MCP73842T-420I/UN [MICROCHIP]

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers; 高级单节或两节锂离子/锂聚合物充电管理控制器
MCP73842T-420I/UN
型号: MCP73842T-420I/UN
厂家: MICROCHIP    MICROCHIP
描述:

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
高级单节或两节锂离子/锂聚合物充电管理控制器

控制器
文件: 总24页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73841/2/3/4  
M
Advanced Single or Dual Cell Lithium-Ion/  
Lithium-Polymer Charge Management Controllers  
Features  
Description  
• Linear Charge Management Controllers  
• High-Accuracy Preset Voltage Regulation:  
- + 0.5% (max)  
• Four Preset Voltage Regulation Options:  
- 4.1V - MCP73841-4.1, MCP73843-4.1  
- 4.2V - MCP73841-4.2, MCP73843-4.2  
- 8.2V - MCP73842-8.2, MCP73844-8.2  
- 8.4V - MCP73842-8.4, MCP73844-8.4  
• Programmable Charge Current  
• Programmable Safety Charge Timers  
• Preconditioning of Deeply Depleted Cells  
• Automatic End-of-Charge Control  
• Optional Continuous Cell Temperature  
Monitoring (MCP73841 and MCP73842)  
The MCP7384X family of devices are highly advanced  
linear charge management controllers for use in  
space-limited, cost-sensitive applications. The  
MCP73841 and MCP73842 combine high accuracy,  
constant-voltage, constant-current regulation, cell pre-  
conditioning, cell temperature monitoring, advanced  
safety timers, automatic charge termination and  
charge status indication in space-saving, 10-pin  
MSOP packages. The MCP73841 and MCP73842  
provide complete, fully-functional, stand-alone charge  
management solutions.  
The MCP73843 and MCP73844 employ all the  
features of the MCP73841 and MCP73842, with the  
exception of the cell temperature monitor. The  
MCP73843 and MCP73844 are offered in 8-pin MSOP  
packages.  
The MCP73841 and MCP73843 are designed for  
applications utilizing single-cell Lithium-Ion or Lithium-  
Polymer battery packs. Two preset voltage regulation  
options are available (4.1V and 4.2V) for use with either  
coke or graphite anodes. The MCP73841 and  
MCP73843 operate with an input voltage range of 4.5V  
to 12V.  
• Charge Status Output for Direct LED Drive  
• Automatic Power-Down when Input Power  
Removed  
Temperature Range: -40°C to 85°C  
• Packaging: MSOP-10 - MCP73841, MCP73842  
MSOP-8 - MCP73843, MCP73844  
The MCP73842 and MCP73844 are designed for  
applications utilizing dual series cell Lithium-Ion or  
Lithium-Polymer battery packs. Two preset voltage  
regulation options are available (8.2V and 8.4V). The  
MCP73842 and MCP73844 operate with an input  
voltage range of 8.7V to 12V.  
Applications  
• Lithium-Ion/Lithium-Polymer Battery Chargers  
• Personal Data Assistants  
• Cellular Telephones  
• Hand-Held Instruments  
• Cradle Chargers  
• Digital Cameras  
The MCP7384X family of devices are fully specified  
over the ambient temperature range of -40°C to +85°C.  
• MP3 Players  
Package Types  
10-Pin MSOP  
Typical Application Circuit  
SENSE  
VDD  
STAT1  
EN  
DRV  
VBAT  
VSS  
TIMER  
THERM  
1
2
3
4
5
10  
9
8
7
6
1A Lithium-Ion Battery Charger  
MA2Q705  
NDS8434  
100 mΩ  
5V  
Single  
Lithium-Ion  
Cell  
+
-
THREF  
10 µF  
1
8
SENSE DRV  
8-Pin MSOP  
2
3
4
7
6
5
VDD  
VBAT  
VSS  
1
SENSE  
VDD  
STAT1  
EN  
8
7
6
5
DRV  
VBAT  
VSS  
10 µF  
STAT1  
2
3
4
EN TIMER  
0.1 µF  
100 kΩ  
TIMER  
MCP73843  
2004 Microchip Technology Inc.  
DS21823B-page 1  
MCP73841/2/3/4  
Functional Block Diagram  
VDD  
VREF  
VDD  
1 kΩ  
+
DRV  
Charge Current  
SENSE  
Control Amplifier  
90 kΩ  
Charge  
Current  
Amplifier  
+
Voltage Control  
Amplifier  
+
-
12 kΩ  
10 kΩ  
VREF  
Charge  
VREF  
VBAT  
Termination  
Comparator  
90 kΩ  
10 kΩ  
300 kΩ  
+
-
Charge_ok  
Precon  
Precondition  
IREG/10  
Precondition  
Control  
(825 k)  
Comp.  
+
-
UVLO  
Comparator  
+
-
74.21 kΩ  
Constant-Voltage/  
Recharge Comp.  
VUVLO  
+
-
0.79 kΩ  
EN  
Power-On  
Delay  
VREF  
150.02 kΩ  
VUVLO  
Bias and  
VREF (1.2V)  
Reference  
Generator  
5.15 kΩ  
(4.29 k)  
THREF  
THERM  
VSS  
100 kΩ  
Temperature  
Comparators  
STAT1  
+
-
Drv Stat 1  
Charge_ok  
Charge Control,  
50 kΩ  
50 kΩ  
Charge Timers,  
And  
IREG/10  
+
-
Status Logic  
Oscillator  
MCP73841 and MCP73842 Only  
TIMER  
DS21823B-page 2  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
*Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD.................................................................................13.5V  
All inputs and outputs w.r.t. VSS ................ -0.3 to (VDD+0.3)V  
Current at DRV Pin ......................................................±4 mA  
Current at STAT1 Pin .................................................±30 mA  
Maximum Junction Temperature, TJ .............................150°C  
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (1.5 kin Series with 100 pF).......≥ 2 kV  
Machine Model (200 pF, No Series Resistance).............200V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ)+0.3V] to 12V, TA = -40°C to +85°C.  
Typical values are at +25°C, VDD = [VREG(Typ) + 1V].  
Parameters  
Supply Input  
Supply Voltage  
MCP73841, MCP73843  
MCP73842, MCP73844  
Supply Current  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VDD  
4.5  
8.7  
0.25  
0.75  
12  
12  
4
4
V
V
µA  
mA  
ISS  
Disabled  
Operating  
V
DD =VREG(Typ)+1V  
UVLO Start Threshold  
MCP73841, MCP73843  
MCP73842, MCP73844  
UVLO Stop Threshold  
MCP73841, MCP73843  
MCP73842, MCP73844  
VSTART  
4.25  
8.45  
4.45  
8.65  
4.60  
8.90  
V
V
VDD Low-to-High  
VDD Low-to-High  
VSTOP  
4.20  
8.40  
4.40  
8.60  
4.55  
8.85  
V
V
VDD High-to-Low  
VDD High-to-Low  
Voltage Regulation (Constant-Voltage Mode)  
Regulated Output Voltage  
VREG  
MCP73841-4.1,  
MCP73843-4.1  
MCP73841-4.2,  
MCP73843-4.2  
MCP73842-8.2,  
MCP73844-8.2  
MCP73842-8.4,  
MCP73844-8.4  
4.079  
4.179  
8.159  
8.358  
4.1  
4.2  
4.121  
4.221  
8.241  
8.442  
0.25  
V
V
VDD = [VREG(Typ)+1V], IOUT = 10 mA,  
TA = -5°C to +55°C  
VDD = [VREG(Typ)+1V], IOUT = 10 mA,  
TA = -5°C to +55°C  
VDD = [VREG(Typ)+1V], IOUT = 10 mA,  
TA = -5°C to +55°C  
VDD = [VREG(Typ)+1V], IOUT = 10 mA,  
TA = -5°C to +55°C  
8.2  
V
8.4  
V
Line Regulation  
|(∆VBAT  
/
0.025  
0.01  
%/V  
%
VDD = [VREG(Typ)+1V] to 12V,  
IOUT = 10 mA  
V
BAT)|/VDD  
Load Regulation  
|∆VBAT|/VBAT  
0.25  
IOUT = 10 mA to 150 mA,  
DD = [VREG(Typ)+1V]  
V
Supply Ripple Attenuation  
PSRR  
-58  
-42  
-30  
0.4  
1
dB  
dB  
dB  
µA  
IOUT = 10 mA, 100 Hz  
IOUT = 10 mA, 1 kHz  
IOUT = 10 mA, 10 kHz  
Output Reverse Leakage  
Current  
IDISCHARGE  
VDD Floating, VBAT = VREG(Typ)  
Current Regulation (Fast Charge Constant-Current Mode)  
Fast Charge Current  
Regulation Threshold  
VFCS  
100  
110  
120  
mV  
VDD – VSENSE,  
TA = -5°C to +55°C  
2004 Microchip Technology Inc.  
DS21823B-page 3  
MCP73841/2/3/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ)+0.3V] to 12V, TA = -40°C to +85°C.  
Typical values are at +25°C, VDD = [VREG(Typ) + 1V].  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current  
Regulation Threshold  
Precondition Threshold Voltage  
VPCS  
VPTH  
5
10  
15  
mV  
VDD – VSENSE,  
TA = -5°C to +55°C  
MCP73841-4.1,  
MCP73843-4.1  
MCP73841-4.2,  
MCP73843-4.2  
MCP73842-8.2,  
MCP73844-8.2  
MCP73842-8.4,  
MCP73844-8.4  
2.70  
2.75  
5.40  
5.50  
2.80  
2.85  
5.60  
5.70  
2.90  
2.95  
5.80  
5.90  
V
V
V
V
VBAT Low-to-High  
VBAT Low-to-High  
VBAT Low-to-High  
VBAT Low-to-High  
Charge Termination  
Charge Termination Threshold  
VTCS  
4
7
10  
mV  
VDD – VSENSE,  
TA = -5°C to +55°C  
Automatic Recharge  
Recharge Threshold Voltage  
VRTH  
MCP73841,  
MCP73843  
MCP73842,  
MCP73844  
VREG  
-
VREG  
-
VREG  
-
V
V
VBAT High-to-Low  
VBAT High-to-Low  
300 mV 200 mV 100 mV  
VREG  
-
VREG  
-
VREG-  
600 mV 400 mV 200 mV  
External MOSFET Gate Drive  
Gate Drive Current  
IDRV  
2
-0.5  
1.0  
-4.5  
mA  
mA  
V
Sink, CV Mode  
Source, CV Mode  
VDD = 4.5V  
Gate Drive Minimum Voltage  
Gate - Source Clamp Voltage  
VDRVMIN  
VGS  
-7.0  
V
VDD = 12.0V  
Thermistor Reference - MCP73841, MCP73842  
Thermistor Reference Output  
Voltage  
VTHREF  
2.475  
2.55  
2.625  
V
TA = +25°C, VDD = VREG(Typ)+1V,  
I
THREF = 0 mA  
Temperature Coefficient  
Thermistor Reference Source  
Current  
TCTHREF  
ITHREF  
200  
+50  
ppm/°C  
µA  
Thermistor Reference Line  
Regulation  
|(∆VTHREF  
/
0.1  
0.25  
0.10  
%/V  
%
VDD=[VREG(Typ)+1V] to 12V  
ITHREF = 0 mA to 0.20 mA  
V
THREF)|/  
VDD  
Thermistor Reference Load  
Regulation  
VTHREF  
VTHREF  
/
0.01  
Thermistor Comparator - MCP73841, MCP73842  
Upper Trip Threshold  
Upper Trip Point Hysteresis  
Lower Trip Threshold  
Lower Trip Point Hysteresis  
Input Bias Current  
VT1  
VT1HYS  
VT2  
1.18  
0.59  
1.25  
-50  
0.62  
80  
1.32  
0.66  
V
mV  
V
mV  
µA  
VT2HYS  
|IBIAS  
|
2
Status Indicator  
Sink Current  
Low Output Voltage  
Input Leakage Current  
ISINK  
VOL  
ILK  
4
7
200  
0.01  
12  
400  
1
mA  
mV  
µA  
ISINK = 1 mA  
ISINK = 0 mA, VSTAT1 = 12V  
DS21823B-page 4  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ)+0.3V] to 12V, TA = -40°C to +85°C.  
Typical values are at +25°C, VDD = [VREG(Typ) + 1V].  
Parameters  
Enable Input  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input High-Voltage Level  
Input Low-Voltage Level  
Input Leakage Current  
VIH  
VIL  
ILK  
1.4  
-
-
0.8  
1
V
V
µA  
0.01  
VENABLE = 12V  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ)+0.3V] to 12V, TA = -40°C to +85°C. Typ-  
ical values are at +25°C, VDD= [VREG(Typ)+1V].  
Parameters  
UVLO Start Delay  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VDD Low-to-High  
tSTART  
5
msec  
Current Regulation  
Transition Time Out of  
tDELAY  
tRISE  
1
1
msec  
msec  
VBAT< VPTH to VBAT > VPTH  
IOUT Rising to 90% of IREG  
Preconditioning  
Current Rise Time Out of  
Preconditioning  
Fast Charge Safety Timer Period  
Preconditioning Current Regulation  
Preconditioning Charge Safety  
Timer Period  
tFAST  
1.2  
1.4  
1.6  
Hours CTIMER = 0.1 µF  
Minutes CTIMER = 0.1 µF  
tPRECON  
50  
60  
70  
Charge Termination  
Elapsed Time Termination Period  
Status Indicators  
tTERM  
2.5  
2.9  
3.3  
Hours CTIMER = 0.1 µF  
Status Output turn-off  
Status Output turn-on  
tOFF  
tON  
200  
200  
µsec  
µsec  
ISINK = 10 mA to 0 mA  
ISINK = 0 mA to 10 mA  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all limits apply for VDD= [VREG(Typ)+0.3V] to 12V.  
Typical values are at +25°C, VDD= [VREG(Typ)+1.0V].  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, MSOP-10  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
113  
206  
°C/W  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
Single-Layer SEMI G42-88 Board,  
Natural Convection  
Thermal Resistance, MSOP-8  
2004 Microchip Technology Inc.  
DS21823B-page 5  
MCP73841/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = [V  
(Typ) + 1V], I  
= 10 mA and T = +25°C.  
DD  
REG  
OUT  
A
4.203  
1.40  
MCP73841-4.2V  
VDD = 5.2 V  
MCP73841-4.2V  
VDD = 5.2 V  
4.202  
4.201  
4.200  
4.199  
4.198  
4.197  
4.196  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
+55°C  
+25°C  
+85°C  
+25°C  
-45°C  
-5°C  
10  
100  
IOUT (mA)  
1000  
10  
100  
IOUT (mA)  
1000  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Supply Current (I ) vs.  
SS  
(V  
) vs. Charge Current (I  
).  
Charge Current (I  
OUT  
).  
BAT  
OUT  
4.203  
1.40  
+85°C  
MCP73841-4.2V  
IOUT = 1000 mA  
MCP73841-4.2V  
OUT = 1000 mA  
4.202  
4.201  
4.200  
4.199  
4.198  
4.197  
4.196  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
I
+55°C  
+25°C  
+25°C  
-45°C  
-5°C  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
VDD (V)  
VDD (V)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Supply Current (I ) vs.  
SS  
DD  
(V  
) vs. Supply Voltage (V ).  
Supply Voltage (V ).  
BAT  
DD  
4.203  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
MCP73841-4.2V  
IOUT = 10 mA  
MCP73841-4.2V  
4.202  
4.201  
4.200  
4.199  
4.198  
4.197  
4.196  
IOUT = 10 mA  
+55°C  
+25°C  
-45°C  
+25°C  
+85°C  
-5°C  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
VDD (V)  
VDD (V)  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6:  
Supply Current (I ) vs.  
SS  
DD  
(V ) vs. Supply Voltage (V ).  
Supply Voltage (V ).  
BAT  
DD  
DS21823B-page 6  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
Note: Unless otherwise indicated, V = [V  
(Typ) + 1V], I  
= 10 mA and T = +25°C.  
DD  
REG  
OUT A  
8.408  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
MCP73842-8.4V  
VDD = 9.4 V  
MCP73842-8.4V  
VDD = 9.4 V  
8.406  
8.404  
8.402  
8.400  
8.398  
8.396  
8.394  
8.392  
8.390  
+85°C  
+25°C  
+55°C  
+25°C  
-45°C  
-5°C  
10  
100  
1000  
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
FIGURE 2-7:  
Battery Regulation Voltage  
FIGURE 2-10:  
Supply Current (I ) vs.  
SS  
OUT  
(V  
) vs. Charge Current (I  
).  
Charge Current (I  
).  
BAT  
OUT  
8.408  
1.40  
1.20  
MCP73842-8.4V  
IOUT = 1000 mA  
MCP73842-8.4V  
OUT = 1000 mA  
8.406  
8.404  
8.402  
8.400  
8.398  
8.396  
8.394  
8.392  
8.390  
I
+85°C  
+25°C  
+55°C  
+25°C  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-45°C  
-5°C  
8.8 9.2 9.6 10 10.4 10.8 11.2 11.6 12  
VDD (V)  
8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0  
VDD (V)  
FIGURE 2-8:  
Battery Regulation Voltage  
FIGURE 2-11:  
Supply Current (I ) vs.  
SS  
DD  
(V ) vs. Supply Voltage (V ).  
Supply Voltage (V ).  
BAT  
DD  
8.408  
8.406  
8.404  
8.402  
8.400  
8.398  
8.396  
8.394  
8.392  
8.390  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
MCP73842-8.4V  
IOUT = 10 mA  
MCP73842-8.4V  
IOUT = 10 mA  
+55°C  
+25°C  
-5°C  
-45°C  
+25°C  
+85°C  
8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0  
VDD (V)  
8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0  
VDD (V)  
FIGURE 2-9:  
Battery Regulation Voltage  
FIGURE 2-12:  
Supply Current (I ) vs.  
SS  
DD  
(V ) vs. Supply Voltage (V ).  
Supply Voltage (V ).  
BAT  
DD  
2004 Microchip Technology Inc.  
DS21823B-page 7  
MCP73841/2/3/4  
Note: Unless otherwise indicated, V = [V  
(Typ) + 1V], I  
= 10 mA and T = +25°C.  
DD  
REG  
OUT  
A
0.45  
0.40  
0.90  
MCP73842-8.4V  
VDD = Float  
MCP73841-4.2V  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
VDD = Float  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
+85°C  
+25°C  
+85°C  
+25°C  
-45°C  
-45°C  
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2  
BAT (V)  
4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4  
BAT (V)  
V
V
FIGURE 2-13:  
Output Reverse Leakage  
FIGURE 2-16:  
Output Reverse Leakage  
Current (I  
) vs. Battery Voltage (V  
).  
Current (I  
) vs. Battery Voltage (V  
).  
BAT  
DISCHARGE  
BAT  
DISCHARGE  
2.560  
2.558  
2.556  
2.554  
2.552  
2.550  
2.548  
2.546  
2.544  
2.542  
2.540  
2.560  
2.558  
2.556  
2.554  
2.552  
2.550  
2.548  
2.546  
2.544  
2.542  
2.540  
MCP73841-4.2V  
MCP73842-8.4V  
VDD = 9.4 V  
V
DD = 5.2 V  
+85°C  
+25°C  
+85°C  
+25°C  
-45°C  
-45°C  
0
25  
50  
75 100 125 150 175 200  
ITHREF (µA)  
0
25  
50  
75 100 125 150 175 200  
ITHREF (µA)  
FIGURE 2-14:  
Voltage (V  
THREF  
Thermistor Reference  
FIGURE 2-17:  
Voltage (V  
Thermistor Reference  
) vs. Thermistor Bias Current  
) vs. Thermistor Bias Current  
THREF  
THREF  
(I  
).  
(I  
).  
THREF  
2.568  
2.564  
2.560  
2.556  
2.552  
2.548  
2.544  
2.540  
2.568  
2.564  
2.560  
2.556  
2.552  
2.548  
2.544  
2.540  
MCP73841-4.2V  
ITHREF = 100 µA  
MCP73842-8.4V  
ITHREF = 100 µA  
+85°C  
+25°C  
+85°C  
+25°C  
-45°C  
-45°C  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0  
VDD (V)  
VDD (V)  
FIGURE 2-15:  
Voltage (V  
Thermistor Reference  
) vs. Supply Voltage (V ).  
FIGURE 2-18:  
Voltage (V  
Thermistor Reference  
) vs. Supply Voltage (V ).  
THREF  
DD  
THREF  
DD  
DS21823B-page 8  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
Note: Unless otherwise indicated, V = [V  
(Typ) + 1V], I  
= 10 mA and T = +25°C.  
DD  
REG  
OUT  
A
V
DD  
V
DD  
V
V
BAT  
BAT  
MCP73841-4.2V  
MCP73841-4.2V  
V
Stepped From 5.2V to 6.2V  
= 500 mA  
= 10 µF, X7R, Ceramic  
DD  
V
Stepped From 5.2V to 6.2V  
= 10 mA  
= 10 µF, X7R, Ceramic  
DD  
I
OUT  
I
OUT  
C
OUT  
C
OUT  
FIGURE 2-19:  
Line Transient Response.  
FIGURE 2-22:  
Line Transient Response.  
MCP73841-4.2V  
= 5.2V  
MCP73841-4.2V  
= 5.2V  
V
DD  
V
DD  
C
= 10 µF, X7R, Ceramic  
OUT  
C
= 10 µF, X7R, Ceramic  
OUT  
V
BAT  
V
BAT  
I
OUT  
I
OUT  
100 mA  
10 mA  
500 mA  
10 mA  
FIGURE 2-20:  
Load Transient Response.  
FIGURE 2-23:  
Load Transient Response.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
MCP73841-4.2V  
MCP73841-4.2V  
V
DD = 5.2 V  
V
DD = 5.2 V  
VAC = 100 mVp-p  
OUT = 100 mA  
COUT = 10 µF, X7R, CERAMIC  
VAC = 100 mVp-p  
OUT = 10 mA  
COUT = 10 µF, X7R, CERAMIC  
I
I
-80  
0.01  
-80  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-21:  
Power Supply Ripple  
FIGURE 2-24:  
Power Supply Ripple  
Rejection.  
Rejection.  
2004 Microchip Technology Inc.  
DS21823B-page 9  
MCP73841/2/3/4  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN DESCRIPTION TABLE  
MCP73843,  
MCP73841,  
MCP73842  
Pin No.  
MCP73844  
Pin No.  
Name  
Function  
Charge Current Sense Input  
Battery Management Input Supply  
Charge Status Output  
Logic Enable  
1
2
3
1
2
3
SENSE  
V
DD  
STAT1  
EN  
4
4
5
6
7
5
THREF  
THERM  
TIMER  
Cell Temperature Sensor Bias  
Cell Temperature Sensor Input  
Timer Set  
8
9
10  
6
7
8
V
Battery Management 0V Reference  
Battery Voltage Sense  
Drive Output  
SS  
V
BAT  
DRV  
3.1  
Charge Current Sense Input  
(SENSE)  
3.6  
Cell Temperature Sensor Input  
(THERM)  
Charge current is sensed via the voltage developed  
across an external precision sense resistor. The sense  
resistor must be placed between the supply voltage  
Input for an external thermistor for continuous cell-  
temperature monitoring and pre-qualification. Apply a  
voltage equal to 0.85V to disable temperature-sensing.  
(V ) and the external pass transistor (Q1). A 220 mΩ  
DD  
sense resistor produces a fast charge current of  
500 mA, typically.  
3.7  
Timer Set (TIMER)  
All safety timers are scaled by C  
/0.1 µF.  
TIMER  
3.2  
Battery Management Input Supply  
(V  
3.8  
Battery Management 0V Reference  
(V  
)
DD  
)
SS  
Connect to negative terminal of battery.  
A supply voltage of [V  
recommended. Bypass to V  
4.7 µF.  
(Typ) + 0.3V] to 12V is  
SS  
REG  
with a minimum of  
3.9  
Battery Voltage Sense (V  
)
BAT  
Voltage sense input. Connect to positive terminal of  
3.3  
Charge Status Output (STAT1)  
battery. Bypass to V  
with a minimum of 4.7 µF to  
Current limited, open-drain drive for direct connection  
to a LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller.  
SS  
ensure loop stability when the battery is disconnected.  
A precision internal resistor divider regulates the final  
voltage on this pin to V  
.
REG  
3.10 Drive Output (DRV)  
Direct output drive of an external P-channel MOSFET  
for current and voltage regulation.  
3.4  
Logic Enable (EN)  
Input to force charge termination, initiate charge, clear  
faults or disable automatic recharge.  
3.5  
Cell Temperature Sensor Bias  
(THREF)  
Voltage reference to bias external thermistor for  
continuous  
cell  
temperature  
monitoring  
and  
prequalification.  
DS21823B-page 10  
2004 Microchip Technology Inc.  
 
MCP73841/2/3/4  
4.3  
Constant-Voltage Regulation  
4.0  
DEVICE OVERVIEW  
When the battery voltage reaches the regulation  
The MCP7384X family of devices are highly advanced,  
linear charge management controllers. Figure 4-1  
depicts the operational flow algorithm from charge  
initiation to completion and automatic recharge.  
voltage (V ), constant-voltage regulation begins.  
REG  
The MCP7384X monitors the battery voltage at the  
V
pin. This input is tied directly to the positive  
BAT  
terminal of the battery. The MCP7384X is offered in  
four fixed-voltage versions for single or dual series cell  
battery packs with either coke or graphite anodes:  
4.1  
Charge Qualification and  
Preconditioning  
- 4.1V (MCP73841-4.1, MCP73843-4.1)  
- 4.2V (MCP73841-4.2, MCP73843-4.2)  
- 8.2V (MCP73842-8.2, MCP73844-8.2)  
- 8.4V (MCP73842-8.4, MCP73844-8.4)  
Upon insertion of a battery or application of an external  
supply, the MCP7384X family of devices automatically  
perform a series of safety checks to qualify the charge.  
The input source voltage must be above the  
undervoltage lockout threshold, the enable pin must be  
above the logic-high level and the cell temperature  
monitor must be within the upper and lower thresholds.  
The cell temperature monitor applies to both the  
MCP73841 and MCP73842, with the qualification  
parameters being continuously monitored. Deviation  
beyond the limits automatically suspends or terminates  
the charge cycle.  
4.4  
Charge Cycle Completion and  
Automatic Re-Charge  
The MCP7384X monitors the charging current during  
the constant-voltage regulation phase. The charge  
cycle is considered complete when the charge current  
has diminished below approximately 7% of the  
regulation current (I  
expired.  
) or the elapsed timer has  
REG  
Once the qualification parameters have been met, the  
MCP7384X initiates a charge cycle. The charge status  
output is pulled low throughout the charge cycle (see  
Table 5-1 for charge status outputs). If the battery  
The MCP7384X automatically begins a new charge  
cycle when the battery voltage falls below the recharge  
threshold (V  
), assuming all the qualification  
voltage is below the preconditioning threshold (V  
),  
RTH  
PTH  
parameters are met.  
the MCP7384X preconditions the battery with a trickle-  
charge. The preconditioning current is set to  
approximately 10% of the fast charge regulation  
current. The preconditioning trickle-charge safely  
replenishes deeply depleted cells and minimizes heat  
dissipation in the external pass transistor during the  
initial charge cycle. If the battery voltage has not  
exceeded the preconditioning threshold before the  
preconditioning timer has expired, a fault is indicated  
and the charge cycle is terminated.  
4.2  
Constant-Current Regulation –  
Fast Charge  
Preconditioning ends and fast charging begins, when  
the battery voltage exceeds the preconditioning  
threshold. Fast charge regulates to a constant-current,  
I
, based on the supply voltage minus the voltage at  
REG  
the SENSE input (V  
) developed by the drop across  
FCS  
an external sense resistor (R  
). Fast charge  
SENSE  
continues until the battery voltage reaches the  
regulation voltage (V  
); or until the fast charge timer  
REG  
expires. In this case, a fault is indicated and the charge  
cycle is terminated.  
2004 Microchip Technology Inc.  
DS21823B-page 11  
Initialize  
Note: The qualification parameters are continuously  
monitored throughout the charge cycle.  
VDD > VUVLO  
EN High  
Note  
Note  
No  
STAT1 = Off  
Yes  
Temperature OK  
Yes  
No  
STAT1 = Flashing  
Charge Current = 0  
Preconditioning Phase  
No  
Reset Safety Timer  
STAT1 = On  
Charge Current = IPREG  
VBAT > VPTH  
Yes  
Constant-Current  
Phase  
Yes  
Constant-Voltage Phase  
VBAT > VPTH  
Charge Current = IREG  
Output Voltage = VREG  
Reset Safety Timer  
Charge Termination  
Charge Current = 0  
Reset Safety Timer  
IOUT < ITERM  
Yes  
Yes  
VBAT = VREG  
No  
Elapsed Timer  
Expired  
No  
No  
Fault  
Yes  
Yes  
Yes  
Yes  
V
DD < VUVLO  
Safety Timer  
Expired  
Safety Timer  
Expired  
Charge Current = 0  
Reset Safety Timer  
Temperature OK  
VBAT < VRTH  
or EN Low  
No  
No  
No  
No  
Yes  
STAT1 = Flashing  
STAT1 = Off  
Yes  
Safety Timer Suspended  
Charge Current = 0  
VDD < VUVLO  
or EN Low  
Temperature OK  
No  
Temperature OK  
No  
No  
Yes  
STAT1 = Flashing  
STAT1 = Flashing  
STAT1 = Flashing  
Safety Timer Suspended  
Charge Current = 0  
Safety Timer Suspended  
Charge Current = 0  
FIGURE 4-1:  
Operational Flow Algorithm - MCP73841 and MCP73842.  
MCP73841/2/3/4  
For NTC thermistors:  
5.0  
DETAILED DESCRIPTION  
Analog Circuitry  
2 × RCOLD × RHOT  
5.1  
----------------------------------------------  
RT1  
RT2  
=
=
R
COLD RHOT  
5.1.1  
CHARGE CURRENT SENSE INPUT  
(SENSE)  
2 × RCOLD × RHOT  
----------------------------------------------  
R
COLD – 3 × RHOT  
Fast charge current regulation is maintained by the  
voltage drop developed across an external sense  
resistor (R  
) applied to the SENSE input pin. The  
SENSE  
For PTC thermistors:  
following formula calculates the value for R  
:
SENSE  
2 × RCOLD × RHOT  
----------------------------------------------  
RT1  
RT2  
=
=
VFCS  
IREG  
R
HOT RCOLD  
------------  
=
RSENSE  
2 × RCOLD × RHOT  
where:  
is the desired fast charge current in amps  
----------------------------------------------  
R
HOT – 3 × RCOLD  
I
REG  
The preconditioning trickle-charge current and the  
charge termination current are scaled to approximately  
where:  
R
and R  
are the thermistor resistance  
HOT  
COLD  
10% and 7% of I  
, respectively.  
values at the temperature window of interest.  
REG  
Applying a voltage equal to 0.85V to the THERM input  
disables temperature monitoring.  
5.1.2  
BATTERY MANAGEMENT INPUT  
SUPPLY (V  
)
DD  
input is the input supply to the MCP7384X.  
The V  
DD  
5.1.5  
TIMER SET INPUT (TIMER)  
The MCP7384X automatically enters a power-down  
The TIMER input programs the period of the safety  
mode if the voltage on the V  
input falls below the  
STOP  
DD  
timers by placing a timing capacitor (C  
) between  
TIMER  
undervoltage lockout voltage (V  
). This feature  
the TIMER input pin and V . Three safety timers are  
SS  
prevents draining the battery pack when the V  
supply is not present.  
DD  
programmed via the timing capacitor.  
The preconditioning safety timer period:  
5.1.3  
CELL TEMPERATURE SENSOR  
BIAS (THREF)  
CTIMER  
tPRECON = ------------------ × 1.0Hours  
0.1µF  
A 2.55V voltage reference is provided to bias an  
external thermistor for continuous cell temperature  
monitoring and pre-qualification. A ratio metric window  
comparison is performed at threshold levels of  
The fast charge safety timer period:  
CTIMER  
tFAST = ------------------ × 1.5Hours  
0.1µF  
V
/2 and V  
/4. Cell temperature monitoring  
THREF  
THREF  
is provided by both the MCP73841 and MCP73842.  
5.1.4  
CELL TEMPERATURE SENSOR  
INPUT (THERM)  
The elapsed time termination period:  
CTIMER  
tTERM = ------------------ × 3.0Hours  
0.1µF  
The MCP73841 and MCP73842 continuously monitor  
temperature by comparing the voltage between the  
THERM input and V  
with the upper and lower  
SS  
The preconditioning timer starts after qualification and  
resets when the charge cycle transitions to the con-  
stant-current, fast charge phase. The fast charge and  
elapsed timers start once the MCP7384X transitions  
from preconditioning. The fast charge timer resets  
when the charge cycle transitions to the constant-volt-  
age phase. The elapsed timer will expire and terminate  
the charge if the sensed current does not diminish  
below the termination threshold.  
temperature thresholds.  
A
negative or positive  
temperature coefficient (NTC or PTC) thermistor and  
an external voltage divider typically develop this  
voltage. The temperature-sensing circuit has its own  
reference, to which it performs  
a ratio metric  
comparison. Therefore, it is immune to fluctuations in  
the supply input (V ). The temperature-sensing circuit  
DD  
is removed from the system when V  
is not applied,  
DD  
eliminating additional discharge of the battery pack.  
Figure 6-1 depicts a typical application circuit with  
connection of the THERM input. The resistor values of  
R
and  
R
are calculated with the following  
T2  
T1  
equations.  
2004 Microchip Technology Inc.  
DS21823B-page 13  
MCP73841/2/3/4  
5.1.6  
BATTERY VOLTAGE SENSE (V  
)
BAT  
5.2  
Digital Circuitry  
The MCP7384X monitors the battery voltage at the  
5.2.1  
CHARGE STATUS OUTPUT (STAT1)  
V
pin. This input is tied directly to the positive  
BAT  
terminal of the battery. The MCP7384X is offered in  
four fixed-voltage versions for single or dual series cell  
battery packs, with either coke or graphite anodes:  
A status output provides information on the state-of-  
charge. The current-limited, open-drain output can be  
used to illuminate an external LED. Optionally, a pull-up  
resistor can be used on the output for communication  
with a host microcontroller. Table 5-1 summarizes the  
state of the status output during a charge cycle.  
- 4.1V (MCP73841-4.1, MCP73843-4.1)  
- 4.2V (MCP73841-4.2, MCP73843-4.2)  
- 8.2V (MCP73842-8.2, MCP73844-8.2)  
- 8.4V (MCP73842-8.4, MCP73844-8.4)  
TABLE 5-1:  
STATUS OUTPUTS  
Charge Cycle State  
Stat1  
5.1.7  
DRIVE OUTPUT (DRV)  
Qualification  
Preconditioning  
Constant-Current Fast  
Charge  
Constant-Voltage  
Charge Complete  
Safety Timer Fault  
OFF  
ON  
ON  
The MCP7384X controls the gate drive to an external  
P-channel MOSFET. The P-channel MOSFET is  
controlled in the linear region regulating current and  
voltage supplied to the cell. The drive output is  
automatically turned off when the voltage on the V  
DD  
ON  
OFF  
input falls below the undervoltage lockout voltage  
(V ).  
STOP  
Flashing  
(1 Hz, 50% duty cycle)  
Cell Temperature Invalid  
Flashing  
(1 Hz, 50% duty cycle)  
Disabled - Sleep mode  
Battery Disconnected  
OFF  
OFF  
The flashing rate (1 Hz) is based off a timer capacitor  
(C ) of 0.1 µF. The rate will vary based on the  
TIMER  
value of the timer capacitor.  
5.2.2  
LOGIC ENABLE (EN)  
The logic-enable input pin (EN) can be used to  
terminate a charge anytime during the charge cycle,  
initiate a charge cycle or initiate a recharge cycle.  
Applying a logic-high input signal to the EN pin, or tying  
it to the input source, enables the device. Applying a  
logic-low input signal disables the device and  
terminates a charge cycle. When disabled, the device’s  
supply current is reduced to 0.25 µA, typically.  
DS21823B-page 14  
2004 Microchip Technology Inc.  
 
MCP73841/2/3/4  
cells: constant-current followed by constant-voltage.  
Figure 6-1 depicts a typical stand-alone application  
circuit, while Figure 6-2 depicts the accompanying  
charge profile.  
6.0  
APPLICATIONS  
The MCP7384X is designed to operate in conjunction  
with either a host microcontroller or in stand-alone  
applications. The MCP7384X provides the preferred  
charge algorithm for Lithium-Ion and Lithium-Polymer  
Voltage  
Regulated  
Wall Cube  
Optional  
Reverse  
Blocking  
Diode  
Q
1
R
SENSE  
+
-
DRV  
10  
SENSE  
1
V
V
V
DD  
BAT  
9
8
7
6
2
3
4
5
STAT1  
EN  
SS  
MCP73841  
C
TIMER  
TIMER  
R
T1  
THREF  
THERM  
R
T2  
Battery  
Pack  
FIGURE 6-1:  
Typical Application Circuit.  
Preconditioning  
Phase  
Constant-Current  
Phase  
Constant-Voltage  
Phase  
Regulation Voltage  
(V  
)
REG  
Regulation Current  
(I  
)
REG  
Charge  
Voltage  
Transition Threshold  
(V  
)
PTH  
Charge  
Current  
Precondition Current  
(I  
)
PREG  
Termination Current  
(I  
)
TERM  
Fast Charge  
Safety Timer  
Precondition  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-2:  
Typical Charge Profile.  
2004 Microchip Technology Inc.  
DS21823B-page 15  
 
 
MCP73841/2/3/4  
6.1.1.2  
External Pass Transistor  
6.1  
Application Circuit Design  
The external P-channel MOSFET is determined by the  
gate-to-source threshold voltage, input voltage, output  
voltage and fast charge current. Therefore, the  
selected P-channel MOSFET must satisfy the thermal  
and electrical design requirements.  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which are  
a direct function of the input voltage, output current and  
thermal impedance between the external P-channel  
pass transistor and the ambient cooling air. The worst-  
case situation occurs when the device has transitioned  
from the preconditioning phase to the constant-current  
phase. In this situation, the P-channel pass transistor  
has to dissipate the maximum power. A trade-off must  
be made between the charge current, cost and thermal  
requirements of the charger.  
Thermal Considerations  
The worst-case power dissipation in the external pass  
transistor occurs when the input voltage is at the  
maximum and the device has transitioned from the  
preconditioning phase to the constant-current phase.  
In this case, the power dissipation is:  
6.1.1  
COMPONENT SELECTION  
PowerDissipation = (V  
V  
) × I  
Selection of the external components in Figure 6-1 are  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended to be a  
guide for the component selection process.  
DDMAX  
PTHMIN  
REGMAX  
Where:  
V
is the maximum input voltage.  
DDMAX  
REGMAX  
I
is the maximum fast charge current.  
6.1.1.1  
Sense Resistor  
V
is the minimum transition threshold voltage.  
PTHMIN  
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times  
without degradation to the battery pack performance or  
life.  
Power dissipation with a 5V, ±10% input voltage  
source, 220 m, 1% sense resistor is:  
PowerDissipation = (5.5V – 2.75V) × 551mA = 1.52W  
Utilizing a Fairchild™ NDS8434 or an International  
2
The current sense resistor (R  
) is calculated by:  
Rectifier IRF7404 mounted on a 1in pad of 2 oz.  
SENSE  
copper, the junction temperature rise is 75°C,  
approximately. This would allow for a maximum  
operating ambient temperature of 75°C.  
VFCS  
------------  
IREG  
RSENSE  
=
Where:  
is the desired fast charge current.  
By increasing the size of the copper pad, a higher  
ambient temperature can be realized, or a lower value  
sense resistor could be utilized.  
I
REG  
Alternatively, different package options can be utilized  
for more or less power dissipation. Again, design trade-  
offs should be considered to minimize size while  
maintaining the desired performance.  
For the 500 mAh battery pack example, a standard  
value 220 m, 1% resistor provides a typical fast  
charge current of 500 mA and a maximum fast charge  
current of 551 mA. Worst-case power dissipation in the  
sense resistor is:  
Electrical Considerations  
PowerDissipation = 220mΩ × 551mA2 = 66.8mW  
The gate-to-source threshold voltage and R  
of the  
DSON  
external P-channel MOSFET must be considered in the  
design phase.  
®
A Panasonic ERJ-6RQFR22V, 220 mW, 1%, 1/8W  
The worst-case V provided by the controller occurs  
resistor in a standard 0805 package is more than  
sufficient for this application.  
GS  
when the input voltage is at the minimum and the fast  
charge current regulation threshold is at the maximum.  
A larger value sense resistor will decrease the fast  
charge current and power dissipation in both the sense  
resistor and external pass transistor, but will increase  
charge cycle times. Design trade-offs must be  
considered to minimize space while maintaining the  
desired performance.  
The worst-case V is:  
GS  
VGS = VDRVMAX (VDDMIN VFCSMAX  
)
Where:  
DRVMAX  
V
is the maximum sink voltage at the  
DRV  
is the minimum input voltage source  
is the maximum fast charge current  
regulation threshold  
V
output  
V
V
DDMIN  
FCSMAX  
DS21823B-page 16  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
Worst-case V with a 5V, ±10% input voltage source  
6.1.1.5  
ENABLE INTERFACE  
GS  
and a maximum sink voltage of 1.0V is:  
In the stand-alone configuration, the enable pin is  
generally tied to the input voltage. The MCP7384X  
automatically enters a Low-power mode when voltage  
VGS = 1.0V (4.5V – 120mV) = –3.38V  
on the V  
input falls below the undervoltage lockout  
), reducing the battery drain current to  
DD  
STOP  
At this worst-case (V ) the R  
of the MOSFET  
voltage (V  
GS  
DSON  
must be low enough as to not impede the performance  
of the charging system. The maximum allowable  
0.4 µA, typically.  
6.1.1.6  
CHARGE STATUS INTERFACE  
R
at the worst-case V is:  
GS  
DSON  
A status output provides information on the state of  
charge. The current-limited, open-drain output can be  
used to illuminate an external LED. Refer to Table 5-1  
for a summary of the state of the status output during a  
charge cycle.  
V
VFCSMAX VBATMAX  
IREGMAX  
-----D---D----M----I--N-------------------------------------------------------------  
RDSON  
=
4.5V – 120(115)mV – 4.221V  
------------------------------------------------------------------------  
= 288mΩ  
RDSON  
=
551(581)mA  
6.2  
PCB Layout Issues  
The Fairchild NDS8434 and International Rectifier  
IRF7404 both satisfy these requirements.  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s V  
and V pins.  
SS  
BAT  
6.1.1.3  
EXTERNAL CAPACITORS  
This is recommended to minimize voltage drops along  
the high current-carrying PCB traces.  
The MCP7384X are stable with or without a battery  
load. In order to maintain good AC stability in the  
Constant-Voltage mode, a minimum capacitance of  
If the PCB layout is used as a heatsink, adding many  
vias around the external pass transistor can help  
conduct more heat to the back plane of the PCB, thus  
reducing the maximum junction temperature.  
4.7 µF is recommended to bypass the V  
pin to V  
.
SS  
BAT  
This capacitance provides compensation when there is  
no battery load. Additionally, the battery and  
interconnections appear inductive at high frequencies.  
These elements are in the control feedback loop during  
Constant-Voltage mode. Therefore, the bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum ESR  
(Effective Series Resistance) value. The actual value of  
the capacitor and its associated ESR depends on the  
forward transconductance (g ) and capacitance of the  
m
external pass transistor.  
A 4.7 µF tantalum or  
aluminum electrolytic capacitor at the output is usually  
sufficient to ensure stability for up to a 1A output  
current.  
6.1.1.4  
REVERSE-BLOCKING PROTECTION  
The optional reverse-blocking protection diode,  
depicted in Figure 6-1, provides protection from a  
faulted or shorted input, or from a reversed-polarity  
input source. Without the protection diode, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the external pass transistor.  
If a reverse-protection diode is incorporated into the  
design, it should be chosen to handle the fast charge  
current continuously at the maximum ambient  
temperature. In addition, the reverse-leakage current  
of the diode should be kept as small as possible.  
2004 Microchip Technology Inc.  
DS21823B-page 17  
MCP73841/2/3/4  
7.0  
PACKAGING INFORMATION  
7.1  
Package Marking Information  
Example:  
8-Lead MSOP (MCP73843, MCP73844)  
738431  
0319256  
XXXXX  
YWWNNN  
Example:  
10-Lead MSOP (MCP73841, MCP73842)  
738411  
XXXXX  
0319256  
YYWWNNN  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, and traceability code.  
DS21823B-page 18  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
-
.037  
.006  
0.75  
0.00  
0.85  
-
0.95  
0.15  
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint (Reference)  
Foot Angle  
F
φ
c
0°  
.003  
.009  
5°  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
.006  
B
α
β
.012  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
2004 Microchip Technology Inc.  
DS21823B-page 19  
MCP73841/2/3/4  
10-Lead Plastic Micro Small Outline Package (UN) (MSOP)  
E
E1  
p
D
2
1
B
n
α
A
φ
c
A2  
A1  
L
(F)  
β
L1  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
10  
.020 TYP  
10  
0.50 TYP.  
Overall Height  
Molded Package Thickness  
Standoff  
A
A2  
A1  
E
-
-
.043  
-
-
0.85  
-
1.10  
0.95  
0.15  
.030  
.000  
.033  
-
.037  
.006  
0.75  
0.00  
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint  
F
φ
Foot Angle  
0°  
.003  
.006  
5°  
-
-
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
-
-
8°  
0.23  
0.30  
15°  
c
Lead Thickness  
Lead Width  
B
α
β
.009  
0.23  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-021  
DS21823B-page 20  
2004 Microchip Technology Inc.  
MCP73841/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
XXX  
X
XX  
a)  
MCP73841-410I/UN: 4.1V Preset Voltage  
Device  
Preset Temperature Package  
b)  
MCP73841T-410I/UN: 4.1V Preset Voltage,  
Tape and Reel  
Voltage  
Options  
Range  
c)  
d)  
MCP73841-420I/UN: 4.2V Preset Voltage  
MCP73841T-420I/UN: 4.2V Preset Voltage,  
Tape and Reel  
Device  
MCP73841:  
Single-cell charge controller with temperature  
monitor  
a)  
b)  
MCP73842-820I/UN: 8.2V Preset Voltage  
MCP73842T-820I/UN: 8.2V Preset Voltage,  
Tape and Reel  
MCP73841T: Single-cell charge controller with temperature  
monitor, Tape and Reel  
MCP73842:  
Dual series cells charge controller with tem-  
perature monitor  
c)  
d)  
MCP73842-840I/UN: 8.4V Preset Voltage  
MCP73842T-840I/UN: 8.4V Preset Voltage,  
Tape and Reel  
MCP73842T: Dual series cells charge controller with tem-  
perature monitor, Tape and Reel  
MCP73843:  
Single-cell charge controller  
MCP73843T: Single-cell charge controller, Tape and Reel  
a)  
b)  
MCP73843-410I/MS: 4.1V Preset Voltage  
MCP73843T-410I/MS: 4.1V Preset Voltage,  
Tape and Reel  
MCP73844:  
Dual series cells charge controller  
MCP73844T: Dual series cells charge controller,  
Tape and Reel  
c)  
d)  
MCP73843-420I/MS: 4.2V Preset Voltage  
MCP73843T-420I/MS: 4.2V Preset Voltage,  
Tape and Reel  
Preset Voltage  
410  
420  
820  
840  
=
=
=
=
4.1V  
4.2V  
8.2V  
8.4V  
Regulation Options  
a)  
b)  
MCP73844-820I/MS: 8.2V Preset Voltage  
MCP73844T-820I/MS: 8.2V Preset Voltage,  
Tape and Reel  
c)  
d)  
MCP73844-840I/MS: 8.4V Preset Voltage  
MCP73844T-840I/MS: 8.4V Preset Voltage,  
Tape and Reel  
Temperature Range  
Package  
I
= -40°C to +85°C (Industrial)  
MS  
UN  
=
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
=
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21823B-page 21  
MCP73841/2/3/4  
NOTES:  
DS21823B-page 22  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart and rfPIC are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL, SmartShunt and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net,  
dsPICworks, ECAN, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, rfLAB, Select Mode,  
SmartSensor, SmartTel and Total Endurance are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in October  
2003. The Company’s quality system processes and procedures are for  
®
its PICmicro 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21823B-page 23  
M
WORLDWIDE SALES AND SERVICE  
China - Beijing  
Korea  
AMERICAS  
Unit 706B  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Wan Tai Bei Hai Bldg.  
No. 6 Chaoyangmen Bei Str.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
China - Chengdu  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Fax: 86-28-86766599  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Fuzhou  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
Taiwan  
Taiwan Branch  
Chicago  
11F-3, No. 207  
China - Hong Kong SAR  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 630-285-0071  
Fax: 630-285-0075  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Dallas  
EUROPE  
Austria  
Fax: 852-2401-3431  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Durisolstrasse 2  
Room 701, Bldg. B  
A-4600 Wels  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Fax: 86-755-8295-1393  
China - Shunde  
Room 401, Hongjian Building, No. 2  
Los Angeles  
Fengxiangnan Road, Ronggui Town, Shunde  
District, Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507 Fax: 86-757-28395571  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
China - Qingdao  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
San Jose  
1300 Terra Bella Avenue  
Mountain View, CA 94043  
Tel: 650-215-1444  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Italy  
India  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Japan  
Fax: 650-961-0286  
Toronto  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
Benex S-1 6F  
3-18-20, Shinyokohama  
ASIA/PACIFIC  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Fax: 31-416-690340  
Australia  
United Kingdom  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
02/17/04  
DS21823B-page 24  
2004 Microchip Technology Inc.  

相关型号:

MCP73842T-820I/MS

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73842T-820I/UN

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73842T-840I/MS

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73842T-840I/UN

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73843

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73843-410I/MS

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73843-410I/UN

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73843-420I/MS

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73843-420I/UN

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP

MCP73843-420IMS

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, MO-187, MSOP-8
MICROCHIP

MCP73843-420IUN

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO10, PLASTIC, MO-187, MSOP-10
MICROCHIP

MCP73843-820I/MS

Advanced Single or Dual Cell Lithium-Ion/ Lithium-Polymer Charge Management Controllers
MICROCHIP