MCP738376SIUN [MICROCHIP]

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection; 先进的独立锂离子/锂聚合物电池充电管理控制器,自主交流适配器或USB端口源选择
MCP738376SIUN
型号: MCP738376SIUN
厂家: MICROCHIP    MICROCHIP
描述:

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
先进的独立锂离子/锂聚合物电池充电管理控制器,自主交流适配器或USB端口源选择

电池 控制器
文件: 总30页 (文件大小:816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73837/8  
Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge  
Management Controller with Autonomous AC-Adapter or  
USB-Port Source Selection  
Features  
Applications  
• High Accuracy Preset Voltage Regulation: + 0.5%  
• Available Voltage Regulation Options:  
- 4.20V, 4.35V, 4.4V, or 4.5V  
• Smart Phones and Personal Data Assistants  
(PDA)  
• Portable Media Players(PMP)  
• Ultra Mobile Devices(UMD)  
• Digital Cameras  
• Complete Linear Charge Management Controller:  
- Autonomous Power Source Selection  
- Integrated Pass Transistors  
• MP3 Players  
• Bluetooth Headsets  
- Integrated Current Sense  
• Handheld Medical Devices  
• AC/USB Dual Source Li-Ion Battery Chargers  
- Integrated Reverse Discharge Protection  
• Constant Current (CC) / Constant Voltage (CV)  
Operation with Thermal Regulation  
Description  
• Selectable USB-Port Charge Current:  
- Low: 1 Unit Load / High: 5 Unit Loads  
• Programmable AC-Adapter Charge Current:  
- 15 mA - 1000 mA  
The MCP73837 and MCP73838 devices are fully  
integrated linear Li-Ion / Li-Polymer battery chargers  
with autonomous power source selection. Along with its  
small physical size, the low number of external  
components required makes the MCP73837/8 ideally  
suitable for portable applications.  
• Two Charge Status Outputs  
• Power-Good Monitor: MCP73837  
• Timer Enable: MCP73838  
The MCP73837/8 automatically selects the USB-Port  
or AC-Adapter as the power source for the system. For  
the USB-Port powered systems, the MCP73837/8  
specifically adheres to the current limits governed by  
the USB specification. The host microcontroller can  
select from two preset maximum charge current rates  
of 100 mA (low power USB-port) or 500 mA (high  
power USB-port). With an AC-Adapter providing power  
to the system, an external resistor sets the magnitude  
of the system or charge current up to a maximum of 1A.  
• Automatic Recharge:  
- Selectable Voltage Threshold  
• Automatic End-of-Charge Control:  
- Selectable Charge Termination Current Ratio  
- Selectable Safety Timer Period  
• Preconditioning of Deeply Depleted Cells - can be  
disabled  
• Battery Cell Temperature Monitor  
• UVLO (Undervoltage Lockout)  
The MCP73837/8 employs a constant current /  
constant voltage charge algorithm with selectable  
preconditioning and charge termination. The constant  
voltage regulation is fixed with four available options:  
4.20V, 4.35V, 4.40V, or 4.50V, to accommodated the  
new emerging battery charging requirements. The  
MCP73837/8 limits the charge current based on die  
temperature during high power or high ambient  
conditions. This thermal regulation optimizes the  
charge cycle time while maintaining the device  
reliability.  
• Automatic Power-Down when Input Power is  
Removed  
• Low-Dropout (LDO) Linear Regulator Mode  
• Numerous Selectable Options Available for a  
Variety of Applications:  
- Refer to Section 1.0 “Electrical  
Characteristics” for Selectable Options”  
- Refer to the “Product Identification  
System” for Standard Options  
Temperature Range: -40°C to 85°C  
• Packaging:  
The MCP73837/8 are fully specified over the ambient  
temperature range of -40°C to +85°C.  
- 10-Lead 3 mm x 3 mm DFN  
The MCP73837/8 devices are available in a 10-Lead,  
3 mm x 3 mm, DFN package or in a 10-Lead MSOP  
package.  
- 10-Lead MSOP*  
* Consult Factory for MSOP Package  
Availability.  
© 2007 Microchip Technology Inc.  
DS22071A-page 1  
MCP73837/8  
Package Types  
MCP73837/8  
10-Lead DFN 3 mm x 3 mm  
MCP73837/8  
10-Lead MSOP  
VBAT  
VAC  
VAC  
VBAT  
1
2
1
2
3
4
5
10  
9
10  
9
VUSB  
VUSB  
THERM  
PG (TE)  
PROG2  
PROG1  
THERM  
PG (TE)  
PROG2  
STAT1 3  
STAT2 4  
8
8
STAT1  
STAT2  
VSS  
7
7
VSS  
5
6
6
PROG1  
Typical Applications  
MCP73837 Typical Application  
1
10  
Ac-dc Adapter  
V
V
BAT  
AC  
Thermsitor  
9
4.7 µF  
Single  
Li-Ion  
Cell  
2
3
USB Port  
4.7 µF  
V
THERM  
USB  
4.7 µF  
1 kΩ  
5
V
STAT1  
SS  
1 kΩ  
1 kΩ  
4
8
7
6
STAT2  
PG  
PROG2  
PROG1  
Hi  
Low  
R
PROG  
MCP73838 Typical Application  
1
10  
Ac-dc Adapter  
V
V
BAT  
AC  
Thermsitor  
9
4.7 µF  
2
3
USB Port  
4.7 µF  
V
THERM  
TE  
USB  
Cell  
4.7 µF  
1KΩ  
1KΩ  
8
STAT1  
STAT2  
Hi  
Hi  
Low  
Low  
4
5
7
6
PROG2  
PROG1  
V
SS  
R
PROG  
DS22071A-page 2  
© 2007 Microchip Technology Inc.  
MCP73837/8  
Functional Block Diagram (MCP73837/8)  
VO  
REG  
DIRECTION  
CONTROL  
6 µA  
V
V
BAT  
USB  
SENSEFET  
G=0.001  
100 mA/500 mA  
10k  
2k  
SENSEFET  
G=0.001  
VO  
REG  
DIRECTION  
CONTROL  
V
AC/USB  
AC  
CURRENT  
LIMIT  
+
-
SENSEFET  
G=0.001  
1k  
V
REF  
SENSEFET  
G=0.001  
PROG1  
AC/USB  
111k  
CA  
+
-
REFERENCE,  
BIAS, UVLO,  
AND SHDN  
V
(1.21V)  
REF  
310k  
10k  
+
-
VO  
UVLO  
REG  
72.7k  
-
470.6k  
48k  
PRECONDITION  
+
TERM  
-
PROG2  
STAT1  
+
CHARGE  
6k  
CHARGE  
CONTROL,  
TIMER,  
AND  
VA  
+
-
157.3k  
STATUS  
LOGIC  
VO  
REG  
STAT2  
+
-
LDO  
175k  
PG (TE)  
+
-
50 µA  
HTVT  
LTVT  
470.6k  
121k  
THERM  
+
-
175k  
V
SS  
1M  
© 2007 Microchip Technology Inc.  
