MCP73861-I/ML [MICROCHIP]

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers; 先进的单或双电池,完全集成的锂离子/锂聚合物充电管理控制器
MCP73861-I/ML
型号: MCP73861-I/ML
厂家: MICROCHIP    MICROCHIP
描述:

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
先进的单或双电池,完全集成的锂离子/锂聚合物充电管理控制器

电源电路 电池 电源管理电路 控制器
文件: 总28页 (文件大小:444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73861/2/3/4  
Advanced Single or Dual Cell, Fully Integrated Li-Ion /  
Li-Polymer Charge Management Controllers  
Features  
Description  
The MCP7386X family of devices are highly advanced  
linear charge management controllers for use in space-  
limited, cost-sensitive applications. The devices com-  
bine high-accuracy, constant voltage and current regu-  
lation, cell preconditioning, cell temperature monitoring,  
advanced safety timers, automatic charge termination,  
internal current sensing, reverse-blocking protection,  
charge status and fault indication in either a space-  
saving 16-pin, 4 x 4 QFN or 16-pin SOIC package. The  
MCP7386X provides a complete, fully-functional, stand-  
alone charge management solution with a minimum  
number of external components.  
• Linear Charge Management Controllers  
- Integrated Pass Transistor  
- Integrated Current Sense  
- Reverse-Blocking Protection  
• High-Accuracy Preset Voltage Regulation: + 0.5%  
• Four Selectable Voltage Regulation Options:  
- 4.1V, 4.2V – MCP73861/3  
- 8.2V, 8.4V – MCP73862/4  
• Programmable Charge Current: 1.2A Maximum  
• Programmable Safety Charge Timers  
• Preconditioning of Deeply Depleted Cells  
• Automatic End-of-Charge Control  
• Optional Continuous Cell Temperature Monitoring  
• Charge Status Output for Direct LED Drive  
• Fault Output for Direct LED Drive  
• Automatic Power-Down  
The MCP73861/3 is intended for applications utilizing  
single-cell Lithium-Ion or Lithium-Polymer battery  
packs, while the MCP73862/4 is intended for dual  
series cell Lithium-Ion or Lithium-Polymer battery  
packs. The MCP73861/3 have two selectable voltage-  
regulation options available (4.1V and 4.2V), for use  
with either coke or graphite anodes and operate with an  
input voltage range of 4.5V to 12V. The MCP73862/4  
have two selectable voltage-regulation options avail-  
able (8.2V and 8.4V), for use with coke or graphite  
anodes, and operate with an input voltage range of  
8.7V to 12V.  
• Thermal Regulation  
Temperature Range: -40°C to +85°C  
• Packaging: 16-Pin, 4 x 4 QFN  
16-Pin SOIC  
Applications  
The only difference between the MCP73861/2 and  
MCP73863/4, respectively, is the function of the charge  
status output (STAT1) when a charge cycle has been  
completed. The MCP73861/2 flash the output, while  
the MCP73863/4 turn the output off. Refer to  
• Lithium-Ion/Lithium-Polymer Battery Chargers  
• Personal Data Assistants (PDAs)  
• Cellular Telephones  
• Hand-Held Instruments  
• Cradle Chargers  
Section 5.2.1  
“Charge  
Status  
Outputs  
• Digital Cameras  
• MP3 Players  
(STAT1,STAT2)”.  
The MCP7386X family of devices are fully specified  
over the ambient temperature range of -40°C to +85°C.  
Package Types  
16-Pin QFN  
16-Pin SOIC  
STAT2  
STAT1  
VSET  
1
2
3
4
5
6
7
8
EN  
16  
15  
14  
13  
12  
11  
10  
9
VSS2  
VBAT3  
VBAT2  
16 15 14 13  
VSET  
VDD1  
VDD2  
VSS1  
12  
11  
10  
9
1
2
3
4
VBAT3  
VBAT2  
MCP73861  
MCP73862  
MCP73863  
MCP73864  
VDD1  
VDD2  
VSS1  
VBAT1  
VSS3  
VBAT1  
VSS3  
PROG  
TIMER  
5
6
7
8
THREF  
THERM  
© 2005 Microchip Technology Inc.  
DS21893C-page 1  
MCP73861/2/3/4  
Typical Application  
1.2A Lithium-Ion Battery Charger  
2, 3  
1
12  
5V  
VDD  
VBAT3  
4.7 µF  
4.7µF  
10, 11  
6
VSET  
EN  
VBAT  
14  
16  
15  
5
THREF  
THERM  
TIMER  
VSS  
6.19 kΩ  
7
8
STAT1  
STAT2  
PROG  
Single  
Lithium-Ion  
Cell  
+
7.32 kΩ  
0.1  
µF  
4, 9, 13  
MCP73861/3  
Functional Block Diagram  
Direction  
Control  
VBAT1  
VBAT2  
VDD1  
VDD2  
VDD  
G = 0.001  
4 kΩ  
VREF  
Charge Current  
Control Amplifier  
90  
kΩ  
1 kΩ  
PROG  
+
Voltage Control  
+
Amplifier  
11 kΩ  
Charge  
Termination  
Comparator  
VREF  
110 kΩ  
10 kΩ  
VREF  
VBAT3  
+
Precondition  
Comp.  
Charge_OK  
Precon  
600 kΩ  
(1.65 MΩ)  
I
REG/12  
Precondition  
Control  
+
10 kΩ  
UVLO  
COMPARATOR  
+
148.42 kΩ  
Values in ( )  
reflect the  
MCP73862/4  
devices  
Constant-Voltage/  
Recharge Comp.  
VUVLO  
+
1.58 kΩ  
EN  
Power-On  
Delay  
VREF  
300.04 kΩ  
VUVLO  
VREF (1.2V)  
Bias and  
Reference  
Generator  
VSET  
10.3 kΩ  
(8.58 kΩ)  
VSS1  
VSS2  
VSS3  
THREF  
THERM  
Temperature  
Comparators  
100 kΩ  
50 kΩ  
50 kΩ  
STAT1  
+
Drv Stat 1  
Charge Control,  
Charge Timers  
And Status Logic  
IREG/12  
Oscillator  
STAT2  
+
Drv Stat 2  
TIMER  
Charge_OK  
DS21893C-page 2  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
..............................................................................13.5V  
DDN  
V
, V , EN, STAT1, STAT2 w.r.t. V  
SS  
BATN  
SET  
.................................................................-0.3 to (V + 0.3)V  
DD  
PROG, THREF, THERM, TIMER w.r.t. V ..............-0.3 to 6V  
SS  
Maximum Junction Temperature, T ............Internally Limited  
J
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (1.5 kΩ in series with 100 pF)....4 kV  
Machine Model (200 pF, No series resistance) ...........300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
DD  
REG  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
A
DD  
REG  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
Supply Input  
Supply Voltage  
V
4.5  
8.7  
12  
12  
V
V
MCP73861/3  
MCP73862/4  
DD  
Supply Current  
I
0.17  
0.53  
4.5  
8.8  
4
µA Disabled  
mA Operating  
SS  
4
UVLO Start Threshold  
V
4.25  
8.45  
4.65  
9.05  
V
V
MCP73861/3  
MCP73862/4  
Low-to-High  
START  
V
DD  
UVLO Stop Threshold  
V
4.20  
8.40  
4.4  
8.7  
4.55  
8.95  
V
V
MCP73861/3  
MCP73862/4  
STOP  
V
High-to-Low  
DD  
Voltage Regulation (Constant-Voltage Mode)  
Regulated Output Voltage  
V
4.079  
4.179  
8.159  
8.358  
4.1  
4.2  
8.2  
8.4  
4.121  
4.221  
8.241  
8.442  
V
V
V
V
MCP73861/3, V  
MCP73861/3, V  
MCP73862/4, V  
MCP73862/4, V  
= V  
= V  
= V  
= V  
REG  
SET  
SET  
SET  
SET  
SS  
DD  
SS  
DD  
V
= [V  
(typ.) + 1V],  
REG  
DD  
I
= 10 mA  
OUT  
T = -5°C to +55°C  
A
Line Regulation  
|(ΔV  
/V  
)
0.025  
0.01  
0.25  
0.25  
%/V  
%
V
I
= [V  
= 10 mA  
(typ.)+1V] to 12V  
REG  
BAT BAT  
DD  
| /ΔV  
DD  
OUT  
Load Regulation  
V  
/V  
|
I
= 10 mA to 150 mA  
BAT BAT  
OUT  
V
= [V  
(typ.)+1V]  
REG  
DD  
OUT  
OUT  
Supply Ripple Attenuation  
PSRR  
60  
42  
dB  
dB  
I
= 10 mA, 10 Hz to 1 kHz  
I
= 10 mA, 10 Hz to  
10 kHz  
28  
1
dB  
µA  
I
OUT  
= 10 mA, 10 Hz to 1 MHz  
Output Reverse-Leakage  
Current  
I
0.23  
V
< V  
= V  
(typ.)  
DISCHARGE  
DD  
BAT  
REG  
Current Regulation (Fast Charge Constant-Current Mode)  
Fast Charge Current  
Regulation  
I
85  
100  
1200  
500  
115  
1380  
575  
mA PROG = OPEN  
mA PROG = V  
REG  
1020  
425  
SS  
mA PROG = 1.6 kΩ  
T = -5°C to +55°C  
A
© 2005 Microchip Technology Inc.  
DS21893C-page 3  
MCP73861/2/3/4  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
DD  
REG  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
REG  
A
DD  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current  
Regulation  
I
5
10  
120  
50  
15  
180  
75  
mA PROG = OPEN  
mA PROG = V  
PREG  
60  
25  
SS  
mA PROG = 1.6 kΩ  
T =-5°C to +55°C  
A
Precondition Threshold  
Voltage  
V
2.70  
2.75  
5.40  
5.50  
2.80  
2.85  
5.60  
5.70  
2.90  
2.95  
5.80  
5.90  
V
V
V
V
MCP73861/3, V  
MCP73861/3, V  
MCP73862/4, V  
MCP73862/4, V  
= V  
= V  
= V  
= V  
PTH  
SET  
SET  
SET  
SET  
SS  
DD  
SS  
DD  
V
Low-to-High  
BAT  
Charge Termination  
Charge Termination  
Current  
I
6
8.5  
90  
41  
11  
120  
50  
mA PROG = OPEN  
mA PROG = V  
TERM  
70  
32  
SS  
mA PROG = 1.6 kΩ  
T =-5°C to +55°C  
A
Automatic Recharge  
Recharge Threshold  
Voltage  
V
V
-
V
-
V
-100 mV  
V
V
MCP73861/3  
MCP73862/4  
RTH  
REG  
REG  
REG  
300 mV  
200 mV  
V
-
V
-
V
-
REG  
REG  
REG  
600 mV  
400 mV  
200 mV  
2.625  
V
High-to-Low  
BAT  
Thermistor Reference  
Thermistor Reference  
Output Voltage  
V
2.475  
2.55  
V
T = 25°C,  
A
THREF  
V
= V  
(typ.) + 1V,  
DD  
REG  
I
= 0 mA  
THREF  
Thermistor Reference  
Source Current  
I
200  
µA  
THREF  
Thermistor Reference Line |(ΔV  
/V  
0.1  
0.25  
%/V  
V
= [V  
(typ.) + 1V] to  
REG  
THREF  
T
DD  
Regulation  
)|/  
12V  
HREF  
ΔV  
DD  
Thermistor Reference Load V  
Regulation  
/V  
0.01  
0.10  
%
I
= 0 mA to 0.20 mA  
THREF  
HREF|  
T
THREF  
Thermistor Comparator  
Upper Trip Threshold  
V
1.18  
1.25  
-50  
0.62  
80  
1.32  
V
T1  
Upper Trip Point Hysteresis  
Lower Trip Threshold  
V
mV  
V
T1HYS  
V
0.59  
0.66  
T2  
Lower Trip Point Hysteresis  
Input Bias Current  
V
mV  
μA  
T2HYS  
I
2
BIAS  
Status Indicator – STAT1, STAT2  
Sink Current  
I
4
8
12  
400  
1
mA  
mV  
μA  
SINK  
Low Output Voltage  
Input Leakage Current  
Enable Input  
V
I
200  
0.01  
I
I
= 1 mA  
OL  
SINK  
= 0 mA, V  
= 12V  
STAT1,2  
LK  
SINK  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
V
1.4  
0.8  
1
V
V
IH  
V
IL  
I
0.01  
μA  
V
= 12V  
LK  
ENABLE  
DS21893C-page 4  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
DD  
REG  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
REG  
A
DD  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
Thermal Shutdown  
Die Temperature  
T
155  
10  
°C  
°C  
SD  
Die Temperature  
Hysteresis  
T
SDHYS  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
REG  
DD  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
REG  
A
DD  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Low-to-High  
UVLO Start Delay  
t
t
5
ms  
V
V
START  
DD  
Current Regulation  
Transition Time Out of  
Preconditioning  
1
1
ms  
ms  
< V  
to V  
> V  
BAT PTH  
DELAY  
BAT  
PTH  
Current Rise Time Out of  
Preconditioning  
t
I
Rising to 90% of I  
OUT REG  
RISE  
Fast Charge Safety Timer  
Period  
t
1.1  
1.5  
1.9  
Hours  
C
C
C
= 0.1 µF  
= 0.1 µF  
= 0.1 µF  
FAST  
TIMER  
TIMER  
TIMER  
Preconditioning Current Regulation  
Preconditioning Charge Safety  
Timer Period  
t
45  
60  
3
75  
Minutes  
Hours  
PRECON  
Charge Termination  
Elapsed Time Termination  
Period  
t
2.2  
3.8  
TERM  
Status Indicators  
Status Output turn-off  
Status Output turn-on  
t
200  
200  
µs  
µs  
I
I
= 1 mA to 0 mA  
= 0 mA to 1 mA  
OFF  
SINK  
SINK  
t
ON  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V.  
REG  
DD  
Typical values are at +25°C, V = [V  
(typ.) + 1.0V]  
DD  
REG  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
T
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
A
T
J
T
A
Thermal Resistance, 16-lead,  
4 mm x 4 mm QFN  
θ
θ
37  
74  
°C/W  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
JA  
JA  
Thermal Resistance, 16-lead SOIC  
4-Layer JC51-7 Standard Board,  
Natural Convection  
© 2005 Microchip Technology Inc.  
DS21893C-page 5  
MCP73861/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
4.207  
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73861/3  
VSET = VDD  
VDD = 5.2V  
MCP73861/3  
VSET = VDD  
VDD = 5.2V  
10  
100  
1000  
10  
100  
1000  
Charge Current (mA)  
Charge Current (mA)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Supply Current (ISS) vs.  
(VBAT) vs. Charge Current (IOUT).  
Charge Current (IOUT).  
4.40  
4.30  
4.20  
4.10  
4.00  
3.90  
3.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73861/3  
SET = VDD  
IOUT = 1000 mA  
MCP73861/3  
VSET = VDD  
IOUT = 1000 mA  
V
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
4.207  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73861/3  
MCP73861/3  
SET = VDD  
IOUT = 10 mA  
V
SET = VDD  
V
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
IOUT = 10 mA  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
DS21893C-page 6  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73861/3  
SET = VDD  
VDD = VSS  
MCP73861/3  
VSET = VDD  
IOUT = 10 mA  
V
+85°C  
+25°C  
-40°C  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
Ambient Temperature (°C)  
Battery Regulation Voltage (V)  
FIGURE 2-7:  
Output Leakage Current  
FIGURE 2-10:  
Supply Current (ISS) vs.  
(IDISCHARGE) vs. Battery Regulation Voltage  
(VBAT).  
Ambient Temperature (TA).  
4.207  
2.550  
MCP73861/3  
VSET = VDD  
IOUT = 10 mA  
MCP73861/3  
VSET = VDD  
ITHREF = 100 µA  
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
2.540  
2.530  
2.520  
2.510  
2.500  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-11:  
Battery Regulation Voltage  
FIGURE 2-8:  
Thermistor Reference  
(VBAT) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Supply Voltage (VDD).  
2.520  
2.520  
MCP73861/3  
VSET = VDD  
ITHREF = 100 µA  
MCP73861/3  
VSET = VDD  
2.515  
2.515  
2.510  
2.505  
2.500  
2.510  
2.505  
2.500  
0
25 50 75 100 125 150 175 200  
Therm. Bias Current (µA)  
Ambient Temperature (°C)  
FIGURE 2-12:  
Thermistor Reference  
FIGURE 2-9:  
Thermistor Reference  
Voltage (VTHREF) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Thermistor Bias Current  
(ITHREF).  
© 2005 Microchip Technology Inc.  
DS21893C-page 7  
MCP73861/2/3/4  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
8.407  
8.405  
8.403  
8.401  
8.399  
8.397  
8.395  
8.393  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73862/4  
VSET = VDD  
VDD = 9.4V  
MCP73862/4  
VSET = VDD  
VDD = 9.4V  
10  
100  
1000  
10  
100  
1000  
Charge Current (mA)  
Charge Current (mA)  
FIGURE 2-13:  
Battery Regulation Voltage  
FIGURE 2-16:  
Supply Current (ISS) vs.  
(VBAT) vs. Charge Current (IOUT).  
Charge Current (IOUT).  
8.407  
1.60  
MCP73862/4  
VSET = VDD  
8.405  
1.40  
MCP73862/4  
VSET = VDD  
IOUT = 1000 mA  
IOUT = 1000 mA  
1.20  
8.403  
8.401  
8.399  
8.397  
8.395  
8.393  
1.00  
0.80  
0.60  
0.40  
10.0  
10.4  
10.8  
11.2  
11.6  
12.0  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-14:  
Battery Regulation Voltage  
FIGURE 2-17:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
8.412  
1.00  
MCP73862/4  
MCP73862/4  
VSET = VDD  
IOUT = 10 mA  
8.408  
VSET = VDD  
8.410  
0.90  
IOUT = 10 mA  
0.80  
8.406  
8.404  
8.402  
8.400  
8.398  
0.70  
0.60  
0.50  
0.40  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
9.0  
9.5  
10.0  
10.5 11.0  
11.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-15:  
Battery Regulation Voltage  
FIGURE 2-18:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
DS21893C-page 8  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
0.45  
0.40  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73862/4  
VSET = VDD  
IOUT = 10 mA  
MCP73862/4  
VSET = VDD  
+85°C  
0.35 VDD = VSS  
0.30  
+25°C  
-40°C  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
4.0  
4.8  
5.6  
6.4  
7.2  
8.0  
8.8  
Ambient Temperature (°C)  
Battery Regulation Voltage (V)  
FIGURE 2-19:  
Output Leakage Current  
FIGURE 2-22:  
Supply Current (ISS) vs.  
(IDISCHARGE) vs. Battery Regulation Voltage  
(VBAT).  
Ambient Temperature (TA).  
8.414  
8.410  
8.406  
8.402  
8.398  
8.394  
8.390  
8.386  
2.570  
MCP73862/4  
VSET = VDD  
IOUT = 10 mA  
MCP73862/4  
VSET = VDD  
ITHREF = 100 µA  
2.560  
2.550  
2.540  
2.530  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-23:  
Battery Regulation Voltage  
FIGURE 2-20:  
Thermistor Reference  
(VBAT) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Supply Voltage (VDD).  
2.550  
2.550  
MCP73862/4  
MCP73862/4  
VSET = VDD  
ITHREF = 100 µA  
VSET = VDD  
2.548  
2.546  
2.542  
2.538  
2.534  
2.530  
2.546  
2.544  
2.542  
2.540  
0
25  
50  
75 100 125 150 175 200  
Thermistor Bias Current (µA)  
Ambient Temperature (°C)  
FIGURE 2-24:  
Thermistor Reference  
FIGURE 2-21:  
Thermistor Reference  
Voltage (VTHREF) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Thermistor Bias Current  
(ITHREF).  
© 2005 Microchip Technology Inc.  
DS21893C-page 9  
MCP73861/2/3/4  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
VDD  
VDD  
VBAT  
VBAT  
MCP73861  
MCP73861  
V
I
Stepped from 5.2V to 6.2V  
= 500 mA  
V
I
Stepped from 5.2V to 6.2V  
= 10 mA  
DD  
DD  
OUT  
OUT  
C
= 10 µF, X7R, Ceramic  
C
= 10 µF, X7R, Ceramic  
OUT  
OUT  
FIGURE 2-25:  
Line Transient Response.  
FIGURE 2-28:  
Line Transient Response.  
MCP73861  
MCP73861  
V
5.2V  
V
5.2V  
DD  
DD  
C
= 10 µF, X7R, Ceramic  
C
= 10 µF, X7R, Ceramic  
VBAT  
OUT  
OUT  
VBAT  
100 mA  
10 mA  
500 mA  
10 mA  
IOUT  
IOUT  
FIGURE 2-26:  
Load Transient Response.  
FIGURE 2-29:  
Load Transient Response.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
MCP73861  
-10 VDD = 5.2V  
V
AC = 100 mVp-p  
-20  
IOUT = 10 mA  
-30 COUT = 10 μF, Ceramic  
-40  
-50  
-60  
-70  
-80  
MCP73861  
VDD = 5.2V  
VAC = 100 mVp-p  
IOUT = 100 mA  
COUT = 10 μF, X7R, Ceramic  
-80  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-27:  
Power Supply Ripple  
FIGURE 2-30:  
Power Supply Ripple  
Rejection.  
Rejection.  
DS21893C-page 10  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
1200  
1000  
800  
600  
400  
200  
0
505  
503  
501  
499  
497  
495  
493  
MCP73861/2/3/4  
SET = VDD  
MCP73861/2/3/4  
VSET = VDD  
V
RPROG = 1.6 k:  
OPEN  
4.8k  
1.6k  
536  
0
Ambient Temperature (°C)  
Programming Resistor (: )  
FIGURE 2-31:  
Charge Current (IOUT) vs.  
FIGURE 2-32:  
Charge Current (IOUT) vs.  
Programming Resistor (RPROG).  
Ambient Temperature (TA).  
© 2005 Microchip Technology Inc.  
DS21893C-page 11  
MCP73861/2/3/4  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLES  
Symbol  
Function  
QFN  
SOIC  
1
2
3
4
V
V
V
V
Voltage Regulation Selection  
Battery Management Input Supply  
Battery Management Input Supply  
Battery Management 0V Reference  
Current Regulation Set  
SET  
DD1  
DD2  
SS1  
3
5
4
6
5
7
PROG  
THREF  
THERM  
TIMER  
6
8
Cell Temperature Sensor Bias  
Cell Temperature Sensor Input  
Timer Set  
7
9
8
10  
11  
12  
13  
14  
15  
16  
1
9
V
Battery Management 0V Reference  
Battery Charge Control Output  
Battery Charge Control Output  
Battery Voltage Sense  
SS3  
10  
11  
12  
13  
14  
15  
16  
V
V
V
BAT1  
BAT2  
BAT3  
V
Battery Management 0V Reference  
Logic Enable  
SS2  
EN  
STAT2  
STAT1  
Fault Status Output  
2
Charge Status Output  
3.1  
Voltage Regulation Selection  
(V  
3.7  
Timer Set  
)
All safety timers are scaled by CTIMER/0.1 µF.  
SET  
MCP73861/3: Connect VSET to VSS for 4.1V regulation  
voltage, connect to VDD for 4.2V regulation voltage.  
MCP73862/4: Connect VSET to VSS for 8.2V regulation  
voltage, connect to VDD for 8.4V regulation voltage.  
3.8  
Battery Charge Control Output  
(V , V  
)
BAT2  
BAT1  
Connect to positive terminal of battery. Drain terminal  
of internal P-channel MOSFET pass transistor. Bypass  
to VSS with a minimum of 4.7 µF to ensure loop stability  
when the battery is disconnected.  
3.2  
Battery Management Input Supply  
(V , V  
)
DD1  
DD2  
A supply voltage of [VREG (typ.) + 0.3V] to 12V is  
recommended. Bypass to VSS with a minimum of  
4.7 µF.  
3.9  
Battery Voltage Sense (V  
)
BAT3  
VBAT3 is a voltage sense input. Connect to positive  
terminal of battery. A precision internal resistor divider  
regulates the final voltage on this pin to VREG  
3.3  
Battery Management 0V Reference  
(V , V , V  
.
)
SS3  
SS1  
SS2  
3.10 Logic Enable (EN)  
Connect to negative terminal of battery and input  
supply.  
EN is an input to force charge termination, initiate  
charge, clear faults or disable automatic recharge.  
3.4  
Current Regulation Set (PROG)  
3.11 Fault Status Output (STAT2)  
Preconditioning, fast and termination currents are  
scaled by placing a resistor from PROG to VSS  
STAT2 is a current-limited, open-drain drive for direct  
connection to a LED for charge status indication.  
Alternatively, a pull-up resistor can be applied for  
interfacing to a host microcontroller.  
.
3.5  
Cell Temperature Sensor Bias  
(THREF)  
THREF is a voltage reference to bias external  
thermistor for continuous cell temperature monitoring  
and prequalification.  
3.12 Charge Status Output (STAT1)  
STAT1 is a current-limited, open-drain drive for direct  
connection to a LED for charge status indication.  
Alternatively, a pull-up resistor can be applied for  
interfacing to a host microcontroller.  
3.6  
Cell Temperature Sensor Input  
(THERM)  
THERM is an input for an external thermistor for contin-  
uous cell-temperature monitoring and prequalification.  
Connect to THREF/3 to disable temperature sensing.  
DS21893C-page 12  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
4.0  
DEVICE OVERVIEW  
The MCP7386X family of devices are highly advanced  
linear charge management controllers. Refer to the  
functional block diagram. Figure 4-2 depicts the  
operational flow algorithm from charge initiation to  
completion and automatic recharge.  
MCP73862/4 regulate to 4.1V and 8.2V, respectively.  
With VSET tied to VDD  
, the MCP73861/3 and  
MCP73862/4 regulate to 4.2V and 8.4V, respectively.  
4.4  
Charge Cycle Completion and  
Automatic Re-Charge  
4.1  
Charge Qualification and  
Preconditioning  
The MCP7386X monitors the charging current during  
the Constant-voltage regulation mode. The charge  
cycle is considered complete when the charge current  
has diminished below approximately 8% of the  
regulation current (IREG), or the elapsed timer has  
expired.  
Upon insertion of a battery, or application of an external  
supply, the MCP7386X family of devices automatically  
performs a series of safety checks to qualify the  
charge. The input source voltage must be above the  
Undervoltage Lockout (UVLO) threshold, the enable  
pin must be above the logic-high level and the cell  
temperature must be within the upper and lower  
thresholds. The qualification parameters are  
continuously monitored. Deviation beyond the limits  
automatically suspends or terminates the charge cycle.  
The input voltage must deviate below the UVLO stop  
threshold for at least one clock period to be considered  
valid.  
The MCP7386X automatically begins a new charge  
cycle when the battery voltage falls below the recharge  
threshold (VRTH), assuming all the qualification  
parameters are met.  
4.5  
Thermal Regulation  
The MCP7386X family limits the charge current based  
on the die temperature. Thermal regulation optimizes  
the charge cycle time while maintaining device reliabil-  
ity. If thermal regulation is entered, the timer is automat-  
ically slowed down to ensure that a charge cycle will  
not terminate prematurely. Figure 4-1 depicts the  
thermal regulation profile.  
Once the qualification parameters have been met, the  
MCP7386X initiates a charge cycle. The charge status  
output is pulled low throughout the charge cycle (see  
Table 5-1 for charge status outputs). If the battery  
voltage is below the preconditioning threshold (VPTH),  
the MCP7386X preconditions the battery with a trickle-  
charge. The preconditioning current is set to approxi-  
mately 10% of the fast charge regulation current. The  
preconditioning trickle-charge safely replenishes  
deeply depleted cells and minimizes heat dissipation  
during the initial charge cycle. If the battery voltage has  
not exceeded the preconditioning threshold before the  
preconditioning timer has expired, a fault is indicated  
and the charge cycle is terminated.  
1400  
1200  
1000  
800  
Maximum  
Minimum  
600  
400  
200  
0
4.2  
Constant Current Regulation –  
Fast Charge  
0
20  
40  
60  
80  
100  
120  
140  
Die Temperature (° C)  
Preconditioning ends, and fast charging begins, when  
the battery voltage exceeds the preconditioning thresh-  
old. Fast charge regulates to a constant current (IREG),  
which is set via an external resistor connected to the  
PROG pin. Fast charge continues until the battery  
voltage reaches the regulation voltage (VREG), or the  
fast charge timer expires; in which case, a fault is  
indicated and the charge cycle is terminated.  
FIGURE 4-1:  
Current vs. Die Temperature.  
Typical Maximum Charge  
4.6  
Thermal Shutdown  
The MCP7386X family suspends charge if the die  
temperature exceeds 155°C. Charging will resume  
when the die temperature has cooled by approximately  
10°C. The thermal shutdown is a secondary safety  
feature in the event that there is a failure within the  
thermal regulation circuitry.  
4.3  
Constant Voltage Regulation  
When the battery voltage reaches the regulation  
voltage (VREG), constant voltage regulation begins.  
The MCP7386X monitors the battery voltage at the  
VBAT pin. This input is tied directly to the positive  
terminal of the battery. The MCP7386X selects the  
voltage regulation value based on the state of VSET  
.
With VSET tied to VSS the MCP73861/3 and  
,
© 2005 Microchip Technology Inc.  
DS21893C-page 13  
MCP73861/2/3/4  
FIGURE 4-2:  
Operational Flow Algorithm.  
DS21893C-page 14  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
Figure 6-1 depicts a typical application circuit with  
connection of the THERM input. The resistor values of  
RT1 and RT2 are calculated with the following  
equations.  
5.0  
DETAILED DESCRIPTION  
5.1  
Analog Circuitry  
For NTC thermistors:  
5.1.1  
BATTERY MANAGEMENT INPUT  
SUPPLY (VDD1, VDD2  
)
2 × RCOLD × RHOT  
----------------------------------------------  
RT1  
=
=
The VDD input is the input supply to the MCP7386X.  
The MCP7386X automatically enters a Power-down  
mode if the voltage on the VDD input falls below the  
UVLO voltage (VSTOP). This feature prevents draining  
the battery pack when the VDD supply is not present.  
R
COLD RHOT  
2 × RCOLD × RHOT  
----------------------------------------------  
COLD 3 × RHOT  
RT2  
R
For PTC thermistors:  
5.1.2  
PROG INPUT  
2 × RCOLD × RHOT  
----------------------------------------------  
Fast charge current regulation can be scaled by placing  
a programming resistor (RPROG) from the PROG input  
to VSS. Connecting the PROG input to VSS allows for a  
maximum fast charge current of 1.2A, typically. The  
minimum fast charge current is 100 mA, set by letting  
the PROG input float. The following formula calculates  
RT1  
=
=
R
HOT RCOLD  
2 × RCOLD × RHOT  
----------------------------------------------  
HOT 3 × RCOLD  
RT2  
R
Where:  
the value for RPROG  
:
RCOLD and RHOT are the thermistor  
resistance values at the temperature window  
of interest.  
13.2 11 × IREG  
----------------------------------------  
12 × IREG 1.2  
RPROG  
=
Applying a voltage equal to VTHREF/3 to the THERM  
input disables temperature monitoring.  
where:  
IREG = the desired fast charge current in amps.  
5.1.5  
TIMER SET INPUT (TIMER)  
RPROG = measured in kΩ.  
The TIMER input programs the period of the safety  
timers by placing a timing capacitor (CTIMER) between  
the TIMER input pin and VSS. Three safety timers are  
programmed via the timing capacitor.  
The preconditioning trickle-charge current and the  
charge termination current are scaled to approximately  
10% and 8% of IREG, respectively.  
The preconditioning safety timer period:  
5.1.3  
CELL TEMPERATURE SENSOR  
BIAS (THREF)  
CTIMER  
------------------  
× 1.0Hours  
tPRECON  
=
0.1μF  
A 2.5V voltage reference is provided to bias an external  
thermistor for continuous cell temperature monitoring  
and prequalification. A ratio metric window comparison  
is performed at threshold levels of VTHREF/2 and  
The fast charge safety timer period:  
CTIMER  
------------------  
× 1.5Hours  
tFAST  
=
VTHREF/4.  
0.1μF  
5.1.4  
CELL TEMPERATURE SENSOR  
INPUT (THERM)  
The elapsed time termination period:  
CTIMER  
------------------  
× 3.0Hours  
tTERM  
=
The MCP73861/2/3/4 continuously monitors tempera-  
ture by comparing the voltage between the THERM  
input and VSS with the upper and lower temperature  
0.1μF  
The preconditioning timer starts after qualification and  
resets when the charge cycle transitions to the fast  
charge, Constant-current mode. The fast charge timer  
and the elapsed timer start once the MCP7386X  
transitions from preconditioning. The fast charge timer  
resets when the charge cycle transitions to the  
Constant-voltage mode. The elapsed timer will expire  
and terminate the charge if the sensed current does not  
diminish below the termination threshold.  
thresholds.  
A
negative or positive temperature  
coefficient, NTC or PTC thermistor and an external  
voltage-divider typically develop this voltage. The  
temperature sensing circuit has its own reference to  
which it performs a ratio metric comparison. Therefore,  
it is immune to fluctuations in the supply input (VDD).  
The temperature-sensing circuit is removed from the  
system when VDD is not applied, eliminating additional  
discharge of the battery pack.  
During thermal regulation, the timer is slowed down  
proportional to the charge current.  
© 2005 Microchip Technology Inc.  
DS21893C-page 15  
MCP73861/2/3/4  
The flashing rate (1 Hz) is based off a timer capacitor  
(CTIMER) of 0.1 µF. The rate will vary based on the  
value of the timer capacitor.  
5.1.6  
BATTERY VOLTAGE SENSE (VBAT3)  
The MCP7386X monitors the battery voltage at the  
VBAT3 pin. This input is tied directly to the positive  
terminal of the battery pack.  
During a fault condition, the STAT1 status output will be  
off and the STAT2 status output will be on. To recover  
from a fault condition, the input voltage must be  
removed and then reapplied, or the enable input (EN)  
must be de-asserted to a logic-low, then asserted to a  
logic-high.  
5.1.7  
BATTERY CHARGE CONTROL  
OUTPUT (VBAT1, VBAT2  
)
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP7386X  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
When the voltage on the THERM input is outside the  
preset window, the charge cycle will not start, or will be  
suspended. The charge cycle is not terminated and  
recovery is automatic. The charge cycle will resume (or  
start) once the THERM input is valid and all other  
qualification parameters are met. During an invalid  
THERM condition, the STAT1 status output will be off  
and the STAT2 status output will flash.  
5.2  
Digital Circuitry  
5.2.1  
CHARGE STATUS OUTPUTS  
(STAT1,STAT2)  
5.2.2  
The VSET input selects the regulated output voltage of  
the MCP7386X. With VSET tied to VSS the  
MCP73861/3 and MCP73862/4 regulate to 4.1V and  
8.2V, respectively. With VSET tied to VDD the  
VSET INPUT  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Optionally, a pull-up  
resistor can be used on the output for communication  
with a host microcontroller. Table 5-1 summarizes the  
state of the status outputs during a charge cycle.  
,
,
MCP73861/3 and MCP73862/4 regulate to 4.2V and  
8.4V, respectively.  
TABLE 5-1:  
STATUS OUTPUTS (NOTE)  
5.2.3  
LOGIC ENABLE (EN)  
CHARGE  
CYCLE STAT1  
STAT1  
STAT2  
The logic enable input pin (EN) can be used to  
terminate a charge at any time during the charge cycle,  
as well as to initiate a charge cycle or initiate a recharge  
cycle.  
Qualification  
Off  
On  
On  
Off  
Off  
Off  
Preconditioning  
Constant-  
Current Fast  
Charge  
Applying a logic-high input signal to the EN pin, or tying  
it to the input source, enables the device. Applying a  
logic-low input signal disables the device and termi-  
nates a charge cycle. When disabled, the device’s  
supply current is reduced to 0.17 µA, typically.  
Constant-  
Voltage  
On  
Off  
Charge  
Complete  
Flashing (1 Hz,  
50% duty cycle)  
(MCP73861/2)  
Off  
(All Devices)  
Off  
(MCP73863/4)  
Fault  
Off  
Off  
On  
THERM Invalid  
Flashing (1 Hz,  
50% duty cycle)  
Disabled –  
Sleep mode  
Off  
Off  
Off  
Input Voltage  
Disconnected  
Off  
Note:  
Off state: Open-drain is high-impedance  
On state: Open-drain can sink current  
typically 7 mA  
Flashing: Toggles between off state and  
on state  
DS21893C-page 16  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
Constant-current followed by Constant-voltage.  
Figure 6-1 depicts a typical stand-alone application  
circuit, while Figures 6-2 and 6-3 depict the  
accompanying charge profile.  
6.0  
APPLICATIONS  
The MCP7386X is designed to operate in conjunction  
with a host microcontroller or in stand-alone applica-  
tions. The MCP7386X provides the preferred charge  
algorithm for Lithium-Ion and Lithium-Polymer cells  
Unregulated  
STAT1  
EN VSS2  
Wall Cube  
16 15 14 13  
VSET  
1
VBAT3  
VBAT2  
VBAT1  
VSS3  
12  
11  
10  
9
+
Single  
Lithium-Ion  
Cell  
VDD1  
2
MCP73861  
VDD2  
3
4
VSS1  
5
6
7
8
PROG  
RPROG  
TIMER  
CTIMER  
RT1  
RT2  
FIGURE 6-1:  
Typical Application Circuit.  
Preconditioning  
Mode  
Constant-Current  
Mode  
Constant-Voltage  
Mode  
Regulation  
Voltage  
(V  
)
REG  
Regulation  
Current  
(I  
)
REG  
Charge  
Voltage  
Transition  
Threshold  
(V  
)
PTH  
Precondition  
Current  
Charge  
Current  
(I  
)
PREG  
Termination  
Current  
(I  
)
TERM  
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-2:  
Typical Charge Profile.  
© 2005 Microchip Technology Inc.  
DS21893C-page 17  
MCP73861/2/3/4  
Preconditioning  
Mode  
Constant-Current  
Mode  
Constant-Voltage  
Mode  
Regulation  
Voltage  
(V  
)
REG  
Regulation  
Current  
(I  
)
REG  
Charge  
Voltage  
Transition  
Threshold  
(V  
)
PTH  
Precondition  
Current  
Charge  
Current  
(I  
)
PREG  
Termination  
Current  
(I  
)
TERM  
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-3:  
Typical Charge Profile in Thermal Regulation.  
1200 mA is the maximum charge current obtainable  
from the MCP7386X. For this situation, the PROG input  
6.1 Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
should be connected directly to VSS  
.
6.1.1.2 Thermal Considerations  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this case, the power dissipation is:  
PowerDissipation = (V  
V  
) × I  
PTHMIN REGMAX  
DDMAX  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
6.1.1  
COMPONENT SELECTION  
=
=
=
the maximum input voltage  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
the maximum fast charge current  
the minimum transition threshold  
voltage  
6.1.1.1  
Current Programming Resistor  
(RPROG  
)
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times with-  
out degradation to the battery pack performance or life.  
DS21893C-page 18  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
Power dissipation with a 5V, ±10% input voltage source  
is:  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins,  
recommended to minimize voltage drops along the  
high current-carrying PCB traces.  
PowerDissipation = (5.5V 2.7V) × 575mA = 1.61W  
With the battery charger mounted on a 1 in2 pad of  
1 oz. copper, the junction temperature rise is 60°C,  
approximately. This would allow for a maximum operat-  
ing ambient temperature of 50°C before thermal  
regulation is entered.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature.  
6.1.1.3  
External Capacitors  
The MCP7386X is stable with or without a battery load.  
In order to maintain good AC stability in the Constant-  
voltage mode, a minimum capacitance of 4.7 µF is  
recommended to bypass the VBAT pin to VSS. This  
capacitance provides compensation when there is no  
battery load. In addition, the battery and interconnec-  
tions appear inductive at high frequencies. These  
elements are in the control feedback loop during  
Constant-voltage mode. Therefore, the bypass capaci-  
tance may be necessary to compensate for the  
inductive nature of the battery pack.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 4.7 µF ceramic,  
tantalum or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability for up to a  
1A output current.  
6.1.1.4  
Reverse-Blocking Protection  
The MCP7386X provides protection from a faulted or  
shorted input, or from a reversed-polarity input source.  
Without the protection, a faulted or shorted input would  
discharge the battery pack through the body diode of  
the internal pass transistor.  
6.1.1.5  
Enable Interface  
In the stand-alone configuration, the enable pin is  
generally tied to the input voltage. The MCP7386X  
automatically enters a Low-power mode when voltage  
on the VDD input falls below the UVLO voltage (VSTOP),  
reducing the battery drain current to 0.23 µA, typically.  
6.1.1.6  
Charge Status Interface  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Refer to Table 5-1 for  
a summary of the state of the status outputs during a  
charge cycle.  
© 2005 Microchip Technology Inc.  
DS21893C-page 19  
MCP73861/2/3/4  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
16-Lead QFN*  
16  
15  
14  
13  
16  
15  
14  
13  
1
2
3
4
12  
11  
10  
9
1
2
3
4
12  
11  
10  
9
XXXXXXXX  
XXXXXXXX  
YYWW  
73861  
I/ML  
0532  
256  
NNN  
5
6
7
8
5
6
7
8
16-Lead SOIC (150 mil)  
Example:  
MCP73861  
XXXXXXXXXXXXX  
XXXXXXXXXXXXX  
e
3
I/SL^  
YYWWNNN  
0532256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21893C-page 20  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
16-Lead Plastic Quad Flat No-Lead Package (ML) 4x4x0.9 mm Body (QFN) – Saw Singulated  
D
D2  
EXPOSED  
METAL  
PAD  
(NOTE 2)  
e
b
E2  
E
2
1
n
OPTIONAL  
L
TOP VIEW  
BOTTOM VIEW  
INDEX  
AREA  
(NOTE 1)  
A3  
A
A1  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS  
*
MIN  
MAX  
MIN  
NOM  
MAX  
n
e
Number of Pins  
Pitch  
16  
16  
.026 BSC  
.035  
.001  
.008 REF  
0.65 BSC  
0.90  
0.02  
0.20 REF  
Overall Height  
Standoff  
A
A1  
A3  
E
.031  
.039  
0.80  
1.00  
.000  
.002  
0.00  
0.05  
Contact Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
.152  
.090  
.152  
.090  
.010  
.012  
.157  
.104  
.157  
.104  
.012  
.016  
.163  
.106  
.163  
.106  
.014  
.020  
3.85  
2.29  
3.85  
2.29  
0.25  
0.30  
4.00  
2.64  
4.00  
2.64  
0.30  
0.40  
4.15  
2.69  
4.15  
2.69  
0.35  
0.50  
E2  
D
D2  
b
L
*
Controlling Parameter  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2.  
Exposed pad varies according to die attach paddle size.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC equivalent: M0-220  
Drawing No. C04-127  
Revised 07-21-05  
© 2005 Microchip Technology Inc.  
DS21893C-page 21  
MCP73861/2/3/4  
16-Lead Plastic Small Outline (SL) – Narrow 150 mil Body (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
16  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
16  
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.057  
.007  
.237  
.154  
.390  
.015  
.033  
4
.069  
1.35  
1.55  
1.44  
0.18  
6.02  
3.90  
9.91  
0.38  
0.84  
4
1.75  
1.55  
0.25  
6.20  
3.99  
10.01  
0.51  
1.27  
8
Molded Package Thickness  
A2  
A1  
E
.052  
.004  
.228  
.150  
.386  
.010  
.016  
0
.061  
.010  
.244  
.157  
.394  
.020  
.050  
8
1.32  
0.10  
5.79  
3.81  
9.80  
0.25  
0.41  
0
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-108  
DS21893C-page 22  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision C (August 2005)  
The following is the list of modifications:  
1. Added MCP73863 and MCP73864 devices  
throughout data sheet.  
2. Added Appendix A: Revision History.  
3. Updated QFN and SOIC package diagrams.  
Revision B (December 2004)  
• Added SOIC package throughout data sheet.  
Revision A (June 2004)  
• Original Release of this Document.  
© 2005 Microchip Technology Inc.  
DS21893C-page 23  
MCP73861/2/3/4  
NOTES:  
DS21893C-page 24  
© 2005 Microchip Technology Inc.  
MCP73861/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
a)  
b)  
MCP73861-I/ML: Single-Cell Controller  
16LD-QFN package.  
MCP73861T-I/ML: Tape and Reel,  
Temperature Package  
Range  
Single-Cell Controller  
16LD-QFN package.  
Single-Cell Controller  
16LD-SOIC package.  
c)  
d)  
MCP73861-I/SL:  
Device  
MCP73861:  
Single-Cell Charge Controller with  
Temperature Monitor  
MCP73861T-I/SL: Tape and Reel,  
Single-Cell Controller  
MCP73861T: Single-Cell Charge Controller with  
Temperature Monitor, Tape and Reel  
MCP73862:  
16LD-SOIC package.  
Dual Series Cells Charge Controller with  
Temperature Monitor  
MCP73862T: Dual Series Cells Charge Controller with  
Temperature Monitor, Tape and Reel  
a)  
b)  
MCP73862-I/ML: Dual-Cell Controller  
16LD-QFN package.  
MCP73862T-I/ML: Tape and Reel,  
Dual-Cell Controller  
MCP73863:  
Single-cell Charge Controller with  
Temperature Monitor  
MCP73863T: Single-Cell Charge Controller with  
Temperature Monitor, Tape and Reel  
16LD-QFN package.  
c)  
d)  
MCP73862-I/SL:  
Dual-Cell Controller  
16LD-SOIC package.  
MCP73864:  
Dual Series Cells Charge Controller with  
Temperature Monitor  
MCP73862T-I/SL: Tape and Reel,  
Dual-Cell Controller  
MCP73864T: Dual Series Cells Charge Controller with  
Temperature Monitor, Tape and Reel  
16LD-SOIC package.  
Temperature Range  
Packages  
I
= -40°C to +85°C (Industrial)  
a)  
b)  
MCP73863-I/ML: Single-Cell Controller  
16LD-QFN package.  
MCP73863T-I/ML: Tape and Reel,  
Single-Cell Controller  
ML  
SL  
=
Plastic Quad Flat No Lead, 4x4 mm Body (QFN),  
16-lead  
16LD-QFN package.  
=
Plastic Small Outline, 150 mm Body (SOIC),  
16-lead  
c)  
d)  
MCP73863-I/SL:  
Single-Cell Controller  
16LD-SOIC package.  
MCP73863T-I/SL: Tape and Reel,  
Single-Cell Controller  
16LD-SOIC package.  
a)  
b)  
MCP73864-I/ML: Dual-Cell Controller  
16LD-QFN package.  
MCP73864T-I/ML: Tape and Reel,  
Dual-Cell Controller  
16LD-QFN package.  
c)  
d)  
MCP73864-I/SL:  
Dual-Cell Controller  
16LD-SOIC package.  
MCP73864T-I/SL: Tape and Reel,  
Dual-Cell Controller  
16LD-SOIC package.  
© 2005 Microchip Technology Inc.  
DS21893C-page 25  
MCP73861/2/3/4  
NOTES:  
DS21893C-page 26  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,  
Smart Serial, SmartTel, Total Endurance and WiperLock are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21893C-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-352-30-52  
Fax: 34-91-352-11-47  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Malaysia - Penang  
Tel: 604-646-8870  
Fax: 604-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Philippines - Manila  
Tel: 632-634-9065  
Fax: 632-634-9069  
China - Shenzhen  
Detroit  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
08/24/05  
DS21893C-page 28  
© 2005 Microchip Technology Inc.  

相关型号:

MCP73861-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861-I/SLG

暂无描述
MICROCHIP

MCP73861T

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
MICROCHIP

MCP73861T-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/MLG

暂无描述
MICROCHIP

MCP73861T-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/SLG

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-16
MICROCHIP

MCP73861_05

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861_08

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861_11

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
MICROCHIP

MCP73861_13

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP