MCP9804T-E/MCBBB [MICROCHIP]

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Rectangular, Surface Mount;
MCP9804T-E/MCBBB
型号: MCP9804T-E/MCBBB
厂家: MICROCHIP    MICROCHIP
描述:

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Rectangular, Surface Mount

输出元件 传感器 换能器
文件: 总52页 (文件大小:878K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP9804  
±0.25°C Typical Accuracy Digital Temperature Sensor  
Features  
General Description  
• Accuracy:  
Microchip Technology Inc.’s MCP9804 digital  
temperature sensor converts temperatures between  
-40°C and +125°C to a digital word with ±0.25°C/±1°C  
(typical/maximum) accuracy.  
- ±0.25°C (typical) from -40°C to +125°C  
- ±1°C (maximum) from -40°C to +125°C  
- +0.05°C (typical) lifetime drift  
The MCP9804 comes with user-programmable registers  
that provide flexibility to temperature sensing  
applications. The registers allow user-selectable  
settings such as Shutdown or Low-Power modes and  
the specification of temperature Alert window limits and  
critical output limits. When the temperature changes  
beyond the specified boundary limits, the MCP9804  
outputs anAlert signal. The user has the option of setting  
the Alert output signal polarity as an active-low or active-  
high comparator output for thermostat operation, or as a  
temperature Alert interrupt output for microprocessor-  
based systems. The Alert output can also be configured  
as a critical temperature output only.  
- ±0.0625°C or ±1 LSb (typical) repeatability  
• User-Selectable Measurement Resolution:  
- +0.5°C, +0.25°C, +0.125°C, +0.0625°C  
• User-Programmable Temperature Limits:  
- Temperature Window Limit  
- Critical Temperature Limit  
• User-Programmable Temperature Alert Output  
• Operating Voltage Range: 2.7V to 5.5V  
• Operating Current: 200 µA (typical)  
• Shutdown Current: 0.1 µA (typical)  
• 2-wire Interface: I2C™/SMBus Compatible  
• Available Packages: 2x3 DFN-8, MSOP-8  
This sensor has an industry standard 100 kHz, 2-wire,  
SMBus/I2C compatible serial interface, allowing up to  
eight or sixteen sensors to be controlled with a single  
serial bus (see Table 3-2 for available Address codes).  
These features make the MCP9804 ideal for  
sophisticated, multi-zone, temperature-monitoring  
applications.  
Typical Applications  
• General Purpose  
• Industrial Applications  
• Industrial Freezers and Refrigerators  
• Food Processing  
Package Types  
• Personal Computers and Servers  
• PC Peripherals  
8-Pin 2x3 DFN *  
8-Pin MSOP  
• Consumer Electronics  
• Handheld/Portable Devices  
V
SDA 1  
8
7
6
5
SDA  
SCL  
V
DD  
1
2
8
7
DD  
2
3
4
A0  
SCL  
A0  
EP  
9
Temperature Accuracy  
A1  
A2  
Alert  
GND  
Alert  
GND  
A1  
A2  
3
4
6
5
40%  
TA = -40°C to +125°C  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
VDD = 3.3V  
2787 units  
30%  
20%  
10%  
0%  
Temperature Accuracy (°C)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 1  
MCP9804  
Hysteresis  
Shutdown  
Critical Trip Lock  
Alarm Window Lock  
Clear Alert  
Alert Status  
Output Control  
Critical Alert only  
Alert Polarity  
Alert Comp/Int  
Band Gap  
Temperature  
Sensor  
Configuration  
Temperature  
 ADC  
T
Limit  
Limit  
UPPER  
T
LOWER  
+0.5°C  
+0.25°C  
T
Limit  
CRITICAL  
+0.125°C  
+0.0625°C  
Manufacturer ID  
Device ID/Rev  
Resolution  
Register  
Pointer  
2
SMBus/Standard I C™  
Interface  
V
GND  
SCL  
SDA  
A0  
Alert  
DD  
A2  
A1  
FIGURE 1:  
Functional Block Diagram  
DS20002203D-page 2  
2009-2018 Microchip Technology Inc.  
MCP9804  
†Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
.................................................................................. 6.0V  
DD  
Voltage at All Input/Output Pins .............. GND – 0.3V to 6.0V  
Storage Temperature ....................................-65°C to +150°C  
Ambient Temperature with Power Applied ....-40°C to +125°C  
Junction Temperature (T )...........................................+150°C  
J
ESD Protection on All Pins (HBM:MM) ................ (4 kV:400V)  
Latch-up Current at Each Pin (25°C) ....................... ±200 mA  
TEMPERATURE SENSOR DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground and  
TA = -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max Unit  
Conditions  
Temperature Sensor Accuracy  
-40°C < TA +125°C  
Accuracy Drift  
TACY  
TDRIFT  
TREPEAT  
-1.0  
±0.25 +1.0 °C VDD = 3.3V (Note 1)  
+0.05  
°C VDD = 3.3V (Note 2)  
Accuracy Repeatability  
Temperature Conversion Time  
0.5°C/bit  
±0.0625  
°C 48 hours at 55°C, VDD = 3.3V  
tCONV  
30  
65  
ms 33s/sec (typical)  
ms 15s/sec (typical)  
ms 7s/sec (typical)  
ms 4s/sec (typical)  
0.25°C/bit  
0.125°C/bit  
130  
250  
0.0625°C/bit  
Power Supply  
Operating Voltage Range  
Operating Current  
Shutdown Current  
Power-on Reset (POR)  
VDD  
IDD  
2.7  
5.5  
V
200  
0.1  
2.2  
-0.1  
400 µA  
ISHDN  
VPOR  
°C/VDD  
2
µA  
V
Threshold for falling VDD  
Power Supply Rejection  
°C/V VDD = 2.7V to 5.5V, TA = +25°C  
Alert Output (open-drain output, external pull-up resistor required), see Section 5.2.3, Alert Output Configuration  
High-Level Current (leakage)  
Low-Level Voltage  
IOH  
1
µA VOH = VDD (Active-Low, Pull-up Resistor)  
VOL  
0.4  
V
IOL= 3 mA (Active-Low, Pull-up Resistor)  
Thermal Response, from +25°C (air) to +125°C (oil bath)  
8L-DFN  
tRES  
0.7  
1.4  
s
s
Time to 63% (+89°C)  
8L-MSOP  
Note 1: Accuracy specification includes lifetime drift.  
2: Using Accelerated Life Cycle, equivalent of 12 years of operation at 55°C.  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 3  
MCP9804  
DIGITAL INPUT/OUTPUT PIN CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground and  
TA = -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Serial Input/Output (SCL, SDA, A0, A1, A2)  
Input  
High-Level Voltage  
Low-Level Voltage  
Input Current  
VIH  
0.7 VDD  
0.3 VDD  
±5  
V
V
VIL  
IIN  
µA  
Output (SDA)  
Low-Level Voltage  
High-Level Current (leakage)  
Low-Level Current  
SDA and SCL Inputs  
Hysteresis  
VOL  
IOH  
IOL  
6
0.4  
1
V
IOL= 3 mA  
µA  
mA  
VOH = 5.5V  
VOL = 0.6V  
VHYST  
tSP  
0.05 VDD  
50  
V
Spike Suppression  
Capacitance  
5
ns  
pF  
CIN  
GRAPHICAL SYMBOL DESCRIPTION  
OUTPUT  
INPUT  
VDD  
Voltage  
Voltage  
Current  
VDD  
VIH  
VOL  
VIL  
IOL  
Current  
IIN  
IOH  
time  
time  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V and GND = Ground.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN  
Thermal Resistance, 8L-MSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
JA  
JA  
41  
°C/W  
°C/W  
206  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
DS20002203D-page 4  
2009-2018 Microchip Technology Inc.  
MCP9804  
SENSOR SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, VDD= 2.7V to 5.5V, TA = -40°C to +125°C, GND = Ground  
and CL = 80 pF (Note 1).  
(Note 6)  
Parameters  
Sym  
Min  
Max  
Min  
Max  
Units  
Conditions  
2-Wire SMBus/I2C Interface  
Serial port frequency  
Low Clock  
fSCL  
tLOW  
0
100  
0
1300  
600  
20  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
pf  
(Note 2, Note 4)  
(Note 2)  
4700  
4000  
High Clock  
tHIGH  
(Note 2)  
Rise Time  
tR  
1000  
300  
300  
300  
Fall Time  
tF  
20  
20  
Data in Setup Time  
Data in Hold Time  
Data out Hold Time  
Start Condition Setup Time  
Start Condition Hold Time  
Stop Condition Setup Time  
Bus Free  
tSU-DI  
tHD-DI  
tHD-DO  
tSU-START  
tHD-START  
tSU-STOP  
tB-FREE  
tOUT  
250  
0
100  
0
(Note 3)  
(Note 5)  
(Note 4)  
300  
4700  
4000  
4000  
4700  
25  
200  
600  
600  
600  
1300  
25  
900  
Time-out  
50  
50  
Bus Capacitive load  
Cb  
400  
Note 1: All values referred to VIL MAX and VIH MIN levels.  
2: If tLOW > tOUT or tHIGH > tOUT, the temperature sensor I2C interface will time-out. A Repeat Start command  
is required for communication.  
3: This device can be used in a Standard-mode I2C-bus system, but the requirement tSU:DI MIN must be met.  
This device does not stretch SCL Low time.  
4: As a transmitter, the device provides internal minimum delay time tHD:DO MIN, to bridge the undefined  
region of the falling edge of SCL tF MAX to avoid unintended generation of Start or Stop conditions.  
5: As a receiver, SDA should not be sampled at the falling edge of SCL. SDA can transition tHD:DI after SCL  
toggles Low.  
6: The I2C Fast Mode specification, or timing for bus frequency up to 400KHz, applies to devices starting  
with date code of 1145.  
TIMING DIAGRAM  
tHD-START  
tSU-START  
tB-FREE  
tSU-STOP  
tHIGH  
tLOW  
SCL  
SDA  
tOUT  
tR, tF  
tHD-DI/ HD-DO  
t
tSU-DI  
START Condition  
Data Transmission  
STOP Condition  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 5  
MCP9804  
NOTES:  
DS20002203D-page 6  
2009-2018 Microchip Technology Inc.  
MCP9804  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, SDA/SCL pulled-up to VDD and  
TA = -40°C to +125°C.  
60%  
1.0  
TA = +45°C  
VDD = 3.3V  
722 units  
VDD = 3.3V  
722 units at -40°C, +45°C, +125°C  
64 units at other temperatures  
50%  
40%  
30%  
20%  
10%  
0%  
0.5  
0.0  
+Std. Dev.  
Average  
-Std. Dev.  
-0.5  
-1.0  
-40 -20  
0
20  
40  
60  
80 100 120  
TA (°C)  
Temperature Accuracy (°C)  
FIGURE 2-1:  
Temperature Accuracy  
FIGURE 2-4:  
Temperature Accuracy  
Histogram, TA = +45°C  
60%  
40%  
TA = +125°C  
TA = -40°C to +125°C  
DD = 3.3V  
2787 units  
V
DD = 3.3V  
V
50%  
40%  
30%  
20%  
10%  
0%  
722 units  
30%  
20%  
10%  
0%  
Temperature Accuracy (°C)  
Temperature Accuracy (°C)  
FIGURE 2-2:  
Histogram, TA = -40°C to +125°C  
Temperature Accuracy  
FIGURE 2-5:  
Histogram, TA = +125°C  
Temperature Accuracy  
60%  
60%  
TA = +25°C  
TA = -40°C  
V
DD = 3.3V  
V
DD = 3.3V  
50%  
40%  
30%  
20%  
10%  
0%  
50%  
40%  
30%  
20%  
10%  
0%  
64 units  
722 units  
Temperature Accuracy (°C)  
Temperature Accuracy (°C)  
FIGURE 2-3:  
Histogram, TA = +25°C  
Temperature Accuracy  
FIGURE 2-6:  
Histogram, TA = -40°C  
Temperature Accuracy  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 7  
MCP9804  
Note: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, SDA/SCL pulled-up to VDD and  
TA = -40°C to +125°C.  
1.00  
0.50  
400  
350  
300  
250  
200  
150  
100  
Δ°C/ΔVDD = 0.1°C/V  
VDD = 2.7V  
VDD = 3.3V  
VDD = 5.5V  
0.00  
-0.50  
-1.00  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
Supply Current vs.  
FIGURE 2-10:  
Temperature Accuracy vs.  
Temperature  
Supply Voltage  
2.00  
1.50  
1.00  
0.50  
0.00  
1.0  
Δ°C/ΔVDD, VDD = 3.3V + 150 mVPP (AC)  
TA = +25°C  
0.5  
0.0  
-0.5  
-1.0  
No decoupling capacitor  
1
0  
1k  
10k  
100k  
1M  
100  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature (°C )  
Frequency (Hz)  
FIGURE 2-11:  
Power Supply Rejection vs.  
FIGURE 2-8:  
Shutdown Current vs.  
Frequency  
Temperature  
1000  
3
2.5  
2
0.0625°C  
0.125°C  
0.25°C  
0.5°C  
100  
10  
1.5  
1
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-12:  
Temperature Conversion  
FIGURE 2-9:  
Power-on Reset Threshold  
Time vs. Temperature  
Voltage vs. Temperature  
DS20002203D-page 8  
2009-2018 Microchip Technology Inc.  
MCP9804  
Note: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, SDA/SCL pulled-up to VDD and  
TA = -40°C to +125°C.  
120%  
100%  
80%  
60%  
40%  
20%  
0%  
0.4  
IOL = 3 mA  
0.3  
0.2  
Alert VOL  
SDA VOL  
MSOP-8  
DFN-8  
0.1  
0
Room to +125°C (Oil bath)  
-40 -20  
0
20  
40  
60  
80 100 120  
-2  
0
2
4
6
8
10 12 14 16  
Temperature (°C)  
Time (s)  
FIGURE 2-13:  
SDA and Alert Output VOL  
FIGURE 2-15:  
Package Thermal Response  
vs. Temperature  
35  
30  
25  
48  
VOL = 0.6V  
42  
36  
30  
24  
18  
12  
20  
-40 -20  
0
20  
40  
60  
80 100 120  
6
Temperature (°C)  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature (°C)  
FIGURE 2-16:  
SMBus Time-out vs.  
FIGURE 2-14:  
SDA IOL vs. Temperature  
Temperature  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 9  
MCP9804  
NOTES:  
DS20002203D-page 10  
2009-2018 Microchip Technology Inc.  
MCP9804  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
DFN  
PIN FUNCTION TABLE  
MSOP  
Symbol  
Pin Function  
1
2
3
4
5
6
7
8
9
1
2
SDA  
SCL  
Alert  
GND  
A2  
Serial Data Line  
Serial Clock Line  
Temperature Alert Output  
Ground  
3
4
5
Slave Address  
Slave Address  
Slave Address  
Power Pin  
6
A1  
7
A0  
8
VDD  
EP  
Exposed Thermal Pad (EP); must be connected to GND  
3.1  
Address Pins (A0, A1, A2)  
3.4  
Serial Clock Line (SCL)  
These pins are device address input pins.  
The SCL is a clock input pin. All communication and  
timing is relative to the signal on this pin. The clock is  
generated by the host or master controller on the bus.  
(See Section 4.0 “Serial Communication”.)  
The address pins correspond to the Least Significant  
bits (LSbs) of the address bits and the Most Significant  
bits (MSbs): A6, A5, A4, A3. This is shown in Table 3-2.  
TABLE 3-2:  
Device  
MCP9804 ADDRESS BYTE  
3.5  
Temperature Alert, Open-Drain  
Output (Alert)  
Address Code  
Slave  
Address  
The MCP9804 temperature Alert output pin is an  
open-drain output. The device outputs a signal when the  
ambient temperature goes beyond the user-programmed  
temperature limit. (See Section 5.2.3 “Alert Output  
Configuration”.)  
A6 A5 A4 A3 A2 A1 A0  
MCP9804  
MCP9804(2)  
Note 1:  
0
1
0
0
1
0
1
1
x(1)  
x
x
x
x
x
User-selectable address is shown by  
x’. A2, A1 and A0 must match the  
corresponding device pin configuration.  
3.6  
Power Pin (V  
)
DD  
2: Contact factory for this address code.  
VDD is the power pin. The operating voltage range, as  
specified in the DC electrical specification table, is  
applied on this pin.  
3.2  
Ground Pin (GND)  
The GND pin is the system ground pin.  
3.7  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the GND pin. The EP  
may be connected to the system ground on the Printed  
Circuit Board (PCB).  
3.3  
Serial Data Line (SDA)  
SDA is a bidirectional input/output pin, used to serially  
transmit data to/from the host controller. This pin  
requires a pull-up resistor. (See Section 4.0 “Serial  
Communication”.)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 11  
MCP9804  
NOTES:  
DS20002203D-page 12  
2009-2018 Microchip Technology Inc.  
MCP9804  
4.1.1  
DATA TRANSFER  
4.0  
4.1  
SERIAL COMMUNICATION  
Data transfers are initiated by a Start condition  
(START), followed by a 7-bit device address and a  
read/write bit. An Acknowledge (ACK) from the slave  
confirms the reception of each byte. Each access must  
be terminated by a Stop condition (STOP).  
2
2-Wire Standard Mode I C™  
Protocol Compatible Interface  
The MCP9804 Serial Clock (SCL) input and the  
bidirectional Serial Data (SDA) line form a 2-wire  
bidirectional, Standard mode, I2C compatible  
communication port (refer to the Digital Input/Output  
Pin Characteristics and Sensor Serial Interface  
Timing Specifications tables).  
Repeated communication is initiated after tB-FREE  
.
This device does not support sequential register read/  
write. Each register needs to be addressed using the  
Register Pointer.  
This device supports the receive protocol. The register  
can be specified using the pointer for the initial read.  
Each repeated read or receive begins with a Start  
condition and address byte. The MCP9804 retains the  
previously selected register. Therefore, it outputs data  
from the previously specified register (repeated pointer  
specification is not necessary).  
The following bus protocol has been defined:  
TABLE 4-1:  
MCP9804 SERIAL BUS  
PROTOCOL DESCRIPTIONS  
Term  
Description  
Master  
The device that controls the serial bus,  
typically a microcontroller.  
4.1.2  
MASTER/SLAVE  
Slave  
The device addressed by the master,  
such as the MCP9804.  
The bus is controlled by a master device (typically a  
microcontroller) that controls the bus access and  
generates the Start and Stop conditions. The MCP9804  
is a slave device and does not control other devices in  
the bus. Both master and slave devices can operate as  
either transmitter or receiver. However, the master  
device determines which mode is activated.  
Transmitter Device sending data to the bus.  
Receiver  
START  
Device receiving data from the bus.  
A unique signal from the master to  
initiate serial interface with a slave.  
STOP  
A unique signal from the master to  
terminate serial interface from a slave.  
4.1.3  
START/STOP CONDITION  
Read/Write A read or write to the MCP9804  
registers.  
A high-to-low transition of the SDA line (while SCL is  
high) is the Start condition. All data transfers must be  
preceded by a Start condition from the master. A  
low-to-high transition of the SDA line (while SCL is  
high) signifies a Stop condition.  
ACK  
A receiver Acknowledges (ACK) the  
reception of each byte by polling the bus.  
NAK  
A receiver Not-Acknowledges (NAK) or  
releases the bus to show End-of-Data  
(EOD).  
If a Start or Stop condition is introduced during data  
transmission, the MCP9804 releases the bus. All data  
transfers are ended by a Stop condition from the  
master.  
Busy  
Communication is not possible  
because the bus is in use.  
Not Busy  
The bus is in the Idle state; both SDA  
and SCL remain high.  
Data Valid SDA must remain stable before SCL  
becomes high in order for a data bit to  
be considered valid. During normal  
data transfers, SDA only changes state  
while SCL is low.  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 13  
MCP9804  
4.1.4  
ADDRESS BYTE  
4.1.5  
DATA VALID  
Following the Start condition, the host must transmit an  
8-bit address byte to the MCP9804. The address for the  
MCP9804 temperature sensor is ‘0011,A2,A1,A0’ in  
binary, where the A2, A1 and A0 bits are set externally  
by connecting the corresponding pins to VDD 1’ or GND  
0’. The 7-bit address, transmitted in the serial bit stream,  
must match the selected address for the MCP9804 to  
respond with an ACK. Bit 8 in the address byte is a read/  
write bit. Setting this bit to ‘1’ commands a read  
operation, while ‘0’ commands a write operation (see  
Figure 4-1).  
After the Start condition, each bit of data in the  
transmission needs to be settled for a time specified by  
tSU-DATA before SCL toggles from low-to-high (see the  
Sensor Serial Interface Timing Specifications section).  
4.1.6  
ACKNOWLEDGE (ACK/NAK)  
Each receiving device, when addressed, must  
generate an ACK bit after the reception of each byte.  
The master device must generate an extra clock pulse  
for ACK to be recognized.  
The Acknowledging device pulls down the SDA line for  
tSU-DATA before the low-to-high transition of SCL from  
the master. SDA also needs to remain pulled down for  
Address Byte  
t
H-DATA after a high-to-low transition of SCL.  
SCL  
SDA  
1
0
2
0
3
1
4
1
5
6
7
8
9
During read, the master must signal an End-of-Data  
(EOD) to the slave by not generating an ACK bit (NAK),  
once the last bit has been clocked out of the slave. In  
this case, the slave will leave the data line released to  
enable the master to generate the Stop condition.  
A
C
K
A2 A1 A0  
Start  
Slave  
Address  
Code  
R/W  
Address  
4.1.7  
TIME-OUT  
MCP9804 Response  
If the SCL stays low or high for the time specified by  
tOUT, the MCP9804 temperature sensor resets the  
serial interface. This dictates the minimum clock speed  
as outlined in the specification.  
See Table 3-2.  
FIGURE 4-1:  
Device Addressing  
DS20002203D-page 14  
2009-2018 Microchip Technology Inc.  
MCP9804  
5.0  
FUNCTIONAL DESCRIPTION  
The MCP9804 temperature sensors consist of a band-  
gap-type temperature sensor, a Delta-Sigma Analog-to-  
Digital Converter ( ADC), user-programmable  
registers and a 2-wire SMBus/I2C protocol compatible  
serial interface. Figure 5-1 shows a block diagram of  
the register structure.  
Hysteresis  
Shutdown  
Critical Trip Lock  
Alarm Win. Lock  
Clear Alert  
Alert Status  
Output Control  
Critical Alert Only  
Alert Polarity  
Alert Comp/Int  
Band Gap  
Temperature  
Sensor  
Configuration  
Temperature  
 ADC  
T
Limit  
Limit  
UPPER  
T
T
LOWER  
+0.5°C  
+0.25°C  
Limit  
CRITICAL  
+0.125°C  
+0.0625°C  
Manufacturer ID  
Device ID/Rev  
Resolution  
Register  
Pointer  
2
SMBus/Standard I C™  
Interface  
V
DD  
GND  
SCL  
SDA  
A0  
Alert  
A2  
A1  
FIGURE 5-1:  
Functional Block Diagram  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 15  
MCP9804  
Section 5.2.3 “Alert Output Configuration”). In  
addition, the Critical Temperature Limit register is used  
to provide an additional critical temperature limit.  
5.1  
Registers  
The MCP9804 has several registers that are  
user-accessible. These registers include Temperature,  
Configuration, Temperature Alert Upper Boundary and  
Lower Boundary Limit, Critical Temperature Limit, Man-  
ufacturer Identification and Device Identification.  
The Configuration register provides access to  
configure the MCP9804 device’s various features.  
These registers are described in further detail in the  
following sections.  
The Temperature register is read-only, used to access  
the ambient temperature data. This register is double-  
buffered and it is updated every tCONV. The Temperature  
Alert Upper Boundary and Lower Boundary Limit  
registers are read/write registers. If the ambient  
temperature drifts beyond the user-specified limits, the  
MCP9804 outputs a signal using the Alert pin (refer to  
The registers are accessed by sending a Register  
Pointer to the MCP9804, using the serial interface. This  
is an 8-bit write-only pointer. However, the four Least  
Significant bits are used as pointers and all unused bits  
(Register Pointer<7:4>) need to be cleared or set to ‘0’.  
Register 5-1 describes the pointer or the address of  
each register.  
REGISTER 5-1:  
REGISTER POINTER (WRITE-ONLY)  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
Pointer bits  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
W: Writable bits  
Write ‘0’.  
Bits 7-4 must always be cleared or written to ‘0’. This device has additional registers that are reserved  
for test and calibration. If these registers are accessed, the device may not perform according to the  
specification.  
Pointer bits  
0000=RFU, Reserved for Future Use (Read-Only register)  
0001=Configuration register (CONFIG)  
0010=Alert Temperature Upper Boundary Trip register (TUPPER  
)
0011=Alert Temperature Lower Boundary Trip register (TLOWER  
)
0100=Critical Temperature Trip register (TCRIT  
0101=Temperature register (TA)  
0110=Manufacturer ID register  
0111=Device ID/Revision register  
1000=Resolution register  
)
1xxx=Reserved(1)  
Note 1: Some registers contain calibration codes and should not be accessed.  
DS20002203D-page 16  
2009-2018 Microchip Technology Inc.  
MCP9804  
TABLE 5-1:  
BIT ASSIGNMENT SUMMARY FOR ALL REGISTERS (See Section 5.3, Summary of  
Power-on Default for Power-on Defaults)  
Register  
Pointer  
(Hex)  
Bit Assignment  
MSB/  
LSB  
7
6
5
4
3
2
1
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
LSB  
0
0
0
0
1
0
0
1
0
1
0
0
0
0
0
1
0
1
0
Crt Loc  
0
0
Win Loc  
0
0
Hysteresis  
SHDN  
Int Clr  
0
Alt Stat  
SIGN  
Alt Cnt  
Alt Sel  
Alt Pol  
Alt Mod  
7
6
5
4
2 °C  
2 °C  
2 °C  
2 °C  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
7
6
5
4
0
0
0
SIGN  
2 °C  
2 °C  
2 °C  
2 °C  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
7
6
5
4
0
0
0
SIGN  
2 °C  
2 °C  
2 °C  
2 °C  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
7
6
5
4
T
T  
T
T  
T
T  
LOWER  
SIGN  
2 °C  
2 °C  
2 °C  
2 °C  
A
CRIT  
A
UPPER  
A
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
2009-2018 Microchip Technology Inc.  
DS20002203D-page 17  
MCP9804  
user-specified  
temperature  
boundary  
(see  
5.1.1  
SENSOR CONFIGURATION  
REGISTER (CONFIG)  
Section 5.2.2 “Temperature Hysteresis (THYST)”.  
The Continuous Conversion or Shutdown mode is  
selected using bit 8. In Shutdown mode, the band gap  
The MCP9804 has a 16-bit Configuration register  
(CONFIG) that allows the user to set various functions for  
a robust temperature monitoring system. Bits 10 through  
0 are used to select the temperature alert output  
hysteresis, device shutdown or Low-Power mode,  
temperature boundary and critical temperature lock, and  
temperature Alert output enable/disable. In addition, Alert  
output condition (output set for TUPPER and TLOWER  
temperature boundary or TCRIT only), Alert output status  
and Alert output polarity and mode (Comparator Output  
or Interrupt Output mode) are user-configurable.  
temperature sensor  
circuit  
stops converting  
temperature and the Ambient Temperature register  
(TA) holds the previous temperature data (see  
Section 5.2.1 “Shutdown Mode”). Bits 7 and 6 are  
used to lock the user-specified boundaries TUPPER  
,
TLOWER and TCRIT to prevent an accidental rewrite.  
The Lock bits are cleared by resetting the power. Bits 5  
through 0 are used to configure the temperature Alert  
output pin. All functions are described in Register 5-2  
(see Section 5.2.3 “Alert Output Configuration”).  
The temperature hysteresis bits 10 and 9 can be used  
to prevent output chatter when the ambient  
temperature  
gradually  
changes  
beyond  
the  
REGISTER 5-2:  
CONFIG: CONFIGURATION REGISTER (ADDRESS ‘0000 0001’b)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SHDN  
THYST  
bit 15  
bit 8  
R/W-0  
Crit. Lock  
bit 7  
R/W-0  
R/W-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
Win. Lock  
Int. Clear  
Alert Stat.  
Alert Cnt.  
Alert Sel.  
Alert Pol.  
Alert Mod.  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
THYST: TUPPER and TLOWER Limit Hysteresis bits  
00=0°C (power-up default)  
01=+1.5°C  
10=+3.0°C  
11=+6.0°C  
(Refer to Section 5.2.3 “Alert Output Configuration”.)  
This bit cannot be altered when either of the Lock bits are set (bit 6 and bit 7).  
This bit can be programmed in Shutdown mode.  
SHDN: Shutdown Mode bit  
bit 8  
0= Continuous conversion (power-up default)  
1= Shutdown (Low-Power mode)  
In shutdown, all power-consuming activities are disabled, though all registers can be written to or read.  
This bit cannot be set to ‘1’ when either of the Lock bits is set (bit 6 and bit 7). However, it can be  
cleared to ‘0’ for continuous conversion while locked (refer to Section 5.2.1 “Shutdown Mode”).  
DS20002203D-page 18  
2009-2018 Microchip Technology Inc.  
MCP9804  
REGISTER 5-2:  
bit 7  
CONFIG: CONFIGURATION REGISTER (ADDRESS ‘0000 0001’b)  
Crit. Lock: TCRIT Lock bit  
0= Unlocked. TCRIT register can be written (power-up default)  
1= Locked. TCRIT register cannot be written  
When enabled, this bit remains set to ‘1’ or locked until cleared by an internal Reset (Section 5.3  
“Summary of Power-on Default”). This bit does not require a double-write.  
This bit can be programmed in Shutdown mode.  
bit 6  
Win. Lock: TUPPER and TLOWER Window Lock bit  
0= Unlocked; TUPPER and TLOWER registers can be written (power-up default)  
1= Locked; TUPPER and TLOWER registers cannot be written  
When enabled, this bit remains set to ‘1’ or locked until cleared by a Power-on Reset (Section 5.3  
“Summary of Power-on Default”). This bit does not require a double-write.  
This bit can be programmed in Shutdown mode.  
bit 5  
bit 4  
Int. Clear: Interrupt Clear bit  
0= No effect (power-up default)  
1= Clear interrupt output; when read, this bit returns to ‘0’  
This bit cannot be set to ‘1’ in Shutdown mode, but it can be cleared after the device enters Shutdown  
mode.  
Alert Stat.: Alert Output Status bit  
0= Alert output is not asserted by the device (power-up default)  
1= Alert output is asserted as a comparator/Interrupt or critical temperature output  
This bit cannot be set to ‘1’ or cleared to ‘0’ in Shutdown mode. However, if the Alert output is  
configured as Interrupt mode, and if the host controller clears to ‘0’, the interrupt, using bit 5 while the  
device is in Shutdown mode, then this bit will also be cleared ‘0’.  
bit 3  
bit 2  
bit 1  
bit 0  
Alert Cnt.: Alert Output Control bit  
0= Disabled (power-up default)  
1= Enabled  
This bit cannot be altered when either of the Lock bits are set (bit 6 and bit 7).  
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.  
Alert Sel.: Alert Output Select bit  
0= Alert output for TUPPER, TLOWER and TCRIT (power-up default)  
1= TA > TCRIT only (TUPPER and TLOWER temperature boundaries are disabled)  
When the Alarm Window Lock bit is set, this bit cannot be altered until unlocked (bit 6).  
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.  
Alert Pol.: Alert Output Polarity bit  
0= Active-low (power-up default; pull-up resistor required)  
1= Active-high  
This bit cannot be altered when either of the Lock bits are set (bit 6 and bit 7).  
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.  
Alert Mod.: Alert Output Mode bit  
0= Comparator output (power-up default)  
1= Interrupt output  
This bit cannot be altered when either of the Lock bits are set (bit 6 and bit 7).  
This bit can be programmed in Shutdown mode, but the Alert output will not assert or deassert.  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 19  
MCP9804  
Writing to the CONFIG Register to Enable the Event Output Pin <0000 0000 0000 1000>b:  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
0
0
1
1
W
0
0
0
0
0
0
0
1
Address Byte  
Configuration Pointer  
MCP9804 MCP9804  
1
0
2
3
0
4
0
5
0
6
0
7
0
8
0
1
0
2
0
3
0
4
0
5
1
6
0
7
0
8
0
A
C
K
A
C
K
0
P
MSB Data  
LSB Data  
MCP9804  
MCP9804  
Note: This is an example routine (see Appendix A: “Source Code”).  
i2c_start();  
// send START command  
i2c_write(AddressByte & 0xFE);  
//WRITE Command(see Section 4.1.4 “Address Byte”)  
//also, make sure bit 0 is cleared ‘0’  
i2c_write(0x01);  
i2c_write(0x00);  
i2c_write(0x08);  
i2c_stop();  
// Write CONFIG Register  
// Write data  
// Write data  
// send STOP command  
FIGURE 5-2:  
Timing Diagram for Writing to the Configuration Register (see Section 4.0 “Serial  
Communication”)  
DS20002203D-page 20  
2009-2018 Microchip Technology Inc.  
MCP9804  
Reading the CONFIG Register:  
1
2
3
4
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
1
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous  
read/write.  
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
0
0
1
1
W
Address Byte  
Configuration Pointer  
MCP9804 MCP9804  
1
0
2
0
3
1
4
1
5
6
7
8
1
2
3
4
5
6
7
8
1
2
0
3
0
4
0
5
1
6
0
7
0
8
0
SCL  
SDA  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
0
0
0
0
0
S
R
0
0
0
0
P
Address Byte  
MSB Data  
LSB Data  
Master  
Master  
MCP9804  
Note: This is an example routine (see Appendix A: “Source Code”).  
i2c_start();  
// send START command  
i2c_write(AddressByte & 0xFE);  
//WRITE Command (see Section 4.1.4 “Address Byte”)  
//also, make sure bit 0 is cleared ‘0’  
i2c_write(0x01);  
// Write CONFIG Register  
// send Repeat START command  
//READ Command  
i2c_start();  
i2c_write(AddressByte | 0x01);  
//also, make sure bit 0 is set ‘1’  
UpperByte = i2c_read(ACK);  
//and Send ACK bit  
// READ 8 bits  
LowerByte = i2c_read(NAK);  
//and Send NAK bit  
// READ 8 bits  
i2c_stop();  
// send STOP command  
FIGURE 5-3:  
Timing Diagram for Reading from the Configuration Register (see Section 4.0 “Serial  
Communication”)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 21  
MCP9804  
the maximum and minimum temperature boundary or  
temperature window that can be used to monitor  
ambient temperature. If this feature is enabled  
(Section 5.1.1 “Sensor Configuration Register  
(CONFIG)”) and the ambient temperature exceeds the  
specified boundary or window, the MCP9804 asserts an  
Alert output. (Refer to Section 5.2.3 “Alert Output  
Configuration”).  
5.1.2  
UPPER/LOWER/CRITICAL  
TEMPERATURE LIMIT REGISTERS  
(TUPPER/TLOWER/TCRIT  
)
The MCP9804 has a 16-bit read/write Alert Output  
Temperature Upper Boundary register (TUPPER), a 16-bit  
Lower Boundary register (TLOWER) and a 16-bit Critical  
Boundary register (TCRIT) that contain 11-bit data in  
two’s complement format (0.25°C). This data represents  
REGISTER 5-3:  
TUPPER/TLOWER/TCRIT: UPPER/LOWER/CRITICAL TEMPERATURE LIMIT  
REGISTER  
(ADDRESS ‘0000 0010’b/‘0000 0011’b/‘0000 0100’b)(1)  
U-0  
U-0  
U-0  
R/W-0  
Sign  
R/W-0  
27°C  
R/W-0  
26°C  
R/W-0  
25°C  
R/W-0  
24°C  
bit 15  
bit 8  
R/W-0  
23°C  
R/W-0  
22°C  
R/W-0  
21°C  
R/W-0  
20°C  
R/W-0  
2-1°C  
R/W-0  
2-2°C  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
Sign: Sign bit  
0= TA 0°C  
1= TA 0°C  
bit 11-2  
bit 1-0  
TUPPER/TLOWER/TCRIT: Temperature Boundary bits  
Temperature boundary trip data in two’s complement format.  
Unimplemented: Read as ‘0’  
Note 1: This table shows two 16-bit registers for TUPPER, TLOWER and TCRIT, located at ‘0000 0010b’,  
0000 0011b’ and ‘0000 0100b’, respectively.  
DS20002203D-page 22  
2009-2018 Microchip Technology Inc.  
MCP9804  
Writing +90°C to the TUPPER Register <0000 0101 1010 0000>b:  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
0
0
1
1
W
0
0
0
0
0
0
1
0
Address Byte  
T
Pointer  
UPPER  
MCP9804  
MCP9804  
1
0
2
3
0
4
0
5
0
6
1
7
0
8
1
1
2
3
1
4
0
5
0
6
0
7
0
8
A
A
C
1
C
0
P
0
0
K
K
MSB Data  
LSB Data  
MCP9804  
MCP9804  
Reading from the TUPPER Register:  
1
2
3
4
5
6
7
8
1
0
2
0
3
0
4
0
5
6
0
7
1
8
0
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous  
read/write.  
SCL  
SDA  
A
A
C
K
A
2
A
1
A
0
C
S
0
0
1
1
0
W
K
Address Byte  
TUPPER Pointer  
MCP9804  
MCP9804  
1
0
2
0
3
1
4
1
5
6
7
8
1
2
0
3
0
4
0
5
0
6
1
7
0
8
1
2
0
3
1
4
0
5
6
0
7
0
8
0
SCL  
SDA  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
0
1
1
0
S
R
P
Address Byte  
MSB Data  
LSB Data  
Master  
Master  
MCP9804  
FIGURE 5-4:  
Timing Diagram for Writing and Reading from the TUPPER Register (see Section 4.0  
“Serial Communication”)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 23  
MCP9804  
In addition, the TA register uses three bits (TA<15:13>)  
to reflect the Alert pin state. This allows the user to  
identify the cause of the Alert output trigger (see  
Section 5.2.3 “Alert Output Configuration”); bit 15 is  
set to ‘1’ if TA is greater than or equal to TCRIT, bit 14 is  
set to ‘1’ if TA is greater than TUPPER and bit 13 is set to  
5.1.3  
AMBIENT TEMPERATURE  
REGISTER (TA)  
The MCP9804 uses a band gap temperature sensor  
circuit to output analog voltage proportional to absolute  
temperature. An internal  ADC is used to convert the  
analog voltage to a digital word. The digital word is  
loaded to a 16-bit read-only Ambient Temperature  
register (TA) that contains 13-bit temperature data in  
two’s complement format.  
1’ if TA is less than TLOWER  
.
The TA register bit assignment and boundary  
conditions are described in Register 5-4.  
The TA register bits (TA<12:0>) are double-buffered.  
Therefore, the user can access the register, while in the  
background, the MCP9804 performs an Analog-to-  
Digital conversion. The temperature data from the   
ADC is loaded in parallel to the TA register at tCONV  
refresh rate.  
REGISTER 5-4:  
TA: AMBIENT TEMPERATURE REGISTER (ADDRESS ‘0000 0101’b)(1)  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
(1)  
(1)  
(1)  
TA vs. TCRIT  
bit 15  
TA vs. TUPPER  
TA vs. TLOWER  
SIGN  
27 °C  
26 °C  
25 °C  
24 °C  
bit 8  
R-0  
23 °C  
R-0  
22 °C  
R-0  
21 °C  
R-0  
20 °C  
R-0  
2-1 °C  
R-0  
2-2 °C(2)  
R-0  
2-3 °C(2)  
R-0  
2-4 °C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11-0  
TA vs. TCRIT bit(1)  
0 = TA TCRIT  
1 = TA TCRIT  
TA vs. TUPPER bit(1)  
0= TA TUPPER  
1= TA TUPPER  
TA vs. TLOWER bit(1)  
0= TA TLOWER  
1= TA TLOWER  
SIGN bit  
0= TA 0°C  
1= TA 0°C  
TA: Ambient Temperature bits(2)  
12-bit ambient temperature data in two’s complement format.  
Note 1: Bits 15, 14 and 13 are not affected by the status of the Alert Output Configuration (CONFIG<5:0> bits,  
Register 5-2).  
2: Bits 2, 1 and 0 may remain clear at ‘0’ depending on the status of the Resolution register (Register 5-7).  
The power-up default is 0.25°C/bit; bits 1 and 0 remain clear ‘0’.  
DS20002203D-page 24  
2009-2018 Microchip Technology Inc.  
MCP9804  
instruction code, outlined in Example 5-1, shows the  
communication flow; also see Figure 5-5 for the timing  
diagram.  
5.1.3.1  
TA Bits to Temperature Conversion  
To convert the TA bits to decimal temperature, the  
upper three boundary bits (TA<15:13>) must be  
masked out. Then, determine the SIGN bit (bit 12) to  
check positive or negative temperature, shift the bits  
accordingly, and combine the upper and lower bytes of  
the 16-bit register. The upper byte contains data for  
temperatures greater than +32°C while the lower byte  
contains data for temperature less than +32°C, includ-  
ing fractional data. When combining the upper and  
lower bytes, the upper byte must be right-shifted by  
4 bits (or multiply by 24) and the lower byte must be left-  
shifted by 4 bits (or multiply by 2-4). Adding the results  
of the shifted values provides the temperature data in  
decimal format (see Equation 5-1).  
EQUATION 5-1:  
BYTES TO  
TEMPERATURE  
CONVERSION  
Temperature TA 0°C  
= UpperByte 2 + LowerByte 2  
4
4  
T
A
Temperature 0°C  
= 256 UpperByte 2 + LowerByte 2  
4
4  
T
A
Where:  
TA = Ambient Temperature (°C)  
UpperByte = TA bit 15 to bit 8  
LowerByte = TA bit 7 to bit 0  
The temperature bits are in two’s complement format,  
therefore, positive temperature data and negative tem-  
perature data are computed differently. Equation 5-1  
shows the temperature computation. The example  
EXAMPLE 5-1:  
SAMPLE INSTRUCTION CODE  
2
This example routine assumes the variables and I C™ communication subroutines are predefined  
(see Appendix A: “Source Code”):  
i2c_start();  
// send START command  
i2c_write (AddressByte & 0xFE);  
//WRITE Command (see Section 4.1.4 “Address Byte”)  
//also, make sure bit 0 is cleared ‘0’  
i2c_write(0x05);  
// Write T Register Address  
A
i2c_start();  
//Repeat START  
i2c_write(AddressByte | 0x01);  
// READ Command (see Section 4.1.4 “Address Byte”)  
//also, make sure bit 0 is Set ‘1’  
UpperByte = i2c_read(ACK);  
//and Send ACK bit  
// READ 8 bits  
LowerByte = i2c_read(NAK);  
//and Send NAK bit  
// READ 8 bits  
i2c_stop();  
// send STOP command  
//Convert the temperature data  
//First Check flag bits  
if ((UpperByte & 0x80) == 0x80){  
}
//T T  
A
CRIT  
if ((UpperByte & 0x40) == 0x40){  
}
//T > T  
A
UPPER  
LOWER  
if ((UpperByte & 0x20) == 0x20){  
}
//T < T  
A
UpperByte = UpperByte & 0x1F;  
if ((UpperByte & 0x10) == 0x10){  
//Clear flag bits  
//T < 0°C  
A
UpperByte = UpperByte & 0x0F;//Clear SIGN  
Temperature = 256 - (UpperByte x 16 + LowerByte / 16);  
}else  
Temperature = (UpperByte x 16 + LowerByte / 16);  
//Temperature = Ambient Temperature (°C)  
//T  
0°C  
A
2009-2018 Microchip Technology Inc.  
DS20002203D-page 25  
MCP9804  
1
2
3
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
1
7
0
8
1
Note:  
It is not necessary to  
select the Register  
Pointer if it was set from  
the previous read/write.  
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
0
0
1
W
Address Byte  
TA Pointer  
MCP9804  
MCP9804  
1
2
3
1
4
1
5
6
7
8
1
0
2
3
0
4
0
5
0
6
0
7
0
8
1
1
1
2
0
3
0
4
1
5
0
6
1
7
0
8
0
SCL  
SDA  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
0
S
0
0
P
R
Address Byte  
MSB Data  
LSB Data  
Master  
MCP9804  
Master  
FIGURE 5-5:  
Timing Diagram for Reading +25.25°C Temperature from the TA Register (see  
Section 4.0 “Serial Communication”)  
DS20002203D-page 26  
2009-2018 Microchip Technology Inc.  
MCP9804  
5.1.4  
MANUFACTURER ID REGISTER  
This register is used to identify the manufacturer of the  
device in order to perform manufacturer-specific  
operations. The Manufacturer ID for the MCP9804 is  
0x0054 (hexadecimal).  
REGISTER 5-5:  
MANUFACTURER ID REGISTER – READ-ONLY (ADDRESS ‘0000 0110’b)  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Manufacturer ID  
bit 15  
R-0  
bit 8  
bit 0  
R-1  
R-0  
R-1  
R-0  
R-1  
R-0  
R-0  
Manufacturer ID  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
Device Manufacturer Identification bits  
1
0
2
0
3
1
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
1
7
1
8
0
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous  
read/write.  
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
W
Address Byte  
Manufacturer ID Pointer  
MCP9804  
MCP9804  
1
0
2
0
3
1
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
1
0
2
1
3
0
4
1
5
0
6
1
7
0
8
0
SCL  
SDA  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
S
R
P
Address Byte  
MSB Data  
LSB Data  
Master  
Master  
MCP9804  
FIGURE 5-6:  
Timing Diagram for Reading the Manufacturer ID Register (see Section 4.0 “Serial  
Communication”)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 27  
MCP9804  
5.1.5  
DEVICE ID AND REVISION  
REGISTER  
The upper byte of this register is used to specify the  
device identification and the lower byte is used to  
specify the device revision. The Device ID for the  
MCP9804 is 0x02 (hex).  
The revision begins with 0x00 (hex) for the first release,  
with the number being incremented as revised versions  
are released.  
REGISTER 5-6:  
DEVICE ID AND DEVICE REVISION – READ-ONLY (ADDRESS ‘0000 0111’b)  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-1  
R-0  
Device ID  
bit 15  
R-0  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-1  
Device Revision  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Device ID: Bit 15 to bit 8 are used for device ID  
Device Revision: Bit 7 to bit 0 are used for device revision  
1
0
2
0
3
1
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
1
7
1
8
1
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous  
read/write.  
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
W
Address Byte  
Device ID Pointer  
MCP9804  
MCP9804  
1
0
2
0
3
1
4
1
5
6
7
8
1
2
0
3
0
4
0
5
0
6
0
7
1
8
1
2
0
3
0
4
5
0
6
0
7
0
8
0
SCL  
SDA  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
0
0
S
R
0
0
P
Address Byte  
MSB Data  
LSB Data  
Master  
Master  
MCP9804  
FIGURE 5-7:  
Timing Diagram for Reading Device ID and Device Revision Register (see  
Section 4.0 “Serial Communication”)  
DS20002203D-page 28  
2009-2018 Microchip Technology Inc.  
MCP9804  
5.1.6  
This register allows the user to change the sensor  
resolution (see Section 5.2.4 “Temperature  
RESOLUTION REGISTER  
Resolution”). The POR default resolution is  
+0.0625°C. The selected resolution is also reflected in  
the Capability register (see Register 5-2).  
REGISTER 5-7:  
RESOLUTION REGISTER (ADDRESS ‘0000 1000’b)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
Resolution  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘0’  
Resolution bits  
00=LSB = +0.5°C (tCONV = 30 ms typical)  
01=LSB = +0.25°C (tCONV = 65 ms typical)  
10=LSB = +0.125°C (tCONV = 130 ms typical)  
11=LSB = +0.0625°C (power-up default, tCONV = 250 ms typical)  
1
0
2
0
3
1
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
1
6
0
7
8
0
1
0
2
0
3
0
4
0
5
0
6
0
7
8
1
SCL  
A
C
K
A
C
K
A
C
K
A
2
A
1
A
0
S
W
0
SDA  
1
P
Address Byte  
Resolution Pointer  
Data  
MCP9804  
MCP9804  
MCP9804  
FIGURE 5-8:  
Timing Diagram for Changing TA Resolution to +0.0625°C <0000 0011>b (see  
Section 4.0 “Serial Communication”)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 29  
MCP9804  
5.2  
SENSOR FEATURE DESCRIPTION  
VDD  
5.2.1  
SHUTDOWN MODE  
MCP9804  
Shutdown mode disables all power consuming  
activities (including temperature sampling operations)  
while leaving the serial interface active. This mode is  
selected by setting bit 8 of CONFIG to ‘1’. In this mode,  
the device consumes ISHDN. It remains in this mode  
until bit 8 is cleared to ‘0’ to enable Continuous  
Conversion mode or until power is recycled.  
RPU  
Alert Output  
The Shutdown bit (bit 8) cannot be set to ‘1’ while the  
CONFIG<7:6> bits (Lock bits) are set to ‘1’. However, it  
can be cleared to ‘0’ or returned to Continuous  
Conversion mode while locked.  
FIGURE 5-9:  
Configuration.  
Active-Low Alert Output  
The status of the Alert output can be read using  
CONFIG<4> (Alert Output Status bit). This bit cannot  
be set to ‘1’ in Shutdown mode.  
In Shutdown mode, all registers can be read or written.  
However, the serial bus activity increases the shutdown  
current. In addition, if the device is in shutdown while  
the Alert pin is asserted, the device will retain the active  
state during shutdown. This increases the shutdown  
current due to the additional Alert output current.  
Bits 7 and 6 of the CONFIG register can be used to lock  
the TUPPER, TLOWER and TCRIT registers. These bits  
prevent false triggers at the Alert output due to an  
accidental rewrite to these registers.  
The Alert output can also be used as a critical tempera-  
ture output using bit 2 of CONFIG (Alert Output Select  
bit). When this feature is selected, the Alert output  
becomes a comparator output. In this mode, the  
interrupt output configuration (Alert Output Mode bit,  
CONFIG<0>) is ignored.  
5.2.2  
TEMPERATURE HYSTERESIS  
(THYST  
)
A hysteresis of 0°C, +1.5°C, +3°C or +6°C can be  
selected for the TUPPER, TLOWER and TCRIT temperate  
boundaries, using bits 10 and 9 of CONFIG. The  
hysteresis applies for decreasing temperature only (hot  
to cold) or as temperature drifts below the specified  
limit.  
5.2.3.1  
Comparator Mode  
Comparator mode is selected using bit 0 of CONFIG. In  
this mode, the Alert output is asserted as active-high or  
active-low, using bit 1 of CONFIG. Figure 5-10 shows  
the conditions that toggle the Alert output.  
The Hysteresis bits cannot be changed if either of the  
Lock bits (CONFIG<7:6) are set to ‘1’.  
The TUPPER, TLOWER and TCRIT boundary conditions  
are described graphically in Figure 5-10.  
If the device enters Shutdown mode with asserted Alert  
output, the output remains asserted during Shutdown  
mode. The device must be operating in Continuous  
5.2.3  
ALERT OUTPUT CONFIGURATION  
Conversion mode for tCONV. The TA vs. TUPPER  
,
The Alert output can be enabled by using bit 3 of the  
CONFIG register (Alert Output Control bit) and can be  
configured as either a comparator output or as an Inter-  
rupt Output mode using bit 0 of CONFIG (Alert Output  
Mode bit). The polarity can also be specified as active-  
high or active-low using bit 1 of CONFIG (Alert Polarity  
bit). This is an open-drain output and requires a pull-up  
resistor.  
TLOWER and TCRIT boundary conditions need to be  
satisfied in order for the Alert output to deassert.  
Comparator mode is useful for thermostat type  
applications, such as turning on a cooling fan or  
triggering a system shutdown when the temperature  
exceeds a safe operating range.  
When the ambient temperature increases above the  
critical temperature limit, the Alert output is forced to a  
comparator output (regardless of CONFIG<0>). When  
the temperature drifts below the critical temperature  
limit minus hysteresis, the Alert output automatically  
returns to the state specified by CONFIG<0> bit.  
DS20002203D-page 30  
2009-2018 Microchip Technology Inc.  
MCP9804  
5.2.3.2  
Interrupt Mode  
5.2.4  
TEMPERATURE RESOLUTION  
In Interrupt mode, the Alert output is asserted as active-  
high or active-low (depending on the polarity  
configuration) when TA drifts above or below TUPPER  
and TLOWER limits. The output is deasserted by setting  
bit 5 (Interrupt Clear bit) of CONFIG. Shutting down the  
device will not reset or deassert the Alert output. This  
mode cannot be selected when the Alert output is used  
as a critical temperature output only, using bit 2 of  
CONFIG.  
The MCP9804 is capable of providing temperature  
data with +0.5°C to +0.0625°C resolution. The resolu-  
tion can be selected using the Resolution register  
(Register 5-7). It is located at address, ‘00001000’b,  
and it provides measurement flexibility. A +0.0625°C  
resolution is set as a POR default by the factory.  
TABLE 5-2:  
TEMPERATURE  
CONVERSION TIME  
tCONV  
(ms)  
Samples/sec  
(typical)  
This mode is designed for interrupt driven  
microcontroller-based systems. The microcontroller  
receiving the interrupt will have to Acknowledge the  
interrupt by setting bit 5 of the CONFIG register from the  
MCP9804.  
Resolution  
+0.5°C  
+0.25°C  
+0.125°C  
30  
65  
33  
15  
7
130  
250  
+0.0625°C  
4
(Power-up Default)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 31  
MCP9804  
TCRIT – THYST  
TUPPER – THYST  
TCRIT  
TUPPER – THYST  
TUPPER  
TA  
TLOWER – THYST  
TLOWER  
TLOWER – THYST  
Comparator  
Interrupt  
S/w Int. Clear  
Critical Only  
Comparator  
Interrupt  
S/w Int. Clear  
Critical Only  
Notes: 1  
2
1
3
4
3 5 6  
7
4
2
Comparator Interrupt  
Critical  
TA Bits  
14  
Alert Output Boundary  
Conditions  
Notes  
Alert Output (Active-Low/High)  
15  
13  
1
2
3
4
5
6
TA  TLOWER  
High/Low  
Low/High  
Low/High  
High/Low  
Low/High  
Low/High  
Low/High  
Low/High  
Low/High  
Low/High  
High/Low  
High/Low  
High/Low  
High/Low  
Low/High  
0
0
0
0
1
0
0
1
0
1
0
1
0
0
0
TA TLOWER – THYST  
TA  TUPPER  
TA TUPPER – THYST  
TA TCRIT  
When TA TCRIT, the Alert output is forced to Comparator mode and the CONFIG<0> (Alert  
Output Mode bit) is ignored until TA TCRIT – THYST. In the Interrupt mode, if the interrupt is not  
cleared (bit 5 of CONFIG), as shown in the diagram at Note 6, then Alert will remain asserted at  
Note 7 until the interrupt is cleared by the controller.  
7
TA TCRIT – THYST  
Low/High  
High/Low  
High/Low  
0
1
0
FIGURE 5-10:  
Alert Output Conditions  
DS20002203D-page 32  
2009-2018 Microchip Technology Inc.  
MCP9804  
5.3  
Summary of Power-on Default  
The MCP9804 has an internal Power-on Reset (POR)  
circuit. If the power supply voltage, VDD, glitches below  
the VPOR threshold, the device resets the registers to  
the power-on default settings.  
Table 5-3 shows the power-on default summary for the  
Temperature Sensor registers.  
TABLE 5-3:  
POWER-ON RESET DEFAULTS  
Registers  
Default Register  
Data (Hexadecimal)  
Power-Up Default  
Register Description  
Address  
(Hexadecimal)  
Register Name  
0x01  
CONFIG  
0x0000  
Comparator Mode  
Active-Low Output  
Alert and Critical Output  
Output Disabled  
Alert Not Asserted  
Interrupt Cleared  
Alert Limits Unlocked  
Critical Limit Unlocked  
Continuous Conversion  
0°C Hysteresis  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
TUPPER  
0x0000  
0x0000  
0x0000  
0x0000  
0x0054  
0x0201  
0x03  
0°C  
TLOWER  
0°C  
TCRIT  
0°C  
TA  
0°C  
Manufacturer ID  
Device ID/Device Revision  
Resolution  
0x0054 (hex)  
0x0201 (hex)  
0x03 (hex)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 33  
MCP9804  
NOTES:  
DS20002203D-page 34  
2009-2018 Microchip Technology Inc.  
MCP9804  
A temperature accuracy error of approximately +0.5°C  
could result from self-heating if the communication pins  
sink/source the maximum current specified.  
6.0  
6.1  
APPLICATIONS INFORMATION  
Layout Considerations  
For example, if the event output is loaded to maximum  
IOL, Equation 6-1 can be used to determine the effect  
of self-heating.  
The MCP9804 does not require any additional  
components besides the master controller in order to  
measure temperature. However, it is recommended  
that a decoupling capacitor of 0.1 µF to 1 µF be used  
between the VDD and GND pins. A high-frequency  
ceramic capacitor is recommended. It is necessary for  
the capacitor to be located as close as possible to the  
power and ground pins of the device in order to provide  
effective noise protection.  
EQUATION 6-1:  
EFFECT OF  
SELF-HEATING  
T
= V  
I  
+ V  
I  
+ V  
I   
JA DD DD  
OL_SDA OL_SDA  
OL_Alert OL_Alert  
Where:  
T= TJ – TA  
In addition, good PCB layout is key for better thermal  
conduction from the PCB temperature to the sensor  
die. For good temperature sensitivity, add a ground  
layer under the device pins, as shown in Figure 6-1.  
TJ = Junction Temperature  
TA = Ambient Temperature  
JA = Package Thermal Resistance  
VOL_Alert, SDA = Alert and SDA Output VOL  
(0.4 Vmax  
IOL_Alert, SDA = Alert and SDA Output IOL  
(3 mAmax  
)
6.2  
Thermal Considerations  
A potential for self-heating errors can exist if the  
MCP9804 SDA, SCL and Event lines are heavily  
loaded with pull-ups (high current). Typically, the  
self-heating error is negligible because of the relatively  
small current consumption of the MCP9804.  
)
At room temperature (TA = +25°C) with maximum  
IDD = 500 µA and VDD = 3.6V, the self-heating due to  
power dissipation Tis +0.2°C for the DFN-8 package  
and +0.5°C for the TSSOP-8 package.  
VDD  
A0  
SDA  
SCL  
EP9  
Alert  
A1  
A2  
GND  
FIGURE 6-1:  
DFN Package Layout (Top View)  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 35  
MCP9804  
NOTES:  
DS20002203D-page 36  
2009-2018 Microchip Technology Inc.  
MCP9804  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead DFN (2 x 3)  
XXX  
YWW  
NN  
AET  
132  
25  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
9804E  
132256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 37  
MCP9804  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆMꢆꢙꢚꢛꢚꢜ !ꢆ""ꢆ#ꢒꢅ$ꢆ%ꢍꢏꢑ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
9
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
ꢏꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
M
M
ꢚꢁꢏ.  
,
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
ꢓꢏ  
,ꢏ  
(
5
=
ꢀꢁ+ꢚ  
ꢀꢁ.ꢚ  
ꢚꢁꢏꢚ  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁ..  
ꢀꢁꢜ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
ꢚꢁꢒꢚ  
M
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢀꢏ+0  
DS20002203D-page 38  
2009-2018 Microchip Technology Inc.  
MCP9804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 39  
MCP9804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002203D-page 40  
2009-2018 Microchip Technology Inc.  
MCP9804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 41  
MCP9804  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002203D-page 42  
2009-2018 Microchip Technology Inc.  
MCP9804  
Software License Agreement  
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the  
Company’s customer, for use solely and exclusively with products manufactured by the Company.  
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.  
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil  
liability for the breach of the terms and conditions of this license.  
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-  
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-  
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR  
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.  
APPENDIX A: SOURCE CODE  
/********************************************************************  
FileName:  
Processor:  
Complier:  
Company:  
I2C.c  
PIC18 Microcontrollers  
Microchip C18 (for PIC18) or C30 (for PIC24)  
Microchip Technology, Inc.  
#include <p18cxxx.h> // This code is developed for PIC18F2550  
//It can be modified to be used with any PICmicro with MSSP module  
/** PRIVATE PROTOTYPES *********************************************/  
void i2c_init(void);  
void i2c_start(void);  
void i2c_repStart(void);  
void i2c_stop(void);  
unsigned char i2c_write( unsigned char i2cWriteData );  
unsigned char i2c_read( unsigned char ack );  
/********************************************************************  
*
*
*
*
*
Function Name: i2c_init  
Return Value:  
Parameters:  
Description:  
void  
Enable SSP  
This function sets up the SSP1 module on a  
PIC18CXXX device for use with a Microchip I2C  
********************************************************************/  
void i2c_init(void) {  
TRISBbits.TRISB0 = 1;  
TRISBbits.TRISB1 = 1;  
// Digital Output (make it input only when reading data)  
// Digital Output  
SSPCON1 = 0x28;  
SSPCON2 = 0x00;  
SSPSTAT = 0x80;  
// enable I2C Master mode  
// clear control bits  
// disable slew rate control; disable SMBus  
SSPADD = 19;  
// set baud rate to 100 kHz (Fosc = 48 MHz)  
PIR1bits.SSPIF = 0;  
PIR2bits.BCLIF = 0;  
SSPCON2bits.SEN = 0;  
// force idle condition  
}
2009-2018 Microchip Technology Inc.  
DS20002203D-page 43  
MCP9804  
/********************************************************************  
*
*
*
*
Function Name:  
Return Value:  
Parameters:  
i2c_start  
void  
void  
Description:  
Send I2C Start Command  
********************************************************************/  
void i2c_start(void) {  
PIR1bits.SSPIF = 0; //clear flag  
while (SSPSTATbits.BF );  
// wait for idle condition  
// initiate START condition  
// wait for a flag to be set  
SSPCON2bits.SEN = 1;  
while (!PIR1bits.SSPIF) ;  
PIR1bits.SSPIF = 0; // clear flag  
}
/********************************************************************  
*
*
*
*
*
Function Name:  
Return Value:  
Parameters:  
i2c_repStart  
void  
void  
Description:  
Resend I2C Start Command  
********************************************************************/  
void i2c_repStart(void) {  
PIR1bits.SSPIF = 0; // clear flag  
while ( SSPSTATbits.BF ) ; // wait for idle condition  
SSPCON2bits.RSEN = 1;  
// initiate Repeated START condition  
while (!PIR1bits.SSPIF) ; // wait for a flag to be set  
PIR1bits.SSPIF = 0; // clear flag  
}
/********************************************************************  
*
*
*
*
*
Function Name:  
Return Value:  
Parameters:  
i2c_stop  
void  
void  
Description:  
Send I2C Stop command  
********************************************************************/  
void i2c_stop(void) {  
PIR1bits.SSPIF = 0; // clear flag  
while ( SSPSTATbits.BF ) ; // wait for idle condition  
SSPCON2bits.PEN = 1;  
// Initiate STOP condition  
while (!PIR1bits.SSPIF) ; // wait for a flag to be set  
PIR1bits.SSPIF = 0; // clear flag  
}
DS20002203D-page 44  
2009-2018 Microchip Technology Inc.  
MCP9804  
/********************************************************************  
*
*
*
*
*
Function Name:  
Return Value:  
Parameters:  
i2c_write  
Status byte for WCOL detection.  
Single data byte for I2C2 bus.  
This routine writes a single byte to the  
I2C2 bus.  
Description:  
********************************************************************/  
unsigned char i2c_write( unsigned char i2cWriteData ) {  
PIR1bits.SSPIF = 0; // clear interrupt  
while ( SSPSTATbits.BF ) ; // wait for idle condition  
SSPBUF = i2cWriteData;  
ted)  
// Load SSPBUF with i2cWriteData (the value to be transmit-  
while (!PIR1bits.SSPIF) ; // wait for a flag to be set  
PIR1bits.SSPIF = 0; // clear flag  
return ( !SSPCON2bits.ACKSTAT ); // function returns '1' if transmission is acknowledged  
}
/********************************************************************  
*
*
*
*
Function Name:  
Return Value:  
Parameters:  
i2c_read  
contents of SSP2BUF register  
ack = 1 and nak = 0  
Description:  
Read a byte from I2C bus and ACK/NAK device  
********************************************************************/  
unsigned char i2c_read( unsigned char ack ) {  
unsigned char i2cReadData;  
PIR1bits.SSPIF = 0;// clear interrupt  
while ( SSPSTATbits.BF ) ; // wait for idle condition  
SSPCON2bits.RCEN = 1;  
// enable receive mode  
while (!PIR1bits.SSPIF) ; // wait for a flag to be set  
PIR1bits.SSPIF = 0;// clear flag  
i2cReadData = SSPBUF;  
if ( ack ) {  
// Read SSPBUF and put it in i2cReadData  
// if ack=1  
SSPCON2bits.ACKDT = 0; //  
} else {  
SSPCON2bits.ACKDT = 1; //  
then transmit an Acknowledge  
otherwise transmit a Not Acknowledge  
}
SSPCON2bits.ACKEN = 1;  
// send acknowledge sequence  
while (!PIR1bits.SSPIF) ; // wait for a flag to be set  
PIR1bits.SSPIF = 0;// clear flag  
return( i2cReadData );  
// return the value read from SSPBUF  
}
2009-2018 Microchip Technology Inc.  
DS20002203D-page 45  
MCP9804  
NOTES:  
DS20002203D-page 46  
2009-2018 Microchip Technology Inc.  
MCP9804  
APPENDIX B: REVISION HISTORY  
Revision D (April 2018)  
The following is the list of modifications:  
1. Updated the “Sensor Serial Interface Timing  
Specifications” table.  
2. Various typographical edits.  
Revision C (January 2012)  
The following is the list of modifications:  
1. Typographical edits were made to the “Digital  
Input/Output Pin Characteristics” table.  
2. The “Sensor Serial Interface Timing  
Specifications” table is updated with the 400  
kHz timing specification.  
3. Added typical specifications for accuracy drift  
and repeatability.  
Revision B (December 2009)  
The following is the list of modifications:  
1. Updated the resolution parameter in the  
“Temperature Sensor DC Characteristics”  
table.  
2. Updated Figure 5-7.  
3. Updated Figure 5-10.  
4. Updated Source Code in Appendix A.  
Revision A (September 2009)  
• Original release of this document.  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 47  
MCP9804  
NOTES:  
DS20002203D-page 48  
2009-2018 Microchip Technology Inc.  
MCP9804  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
-X  
/XX  
a) MCP9804-E/MC:Extended Temperature,  
8LD DFN package  
Tape and Reel  
and/or  
Alternate Pinout  
Temperature Package  
Range  
b) MCP9804-E/MS:Extended Temperature,  
8LD MSOP package  
c) MCP9804T-E/MC:Tape and Reel,  
Extended Temperature,  
Device:  
MCP9804: Digital Temperature Sensor  
MCP9804T: Digital Temperature Sensor (Tape and Reel)  
8LD DFN package  
d) MCP9804T-E/MS:Tape and Reel,  
Extended Temperature,  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
8LD MSOP package.  
MC  
MS  
=
=
Plastic Dual Flat No-Lead (DFN) 2x3, 8-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 49  
MCP9804  
NOTES:  
DS20002203D-page 50  
2009-2018 Microchip Technology Inc.  
MCP9804  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA,  
and ZENA are trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2009-2018, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-2859-6  
== ISO/TS 16949 ==  
2009-2018 Microchip Technology Inc.  
DS20002203D-page 51  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Tel: 49-2129-3766400  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Italy - Padova  
Tel: 39-049-7625286  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Norway - Trondheim  
Tel: 47-7289-7561  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20002203D-page 52  
2018 Microchip Technology Inc.  
10/10/17  

相关型号:

MCP9804T-E/MCVAO

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Rectangular, Surface Mount
MICROCHIP

MCP9804T-E/MS

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804T-E/MSBBB

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Square, Surface Mount
MICROCHIP

MCP9805

Memory Module Digital Temperature Sensor
MICROCHIP

MCP9805-BE/MC

Memory Module Digital Temperature Sensor
MICROCHIP

MCP9805-BE/P

Resistor-Programmable Temperature Switch, -40C to +125C, 8-PDIP, TUBE
MICROCHIP

MCP9805-BE/ST

Memory Module Digital Temperature Sensor
MICROCHIP

MCP9805-BEMC

DIGITAL TEMP SENSOR-SERIAL, 11BIT(s), 3Cel, RECTANGULAR, SURFACE MOUNT, 2 X 3 MM, PLASTIC, DFN-8
MICROCHIP

MCP9805-BEST

暂无描述
MICROCHIP

MCP9805-TBEMC

DIGITAL TEMP SENSOR-SERIAL, 11BIT(s), 3Cel, RECTANGULAR, SURFACE MOUNT, 2 X 3 MM, PLASTIC, DFN-8
MICROCHIP

MCP9805-TBEST

DIGITAL TEMP SENSOR-SERIAL, 11BIT(s), 3Cel, RECTANGULAR, SURFACE MOUNT, 4.40 MM, PLASTIC, MO-153, TSSOP-8
MICROCHIP

MCP9805T-BE/MC

Memory Module Digital Temperature Sensor
MICROCHIP