DS22071A-page 3  
MCP73837/8  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
DDN ................................................................................7.0V  
All Inputs and Outputs w.r.t. VSS ............... -0.3 to (VDD+0.3)V  
Maximum Junction Temperature, TJ ............Internally Limited  
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins  
Human Body Model (1.5 kW in Series with 100 pF) ......4 kV  
Machine Model (200 pF, No Series Resistance).............300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(typical) + 0.3V] to 6V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (typical) + 1.0V]  
Parameters  
Supply Input  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
ISS  
VREG(Typ)  
+0.3V  
6
V
Note 1  
Supply Current  
1900  
110  
75  
3000  
300  
100  
5
µA  
µA  
µA  
µA  
Charging  
Charge Complete, No Battery  
Standby (PROG Floating)  
0.6  
Shutdown (VDD < VBAT  
-
100 mV or VDD < VSTOP  
)
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
VSTART  
VSTOP  
VHYS  
3.35  
3.25  
3.45  
3.35  
75  
3.55  
3.45  
V
V
VDD= Low to High (USB-Port)  
VDD= High to Low (USB-Port)  
mV (USB-Port)  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
VSTART  
VSTOP  
VHYS  
4.1  
4.0  
4.15  
4.1  
4.3  
4.2  
V
V
(AC-Adapter)  
(AC-Adapter)  
55  
mV (AC-Adapter)  
Voltage Regulation (Constant Voltage Mode)  
Regulated Charge Voltage  
VREG  
4.179  
4.328  
4.378  
4.477  
-0.5  
4.20  
4.35  
4.40  
4.50  
4.221  
4.372  
4.422  
4.523  
+0.5  
V
V
V
V
%
VDD=[VREG(typical)+1V]  
IOUT=30 mA  
TA=-5°C to +55°C  
Regulated Charge Voltage Tolerance  
Line Regulation  
VRTOL  
TA=-5°C to +55°C  
|(ΔVBAT  
BAT)/ΔVDD  
/
0.075  
0.2  
%/V VDD=[VREG(typical)+1V] to 6V  
OUT=30 mA  
IOUT=10 mA to 100 mA  
DD=[VREG(typical)+1V]  
V
|
I
Load Regulation  
VBAT/VBAT  
|
0.150  
0.3  
%
V
Supply Ripple Attenuation  
PSRR  
60  
52  
23  
dB  
dB  
dB  
IOUT=10 mA, 10Hz to 1 kHz  
IOUT=10 mA, 10Hz to 10 kHz  
IOUT=10 mA, 10Hz to 1 MHz  
Current Regulation (Fast Charge Constant-Current Mode)  
AC-Adapter Fast Charge Current  
IREG  
95  
105  
115  
mA PROG1 = 10 kΩ  
900  
1000  
1100  
mA PROG1 = 1 kΩ, Note 2  
TA=-5°C to +55°C  
Note 1: The supply voltage (VDD) = VAC when input power source is from Ac-Adapter and the supply voltage (VDD) = VUSB  
when input power source is from USB-Port.  
2: The value is guaranteed by design and not production tested.  
3: The current is based on the ratio of selected current regulation (IREG).  
4: The maximum charge impedance has to be less than shutdown impedance for normal operation.  
DS22071A-page 4  
© 2007 Microchip Technology Inc.  
MCP73837/8  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(typical) + 0.3V] to 6V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (typical) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
USB-Port Fast Charge Current  
IREG  
80  
90  
100  
500  
mA PROG2 = Low  
400  
450  
mA PROG2 = High  
TA=-5°C to +55°C  
Maximum Output Current Limit  
IMAX  
1200  
mA PROG1 < 833Ω  
Precondition Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current Ratio  
IPREG / IREG  
7.5  
15  
30  
10  
20  
12.5  
25  
%
%
%
%
%
%
Note 3  
TA=-5°C to +55°C  
40  
50  
100  
66.5  
71.5  
120  
Precondition Current Threshold Ratio  
VPTH / VREG  
64  
69  
69  
74  
VBAT Low to High  
Precondition Hysteresis  
VPHYS  
mV VBAT High to Low  
Charge Termination  
Charge Termination Current Ratio  
ITERM / IREG  
3.75  
5.6  
7.5  
15  
5
6.25  
9.4  
%
%
%
%
PROG1 = 1 kΩ to 10 kΩ  
7.5  
10  
20  
TA=-5°C to +55°C  
12.5  
25  
Note 3  
Automatic Recharge  
Recharge Voltage Threshold Ratio  
VRTH / VREG  
92  
95  
94.0  
97  
96  
99  
%
%
VBAT High to Low  
TA=-5°C to +55°C  
Pass Transistor ON-Resistance  
ON-Resistance  
RDSON  
350  
mΩ VDD = 4.5V, TJ = 105°C  
Battery Discharge Current  
Output Reverse Leakage Current  
IDISCHARGE  
0.1  
0.55  
-6  
2
2
µA  
µA  
µA  
Standby (PROG1 or PROG2  
Floating)  
Shutdown (VDD < VBAT  
-
100 mV or VDD < VSTOP  
)
-15  
Charge Complete  
Status Indicators - STAT1, STAT2, PG (MCP73837)  
Sink Current  
ISINK  
VOL  
ILK  
16  
0.3  
35  
1
mA  
V
Low Output Voltage  
Input Leakage Current  
PROG1 Input (PROG1)  
Charge Impedance Range  
Shutdown Impedance  
ISINK = 4 mA  
0.03  
1
µA  
High Impedance, VDD on pin  
RPROG  
RPROG  
1
kΩ  
kΩ  
Note 4  
70  
200  
Minimum Impedance for  
Shutdown  
PROG2 Inputs (PROG2)  
Input High Voltage Level  
Input Low Voltage Level  
Shutdown Voltage Level  
Input Leakage Current  
VIH  
VIL  
0.8VDD  
7
%
%
0.2VDD  
0.8VDD  
15  
VSD  
ILK  
0.2VDD  
%
µA  
VPROG2 = VDD  
Note 1: The supply voltage (VDD) = VAC when input power source is from Ac-Adapter and the supply voltage (VDD) = VUSB  
when input power source is from USB-Port.  
2: The value is guaranteed by design and not production tested.  
3: The current is based on the ratio of selected current regulation (IREG).  
4: The maximum charge impedance has to be less than shutdown impedance for normal operation.  
© 2007 Microchip Technology Inc.  
DS22071A-page 5  
MCP73837/8  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(typical) + 0.3V] to 6V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (typical) + 1.0V]  
Parameters  
Timer Enable (TE)  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Thermistor Bias  
VIH  
VIL  
ILK  
2
0.8  
1
V
V
0.01  
µA  
VTE = VDD  
Thermistor Current Source  
Thermistor Comparator  
Upper Trip Threshold  
ITHERM  
47  
50  
53  
µA  
2 kΩ < RTHERM < 50 kΩ  
VT1 Low to High  
VT1  
VT1HYS  
VT2  
1.20  
1.23  
-40  
1.26  
V
mV  
V
Upper Trip Point Hysteresis  
Lower Trip Threshold  
0.235  
0.250  
40  
0.265  
VT2 High to Low  
Lower Trip Point Hysteresis  
System Test (LDO) Mode  
Input High Voltage Level  
THERM Input Sink Current  
VT2HYS  
mV  
VIH  
3
VDD - 0.1  
20  
V
ISINK  
5.5  
µA  
Stand-by Or System Test  
Mode  
Bypass Capacitance  
CBAT  
1
4.7  
µF  
µF  
IOUT < 250 mA  
IOUT > 250 mA  
Automatic Power Down (SLEEP Comparator, Direction Control)  
Automatic Power Down Entry  
Threshold  
VPD  
VBAT  
10 mV  
+
VBAT  
100 mV  
+
V
V
2.3V < VBAT < VREG  
VDD Falling  
Automatic Power Down Exit Threshold  
VPDEXIT  
-
VBAT  
150 mV 250 mV  
+
VBAT  
+
2.3V < VBAT < VREG  
VDD Rising  
Thermal Shutdown  
Die Temperature  
TSD  
150  
10  
°C  
°C  
Die Temperature Hysteresis  
TSDHYS  
Note 1: The supply voltage (VDD) = VAC when input power source is from Ac-Adapter and the supply voltage (VDD) = VUSB  
when input power source is from USB-Port.  
