD  
V
(V  
+ 100 mv)  
BAT  
REG  
PROG > 20 kΩ  
PROG > 200 kΩ  
STAT1 = LOW  
STAT2 = LOW  
PG = LOW  
STAT1 = HI-Z  
STAT2 = HI-Z  
PG = LOW  
Timer Suspended  
V
< V  
PTH  
BAT  
PRECONDITIONING MODE  
Charge Current (I  
PREG  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
Timer Reset  
V
> V  
PTH  
BAT  
V
> V  
PTH  
BAT  
FAST CHARGE MODE  
TIMER FAULT  
TEMPERATURE FAULT  
Charge Current (I  
No Charge Current  
No Charge Current  
REG  
STAT1 = LOW  
STAT1 = Hi-Z  
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = LOW  
Timer Enabled  
STAT2 = Hi-Z  
PG = LOW  
Timer Suspended  
STAT2 = Hi-Z  
PG = LOW  
Timer Suspended  
Timer Expired  
< V  
RTH  
V
BAT  
V
= V  
REG  
BAT  
CONSTANT VOLTAGE MODE  
Charge Voltage (V  
REG  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
V
< I  
TERM  
BAT  
Timer Expired  
CHARGE COMPLETE MODE  
No Charge Current  
STAT1 = HI-Z  
STAT2 = LOW  
PG = LOW  
Timer Reset  
FIGURE 4-1:  
Flow Chart.  
DS22005A-page 10  
© 2006 Microchip Technology Inc.  
MCP73833/4  
4.1  
Under Voltage Lockout (UVLO)  
4.4  
Constant Current - Fast Charge  
Mode  
An internal under voltage lockout (UVLO) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode until the input supply rises above the  
UVLO threshold. The UVLO circuitry has a built in  
hysteresis of 100 mV.  
During the constant current mode, the programmed  
charge current is supplied to the battery or load. The  
charge current is established using a single resistor  
from PROG to VSS. The program resistor and the  
charge current are calculated using Equation 4-1:  
In the event a battery is present when the input power  
is applied, the input supply must rise +150 mV above  
the battery voltage before the MCP73833/4 becomes  
operational.  
EQUATION 4-1:  
1000V  
IREG = ----------------  
RPROG  
Where:  
RPROG  
IREG  
The UVLO circuit places the device in shutdown mode  
if the input supply falls to within +50 mV of the battery  
voltage.  
=
=
kilo-ohms  
milliampere  
The UVLO circuit is always active. At any time the input  
supply is below the UVLO threshold or within +50 mV  
of the voltage at the VBAT pin, the MCP73833/4 is  
placed in a shutdown mode.  
Constant current mode is maintained until the voltage  
at the VBAT pin reaches the regulation voltage, VREG  
.
When constant current mode is invoked, the internal  
timer is reset.  
During any UVLO condition, the battery reverse  
discharge current shall be less than 2 µA.  
4.4.1  
TIMER EXPIRED DURING CONSTANT  
CURRENT - FAST CHARGE MODE  
4.2  
Charge Qualification  
If the internal timer expires before the recharge voltage  
threshold is reached, a timer fault is indicated and the  
charge cycle terminates. The MCP73833/4 remains in  
this condition until the battery is removed, the input  
power is removed, or the PROG pin is opened. If the  
battery is removed or the PROG pin is opened, the  
MCP73833/4 enters the Standby mode where it  
remains until a battery is reinserted or the PROG pin is  
reconnected. If the input power is removed, the  
MCP73833/4 is in Shutdown. When the input power is  
reapplied, a normal start-up sequence ensues.  
For a charge cycle to begin, all UVLO conditions must  
be met and a battery or output load must be present.  
A charge current programming resistor must be  
connected from PROG to VSS. If the PROG pin is open  
or floating, the MCP73833/4 is disabled and the battery  
reverse discharge current is less than 2 µA. In this  
manner, the PROG pin acts as a charge enable and  
can be used as a manual shutdown.  
If the input supply voltage is above the UVLO  
threshold,  
but  
below  
VREG(Typ)+0.3V,  
the  
MCP73833/4 will pulse the STAT1 and PG outputs as  
the device determines if a battery is present.  
4.5  
Constant Voltage Mode  
When the voltage at the VBAT pin reaches the  
regulation voltage, VREG, constant voltage regulation  
begins. The regulation voltage is factory set to 4.20V,  
4.35V, 4.40V, or 4.50V with a tolerance of ± 0.75%.  
4.3  
Preconditioning  
If the voltage at the VBAT pin is less than the  
preconditioning threshold, the MCP73833/4 enters a  
preconditioning or trickle charge mode. The  
preconditioning threshold is factory set. Refer to  
4.6  
Charge Termination  
Section 1.0  
“Electrical  
Characteristics”  
for  
preconditioning threshold options.  
The charge cycle is terminated when, during constant  
voltage mode, the average charge current diminishes  
below a percentage of the programmed charge current  
(established with the value of the resistor connected to  
the PROG pin) or the internal timer has expired. A 1 ms  
filter time on the termination comparator ensures that  
transient load conditions do not result in premature  
charge cycle termination. The percentage or ratio of the  
current is factory set. The timer period is factory set  
and can be disabled. Refer to Section 1.0 “Electrical  
Characteristics” for charge termination current ratio  
and timer period options.  
In this mode, the MCP73833/4 supplies a percentage  
of the charge current (established with the value of the  
resistor connected to the PROG pin) to the battery. The  
percentage or ratio of the current is factory set. Refer to  
Section 1.0  
“Electrical  
Characteristics”  
for  
preconditioning current options.  
When the voltage at the VBAT pin rises above the pre-  
conditioning threshold, the MCP73833/4 enters the  
constant current or fast charge mode.  
The charge current is latched off and the MCP73833/4  
enters a charge complete mode.  
© 2006 Microchip Technology Inc.  
DS22005A-page 11  
MCP73833/4  
4.7  
Automatic Recharge  
4.9  
Thermal Shutdown  
The MCP73833/4 continuously monitors the voltage at  
the VBAT pin in the charge complete mode. If the  
voltage drops below the recharge threshold, another  
charge cycle begins and current is once again supplied  
to the battery or load. The recharge threshold is factory  
set. Refer to Section 1.0 “Electrical Characteristics”  
for recharge threshold options.  
The MCP73833/4 suspends charge if the die  
temperature exceeds +150°C. Charging will resume  
when the die temperature has cooled by approximately  
+10°C. The thermal shutdown is a secondary safety  
feature in the event that there is a failure within the  
thermal regulation circuitry.  
4.8  
Thermal Regulation  
The MCP73833/4 limits the charge current based on  
the die temperature. The thermal regulation optimizes  
the charge cycle time while maintaining device reliabil-  
ity. Figure 4-2 depicts the thermal regulation for the  
MCP73833/4.  
1200  
RPROG = 1 kΩ  
1000  
800  
600  
400  
200  
0
Junction Temperature (°C)  
FIGURE 4-2:  
Thermal Regulation.  
DS22005A-page 12  
© 2006 Microchip Technology Inc.  
MCP73833/4  
pass transistor and holding the timer value. The charge  
cycle resumes when the voltage at the THERM pin  
returns to the normal range.  
5.0  
DETAILED DESCRIPTION  
5.1  
Analog Circuitry  
If temperature monitoring is not required, place a  
standard 10 kΩ resistor from THERM to VSS  
5.1.1  
BATTERY MANAGEMENT INPUT  
SUPPLY (V  
)
DD  
5.1.4.1  
System Test (LDO) Mode  
The VDD input is the input supply to the MCP73833/4.  
The MCP73833/4 automatically enters a Power-down  
mode if the voltage on the VDD input falls below the  
UVLO voltage (VSTOP). This feature prevents draining  
the battery pack when the VDD supply is not present.  
The MCP73833/4 can be placed in a system test mode.  
In this mode, the MCP73833/4 operates as a low  
dropout linear regulator (LDO). The output voltage is  
regulated to the factory set voltage regulation option.  
The available output current is limitted to the  
programmed fast charge current. For stability, the VBAT  
output must be bypassed to VSS with a minimum  
capacitance of 1 µF for output currents up to 250 mA.  
A minimum capacitance of 4.7 µF is required for output  
currents above 250 mA.  
5.1.2  
CURRENT REGULATION SET  
(PROG)  
Fast charge current regulation can be scaled by placing  
a programming resistor (RPROG) from the PROG input  
to VSS. The program resistor and the charge current  
are calculated using the Equation 5-1:  
The system test mode is entered by driving the THERM  
input greater than (VDD-100 mV) with no battery  
connected to the output. In this mode, the MCP73833/4  
can be used to power the system without a battery  
present.  
EQUATION 5-1:  
1000V  
RPROG  
IREG = ----------------  
Where:  
RPROG  
IREG  
Note 1: ITHERM is disabled during shutdown,  
=
=
kilo-ohms  
milliampere  
stand-by, and system test modes.  
2: A pull-down current source on the  
THERM input is active only in stand-by  
and system test modes.  
The preconditioning trickle-charge current and the  
charge termination current are ratiometric to the fast  
charge current based on the selected device options.  
3: During system test mode, the PROG  
input sets the available output current  
limit.  
5.1.3  
BATTERY CHARGE CONTROL  
OUTPUT (V  
)
BAT  
4: System test mode shall be exited by  
releasing the THERM input or cycling  
input power.  
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73833/4  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
5.2  
Digital Circuitry  
5.2.1  
STATUS INDICATORS AND POWER  
GOOD (PG - OPTION)  
5.1.4  
TEMPERATURE QUALIFICATION  
(THERM)  
The charge status outputs have two different states:  
Low (L), and High Impedance (Hi-Z). The charge status  
outputs can be used to illuminate LEDs. Optionally, the  
charge status outputs can be used as an interface to a  
host microcontroller. Table 5-1 summarize the state of  
the status outputs during a charge cycle.  
The MCP73833/4 continuously monitors battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and VSS pins. An internal  
50 µA current source provides the bias for most  
common 10 kΩ negative-temperature coefficient  
(NTC) or positive-temperature coefficient (PTC)  
thermistors.The current source is controlled, avoiding  
measurement sensitivity to fluctuations in the supply  
voltage (VDD). The MCP73833/4 compares the voltage  
at the THERM pin to factory set thersholds of 1.20V  
and 0.25V, typically. Once a volage outside the  
thresholds is detected during a charge cycle, the  
MCP73833/4 immediately suspends the charge cycle.  
The MCP73833/4 suspends charge by turning off the  
TABLE 5-1:  
STATUS OUTPUTS  
CHARGE CYCLE STATE  
STAT1 STAT2  
PG  
Shutdown  
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
Hi-Z  
L
Hi-Z  
L
Standby  
Charge in Progress  
Charge Complete (EOC)  
Temperature Fault  
Timer Fault  
L
Hi-Z  
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
System Test Mode  
L
© 2006 Microchip Technology Inc.  
DS22005A-page 13  
MCP73833/4  
5.2.2  
POWER GOOD (PG) OPTION  
5.2.4  
DEVICE DISABLE (PROG)  
The power good (PG) option is a pseudo open-drain  
output. The PG output can sink current, but not source  
current. However, there is a diode path back to the  
input, and as such, the PG output should only be pulled  
up to the input. The PG output is low whenever the  
input to the MCP73833 is above the UVLO threshold  
and greater than the battery voltage. If the supply volt-  
age is above the UVLO, but below VREG(Typ)+0.3V,  
the MCP73833 will pulse the PG output as the device  
determines if a battery is present.  
The current regulation set input pin (PROG) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or  
initiate a recharge cycle.  
Placing a programming resistor from the PROG input to  
VSS enables the device. Allowing the PROG input to  
float or by applying a logic-high input signal, disables  
the device and terminates a charge cycle. When  
disabled, the device’s supply current is reduced to  
100 µA, typically.  
5.2.3  
TIMER ENABLE (TE) OPTION  
The timer enable (TE) input option is used to enable or  
disable the internal timer. A low signal on this pin  
enables the internal timer and a high signal disables  
the internal timer. The TE input can be used to disable  
the timer when the charger is supplying current to  
charge the battery and power the system load. The TE  
input is compatible with 1.8V logic.  
DS22005A-page 14  
© 2006 Microchip Technology Inc.  
MCP73833/4  
6.0  
APPLICATIONS  
The MCP73833/4 is designed to operate in conjunction  
with a host microcontroller or in stand-alone applica-  
tions. The MCP73833/4 provides the preferred charge  
algorithm for Lithium-Ion and Lithium-Polymer cells  
Constant-current followed by Constant-voltage.  
Figure 6-1 depicts a typical stand-alone application  
circuit, while Figures 6-2 and 6-3 depict the  
accompanying charge profile.  
Li-Ion Battery Charger  
1,2  
9,10  
VBAT  
VDD  
+
-
Single  
Li-Ion  
Cell  
C
IN  
COUT  
LED LED LED  
3
4
7
8
6
5
STAT1  
STAT2  
PG  
THERM  
PROG  
VSS  
Regulated  
Wall Cube  
RLED  
RT1  
RLED  
RPROG RT2  
T 10 kΩ  
RLED  
MCP73833  
FIGURE 6-1:  
Typical Application Circuit.  
6.1  
Application Circuit Design  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.00  
1.60  
1.20  
0.80  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
MCP73833-FCI/MF  
DD = 5.2V  
PROG = 1.00 k:  
0.40  
0.00  
V
R
Time (Minutes)  
6.1.1  
COMPONENT SELECTION  
FIGURE 6-2:  
Typical Charge Profile with  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
Thermal Regulation (1700 mAh Li-Ion Battery).  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
6.1.1.1  
Current Programming Resistor  
(R  
)
PROG  
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times  
without degradation to the battery pack performance or  
life.  
MCP73833-FCI/MF  
DD = 5.2V  
RPROG = 1.00 k:  
V
Time (Minutes)  
FIGURE 6-3:  
Typical Charge Cycle Start  
with Thermal Regulation (1700 mAh Li-Ion  
Battery).  
© 2006 Microchip Technology Inc.  
DS22005A-page 15  
MCP73833/4  
6.1.1.2  
Thermal Considerations  
6.1.1.5  
Charge Inhibit  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this case, the power dissipation is:  
The current regulation set input pin (PROG) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or  
initiate a recharge cycle.  
Placing a programming resistor from the PROG input to  
VSS enables the device. Allowing the PROG input to  
float or by applying a logic-high input signal, disables  
the device and terminates a charge cycle. When  
disabled, the device’s supply current is reduced to  
100 µA, typically.  
PowerDissipation = (V  
V  
) × I  
PTHMIN REGMAX  
DDMAX  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
the maximum fast charge current  
6.1.1.6  
Temperature Monitoring  
the minimum transition threshold  
voltage  
The charge temperature window can be set by placing  
fixed value resistors in series-parallel with a thermistor.  
The resistance values of RT1 and RT2 can be  
calculated with the following equations in order to set  
the temperature window of interest.  
Power dissipation with a 5V, ±10% input voltage source  
is:  
PowerDissipation = (5.5V – 2.7V) × 550mA = 1.54W  
For NTC thermistors:  
RT2 × RCOLD  
24kΩ = RT1 + ---------------------------------  
RT2 + RCOLD  
This power dissipation with the battery charger in the  
MSOP-10 package will cause thermal regulation to be  
entered as depicted in Figure 6-3. Alternatively, the  
3 mm x 3 mm DFN package could be utilized to reduce  
charge cycle times.  
RT2 × RHOT  
5kΩ = RT1 + ----------------------------  
R
T2 + RHOT  
Where:  
T1 is the fixed series resistance  
6.1.1.3  
External Capacitors  
R
The MCP73833/4 is stable with or without a battery  
load. In order to maintain good AC stability in the Con-  
stant-voltage mode, a minimum capacitance of 4.7 µF  
is recommended to bypass the VBAT pin to VSS. This  
capacitance provides compensation when there is no  
battery load. In addition, the battery and interconnec-  
tions appear inductive at high frequencies. These  
elements are in the control feedback loop during  
Constant-voltage mode. Therefore, the bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
RT2 is the fixed parallel resistance  
RCOLD is the thermistor resistance at the  
lower temperature of interest  
RHOT is the thermistor resistance at the upper  
temperature of interest.  
For example, by utilizing a 10 kΩ at 25C NTC  
thermistor with a sensitivity index, β, of 3892, the  
charge temperature range can be set to 0C - 50C by  
placing a 1.54 kΩ resistor in series (RT1), and a  
69.8 kΩ resistor in parallel (RT2) with the thermistor as  
depicted in Figure 6-1.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 4.7 µF ceramic,  
tantalum or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability for output  
currents up to a 500 mA.  
6.1.1.7  
Charge Status Interface  
A status output provides information on the state of  
charge. The output can be used to illuminate external  
LEDs or interface to a host microcontroller. Refer to  
Table 5-1 for a summary of the state of the status  
output during a charge cycle.  
6.1.1.4  
Reverse-Blocking Protection  
The MCP73833/4 provides protection from a faulted or  
shorted input. Without the protection, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the internal pass transistor.  
DS22005A-page 16  
© 2006 Microchip Technology Inc.  
MCP73833/4  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins,  
recommended to minimize voltage drops along the  
high current-carrying PCB traces.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature. Figures 6-4 and 6-5 depict a  
typical layout with PCB heatsinking.  
MCP73833  
VSS  
CIN  
VDD  
COUT  
VBAT  
STAT1  
THERM  
STAT2  
PG  
RPROG  
FIGURE 6-4:  
Typical Layout (Top).  
VSS  
VDD  
VBAT  
FIGURE 6-5:  
Typical Layout (Bottom).  
© 2006 Microchip Technology Inc.  
DS22005A-page 17  
MCP73833/4  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN  
Example:  
Marking  
Code  
Marking  
Code  
Part Number *  
Part Number *  
1
2
3
4
5
10  
9
1
10  
9
XXXX  
XYWW  
NNN  
AAAA  
0633  
256  
2
3
4
5
MCP73833-AMI/MF  
MCP73833-BZI/MF  
MCP73833-FCI/MF  
MCP73833-GPI/MF  
MCP73833-NVI/MF  
MCP73833-CNI/MF  
AAAA  
AAAB  
AAAC  
AAAD  
AAAF  
AAAK  
8
8
7
7
MCP73834-FCI/MF  
MCP73834-GPI/MF  
MCP73834-NVI/MF  
MCP73834-CNI/MF  
BAAC  
BAAD  
BAAF  
BAAK  
6
6
* Consult Factory for Alternative Device Options.  
Example:  
10-Lead MSOP  
Marking  
Code  
Marking  
Code  
Part Number *  
Part Number *  
MCP73833-AMI/UN  
MCP73833-BZI/UN  
MCP73833-FCI/UN  
MCP73833-GPI/UN  
MCP73833-NVI/UN  
MCP73833-CNI/UN  
833AMI  
8336SI  
633256  
XXXXXX  
YWWNNN  
833BZI  
833FCI MCP73834-FCI/UN  
833GPI MCP73834-GPI/UN  
833NVI MCP73834-NVI/UN  
833CNI MCP73834-CNI/UN  
834FCI  
834GPI  
834NVI  
834CNI  
* Consult Factory for Alternative Device Options.  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22005A-page 18  
© 2006 Microchip Technology Inc.  
MCP73833/4  
10-Lead Plastic Dual-Flat No-Lead Package (MF) 3x3x0.9 mm Body (DFN) – Saw Singulated  
Note:  
For the most current package drawings, please  
see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
b
p
E
n
L
K
D
D2  
EXPOSED  
METAL  
PAD  
2
1
PIN 1  
ID INDEX  
AREA  
E2  
(NOTE 2)  
TOP VIEW  
BOTTOM VIEW  
(NOTE 1)  
A
EXPOSED  
TIE BAR  
(NOTE 3)  
A3  
A1  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
10  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
e
Number of Pins  
Pitch  
10  
.020 BSC  
0.50 BSC  
0.90  
Overall Height  
Standoff  
A
.031  
.035  
.039  
0.80  
1.00  
0.05  
A1  
A3  
E
.000  
.001  
.002  
0.00  
0.02  
Lead Thickness  
Overall Length  
.008 REF.  
0.20 REF.  
3.00  
.112  
.082  
.112  
.051  
.008  
.012  
.008  
.118  
.094  
.118  
.065  
.010  
.016  
.124  
.096  
.124  
.067  
.015  
.020  
2.85  
2.08  
2.85  
1.30  
0.18  
0.30  
0.20  
3.15  
2.45  
3.15  
1.70  
0.30  
0.50  
(
Note 3  
)
Exposed Pad Length  
Overall Width  
E2  
D
2.39  
3.00  
(
Note 3  
)
Exposed Pad Width  
Lead Width  
D2  
b
1.65  
0.25  
Contact Length §  
Contact-to-Exposed Pad §  
L
0.40  
K
*
§
Controlling Parameter  
Significant Characteristic  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Exposed pad varies according to die attach paddle size.  
3. Package may have one or more exposed tie bars at ends.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC equivalent: Not Registered  
Drawing No. C04-063  
Revised 09-12-05  
© 2006 Microchip Technology Inc.  
DS22005A-page 19  
MCP73833/4  
10-Lead Plastic Micro Small Outline Package (UN) (MSOP)  
Note:  
For the most current package drawings, please  
see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
p
D
2
1
n
B
c
α
φ
A2  
A
A1  
L
β
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS  
*
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
10  
10  
.020 BSC  
.033  
0.50 BSC  
Overall Height  
A
A2  
A1  
E
.043  
0.75  
0.00  
1.10  
0.95  
0.15  
Molded Package Thickness  
Standoff  
.030  
.000  
.037  
.006  
0.85  
Overall Width  
.193 BSC  
.118 BSC  
.118 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint  
F
φ
Foot Angle  
0°  
.003  
.006  
5°  
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
8°  
0.23  
0.30  
15°  
c
Lead Thickness  
Lead Width  
B
.009  
0.23  
α
Mold Draft Angle Top  
Mold Draft Angle Bott om  
β
5°  
15°  
5°  
15°  
*
Controlling Parameter  
Notes:  
Dimensions D and E1 donot include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254 mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimnesion, usually witho ut tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-187 BA  
Drawing No. C04-021  
Revised 09-16-05  
DS22005A-page 20  
© 2006 Microchip Technology Inc.  
MCP73833/4  
APPENDIX A: REVISION HISTORY  
Revision A (September 2006)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS22005A-page 23  
MCP73833/4  
NOTES:  
DS22005A-page 24  
© 2006 Microchip Technology Inc.  
MCP73833/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples: * *  
PART NO.  
Device  
XX  
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP73833-AMI/UN: 10-lead MSOP pkg.  
Output Temp. Package  
Options*  
MCP73833-BZI/UN: 10-lead MSOP pkg.  
MCP73833-CNI/MF: 10-lead DFN pkg.  
MCP73833-FCI/UN: 10-lead MSOP pkg.  
MCP73833-GPI/UN: 10-lead MSOP pkg.  
MCP73833-NVI/MF: 10-lead DFN pkg.  
Device:  
MCP73833: 1A Fully Integrated Charger,  
PG function on pin 7  
MCP73833T: 1A Fully Integrated Charger,  
PG function on pin 7  
a)  
b)  
c)  
d)  
MCP73834-CNI/MF: 10-lead DFN pkg.  
MCP73834-FCI/UN: 10-lead MSOP pkg.  
MCP73834-GPI/UN: 10-lead MSOP pkg.  
MCP73834-NVI/MF: 10-lead DFN pkg.  
(Tape and Reel)  
MCP73834: 1A Fully Integrated Charger,  
TE function on pin 7  
MCP73834T: 1A Fully Integrated Charger,  
TE function on pin 7  
(Tape and Reel)  
* * Consult Factory for Alternative Device Options  
Output Options * *  
* Refer to table below for different operational options.  
* * Consult Factory for Alternative Device Options.  
Temperature:  
I
=
-40°C to +85°C  
Package Type:  
MF  
UN  
=
=
Plastic Dual Flat No Lead (DFN)  
(3x3x0.9 mm Body), 10-lead  
Plastic Micro Small Outline Package (MSOP),  
10-lead  
Part Number  
VREG  
IPREG/IREG  
VPTH/VREG  
ITERM/IREG  
VRTH/VREG  
Timer Period  
MCP73833-AMI/MF  
MCP73833-BZI/MF  
MCP73833-CNI/MF  
MCP73833-FCI/MF  
MCP73833-GPI/MF  
MCP73833-NVI/MF  
4.20V  
4.20V  
4.20V  
4.20V  
4.20V  
4.35V  
10%  
100%  
10%  
71.5%  
N/A  
7.5%  
7.5%  
20%  
96.5%  
96.5%  
94%  
0 hours  
0 hours  
4 hours  
6 hours  
6 hours  
6 hours  
71.5%  
71.5%  
N/A  
10%  
7.5%  
7.5%  
7.5%  
96.5%  
96.5%  
96.5%  
100%  
10%  
71.5%  
MCP73833-AMI/UN  
MCP73833-FCI/UN  
4.20V  
4.20V  
10%  
10%  
71.5%  
71.5%  
7.5%  
7.5%  
96.5%  
96.5%  
0 hours  
6 hours  
MCP73834-BZI/MF  
MCP73834-CNI/MF  
MCP73834-FCI/MF  
MCP73834-NVI/MF  
4.20V  
4.20V  
4.20V  
4.35V  
100%  
10%  
10%  
10%  
N/A  
7.5%  
20%  
96.5%  
94%  
0 hours  
4 hours  
6 hours  
6 hours  
71.5%  
71.5%  
71.5%  
7.5%  
7.5%  
96.5%  
96.5%  
MCP73834-FCI/UN  
4.20V  
10%  
71.5%  
7.5%  
96.5%  
6 hours  
© 2006 Microchip Technology Inc.  
DS22005A-page 25  
MCP73833/4  
NOTES:  
DS22005A-page 26  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS22005A-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
08/29/06  
DS22005A-page 28  
© 2006 Microchip Technology Inc.  

相关型号:

MCP73834T-CNI/MF

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73834T-CNI/UN

暂无描述
MICROCHIP

MCP73834T-FCI/UN

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, PLASTIC, MO-187BA, MSOP-10
MICROCHIP

MCP73834T-G8I/MF

IC,BATTERY MANAGEMENT,LLCC,10PIN,PLASTIC
MICROCHIP

MCP73834T-NVI/MF

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73834T-NVI/UN

IC,BATTERY MANAGEMENT,TSSOP,10PIN,PLASTIC
MICROCHIP

MCP73834T-YAI/UN

暂无描述
MICROCHIP

MCP73837

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837-6SI/MF

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection
MICROCHIP

MCP73837-6SI/UN

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection
MICROCHIP

MCP73837-AMI/MF

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73837-AMI/UN

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection
MICROCHIP