MCP9700AT-H/TO

更新时间:2024-09-18 12:29:44
品牌:MICROCHIP
描述:Low-Power Linear Active Thermistor™ ICs

MCP9700AT-H/TO 概述

Low-Power Linear Active Thermistor™ ICs 低功耗线性有源Thermistorâ ?? ¢集成电路 温度传感器

MCP9700AT-H/TO 规格参数

是否无铅:不含铅是否Rohs认证:符合
生命周期:Active包装说明:LEAD FREE, PLASTIC, TO-92, 3 PIN
Reach Compliance Code:compliant风险等级:5.69
Is Samacsys:N最大精度(摄氏度):6 Cel
主体宽度:3.683 mm主体高度:4.826 mm
主体长度或直径:4.826 mm外壳:PLASTIC
JESD-609代码:e3线性度(Cel):0.5 Cel
安装特点:THROUGH HOLE MOUNT最大工作电流:0.012 mA
最高工作温度:150 °C最低工作温度:-40 °C
封装形状/形式:RECTANGULAR传感器/换能器类型:TEMPERATURE SENSOR,ANALOG,VOLTAGE OUTPUT
最大供电电压:5.5 V最小供电电压:2.3 V
表面贴装:NO端子面层:Matte Tin (Sn)
端接类型:SOLDERBase Number Matches:1

MCP9700AT-H/TO 数据手册

通过下载MCP9700AT-H/TO数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MCP9700/9700A  
MCP9701/9701A  
Low-Power Linear Active Thermistor™ ICs  
Features  
Description  
• Tiny Analog Temperature Sensor  
• Available Packages:  
The MCP9700/9700A and MCP9701/9701A family of  
Linear Active Thermistor™ Intergrated Circuit (IC) is an  
analog temperature sensor that converts temperature  
to analog voltage. It’s a low-cost, low-power sensor  
with an accuracy of ±2°C from 0°C to +70°C  
(MCP9700A/9701A) ±4°C from 0°C to +70°C  
(MCP9700/9701) while consuming 6 µA (typical) of  
operating current.  
- SC70-5, SOT-23-5, TO-92-3  
• Wide Temperature Measurement Range:  
- -40°C to +125°C (Extended Temperature)  
- -40°C to +150°C (High Temperature)  
(MCP9700/9700A)  
• Accuracy:  
Unlike resistive sensors (such as thermistors), the  
Linear Active Thermistor IC does not require an  
additional signal-conditioning circuit. Therefore, the  
biasing circuit development overhead for thermistor  
solutions can be avoided by implementing this low-cost  
device. The voltage output pin (VOUT) can be directly  
connected to the ADC input of a microcontroller. The  
MCP9700/9700A and MCP9701/9701A temperature  
coefficients are scaled to provide a 1°C/bit resolution  
for an 8-bit ADC with a reference voltage of 2.5V and  
5V, respectively.  
- ±2°C (max.), 0°C to +70°C (MCP9700A/9701A)  
- ±4°C (max.), 0°C to +70°C (MCP9700/9701)  
• Optimized for Analog-to-Digital Converters  
(ADCs):  
- 10.0 mV/°C (typical) MCP9700/9700A  
- 19.5 mV/°C (typical) MCP9701/9701A  
• Wide Operating Voltage Range:  
- VDD = 2.3V to 5.5V MCP9700/9700A  
- VDD = 3.1V to 5.5V MCP9701/9701A  
• Low Operating Current: 6 µA (typical)  
• Optimized to Drive Large Capacitive Loads  
The MCP9700/9700A and MCP9701/9701A provide a  
low-cost solution for applications that require measure-  
ment of a relative change of temperature. When  
measuring relative change in temperature from +25°C,  
an accuracy of ±1°C (typical) can be realized from 0°C  
to +70°C. This accuracy can also be achieved by  
applying system calibration at +25°C.  
Typical Applications  
• Hard Disk Drives and Other PC Peripherals  
• Entertainment Systems  
• Home Appliance  
In addition, this family is immune to the effects of  
parasitic capacitance and can drive large capacitive  
loads. This provides Printed Circuit Board (PCB) layout  
design flexibility by enabling the device to be remotely  
located from the microcontroller. Adding some  
capacitance at the output also helps the output  
transient response by reducing overshoots or  
undershoots. However, capacitive load is not required  
for sensor output stability.  
• Office Equipment  
• Battery Packs and Portable Equipment  
• General Purpose Temperature Monitoring  
Package Type  
3-Pin TO-92  
MCP9700/9701  
Only  
3-Pin SOT-23  
MCP9700/9700A  
MCP9701/9701A  
5-Pin SC70  
MCP9700/9700A  
MCP9701/9701A  
GND  
3
NC  
NC  
1
2
3
5
1 2 3  
GND  
VOUT  
VDD  
4
Bottom  
View  
1
2
1
VDD  
VOUT  
VDD VOUT GND  
© 2009 Microchip Technology Inc.  
DS21942E-page 1  
MCP9700/9700A and MCP9701/9701A  
NOTES:  
DS21942E-page 2  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
†Notice: Stresses above those listed under “Maximum  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
Absolute Maximum Ratings †  
VDD:...................................................................... 6.0V  
Storage temperature: ........................ -65°C to +150°C  
Ambient Temp. with Power Applied:.. -40°C to +150°C  
Output Current .................................................±30 mA  
Junction Temperature (TJ): ................................ 150°C  
ESD Protection On All Pins (HBM:MM): ....(4 kV:200V)  
Latch-Up Current at Each Pin: ...................... ±200 mA  
DC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated:  
MCP9700/9700A: VDD = 2.3V to 5.5V, GND = Ground, TA = -40°C to +125°C and No load.  
MCP9701/9701A: VDD = 3.1V to 5.5V, GND = Ground, TA = -10°C to +125°C and No load.  
Parameter  
Power Supply  
Sym  
Min  
Typ  
Max  
Unit  
Conditions  
Operating Voltage Range  
VDD  
VDD  
2.3  
3.1  
5.5  
5.5  
V
V
MCP9700/9700A  
MCP9701/9701A  
Operating Current  
IDD  
6
12  
µA  
Power Supply Rejection  
Sensor Accuracy (Notes 1, 2)  
TA = +25°C  
Δ°C/ΔVDD  
0.1  
°C/V  
TACY  
TACY  
TACY  
TACY  
TACY  
TACY  
TACY  
TACY  
±1  
±1  
±1  
±1  
±2  
±2  
±2  
±2  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
TA = 0°C to +70°C  
-2.0  
-2.0  
-2.0  
-4.0  
-4.0  
-4.0  
-4.0  
+2.0  
+4.0  
+4.0  
+4.0  
+6.0  
+6.0  
+6.0  
MCP9700A/9701A  
MCP9700A  
TA = -40°C to +125°C  
TA = -10°C to +125°C  
TA = 0°C to +70°C  
MCP9701A  
MCP9700/9701  
MCP9700  
TA = -40°C to +125°C  
TA = -10°C to +125°C  
TA = -40°C to +150°C  
MCP9701  
High Temperature,  
MCP9700 only  
Sensor Output  
Output Voltage, TA = 0°C  
Output Voltage, TA = 0°C  
Temperature Coefficient  
V0°C  
V0°C  
TC  
500  
400  
10.0  
19.5  
±0.5  
mV  
mV  
MCP9700/9700A  
MCP9701/9701A  
mV/°C MCP9700/9700A  
mV/°C MCP9701/9701A  
TC  
Output Non-linearity  
Output Current  
VONL  
IOUT  
ZOUT  
°C  
µA  
Ω
TA = 0°C to +70°C (Note 2)  
100  
Output Impedance  
Output Load Regulation  
20  
IOUT = 100 µA, f = 500 Hz  
ΔVOUT  
ΔIOUT  
/
1
Ω
TA = 0°C to +70°C,  
IOUT = 100 µA  
Turn-on Time  
tON  
800  
µs  
Note 1: The MCP9700/9700A family accuracy is tested with VDD = 3.3V, while the MCP9701/9701A accuracy is  
tested with VDD = 5.0V.  
2: The MCP9700/9700A and MCP9701/9701A family is characterized using the first-order or linear equation,  
as shown in Equation 4-2. Also refer to Figure 2-16.  
3: SC70-5 package thermal response with 1x1 inch, dual-sided copper clad, TO-92-3 package thermal  
response without PCB (leaded).  
© 2009 Microchip Technology Inc.  
DS21942E-page 3  
MCP9700/9700A and MCP9701/9701A  
DC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated:  
MCP9700/9700A: VDD = 2.3V to 5.5V, GND = Ground, TA = -40°C to +125°C and No load.  
MCP9701/9701A: VDD = 3.1V to 5.5V, GND = Ground, TA = -10°C to +125°C and No load.  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Conditions  
Typical Load Capacitance  
CLOAD  
1000  
pF  
The MCP9700/9700A and  
MCP9701/9701A family is  
characterized and produc-  
tion tested with a capacitive  
load of 1000 pF.  
SC-70 Thermal Response to 63%  
TO-92 Thermal Response to 63%  
tRES  
tRES  
1.3  
s
s
30°C (Air) to +125°C  
(Fluid Bath) (Note 3)  
1.65  
Note 1: The MCP9700/9700A family accuracy is tested with VDD = 3.3V, while the MCP9701/9701A accuracy is  
tested with VDD = 5.0V.  
2: The MCP9700/9700A and MCP9701/9701A family is characterized using the first-order or linear equation,  
as shown in Equation 4-2. Also refer to Figure 2-16.  
3: SC70-5 package thermal response with 1x1 inch, dual-sided copper clad, TO-92-3 package thermal  
response without PCB (leaded).  
M
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated:  
MCP9700/9700A: VDD = 2.3V to 5.5V, GND = Ground, TA = -40°C to +125°C and No load.  
MCP9701/9701A: VDD = 3.1V to 5.5V, GND = Ground, TA = -10°C to +125°C and No load.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range (Note 1)  
TA  
TA  
TA  
-40  
-10  
-40  
+125  
+125  
+150  
°C  
°C  
°C  
MCP9700/9700A  
MCP9701/9701A  
High Temperature,  
MCP9700 only  
Operating Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+150  
+150  
°C  
°C  
°C  
Extended Temperature  
High Temperature  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5LD SC70  
Thermal Resistance, 3LD SOT-23  
Thermal Resistance, 3LD TO-92  
θJA  
θJA  
θJA  
331  
308  
146  
°C/W  
°C/W  
°C/W  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
DS21942E-page 4  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, MCP9700/9700A: VDD = 2.3V to 5.5V; MCP9701/9701A: VDD = 3.1V to 5.5V;  
GND = Ground, Cbypass = 0.1 µF.  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
6.0  
4.0  
MCP9701  
VDD= 5.0V  
MCP9701A  
VDD= 5.0V  
Spec. Limits  
2.0  
Spec. Limits  
0.0  
-2.0  
-4.0  
MCP9700  
VDD= 3.3V  
MCP9700A VDD= 3.3V  
-50 -25 25  
0
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
TA (°C)  
TA (°C)  
FIGURE 2-1:  
Accuracy vs. Ambient  
FIGURE 2-4:  
Accuracy vs. Ambient  
Temperature (MCP9700A/9701A).  
Temperature (MCP9700/9701).  
6.0  
0.2  
MCP9700  
MCP9700A  
VDD = 5.5V  
MCP9701/  
MCP9701A  
VDD= 5.5V  
VDD= 3.1V  
MCP9701/MCP9701A  
VDD = 5.0V  
ILOAD = 100 µA  
4.0  
0.1  
0
VDD = 2.3V  
2.0  
0.0  
-2.0  
-4.0  
MCP9700/MCP9700A  
VDD = 3.3V  
-0.1  
-0.2  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50 75 100 125 150  
TA (°C)  
TA (°C)  
FIGURE 2-2:  
Accuracy vs. Ambient  
FIGURE 2-5:  
Changes in Accuracy vs.  
Temperature, with V  
.
Ambient Temperature (Due to Load).  
DD  
12.0  
10.0  
8.0  
4.0  
MCP9700/MCP9700A  
MCP9701/MCP9701A  
VDD = 3.3V  
MCP9701  
MCP9701A  
3.0  
IOUT = 50 µA  
IOUT = 100 µA  
IOUT = 200 µA  
6.0  
2.0  
1.0  
0.0  
MCP9700/MCP9700A  
4.0  
2.0  
0.0  
-50 -25  
0
25  
50  
75 100 125 150  
-50  
-25  
0
25  
T
50  
A (°C)  
75  
100  
125  
TA (°C)  
FIGURE 2-3:  
Supply Current vs.  
FIGURE 2-6:  
Load Regulation vs.  
Temperature.  
Ambient Temperature.  
© 2009 Microchip Technology Inc.  
DS21942E-page 5  
MCP9700/9700A and MCP9701/9701A  
Note: Unless otherwise indicated, MCP9700/9700A: VDD = 2.3V to 5.5V; MCP9701/9701A: VDD = 3.1V to 5.5V;  
GND = Ground, Cbypass = 0.1 µF.  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
MCP9701  
VDD = 5.0V  
108 samples  
VDD = 3.3V  
108 samples  
MCP9700A  
MCP9701A  
MCP9700  
MCP9701  
0%  
0%  
V0°C (mV)  
V0°C (mV)  
FIGURE 2-7:  
Output Voltage at 0°C  
FIGURE 2-10:  
Output Voltage at 0°C  
(MCP9700/9700A).  
(MCP9701/9701A).  
45%  
45%  
MCP9700  
MCP9701  
40%  
40%  
MCP9700A  
35%  
MCP9701A  
35%  
VDD = 3.3V  
VDD = 5.0V  
108 samples  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
108 samples  
0%  
0%  
TC (mV/°C)  
TC (mV/°C)  
FIGURE 2-8:  
Occurrences vs.  
FIGURE 2-11:  
Occurrences vs.  
Temperature Coefficient (MCP9700/9700A).  
Temperature Coefficient (MCP9701/9701A).  
0.30  
0.30  
MCP9701/MCP9701A  
MCP9700/MCP9700A  
VDD= 2.3V to 5.5V  
DD= 3.1Vto5.5V  
0.25  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.15  
0.10  
MCP9701/MCP9701A  
= 3.1Vto4.0V  
DD  
MCP9700/MCP9700A  
VDD= 2.3V to 4.0V  
0.05  
0.00  
-50 -25  
0
25  
50  
75 100 125 150  
-50  
-25  
0
25  
50  
75  
100 125  
TA (°C)  
TA (°C)  
FIGURE 2-9:  
Power Supply Rejection  
FIGURE 2-12:  
Power Supply Rejection  
(Δ°C/ΔV ) vs. Ambient Temperature.  
(Δ°C/ΔV ) vs. Temperature.  
DD  
DD  
DS21942E-page 6  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
Note: Unless otherwise indicated, MCP9700/9700A: VDD = 2.3V to 5.5V; MCP9701/9701A: VDD = 3.1V to 5.5V;  
GND = Ground, Cbypass = 0.1 µF.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = +26°C  
MCP9701  
MCP9701A  
MCP9700  
MCP9700A  
-50  
-25  
0
25  
50  
75  
100 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
TA (°C)  
VDD (V)  
FIGURE 2-13:  
Output Voltage vs. Power  
FIGURE 2-16:  
Output Voltage vs. Ambient  
Supply.  
Temperature.  
2.5  
30.0  
VDD_STEP = 5V  
TA = 26°C  
VDD_RAMP = 5V/ms  
1.7  
IDD  
TA = +26°C  
18.0  
1.5  
1.0  
0.5  
0.0  
IDD  
0.8  
6.0  
6
0.0  
-6.0  
VOUT  
4
VOUT  
2
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Time (ms)  
Time (ms)  
FIGURE 2-14:  
Output vs. Settling Time to  
FIGURE 2-17:  
Output vs. Settling Time to  
step V  
.
Ramp V  
.
DD  
DD  
1000  
100  
10  
130  
105  
80  
VDD = 5.0V  
IOUT = 100 µA  
TA = +26°C  
SC70-5  
1 in. x 1 in. Copper Clad PCB  
Leaded, without PCB  
SC70-5  
SOT-23-3  
55  
TO-92-3  
30  
1
-2  
0
2
4
6
8
10 12 14 16 18  
0.  
0.1  
1
100  
100  
1k  
1000  
10k  
100k  
10  
10  
1
10000 100000  
Frequency (Hz)  
Time (s)  
FIGURE 2-15:  
Thermal Response (Air to  
FIGURE 2-18:  
Output Impedance vs.  
Fluid Bath).  
Frequency.  
© 2009 Microchip Technology Inc.  
DS21942E-page 7  
MCP9700/9700A and MCP9701/9701A  
NOTES:  
DS21942E-page 8  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
SC70  
Pin No.  
SOT-23  
Pin No.  
TO-92  
Symbol  
Function  
1
2
3
4
5
3
3
NC  
GND  
VOUT  
VDD  
NC  
No Connect (this pin is not connected to the die).  
Power Ground Pin  
2
2
Output Voltage Pin  
1
1
Power Supply Input  
No Connect (this pin is not connected to the die).  
3.1  
Power Ground Pin (GND)  
3.3  
Power Supply Input (VDD)  
GND is the system ground pin.  
The operating voltage as specified in the “DC  
Electrical Characteristics” table is applied to VDD  
.
3.2  
Output Voltage Pin (VOUT)  
3.4  
No Connect Pin (NC)  
The sensor output can be measured at VOUT. The  
voltage range over the operating temperature range for  
the MCP9700/9700A is 100 mV to 1.75V and for the  
MCP9701/9701A, 200 mV to 3V .  
This pin is not connected to the die. It can be used to  
improve thermal conduction to the package by  
connecting it to a Printed Circuit Board (PCB) trace  
from the thermal source.  
© 2009 Microchip Technology Inc.  
DS21942E-page 9  
MCP9700/9700A and MCP9701/9701A  
NOTES:  
DS21942E-page 10  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
4.0  
APPLICATIONS INFORMATION  
3.0  
The Linear Active Thermistor™ IC uses an internal  
diode to measure temperature. The diode electrical  
characteristics have a temperature coefficient that  
provides a change in voltage based on the relative  
ambient temperature from -40°C to 150°C. The change  
in voltage is scaled to a temperature coefficient of  
10.0 mV/°C (typical) for the MCP9700/9700A and  
19.5 mV/°C (typical) for the MCP9701/9701A. The out-  
put voltage at 0°C is also scaled to 500 mV (typical)  
and 400 mV (typical) for the MCP9700/9700A and  
MCP9701/9701A, respectively. This linear scale is  
described in the first-order transfer function shown in  
Equation 4-1 and Figure 2-16.  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
VDD= 3.3V  
10 Samples  
-50  
-25  
0
25  
50  
A (°C)  
75  
100  
125  
T
FIGURE 4-2:  
Relative Accuracy to +25°C  
vs. Temperature.  
EQUATION 4-1:  
SENSOR TRANSFER  
FUNCTION  
The change in accuracy from the calibration  
temperature is due to the output non-linearity from the  
first-order equation, as specified in Equation 4-2. The  
accuracy can be further improved by compensating for  
the output non-linearity.  
VOUT = TC TA + V0°C  
Where:  
TA = Ambient Temperature  
For higher accuracy using a sensor compensation  
technique, refer to AN1001 “IC Temperature Sensor  
VOUT = Sensor Output Voltage  
Accuracy  
Compensation  
with  
a
PICmicro®  
V0°C = Sensor Output Voltage at 0°C  
(See DC Electrical Characteristics  
table)  
Microcontroller” (DS01001). The application note  
shows that if the MCP9700 is compensated in addition  
to room temperature calibration, the sensor accuracy  
can be improved to ±0.5°C (typical) accuracy over the  
operating temperature (Figure 4-3).  
TC = Temperature Coefficient  
(See DC Electrical Characteristics  
table)  
6.0  
100 Samples  
VDD  
VDD  
4.0  
Spec. Limits  
2.0  
VOUT  
GND  
ANI  
PICmicro®  
MCU  
0.0  
MCP9700  
+ s  
Average  
- s  
-2.0  
-4.0  
VSS  
VSS  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature (°C)  
FIGURE 4-1:  
Typical Application Circuit.  
FIGURE 4-3:  
MCP9700/9700A Calibrated  
Sensor Accuracy.  
4.1  
Improving Accuracy  
The compensation technique provides  
a
linear  
The MCP9700/9700A and MCP9701/9701A accuracy  
can be improved by performing a system calibration at  
a specific temperature. For example, calibrating the  
system at +25°C ambient improves the measurement  
accuracy to a ±0.5°C (typical) from 0°C to +70°C, as  
shown in Figure 4-2. Therefore, when measuring  
relative temperature change, this family measures  
temperature with higher accuracy.  
temperature reading. A firmware look-up table can be  
generated to compensate for the sensor error.  
© 2009 Microchip Technology Inc.  
DS21942E-page 11  
MCP9700/9700A and MCP9701/9701A  
4.2  
Shutdown Using Microcontroller  
I/O Pin  
4.4  
Thermal Considerations  
The MCP9700/9700A and MCP9701/9701A family  
measures temperature by monitoring the voltage of a  
diode located in the die. A low-impedance thermal path  
between the die and the PCB is provided by the pins.  
Therefore, the sensor effectively monitors the  
temperature of the PCB. However, the thermal path for  
the ambient air is not as efficient because the plastic  
device package functions as a thermal insulator from  
the die. This limitation applies to plastic-packaged  
silicon temperature sensors. If the application requires  
measuring ambient air, consider using the TO-92  
package.  
The MCP9700/9700A and MCP9701/9701A family of  
low operating current of 6 µA (typical) makes it ideal for  
battery-powered  
applications.  
However,  
for  
applications that require tighter current budget, this  
device can be powered using a microcontroller Input/  
Output (I/O) pin. The I/O pin can be toggled to shut  
down the device. In such applications, the  
microcontroller internal digital switching noise is  
emitted to the MCP9700/9700A and MCP9701/9701A  
as power supply noise. This switching noise compro-  
mises measurement accuracy. Therefore, a decoupling  
capacitor and series resistor will be necessary to filter  
out the system noise.  
The MCP9700/9700A and MCP9701/9701A is  
designed to source/sink 100 µA (max.). The power  
dissipation due to the output current is relatively  
insignificant. The effect of the output current can be  
described using Equation 4-2.  
4.3  
Layout Considerations  
The MCP9700/9700A and MCP9701/9701A family  
does not require any additional components to operate.  
However, it is recommended that a decoupling  
capacitor of 0.1 µF to 1 µF be used between the VDD  
and GND pins. In high-noise applications, connect the  
power supply voltage to the VDD pin using a 200Ω  
resistor with a 1 µF decoupling capacitor. A high  
frequency ceramic capacitor is recommended. It is  
necessary for the capacitor to be located as close as  
possible to the VDD and GND pins in order to provide  
effective noise protection. In addition, avoid tracing  
digital lines in close proximity to the sensor.  
EQUATION 4-2:  
EFFECT OF SELF-  
HEATING  
TJ TA = θJA(VDD DD  
I
+ (VDD VOUT)IOUT)  
Where:  
TJ = Junction Temperature  
TA = Ambient Temperature  
θJA = Package Thermal Resistance  
(331°C/W)  
VOUT = Sensor Output Voltage  
IOUT = Sensor Output Current  
IDD = Operating Current  
VDD = Operating Voltage  
At TA = +25°C (VOUT = 0.75V) and maximum  
specification of IDD = 12 µA, VDD 5.5V and  
=
IOUT = +100 µA, the self-heating due to power  
dissipation (TJ – TA) is 0.179°C.  
DS21942E-page 12  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead SOT-23  
Example:  
Device  
MCP9700T  
Code  
XXNN  
AE25  
AENN  
AFNN  
AMNN  
APNN  
MCP9700AT  
MCP9701T  
MCP9701AT  
Note: Applies to 3-Lead SOT-23  
3-Lead TO-92  
Example:  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
MCP  
9700E  
e
3
TO^^  
916256  
5-Lead SC70  
Example:  
Device  
MCP9700T  
Code  
XXNN  
AU25  
AUNN  
AXNN  
AVNN  
AYNN  
MCP9700AT  
MCP9701T  
MCP9701AT  
Note: Applies to 5-Lead SC70.  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS21942E-page 13  
MCP9700/9700A and MCP9701/9701A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
DS21942E-page 14  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS21942E-page 15  
MCP9700/9700A and MCP9701/9701A  
 ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢒꢒꢖꢆꢗꢍꢏꢒꢁ! ꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
2
1
e
e1  
D
c
A
A2  
φ
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
ꢐꢁꢝ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢝꢐꢈ)ꢕ*  
ꢐꢁ;ꢝ  
ꢐꢁꢒꢝ  
ꢐꢁꢐꢀ  
ꢑꢁꢀꢐ  
ꢀꢁꢀ9  
ꢑꢁ9ꢒ  
ꢐꢁꢀꢛ  
ꢐꢞ  
M
ꢐꢁꢝ(  
M
ꢀꢁꢀꢑ  
ꢀꢁꢐꢑ  
ꢐꢁꢀꢐ  
ꢑꢁ9ꢖ  
ꢀꢁꢖꢐ  
ꢛꢁꢐ(  
ꢐꢁ9ꢐ  
ꢀꢐꢞ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
ꢀꢁꢛꢐ  
ꢑꢁꢝꢐ  
ꢐꢁ(ꢐ  
M
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢛꢐ  
M
M
ꢐꢁꢑꢐ  
ꢐꢁ(ꢖ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢑ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢐꢖ)  
DS21942E-page 16  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
 ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢒꢏꢖꢆꢗꢒꢏꢁ"!ꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
E
A
N
1
L
1
2
3
b
e
c
D
R
3ꢆꢃ#  
ꢙ5*:"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢁꢐ(ꢐꢈ)ꢕ*  
)ꢇ##ꢇꢄꢈ#ꢇꢈ1ꢉꢊ/ꢉꢓꢅꢈ.ꢋꢉ#  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢚꢉ!ꢃ$  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
"
4
ꢁꢀꢑ(  
ꢁꢀꢒ(  
ꢁꢀꢒꢐ  
ꢁꢐ;ꢐ  
ꢁ(ꢐꢐ  
ꢁꢐꢀꢖ  
ꢁꢐꢀꢖ  
ꢁꢀ9(  
ꢁꢑꢐ(  
ꢁꢑꢀꢐ  
ꢁꢀꢐ(  
M
8
ꢁꢐꢑꢀ  
ꢁꢐꢑꢑ  
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢔꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢐ(?ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢐꢀ)  
© 2009 Microchip Technology Inc.  
DS21942E-page 17  
MCP9700/9700A and MCP9701/9701A  
NOTES:  
DS21942E-page 18  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
APPENDIX A: REVISION HISTORY  
Revision E (April 2009)  
The following is the list of modifications:  
1. Added High Temperature option throughout  
document.  
2. Updated plots to reflect the high temperature  
performance.  
3. Updated Package Outline drawings.  
4. Updated Revision history.  
Revision D (October 2007)  
The following is the list of modifications:  
1. Added the 3-lead SOT-23 devices to data sheet.  
2. Replaced Figure 2-15.  
3. Updated Package Outline Drawings.  
Revision C (June 2006)  
The following is the list of modifications:  
1. Added the MCP9700A and MCP9701A devices  
to data sheet.  
2. Added TO92 package for the MCP9700/  
MCP9701.  
Revision B (October 2005)  
The following is the list of modifications:  
1. Added Section 3.0 “Pin Descriptions”.  
2. Added the Linear Active Thermistor™ IC  
trademark.  
3. Removed the 2nd order temperature equation  
and the temperature coeficient histogram.  
4. Added a reference to AN1001 and correspond-  
ing verbiage.  
5. Added Figure 4-2 and corresponding verbiage.  
Revision A (November 2005)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS21942E-page 19  
MCP9700/9700A and MCP9701/9701A  
NOTES:  
DS21942E-page 20  
© 2009 Microchip Technology Inc.  
MCP9700/9700A and MCP9701/9701A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
MCP9700T-E/LT: Linear Active Thermistor™  
IC, Tape and Reel,  
Temperature  
Range  
Package  
5LD SC70 package.  
b)  
c)  
MCP9700-E/TO:  
Linear Active Thermistor™  
IC, 3LD TO-92 package.  
MCP9700T-E/TO: Linear Active Thermistor™  
IC, Tape and Reel,  
Device:  
MCP9700T:  
Linear Active Thermistor™ IC,  
Tape and Reel, Pb free  
3LD SOT-23 package.  
Linear Active Thermistor™  
IC, Tape and Reel,  
High Temperature,  
5LD SC70 package.  
MCP9700AT: Linear Active Thermistor™ IC,  
Tape and Reel, Pb free  
MCP9701T:  
d)  
MCP9700T-H/LT:  
Linear Active Thermistor™ IC,  
Tape and Reel, Pb free  
MCP9701AT: Linear Active Thermistor™ IC,  
Tape and Reel, Pb free  
a)  
b)  
MCP9700AT-E/LT: Linear Active Thermistor™  
IC, Tape and Reel,  
5LD SC70 package.  
MCP9700AT-E/TO: Linear Active Thermistor™  
IC, Tape and Reel,  
° °  
-40 C to +125 C  
-40 C to +150 C (MCP9700 only)  
Temperature Range:  
Package:  
E
H
=
=
°
°
3LD SOT-23 package.  
LT  
=
Plastic Small Outline Transistor, 5-lead  
TO = Plastic Small Outline Transistor, 3-lead  
TT Plastic Small Outline Transistor, 3-lead  
a)  
MCP9701T-E/LT: Linear Active Thermistor™  
IC, Tape and Reel,  
=
5LD SC70 package.  
b)  
c)  
MCP9701-E/TO:  
Linear Active Thermistor™  
IC, 3LD TO-92 package.  
MCP9701T-E/TO: Linear Active Thermistor™  
IC, Tape and Reel,  
3LD SOT-23 package.  
a)  
b)  
MCP9701AT-E/LT: Linear Active Thermistor™  
IC, Tape and Reel,  
5LD SC70 package.  
MCP9701AT-E/TO: Linear Active Thermistor™  
IC, Tape and Reel,  
3LD SOT-23 package.  
© 2009 Microchip Technology Inc.  
DS21942E-page 21  
MCP9700/9700A and MCP9701/9701A  
NOTES:  
DS21942E-page 22  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21942E-page 23  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS21942E-page 24  
© 2009 Microchip Technology Inc.  

MCP9700AT-H/TO 相关器件

型号 制造商 描述 价格 文档
MCP9700AT-H/TT MICROCHIP Low-Power Linear Active Thermistor™ ICs 获取价格
MCP9700B MICROCHIP Linear Active Thermistor ICs are sensors whose output voltage is directly proportional to measured 获取价格
MCP9700T MICROCHIP Low-Power Linear Active Thermistor™ ICs 获取价格
MCP9700T-E/LT MICROCHIP Low-Power Linear Active Thermistor⑩ ICs 获取价格
MCP9700T-E/TO MICROCHIP Low-Power Linear Active Thermistor⑩ ICs 获取价格
MCP9700T-E/TT MICROCHIP Low-Power Linear Active Thermistor™ ICs 获取价格
MCP9700T-ELT MICROCHIP Low-Power Linear Active Thermistor ICs 获取价格
MCP9700T-H/LT MICROCHIP Low-Power Linear Active Thermistor™ ICs 获取价格
MCP9700T-H/LTVAO MICROCHIP Analog Voltage Output Sensor, Rectangular, Surface Mount 获取价格
MCP9700T-H/TO MICROCHIP Low-Power Linear Active Thermistor™ ICs 获取价格

MCP9700AT-H/TO 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6