2: The value is guaranteed by design and not production tested.  
3: The current is based on the ratio of selected current regulation (IREG).  
4: The maximum charge impedance has to be less than shutdown impedance for normal operation.  
DS22071A-page 6  
© 2007 Microchip Technology Inc.  
MCP73837/8  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (typical) + 0.3V] to 6V.  
Typical values are at +25°C, VDD = [VREG (typical) + 1.0V]  
Parameters  
UVLO Start Delay  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VDD Low to High  
tSTART  
5
ms  
Current Regulation  
Transition Time Out of Precondition  
Current Rise Time Out of Precondition  
Precondition Comparator Filter Time  
Termination Comparator Filter Time  
Charge Comparator Filter Time  
Thermistor Comparator Filter Time  
Elapsed Timer  
tDELAY  
tRISE  
tPRECON  
tTERM  
tCHARGE  
tTHERM  
10  
10  
ms  
ms  
ms  
ms  
ms  
ms  
VBAT < VPTH to VBAT > VPTH  
IOUT Rising to 90% of IREG  
Average VBAT Rise/Fall  
Average IOUT Falling  
0.4  
0.4  
0.4  
0.4  
1.3  
1.3  
1.3  
1.3  
3.2  
3.2  
3.2  
3.2  
Average VBAT Falling  
Average THERM Rise/Fall  
Elapsed Timer Period  
tELAPSED  
0
0
0
Hours Timer Disabled  
3.6  
5.4  
7.2  
4.0  
6.0  
8.0  
4.4  
6.6  
8.8  
Hours  
Hours  
Hours  
Status Indicators  
Status Output Turn-off  
Status Output Turn-on  
tOFF  
tON  
500  
500  
µs  
µs  
ISINK = 1 mA to 0 mA  
ISINK = 0 mA to 1 mA  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (typ.) + 0.3V] to 6V.  
Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TJ  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
Thermal Package Resistances  
Thermal Resistance, 10-Lead MSOP  
θJA  
θJA  
113  
41  
°C/W  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection. Note 1  
Thermal Resistance, 10-Lead 3 mm x  
3 mm DFN  
4-Layer JC51-7 Standard Board,  
Natural Convection  
Note 1: This represents the minimum copper condition on the PCB ( Printed Circuit Board).  
© 2007 Microchip Technology Inc.  
DS22071A-page 7  
MCP73837/8  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA, and TA= +25°C, Constant-voltage mode.  
4.210  
2.0  
TEMP = 25°C  
IOUT = 50 mA  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
4.165  
4.160  
VDD = Floating  
VBAT = 4.2V  
IOUT = 10 mA  
1.6  
1.2  
0.8  
0.4  
0.0  
IOUT = 100 mA  
IOUT = 500 mA  
IOUT = 1000 mA  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Supply Voltage (V)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Output Leakage Current  
(V ) vs. Supply Voltage (V ).  
(I  
) vs. Ambient Temperature (T ).  
BAT  
DD  
DISCHARGE  
A
2.0  
4.210  
4.205  
VDD = 5.2V  
VDD = Floating  
TEMP = +25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IOUT = 10 mA  
IOUT = 50 mA  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
IOUT = 100 mA  
IOUT = 500 mA  
IOUT = 1000 mA  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
Battery Voltage (V)  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
FIGURE 2-2:  
(V  
Battery Regulation Voltage  
FIGURE 2-5:  
Output Leakage Current  
) vs. Ambient Temperature (T ).  
(I  
) vs. Battery Voltage (V ).  
BAT  
A
DISCHARGE  
BAT  
0.50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VDD = VBAT  
TEMP = 25 °C  
VDD = 5.2V  
Temp = 25°C  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
Battery Voltage (V)  
1
6
11 16 21 26 31 36 41 46 51 56 61  
PROG (k)  
R
FIGURE 2-3:  
Output Leakage Current  
FIGURE 2-6:  
Charge Current (I  
) vs.  
OUT  
(I ) vs. Battery Regulation Voltage  
Programming Resistor (R  
).  
DISCHARGE  
PROG  
(V  
).  
BAT  
DS22071A-page 8  
© 2007 Microchip Technology Inc.  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
110  
108  
106  
104  
102  
100  
98  
1200  
1150  
1100  
1050  
1000  
950  
RPROG = 10 k  
VDD = 5.2V  
RPROG = 1 kΩ  
Temp = +25°C  
900  
96  
850  
94  
800  
92  
750  
90  
700  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-7:  
Charge Current (I  
) vs.  
FIGURE 2-10:  
Charge Current (I  
) vs.  
OUT  
OUT  
Supply Voltage (V ).  
Ambient Temperature (T ).  
DD  
A
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
104  
102  
100  
98  
RPROG = 20 k  
VDD = 5.2V  
RPROG = 10 kΩ  
Temp = +25°C  
96  
94  
92  
90  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Charge Current (I  
) vs.  
FIGURE 2-11:  
Charge Current (I  
) vs.  
OUT  
OUT  
Supply Voltage (V ).  
Ambient Temperature (T ).  
DD  
A
1100  
1050  
1000  
950  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
RPROG = 1 kΩ  
DD = 5.2V  
RPROG = 1 kΩ  
V
900  
850  
800  
750  
700  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-9:  
Charge Current (I  
) vs.  
FIGURE 2-12:  
Charge Current (I  
) vs.  
OUT  
OUT  
Ambient Temperature (T ).  
Junction Temperature (T ).  
A
J
© 2007 Microchip Technology Inc.  
DS22071A-page 9  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
600  
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
RPROG = 2 kΩ  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VDD = 5.2V  
0
Junction Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Charge Current (I  
) vs.  
FIGURE 2-16:  
Thermistor Current (I  
)
THERM  
OUT  
Junction Temperature (T ).  
vs. Ambient Temperature (T ).  
J
A
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
RPROG = 10 kΩ  
IOUT = 10 mA  
COUT = 4.7 µF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Junction Temperature (°C)  
FIGURE 2-14:  
Charge Current (I  
) vs.  
FIGURE 2-17:  
Power Supply Ripple  
OUT  
Junction Temperature (T ).  
Rejection (PSRR).  
J
0
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
Temp = +25°C  
IOUT = 100 mA  
COUT = 4.7 µF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0.01  
0.1  
1
10  
100  
1000  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Frequency (kHz)  
Supply Voltage (V)  
FIGURE 2-15:  
Thermistor Current (I  
)
FIGURE 2-18:  
Power Supply Ripple  
THERM  
vs. Supply Voltage (V ).  
Rejection (PSRR).  
DD  
DS22071A-page 10  
© 2007 Microchip Technology Inc.  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
16  
14  
12  
10  
8
0.1  
0
IOUT = 100 mA  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6
4
-0.1  
2
IOUT = 100 mA  
0
Time (Minutes)  
Time (µs)  
FIGURE 2-19:  
Line Transient Response.  
FIGURE 2-22:  
Load Transient Response.  
16  
14  
12  
10  
8
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6
4
2
IOUT = 10 mA  
0
Time (µs)  
FIGURE 2-20:  
Line Transient Response.  
FIGURE 2-23:  
(I = 1A).  
V
UVLO Start Delay  
AC  
OUT  
0.35  
0.3  
0.04  
IOUT = 10 mA  
0.02  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.05  
-0.12  
Time (Minutes)  
FIGURE 2-21:  
Load Transient Response.  
FIGURE 2-24:  
V
UVLO Start Delay  
USB  
(USB = Low).  
© 2007 Microchip Technology Inc.  
DS22071A-page 11  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
UVLOVAC  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
VDD = 5.2V  
PROG = USB_Low  
180 mAh Li-Ion Battery  
R
0
20 40 60 80 100 120 140 160 180  
Time (Minutes)  
FIGURE 2-28:  
Complete Charge Cycle  
FIGURE 2-25:  
V
UVLO Start Delay  
USB  
(180 mAh Li-Ion Battery).  
(USB = High)  
5.0  
4.0  
3.0  
2.0  
1.2  
1
5.0  
0.12  
0.1  
C.C. Begins  
4.0  
3.0  
2.0  
0.8  
0.6  
0.4  
0.2  
0
0.08  
0.06  
0.04  
0.02  
0
C.V. Begins  
VDD = 5.2V  
PROG = USB_Low  
180 mAh Li-Ion Battery  
VDD = 5.2V  
1.0  
R
1.0  
0.0  
R
PROG = 1 k  
1200 mAh Li-Ion Battery  
Preconditioning  
0.0  
0
1
2
3
4
5
6
7
8
9
10  
Time (Minutes)  
Time (Minutes)  
FIGURE 2-29:  
Typical Charge Profile in  
FIGURE 2-26:  
Complete Charge Cycle  
Preconditioning and CC-CV (180 mAh Li-Ion  
Battery).  
(1200 mAh Li-Ion Battery).  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.2  
0.9  
0.6  
0.3  
0
1.5  
VDD = 5.2V  
RPROG = 1 k  
1200 mAh Li-Ion Battery  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
8
9
10  
Time (Minutes)  
FIGURE 2-27:  
Typical Charge Profile in  
Thermal Regulation (1200 mAh Li-Ion Battery).  
DS22071A-page 12  
© 2007 Microchip Technology Inc.  
MCP73837/8  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLES  
Pin Number  
Symbol  
I/O  
Function  
MSOP-10  
DFN-10  
1
2
3
4
5
6
1
2
3
4
5
6
VAC  
VUSB  
I
I
AC-Adapter Supply Input  
USB-Port Supply Input  
STAT1  
STAT2  
VSS  
O
O
I/O  
Charge Status Output 1 (Open-Drain)  
Charge Status Output 2 (Open-Drain)  
Battery Management 0V Reference  
PROG1  
Current Regulation Setting With AC-Adapter; Device Charge  
Control Enable; Precondition Set Point for AC control  
7
7
PROG2  
I
Current Regulation Setting With USB-Port; Precondition Set Point  
for USB control.  
8
8
8
8
PG  
TE  
O
I
Available on MCP73837: Power-Good Status Output (Open-Drain)  
Available on MCP73838: Timer Enable; Enables Safety Timer  
(Active Low)  
9
9
THERM  
I/O  
Thermistor Monitoring Input and Bias current; System Test (LDO)  
Mode Input  
10  
10  
VBAT  
VSS  
I/O  
Battery Positive Input and Output Connection  
EP  
EP (Exposed Thermal Pad); There is an internal electrical  
connection between the exposed thermal pad and VSS. The EP  
must be connected to the same potential as the VSS pin on the  
Printed Circuit Board (PCB).  
3.1  
AC-Adapter Supply Input (VAC  
)
3.5  
Battery Management 0V Reference  
(VSS  
)
A supply voltage of VREG + 0.3V to 6V from ac-dc wall-  
adapter is recommended. When both the AC-Adapter  
and the USB-Port supply voltages are present at same  
time, the AC-Adapter dominates the regulated charge  
current with the maximum value of 1A. Bypass to VSS  
with a minimum of 4.7 µF is recommended.  
Connect to negative terminal of battery and input  
supply.  
3.6  
Battery Charge Control Output  
(VBAT  
)
Connect to the positive terminal of Li-Ion / Li-Polymer  
batteries. Bypass to VSS with a minimum of 1 µF to  
ensure loop stability when the battery is disconnected.  
3.2  
USB-Port Supply Input (VUSB)  
A supply voltage of VREG + 0.3V to 6V from USB-Port is  
recommended. When no supply voltage from VAC pin is  
available, the Li-Ion battery is charged directly from  
USB-Port. Bypass to VSS with a minimum of 1 µF is  
recommended.  
3.7  
AC-Adapter Current Regulation  
Set (PROG1)  
The AC-Adapter constant charge current is set by  
placing a resistor from PROG1 to VSS. PROG1 is the  
set point of precondition and termination when the AC-  
Adapter is present.  
3.3  
Charge Status Output 1 (STAT1)  
STAT1 is an open-drain logic output for connection to a  
LED for charge status indication. Alternatively, a pull-up  
resistor can be applied for interfacing to a host micro-  
controller.  
PROG1 also functions as device charge control  
enable. The MCP73837/8 is shut down when an  
impedance value greater than 70 kΩ is applied to  
PROG1. When PROG1 is floating, the MCP73837/8  
enters stand-by mode.  
3.4  
Charge Status Output 2 (STAT2)  
STAT2 is an open-drain logic output for connection to a  
LED for charge status indication. Alternatively, a pull-up  
resistor can be applied for interfacing to a host  
microcontroller.  
© 2007 Microchip Technology Inc.  
DS22071A-page 13  
MCP73837/8  
3.8  
USB-Port Current Regulation Set  
(PROG2)  
3.10 Timer Enable (TE)  
Timer Enable (TE) is available only on MCP73838.  
(TE) enables the built-in safety timer when pull low and  
disables the built-in safety timer when pull high.  
The MCP73837/8 USB-Port current regulation set  
input (PROG2) is a digital input selection. A logic Low  
selects a 1 unit load charge current; a logic High selects  
a 5 unit loads charge current.  
Note:  
The built-in safety timer is available for both  
MCP73837 and MCP73838 in the following  
options: Disable, 4 HR, 6 HR, and 8 HR.  
PROG2 also functions as the set point of precondition  
and termination when USB-Port is present. When  
PROG2 is floating, the MCP73837/8 enters in stand-by  
mode.  
3.11 Battery Temperature Monitor  
(THERM)  
MCP73837/8 continuously monitors the battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and VSS pins. An internal  
50 µA current source provides the bias for the most  
common 10 kΩ negative-temperature coefficient  
thermistors (NTC).  
3.9  
Power Good (PG)  
Power Good (PG) is available only on MCP73837. PG  
is an open-drain logic output for connection to a LED  
for input power supply indication. Alternatively, a pull-  
up resistor can be applied for interfacing to a host  
microcontroller.  
DS22071A-page 14  
© 2007 Microchip Technology Inc.  
MCP73837/8  
4.0  
DEVICE OVERVIEW  
The MCP73837/8 devices are simple, yet fully integrated linear charge management controllers. Figure 4-1 depicts the  
operational flow algorithm.  
SHUTDOWN MODE*  
* Continuously Monitored  
V
<
VBAT  
-100 mV  
DD < VSTOP  
VDD  
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = Hi-Z  
SYSTEM TEST (LDO) MODE  
> (V -100 mV)  
STANDBY MODE *  
V
V
> (V  
+100 mV)  
THERM  
DD  
BAT  
REG  
STAT1 = LOW  
STAT2 = LOW  
PG = LOW  
PROG > 200k  
Ω
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = LOW  
Timer Suspended  
V
< V  
PTH  
BAT  
PRECONDITIONING MODE  
Charge Current = I  
PREG  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
Timer Reset  
V
> V  
PTH  
BAT  
TIMER FAULT  
TEMPERATURE FAULT  
FAST CHARGE MODE  
V
> V  
BAT PTH  
No Charge Current  
No Charge Current  
Charge Current = I  
REG  
Timer Expired  
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = LOW  
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = LOW  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
V
< V  
RTH  
BAT  
Timer Suspended  
Timer Suspended  
Timer Enabled  
V
= V  
REG  
BAT  
CONSTANT VOLTAGE MODE  
Charge Voltage = V  
REG  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
I
< I  
TERM  
BAT  
Timer Expired  
CHARGE COMPLETE MODE  
No Charge Current  
STAT1 = Hi-Z  
STAT2 = LOW  
PG = LOW  
FIGURE 4-1:  
Flow Chart.  
© 2007 Microchip Technology Inc.  
DS22071A-page 15  
MCP73837/8  
In this mode, the MCP73837/8 supplies a percentage  
of the charge current (established with the value of the  
resistor connected to the PROG pin) to the battery. The  
percentage or ratio of the current is factory set. Refer to  
4.1  
Undervoltage Lockout (UVLO)  
An internal undervoltage lockout (UVLO) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode until the input supply rises above the  
UVLO threshold. The UVLO circuitry has a built-in  
hysteresis of 75 mV for the USB-Port and 55 mV for the  
AC-Adapter.  
Section 1.0  
“Electrical  
Characteristics”  
for  
preconditioning current options.  
When the voltage at the VBAT pin rises above the  
preconditioning threshold, the MCP73837/8 enters the  
constant current or fast charge mode.  
In the event a battery is present when the input power  
is applied, the input supply must rise 100 mV above the  
battery voltage before MCP73837/8 becomes  
operational.  
4.5  
Constant Current MODE - Fast  
Charge  
The UVLO circuit places the device in shutdown mode  
if the input supply falls to within +100 mV of the battery  
voltage.  
During the constant current mode, the programmed  
(AC-Adapter) or selected (USB-Port) charge current is  
supplied to the battery or load.  
The UVLO circuit is always active. At any time the input  
supply is below the UVLO threshold or within +100 mV  
of the voltage at the VBAT pin, the MCP73837/8 is  
placed in a shutdown mode.  
For AC-Adapter, the charge current is established  
using a single resistor from PROG to VSS. The  
program resistor and the charge current are calculated  
using the following equation:  
During any UVLO condition, the battery reverse  
discharge current shall be less than 2 µA.  
EQUATION 4-1:  
4.2  
AUTONOMOUS POWER SOURCE  
SELECTION  
1000V  
RPROG  
IREG = ----------------  
The MCP73837/8 devices are designed to select the  
USB-port or the AC-Adapter as the power source  
automatically. If the AC-Adapter input is not present,  
the USB-Port is selected. If both inputs are available,  
the AC-Adapter has first priority.  
where RPROG is in kilo-ohms (kΩ) and IREG is in  
milliampers (mA).  
When charging from  
a
USB-Port, the host  
microcontroller has the option of selecting either a one  
unit load or a five unit loads charge rate based on the  
PROG2 input. A logic LOW selects a one unit load  
charge rate, a HIGH selects a five unit loads charge  
rate, and high impedance input suspends or disables  
charging.  
Note:  
If the input power is switched during a  
charge cycle, the power path switch-over  
shall be a break-before-make connection.  
As a result, the charge current can  
momentarily go to zero. The charge cycle  
timer shall remain continuous.  
Note:  
USB Specification Rev. 2.0 defines the  
maximum absolute current for one unit  
load is 100 mA. This value is not an aver-  
age over time and shall not be exceed.  
4.3  
Charge Qualification  
For a charge cycle to begin, all UVLO conditions must  
be met and a battery or output load must be present.  
Constant current mode is maintained until the voltage  
at the VBAT pin reaches the regulation voltage, VREG.,  
when constant current mode is invoked, the internal  
timer is reset.  
A charge current programming resistor must be con-  
nected from PROG1 to VSS. If the PROG1 or PROG2  
pin are open or floating, the MCP73837/8 is disabled  
and the battery reverse discharge current is less than  
2 µA. In this manner, the PROG1 pin acts as a charge  
enable and can be used as a manual shutdown.  
4.5.1  
TIMER EXPIRED DURING  
CONSTANT CURRENT - FAST  
CHARGE MODE  
4.4  
Preconditioning  
If the internal timer expires before the recharge voltage  
threshold is reached, a timer fault is indicated and the  
charge cycle terminates. The MCP73837/8 remains in  
this condition until the battery is removed, the input  
battery is removed or the PROG1/2 pin is opened. If the  
battery is removed or the PROG1/2 pin is opened, the  
MCP73837/8 enters the Stand-by mode where it  
remains until a battery is reinserted or the PROG1/2 pin  
If the voltage at the VBAT pin is less than the  
preconditioning threshold, the MCP73837/8 enters a  
preconditioning mode. The preconditioning threshold is  
factory set. Refer to Section 1.0 “Electrical  
Characteristics” for preconditioning threshold  
options.  
DS22071A-page 16  
© 2007 Microchip Technology Inc.  
MCP73837/8  
is reconnected. If the input power is removed, the  
MCP73837/8 is in Shutdown. When the input power is  
reapplied, a normal start-up sequence ensues.  
4.9  
Thermal Regulation  
The MCP73837/8 limits the charge current based on  
the die temperature. The thermal regulation optimizes  
the charge cycle time while maintaining device  
reliability. Figure 4-2 depicts the thermal regulation for  
the MCP73837/8. Refer to Section 1.0 “Electrical  
Characteristics” for thermal package resistances and  
Section 6.1.1.2 “Thermal Considerations” for  
calculating power dissipation.  
4.6  
Constant Voltage Mode  
When the voltage at the VBAT pin reaches the  
regulation voltage, VREG, constant voltage regulation  
begins. The regulation voltage is factory set to 4.20V,  
4.35V, 4.40V, or 4.5V with a tolerance of ± 0.5%.  
.
4.7  
Charge Termination  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
RPROG = 1 k  
The charge cycle is terminated when, during constant  
voltage mode, the average charge current diminishes  
below a percentage of the programmed charge current  
(established with the value of the resistor connected to  
the PROG pin) or the internal timer has expired. A 1 ms  
filter time on the termination comparator ensures that  
transient load conditions do not result in premature  
charge cycle termination. The percentage or ratio of the  
current is factory set. The timer period is factory set and  
can be disabled. Refer to Section 1.0 “Electrical  
Characteristics” for charge termination current ratio  
and timer period options.  
25 35 45 55 65 75 85 95 105 115 125 135 145 155  
Junction Temperature (°C)  
FIGURE 4-2:  
Thermal Regulation.  
The charge current is latched off and the MCP73837/8  
enters a charge complete mode.  
4.10 Thermal Shutdown  
The MCP73837/8 suspends charge if the die  
temperature exceeds 150°C. Charging will resume  
when the die temperature has cooled by  
approximately 10°C. The thermal shutdown is a  
secondary safety feature in the event that there is a  
failure within the thermal regulation circuitry.  
4.8  
Automatic Recharge  
The MCP73837/8 continuously monitors the voltage at  
the VBAT pin in the charge complete mode. If the  
voltage drops below the recharge threshold, another  
charge cycle begins and current is once again supplied  
to the battery or load. The recharge threshold is factory  
set. Refer to Section 1.0 “Electrical Characteristics”  
for recharge threshold options.  
Note:  
Charge termination and automatic  
recharge features avoid constant charging  
Li-Ion batteries to prolong the life of Li-Ion  
batteries while keeping their capacity at  
healthy level.  
© 2007 Microchip Technology Inc.  
DS22071A-page 17  
MCP73837/8  
at the THERM pin to factory set thresholds of 1.20V  
and 0.25V, typically. Once a voltage outside the  
thresholds is detected during a charge cycle, the  
MCP73837/8 immediately suspends the charge cycle.  
5.0  
DETAILED DESCRIPTION  
5.1  
Analog Circuitry  
The MCP73837/8 suspends charge by turning off the  
pass transistor and holding the timer value. The charge  
cycle resumes when the voltage at the THERM pin  
returns to the normal range.  
5.1.1  
BATTERY MANAGEMENT INPUT  
SUPPLY (V  
)
DD  
The VDD input is the input supply to the MCP73837/8.  
The MCP73837/8 can be supplied by either AC-  
Adapter (VAC) or USB-Port (VUSB) with autonomous  
source selection. The MCP73837/8 automatically  
enters a Power-down mode if the voltage on the VDD  
input falls to within +100 mV of the battery voltage or  
below the UVLO voltage (VSTOP). This feature prevents  
draining the battery pack when both the VAC and VUSB  
supplies are not present.  
If temperature monitoring is not required, place a  
standard 10 kΩ resistor from THERM to VSS  
.
5.1.5 SYSTEM TEST (LDO) MODE  
The MCP73837/8 can be placed in a system test mode.  
In this mode, the MCP73837/8 operates as a low drop-  
out linear regulator (LDO). The output voltage is  
regulated to the factory set voltage regulation option.  
The available output current is limited to the pro-  
grammed fast charge current. For stability, the VBAT  
output must be bypassed to VSS with a minimum  
capacitance of 1 µF for output currents up to 250 mA.  
A minimum capacitance of 4.7 µF is required for output  
currents above 250 mA.  
5.1.2  
AC-ADAPTER CURRENT  
REGULATION SET (PROG1)  
For the MCP73837/8, the charge current regulation  
can be scaled by placing a programming resistor  
(RPROG) from the PROG input to VSS. The program  
resistor and the charge current are calculated using  
the following equation:  
The system test mode is entered by driving the THERM  
input greater than (VDD - 100 mV) with no battery  
connected to the output. In this mode, the MCP73837/  
8 can be used to power the system without a battery  
being present.  
EQUATION 5-1:  
1000V  
IREG = ----------------  
RPROG  
Where:  
Note 1: ITHERM is disabled during shutdown,  
stand-by, and system test modes.  
RPROG  
IREG  
=
=
kilo-ohms (kΩ)  
milli-ampere (mA)  
2: A pull-down current source on the  
THERM input is active only in stand-by  
and system test modes.  
The preconditioning current and the charge  
termination current are ratiometric to the fast charge  
current based on the selected device options.  
3: During system test mode, the PROG  
input sets the available output current  
limit.  
5.1.3  
BATTERY CHARGE CONTROL  
OUTPUT (V  
4: System test mode shall be exited by  
releasing the THERM input or cycling  
input power.  
)
BAT  
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73837/8  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
5.2  
Digital Circuitry  
5.2.1  
STATUS INDICATORS AND POWER  
GOOD (PG) OPTION  
The charge status outputs have two different states:  
Low (L), and High Impedance (Hi-Z). The charge status  
outputs can be used to illuminate LEDs. Optionally, the  
charge status outputs can be used as an interface to a  
host microcontroller. Table 5-1 summarizes the state of  
the status outputs during a charge cycle.  
5.1.4  
TEMPERATURE QUALIFICATION  
(THERM)  
The MCP73837/8 continuously monitors battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and the VSS pins. An  
internal 50 µA current source provides the bias for the  
most common 10 kΩ negative-temperature coefficient  
(NTC) or positive-temperature coefficient (PTC)  
thermistors. The current source is controlled, avoiding  
measurement sensitivity to fluctuations in the supply  
voltage (VDD). The MCP73837/8 compares the voltage  
DS22071A-page 18  
© 2007 Microchip Technology Inc.  
MCP73837/8  
5.2.2  
USB-PORT CURRENT  
5.2.4  
TIMER ENABLE (TE) OPTION  
REGULATION SELECT (PROG2)  
The timer enable (TE) input option is used to enable or  
disable the internal timer. A low signal on this pin  
enables the internal timer and a high signal disables  
the internal timer. The TE input can be used to disable  
the timer when the charger is supplying current to  
charge the battery and power the system load. The TE  
input is compatible with 1.8V logic. The TE option is  
available only on MCP73838.  
For the MCP73837/8, driving the PROG2 input to a  
logic Low selects the low charge current setting  
(maximum 100 mA). Driving the PROG2 input to a logic  
High selects the high charge current setting (maximum  
500 mA).  
TABLE 5-1:  
STATUS OUTPUTS  
CHARGE CYCLE STATE  
Shutdown  
STAT1 STAT2  
PG  
Hi-Z  
L
5.2.5  
DEVICE DISABLE (PROG1/2)  
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
The current regulation set input pin (PROG1/2) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or to  
initiate a recharge cycle. Placing a programming  
resistor from the PROG1/2 input to VSS enables the  
device. Allowing the PROG1/2 input to float or applying  
a logic-high input signal, disables the device and  
terminates a charge cycle. When disabled, the device’s  
supply current is reduced to 75 µA, typically.  
Standby  
Preconditioning  
L
Constant Current  
Constant Voltage  
Charge Complete - Standby  
Temperature Fault  
Timer Fault  
L
L
L
L
Hi-Z  
Hi-Z  
Hi-Z  
L
L
Hi-Z  
Hi-Z  
L
L
L
System Test Mode  
L
5.2.3  
POWER GOOD (PG) OPTION  
The power good (PG) option is a pseudo open-drain  
output. The PG output can sink current, but not source  
current. However, there is a diode path back to the  
input, and as such, the output should be pulled up only  
to the input. The PG output is low whenever the input  
to the MCP73837 is above the UVLO threshold and  
greater than the battery voltage. If the supply voltage is  
above the UVLO, but below VREG(typical)+0.3V, the  
MCP73837 will pulse the PG output as the device  
determines if a battery is present. The PG option is  
available only on MCP73837.  
© 2007 Microchip Technology Inc.  
DS22071A-page 19  
MCP73837/8  
Lithium-Polymer cells Constant-current followed by  
Constant-voltage. Figure 6-1 depicts a typical stand-  
alone MCP73837 application circuit, while Figure 6-2  
and Figure 6-3 depict the accompanying charge  
profile.  
6.0  
APPLICATIONS  
The MCP73837/8 devices are designed to operate in  
conjunction with a host microcontroller or in stand-  
alone applications. The MCP73837/8 devices provide  
the preferred charge algorithm for Lithium-Ion and  
1
2
3
10  
V
V
V
BAT  
AC  
Thermsitor  
9
C
OUT  
Single  
Li-Ion  
Cell  
USB Port  
THERM  
USB  
C
IN1  
1
ΚΩ  
REGULATED  
WALL CUBE  
C
IN2  
5
V
STAT1  
SS  
1
1
ΚΩ  
ΚΩ  
4
8
7
6
STAT2  
/PG  
PROG2  
PROG1  
Hi  
Low  
R
PROG  
MCP73837  
MCP73837 Typical Stand-Alone Application Circuit.  
FIGURE 6-1:  
6.1  
Application Circuit Design  
5.0  
4.0  
3.0  
2.0  
1.2  
1
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current,  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
Preconditioning mode to the Constant Current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost, and thermal requirements of  
the charger.  
0.8  
0.6  
0.4  
0.2  
0
VDD = 5.2V  
PROG = 1 k  
1200 mAh Li-Ion Battery  
1.0  
0.0  
R
Time (Minutes)  
6.1.1  
COMPONENT SELECTION  
FIGURE 6-2:  
Typical Charge Profile  
(1200 mAh Li-Ion Battery).  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0
6.1.1.1  
Charge Current  
The preferred fast charge current for Lithium-Ion cells  
should always follow references and guidance from  
battery manufacturers. For example, programming  
700 mA fast charge current for a 1000 mAh Li-Ion  
battery pack if its preferred fast charge rate is 0.7C.  
This will result the shortest charge cycle time without  
degradation a battery's life and performance.  
VDD = 5.2V  
1.0  
R
PROG = 1 kΩ  
0.5  
0.0  
1200 mAh Li-Ion Battery  
0
1
2
3
4
5
6
7
8
9
10  
Time (Minutes)  
6.1.1.2  
Thermal Considerations  
FIGURE 6-3:  
Thermal Regulation (1200 mAh Li-Ion Battery).  
Typical Charge Profile in  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this case, the power dissipation is:  
DS22071A-page 20  
© 2007 Microchip Technology Inc.  
MCP73837/8  
Placing a programming resistor from the PROG1 input  
to VSS or driving PROG2 to logic High or Low enables  
the device. Allowing either the PROG1 or PROG2 input  
float disables the device and terminates a charge cycle.  
When disabled, the device’s supply current is reduced  
to 75 µA, typically.  
EQUATION 6-1:  
PowerDissipation = (V  
V  
) × I  
PTHMIN REGMAX  
DDMAX  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
the maximum fast charge current  
6.1.1.6  
Temperature Monitoring  
the minimum transition threshold  
voltage  
The charge temperature window can be set by placing  
fixed value resistors in series-parallel with a thermistor.  
The resistance values of RT1 and RT2 can be calculated  
with the following equations in order to set the  
temperature window of interest.  
For example, power dissipation with a 5V, ±10% input  
voltage source and 500 mA, ±10% fast charge current  
is:  
For NTC thermistors:  
EXAMPLE 6-1:  
EQUATION 6-2:  
PowerDissipation = (5.5V 2.7V) × 550mA = 1.54W  
RT2 × RCOLD  
24kΩ = RT1 + --------------------------------  
R
T2 + RCOLD  
This power dissipation with the battery charger in the  
MSOP-10 package will cause thermal regulation to be  
entered as depicted in Figure 6-3. Alternatively, the  
3 mm x 3 mm DFN package could be utilized to reduce  
the charge cycle times.  
RT2 × RHOT  
5kΩ = RT1 + ----------------------------  
T2 + RHOT  
R
Where:  
RT1  
=
=
the fixed series resistance  
the fixed parallel resistance  
6.1.1.3  
External Capacitors  
RT2  
RCOLD  
the thermistor resistance at the  
lower temperature of interest  
The MCP73837/8 is stable with or without a battery  
load. In order to maintain good AC stability in the  
Constant Voltage mode, a minimum capacitance of  
RHOT  
=
the thermistor resistance at the  
upper temperature of interest  
1 µF is recommended to bypass the VBAT pin to VSS  
.
This capacitance provides compensation when there is  
no battery load. In addition, the battery and  
interconnections appear inductive at high frequencies.  
These elements are in the control feedback loop during  
Constant Voltage mode. Therefore, the bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
For example, by utilizing a 10 kΩ at 25°C NTC  
thermistor with a sensitivity index, β, of 3892, the  
charge temperature range can be set to 0°C - 50°C by  
placing a 1.54 kΩ resistor in series (RT1), and a  
69.8 kΩ resistor in parallel (RT2) with the thermistor.  
6.1.1.7  
Charge Status Interface  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 1 µF ceramic,  
tantalum, or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability for output  
currents up to 500 mA.  
A status output provides information on the state of  
charge. The output can be used to illuminate external  
LEDs or interface to a host microcontroller. Refer to  
Figure 5-1 for a summary of the state of the status  
output during a charge cycle.  
6.2  
PCB Layout Issues  
6.1.1.4  
Reverse-Blocking Protection  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins,  
recommended to minimize voltage drops along the  
high current-carrying PCB traces.  
The MCP73837/8 provides protection from a faulted or  
shorted input. Without the protection, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the internal pass transistor.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature.  
6.1.1.5  
Charge Inhibit  
The current regulation set input pin (PROG1/2) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or  
initiate a recharge cycle.  
© 2007 Microchip Technology Inc.  
DS22071A-page 21  
MCP73837/8  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN  
Example:  
Marking  
Code  
Marking  
Code  
Part Number *  
Part Number *  
1
2
3
4
5
10  
9
1
10  
9
XXXX  
XYWW  
NNN  
BABA  
0748  
256  
2
3
4
5
MCP73837-FCI/MF  
MCP73837-FJI/MF  
MCP73837-NVI/MF  
MCP73838-FCI/MF  
MCP73838-FJI/MF  
MCP73838-NVI/MF  
BABA  
BABB  
BABC  
BACA  
BACB  
BACC  
MCP73837T-FCI/MF  
MCP73837T-FJI/MF  
MCP73837T-NVI/MF  
MCP73838T-FCI/MF  
MCP73838T-FJI/MF  
MCP73838T-NVI/MF  
BABA  
BABB  
BABC  
BACA  
BACB  
BACC  
8
8
7
7
6
6
* Consult Factory for Alternative Device Options.  
Example:  
10-Lead MSOP * *  
Marking  
Code  
Marking  
Code  
Part Number *  
Part Number *  
MCP73837-FCI/UN  
MCP73837-FJI/UN  
MCP73837-NVI/UN  
MCP73838-FCI/UN  
MCP73838-FJI/UN  
MCP73838-NVI/UN  
837FCI MCP73837T-FCI/UN  
837FCI  
837FJI  
837NVI  
838FCI  
838FJI  
838NVI  
837FCI  
748256  
XXXXXX  
YWWNNN  
837FJI  
MCP73837T-FJI/UN  
837NVI MCP73837T-NVI/UN  
838FCI MCP73838T-FCI/UN  
838FJI  
MCP73838T-FJII/UN  
838NVI MCP73838T-NVI/UN  
* Consult Factory for Alternative Device Options.  
* * Consult Factory for MSOP Package Availability.  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22071A-page 22  
© 2007 Microchip Technology Inc.  
MCP73837/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢐꢘꢇMꢇꢙꢚꢙꢚꢁꢛꢜꢇ  ꢇ!ꢓꢆ"ꢇ#ꢎꢐꢒ$  
ꢒꢓꢋꢄ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
ꢀ5  
5ꢁ'5ꢅ(#)  
5ꢁ85  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ6ꢌꢃꢛꢘꢏ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
)ꢕꢄꢏꢉꢖꢏꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ1ꢌꢄꢛꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ9ꢃꢋꢏꢘ  
2
"
"ꢀ  
"ꢝ  
!
!ꢙ  
%
5ꢁ75  
5ꢁ55  
ꢀꢁ55  
5ꢁ5'  
5ꢁ5ꢙ  
5ꢁꢙ5ꢅ,%-  
ꢝꢁ55ꢅ(#)  
ꢙꢁꢝ'  
ꢝꢁ55ꢅ(#)  
ꢀꢁ'7  
5ꢁꢙ'  
5ꢁ 5  
M
ꢙꢁꢙ5  
ꢙꢁ 7  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ9ꢃꢋꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ9ꢃꢋꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ1ꢌꢄꢛꢏꢘ  
)ꢕꢄꢏꢉꢖꢏ;ꢏꢕ;%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋ  
%ꢙ  
1
ꢀꢁ 5  
5ꢁꢀ7  
5ꢁꢝ5  
5ꢁꢙ5  
ꢀꢁ:'  
5ꢁꢝ5  
5ꢁ'5  
M
<
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢑꢉꢒꢅꢘꢉꢆꢌꢅꢕꢄꢌꢅꢕꢐꢅꢑꢕꢐꢌꢅꢌꢍꢜꢕꢇꢌꢋꢅꢏꢃꢌꢅꢔꢉꢐꢇꢅꢉꢏꢅꢌꢄꢋꢇꢁ  
ꢝꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢃꢇꢅꢇꢉꢗꢅꢇꢃꢄꢛꢈꢊꢉꢏꢌꢋꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )5 ;5>ꢝ(  
© 2007 Microchip Technology Inc.  
DS22071A-page 23  
MCP73837/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢗꢌꢍ&ꢓꢇ' ꢅꢉꢉꢇ(ꢏꢋꢉꢌ)ꢄꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖ*ꢒꢘꢇ#ꢗ'(ꢈ$  
ꢒꢓꢋꢄ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
2
ꢀ5  
5ꢁ'5ꢅ(#)  
3ꢆꢌꢐꢉꢊꢊꢅ6ꢌꢃꢛꢘꢏ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
3ꢆꢌꢐꢉꢊꢊꢅ9ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ9ꢃꢋꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
-ꢕꢕꢏꢅ1ꢌꢄꢛꢏꢘ  
"
M
5ꢁ:'  
5ꢁ55  
M
5ꢁ7'  
ꢀꢁꢀ5  
5ꢁ8'  
5ꢁꢀ'  
"ꢙ  
"ꢀ  
%
%ꢀ  
!
M
 ꢁ85ꢅ(#)  
ꢝꢁ55ꢅ(#)  
ꢝꢁ55ꢅ(#)  
5ꢁ>5  
1
5ꢁ 5  
5ꢁ75  
-ꢕꢕꢏꢜꢐꢃꢄꢏ  
-ꢕꢕꢏꢅ"ꢄꢛꢊꢌ  
1ꢀ  
5ꢁ8'ꢅ,%-  
M
5ꢞ  
7ꢞ  
1ꢌꢉꢋꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
1ꢌꢉꢋꢅ9ꢃꢋꢏꢘ  
5ꢁ57  
5ꢁꢀ'  
M
M
5ꢁꢙꢝ  
5ꢁꢝꢝ  
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢅꢉꢄꢋꢅ%ꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅ5ꢁꢀ'ꢅꢑꢑꢅꢜꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢝꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )5 ;5ꢙꢀ(  
DS22071A-page 24  
© 2007 Microchip Technology Inc.  
MCP73837/8  
APPENDIX A: REVISION HISTORY  
Revision A (November 2007)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS22071A-page 25  
MCP73837/8  
NOTES:  
DS22071A-page 26  
© 2007 Microchip Technology Inc.  
MCP73837/8  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples: * *  
PART NO.  
Device  
XX  
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP73837-FCI/UN: 10-lead MSOP pkg.  
Output Temp. Package  
Options*  
MCP73837-FJI/UN: 10-lead MSOP pkg.  
MCP73837-NVI/UN: 10-lead MSOP pkg.  
MCP73837-FCI/MF: 10-lead DFN pkg.  
MCP73837-FJI/MF: 10-lead DFN pkg.  
MCP73837-NVI/MF: 10-lead DFN pkg.  
Device:  
MCP73837: 1A Fully Integrated Charger,  
PG function on pin 8  
MCP73837T: 1A Fully Integrated Charger,  
PG function on pin 8  
a)  
b)  
c)  
d)  
e)  
f)  
MCP73838-FCI/UN: 10-lead MSOP pkg.  
MCP73838-FJI/UN: 10-lead MSOP pkg.  
MCP73838-NVI/UN: 10-lead MSOP pkg.  
MCP73838-FCI/MF: 10-lead DFN pkg.  
MCP73838-FJI/MF: 10-lead DFN pkg.  
MCP73838-NVI/MF: 10-lead DFN pkg.  
(Tape and Reel)  
MCP73838: 1A Fully Integrated Charger,  
TE function on pin 8  
MCP73838T: 1A Fully Integrated Charger,  
TE function on pin 8  
(Tape and Reel)  
* * Consult Factory for Alternative Device Options  
Output Options * *  
* Refer to table below for different operational options.  
* * Consult Factory for Alternative Device Options.  
Temperature:  
I
=
-40°C to +85°C  
Package Type:  
MF  
UN  
=
=
Plastic Dual Flat No Lead (DFN)  
(3x3x0.9 mm Body), 10-lead  
Plastic Micro Small Outline Package (MSOP***),  
10-lead  
* Operational Output Options  
Output Options  
VREG  
IPREG/IREG  
VPTH/VREG  
ITERM/IREG  
VRTH/VREG  
Timer Period  
AM  
BZ  
FC  
GP  
G8  
NV  
YA  
6S  
B6  
CN  
4.20V  
4.20V  
4.20V  
4.20V  
4.20V  
4.35V  
4.40V  
4.50V  
4.20V  
4.20V  
10%  
100%  
10%  
100%  
10%  
10%  
10%  
10%  
10%  
10%  
71.5%  
N/A  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
5.0%  
20%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
94%  
0 hours  
0 hours  
6 hours  
6 hours  
8 hours  
6 hours  
6 hours  
6 hours  
4 hours  
4 hours  
71.5%  
N/A  
71.5%  
71.5%  
71.5%  
71.5%  
66.5%  
71.5%  
* * Consult Factory for Alternative Device Options.  
* * * Consult Factory for MSOP Package Availability  
© 2007 Microchip Technology Inc.  
DS22071A-page 27  
MCP73837/8  
NOTES:  
DS22071A-page 28  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The  
Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS22071A-page 29  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
10/05/07  
DS22071A-page 30  
© 2007 Microchip Technology Inc.  

相关型号:

MCP73837AMIMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837AMIUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837B6IMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837B6IUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837BZIMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837BZIUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837CNIMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837CNIUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837FCIMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837FCIUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837G8IMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837G8IUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP