MCP98242T-CE/MC [MICROCHIP]

2-Wire Interface Temperature Sensor with EEPROM, -40C to +125C, 8-DFN, T/R;
MCP98242T-CE/MC
型号: MCP98242T-CE/MC
厂家: MICROCHIP    MICROCHIP
描述:

2-Wire Interface Temperature Sensor with EEPROM, -40C to +125C, 8-DFN, T/R

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 输出元件 传感器 换能器
文件: 总56页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP98242  
Memory Module Temperature Sensor w/EEPROM for SPD  
Features:  
Description:  
Temperature Sensor + 256 Byte Serial EEPROM  
• EEPROM for Serial Presence Detect (SPD)  
• Optimized for Voltage Range: 3.0V to 3.6V  
• Shutdown/Standby Current: 3 µA (maximum)  
• 2-wire Interface: I2C™/SMBus Compatible  
Microchip Technology Inc.’s MCP98242 digital  
temperature sensor converts temperature from -40°C  
and +125°C to a digital word. This sensor meets  
JEDEC Specification JC42.4 Mobile Platform Memory  
Module Thermal Sensor Component. It provides an  
accuracy of ±0.5°C/±1°C (typical/maximum) from  
+75°C to +95°C. In addition, this device has an internal  
256 Byte EEPROM which can be used to store memory  
module and vendor information.  
• Available Packages: DFN-8, TDFN-8, UDFN-8,  
TSSOP-8  
Temperature Sensor Features:  
The MCP98242 digital temperature sensor comes with  
user-programmable registers that provide flexibility for  
DIMM temperature-sensing applications. The registers  
allow user-selectable settings such as Shutdown or  
Low-Power modes and the specification of  
temperature event and critical output boundaries.  
When the temperature changes beyond the specified  
boundary limits, the MCP98242 outputs an Event  
signal. The user has the option of setting the Event  
output signal polarity as either an active-low or  
active-high comparator output for thermostat operation,  
or as a temperature event interrupt output for  
microprocessor-based systems. The Event output can  
also be configured as a critical temperature output.  
Temperature-to-Digital Converter  
• Operating Current: 200 µA (typical)  
• Accuracy:  
- ±0.5°C/±1°C (typ./max.) +75°C to +95°C  
- ±1°C/±2°C (typ./max.) +40°C to +125°C  
- ±2°C/±3°C (typ./max.) -20°C to +125°C  
Serial EEPROM Features:  
• Operating Current:  
- Write 1.1 mA (typical) for 3.5 ms (typical)  
- Read 100 µA (typical)  
• Permanent and Reversible Software Write-Protect  
• Software Write Protection for the Lower 128 Bytes  
• Organized as 1 Block of 256 Bytes (256x8)  
The EEPROM is designed specifically for DRAM  
DIMMs (Dual In-line Memory Modules) Serial Presence  
Detect (SPD). The lower 128 bytes (address 00h to  
7Fh) can be Permanent Write-Protected (PWP) or  
Software Reversible Write-Protected (SWP). This  
allows DRAM vendor and product information to be  
stored and write-protected. The upper 128 bytes  
(address 80h to FFh) can be used for general purpose  
data storage. These addresses are not write-protected.  
Typical Applications:  
• DIMM Modules  
• Laptops, Personal Computers and Servers  
• Hard Disk Drives and Other PC Peripherals  
This sensor has an industry standard 2-wire, I2C/  
SMBus compatible serial interface, allowing up to eight  
devices to be controlled in a single serial bus. To  
maintain interchangeability with the I2C/SMBus  
interface the electrical specifications are specified with  
the operating voltage of 3.0V to 3.6V. In addition, a  
40 ms (typical) time out is implemented.  
DIMM MODULE  
Memory  
MCP98242  
Package Types  
Temperature Sensor + EEPROM  
• ±0.5°C (typ.) Sensor  
MCP98242  
8-Pin DFN/TDFN/UDFN (2x3) * 8-Pin TSSOP  
• 256 Byte EEPROM for SPD  
V
A0  
A0  
A1  
V
1
2
3
1
2
8
7
8
7
6
5
DD  
DD  
Event  
SCLK  
SDA  
Event A1  
EP  
9
A2  
A2  
SCLK  
3
4
6
5
GND 4  
SDA  
GND  
3.3VDD SPD  
_
SDA  
SCL  
Event  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
2010 Microchip Technology Inc.  
DS21996D-page 1  
MCP98242  
Notes:  
DS21996D-page 2  
2010 Microchip Technology Inc.  
MCP98242  
†Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
.................................................................................. 6.0V  
DD  
Voltage at all Input/Output pins ............... GND – 0.3V to 6.0V  
Pin A0 ................................................... GND – 0.3V to 12.5V  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied ................-40°C to +125°C  
Junction Temperature (T ) ..........................................+150°C  
J
ESD protection on all pins (HBM:MM) ................. (4 kV:300V)  
Latch-Up Current at each pin (+25°C) ..................... ±200 mA  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground, SDA/SCL pulled-up to  
VDD, and TA = -20°C to +125°C.  
Parameters  
Sym  
Min  
Typ Max Unit  
Conditions  
Power Supply  
Operating Voltage  
Operating Current  
VDD  
3.0  
3.6  
V
Temperature Sensor  
IDD  
IDD  
200  
500  
µA  
µA  
µA  
µA  
EEPROM Inactive  
Sensor in Shutdown mode (for tWC)  
EEPROM write  
EEPROM read  
Shutdown Current  
1100 2000  
IDD  
100  
1
500  
3
Sensor in Shutdown mode  
ISHDN  
EEPROM Inactive,  
Sensor in Shutdown mode  
Power-on-Reset (POR)  
Threshold  
VPOR  
VPOR  
2.3  
1.6  
V
V
Temperature Sensor (VDD falling)  
EEPROM (VDD falling) (see Section 5.4  
“Summary of Temperature Sensor  
Power-on Default”)  
Power Supply Rejection,  
TA = +25°C  
°C/VDD  
°C/VDD  
±0.4  
°C/V VDD = 3.0V to 3.6V  
±0.15  
°C  
VDD = 3.3V+150 mVPP AC (0 to 1 MHz)  
Temperature Sensor Accuracy  
+75°C < TA +95°C  
+40°C < TA +125°C  
-20°C < TA +125°C  
TA -40°C  
TACY  
TACY  
TACY  
TACY  
-1.0 ±0.5 +1.0  
°C  
°C  
°C  
°C  
-2.0  
-3.0  
±1  
±2  
-2  
+2.0  
+3.0  
Conversion Time  
0.25°C/bit  
tCONV  
65  
125  
ms  
15 s/sec (typical) (See Section 5.2.3.3  
“Temperature Resolution”)  
Event Output (Open-drain)  
High-level Current (leakage)  
IOH  
1
µA  
V
VOH = VDD  
IOL= 3 mA  
Low-level Voltage  
VOL  
0.4  
EEPROM  
Write Cycle (byte/page)  
Endurance TA = +25°C  
Write-Protect High Voltage  
Thermal Response  
tWC  
1M  
8
3
5
ms  
12  
cycles VDD = 5V, Note 1  
Applied at A0 pin, Note 1  
VHI_WP  
V
Note 1: Characterized but not production tested.  
2010 Microchip Technology Inc.  
DS21996D-page 3  
MCP98242  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground, SDA/SCL pulled-up to  
VDD, and TA = -20°C to +125°C.  
Parameters  
Sym  
tRES  
tRES  
Min  
Typ Max Unit  
Conditions  
Time to 63% (89°C)  
25°C (Air) to 125°C (oil bath)  
DFN  
0.7  
1.4  
s
s
TSSOP  
Note 1: Characterized but not production tested.  
INPUT/OUTPUT PIN DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground and  
TA = -20°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Serial Input/Output (SCL, SDA, A0, A1, A2)  
Input  
High-level Voltage  
Low-level Voltage  
Input Current  
VIH  
VIL  
IIN  
2.1  
0.8  
±5  
V
V
µA  
Output (SDA)  
Low-level Voltage  
VOL  
IOH  
IOL  
6
5
0.4  
1
V
IOL= 3 mA  
High-level Current (leakage)  
Low-level Current  
µA VOH = VDD  
mA VOL = 0.6V  
pF  
Capacitance  
CIN  
SDA and SCL Inputs  
Hysteresis  
VHYST  
0.5  
V
Note: The serial inputs do not load the serial bus for VDD range of 1.8V to 5.5V.  
GRAPHICAL SYMBOL DESCRIPTION  
OUTPUT  
INPUT  
VDD  
Voltage  
Current  
Voltage  
Current  
VDD  
VIH  
VOL  
VIL  
IOL  
IIN  
IOH  
time  
time  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
(Note 1)  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
TA  
TA  
TA  
-20  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
DS21996D-page 4  
2010 Microchip Technology Inc.  
MCP98242  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground.  
Parameters  
Thermal Resistance, 8L-DFN  
Thermal Resistance, 8L-TDFN  
Thermal Resistance, 8L-TSSOP  
Sym  
JA  
Min  
Typ  
84.5  
41  
Max  
Units  
°C/W  
°C/W  
°C/W  
Conditions  
JA  
JA  
139  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
0
SENSOR AND EEPROM SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground, TA = -20°C to +125°C,  
CL = 80 pF, and all limits measured to 50% point.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
2-Wire I2C™/SMBus-Compatible Interface  
Serial Port Frequency  
Low Clock  
fSC  
tLOW  
tHIGH  
tR  
10  
4.7  
4.0  
100  
kHz I2C™/SMBus  
µs  
µs  
High Clock  
Rise Time  
1000  
ns  
(VIL MAX - 0.15V) to (VIH MIN  
+
-
0.15V)  
Fall Time  
tF  
300  
ns  
(VIH MIN + 0.15V) to (VIL MAX  
0.15V)  
Data Setup Before SCLK High  
Data Hold After SCLK Low  
Start Condition Setup Time  
Start Condition Hold Time  
Stop Condition Setup Time  
Bus Idle  
tSU-DATA  
tH-DATA  
tSU-START  
tH-START  
tSU-STOP  
tB_FREE  
tOUT  
250  
300  
4.7  
4.0  
4.0  
4.7  
25  
40  
50  
ns  
ns  
µs  
µs  
µs  
µs  
Time Out  
ms Temp. Sensor Only (characterized  
but not production tested)  
TIMING DIAGRAM  
Start Condition  
Data Transmission  
Stop Condition  
2010 Microchip Technology Inc.  
DS21996D-page 5  
MCP98242  
NOTES:  
DS21996D-page 6  
2010 Microchip Technology Inc.  
MCP98242  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground, SDA/SCL pulled-up to VDD, and  
TA = -20°C to +125°C.  
3.0  
2.0  
10000  
1000  
100  
10  
VDD = 3.3V to 3.6V  
VDD= 3.0V to 3.6V  
Spec. Limits  
1.0  
EEPROM Write (Sensor in Shutdown Mode)  
0.0  
Sensor (EEPROM Inactive)  
-1.0  
-2.0  
-3.0  
EEPROM Read (Sensor in Shutdown Mode)  
1
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
T
A (°C)  
TA (°C)  
FIGURE 2-1:  
Average Temperature  
FIGURE 2-4:  
Supply Current vs.  
Accuracy.  
Temperature.  
70%  
3.00  
TA = +95°C  
DD = 3.3V  
221 units  
VDD = 3.0V to 3.6V  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
V
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature Accuracy (°C)  
TA (°C )  
FIGURE 2-5:  
Shutdown Current vs.  
FIGURE 2-2:  
Temperature Accuracy  
Temperature.  
Histogram, TA = +95°C.  
70%  
3
2.5  
2
TA = +75°C  
VDD = 3.3V  
221 units  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
1.5  
1
0.5  
0
-40 -20  
0
20  
40  
60  
80 100 120  
TA (°C)  
Temperature Accuracy (°C)  
FIGURE 2-6:  
Power-on Reset Threshold  
FIGURE 2-3:  
Temperature Accuracy  
Voltage vs. Temperature.  
Histogram, TA = +75°C.  
2010 Microchip Technology Inc.  
DS21996D-page 7  
MCP98242  
Note: Unless otherwise indicated, VDD = 3.0V to 3.6V, GND = Ground, SDA/SCL pulled-up to VDD, and  
TA = -20°C to +125°C.  
48  
0.4  
0.3  
0.2  
0.1  
0
VDD = 3.0V to 3.6V  
VDD = 3.0V to 3.6V  
OL = 3 mA  
42 VOL = 0.6V  
I
36  
30  
24  
18  
12  
SDA  
Event  
60  
6
-40 -20  
0
20  
40  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TA (°C)  
T
A (°C)  
FIGURE 2-7:  
Event and SDA VOL vs.  
FIGURE 2-10:  
SDA IOL vs. Temperature.  
Temperature.  
3.0  
2.0  
125  
VDD = 3.0V to 3.6V  
110  
95  
80  
65  
50  
35  
VDD = 3.0V  
1.0  
Δ°C/ΔVDD = 0.4°C/V  
VDD = 3.6V  
0.0  
-1.0  
-2.0  
-3.0  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TA (°C)  
TA (°C)  
FIGURE 2-11:  
Temperature Accuracy vs.  
FIGURE 2-8:  
Temperature.  
Conversion Rate vs.  
VDD  
.
120%  
100%  
80%  
60%  
40%  
20%  
0%  
1.0  
TA = +25°C  
Δ°C/ΔVDD, VDD = 3.3V + 150 mVPP (AC)  
0.5  
0.0  
TSSOP-8  
DFN-8  
-0.5  
-1.0  
22°C (Air) to 125°C (Oil bath)  
No decoupling capacitor  
100  
0  
1M  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
-2  
0
2
4
6
8
10 12 14 16  
Time (s)  
Frequency (Hz)  
FIGURE 2-12:  
Response.  
Package Thermal  
FIGURE 2-9:  
Frequency.  
Power Supply Rejection vs.  
DS21996D-page 8  
2010 Microchip Technology Inc.  
MCP98242  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLES  
DFN/TDFN/  
UDFN  
TSSOP  
Symbol  
Pin Function  
Slave Address  
Package Type  
8-Pin TSSOP  
1
2
3
4
5
6
7
8
9
1
2
A0  
A1  
Slave Address  
V
1
2
3
4
8
7
6
5
A0  
A1  
DD  
3
A2  
Slave Address  
Event  
SCLK  
SDA  
4
GND  
SDA  
SCLK  
Event  
VDD  
EP  
Ground  
A2  
5
Serial Data Line  
Serial Clock Line  
Temperature Alert Output  
Power Pin  
GND  
6
7
8
Exposed Thermal Pad (EP);  
must be connected to VSS  
.
3.1  
Address Pins (A2, A1, A0)  
3.4  
Serial Clock Line (SCLK)  
These pins are device address input pins.  
The SCLK is a clock input pin. All communication and  
timing is relative to the signal on this pin. The clock is  
generated by the host or master controller on the bus.  
(See Section 4.0 “Serial Communication”).  
The address pins correspond to the Least Significant  
bits (LSb) of address bits. The Most Significant bits  
(MSb) (A6, A5, A4, A3). This is shown in Table 3-2.  
TABLE 3-2:  
Device  
MCP98242 ADDRESS BYTE  
3.5  
Open-Drain Temperature Alert  
Output (Event)  
Address Code  
Slave  
Address  
The MCP98242 Event pin is an open-drain output. The  
device outputs a signal when the ambient temperature  
goes beyond the user-programmed temperature limit.  
(see Section 5.2.3 “Event Output Configuration”).  
A6 A5 A4 A3 A2 A1 A0  
Sensor  
0
1
0
0
0
1
1
1
1
1
0
0
EEPROM  
X
X
X
EEPROM  
Write-Protect  
3.6  
Power Pin (V  
DD)  
Note:  
User-selectable address is shown by X.  
VDD is the power pin. The operating voltage range, as  
specified in the DC electrical specification table, is  
applied on this pin.  
3.2  
Ground Pin (GND)  
The GND pin is the system ground pin.  
3.7  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the GND pin; they  
must be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.3  
Serial Data Line (SDA)  
SDA is a bidirectional input/output pin, used to serially  
transmit data to/from the host controller. This pin  
requires a pull-up resistor. (See Section 4.0 “Serial  
Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 9  
MCP98242  
NOTES:  
DS21996D-page 10  
2010 Microchip Technology Inc.  
MCP98242  
4.1.1  
DATA TRANSFER  
4.0  
4.1  
SERIAL COMMUNICATION  
2-Wire SMBus/Standard Mode  
I C™ Protocol-Compatible  
Interface  
Data transfers are initiated by a Start condition (Start),  
followed by a 7-bit device address and a read/write bit.  
An Acknowledge (ACK) from the slave confirms the  
reception of each byte. Each access must be  
terminated by a Stop condition (Stop).  
2
The MCP98242 serial clock input (SCLK) and the  
bidirectional serial data line (SDA) form a 2-wire  
bidirectional SMBus/Standard mode I2C compatible  
communication port (refer to the Input/Output Pin DC  
Characteristics Table and Sensor And EEPROM Serial  
Interface Timing Specifications Table).  
Repeated communication is initiated after tB-FREE  
.
This device does not support sequential register read/  
write. Each register needs to be addressed using the  
Register Pointer.  
This device supports the Receive Protocol. The  
register can be specified using the pointer for the initial  
read. Each repeated read or receive begins with a Start  
condition and address byte. The MCP98242 retains the  
previously selected register. Therefore, it outputs data  
from the previously-specified register (repeated pointer  
specification is not necessary).  
The following bus protocol has been defined:  
TABLE 4-1:  
MCP98242 SERIAL BUS  
PROTOCOL DESCRIPTIONS  
Term  
Description  
Master  
The device that controls the serial bus,  
typically a microcontroller.  
4.1.2  
MASTER/SLAVE  
The bus is controlled by a master device (typically a  
microcontroller) that controls the bus access and  
generates the Start and Stop conditions. The  
MCP98242 is a slave device and does not control other  
devices in the bus. Both master and slave devices can  
operate as either transmitter or receiver. However, the  
master device determines which mode is activated.  
Slave  
The device addressed by the master,  
such as the MCP98242.  
Transmitter Device sending data to the bus.  
Receiver  
Start  
Device receiving data from the bus.  
A unique signal from master to initiate  
serial interface with a slave.  
4.1.3  
START/STOP CONDITION  
Stop  
A unique signal from the master to  
terminate serial interface from a slave.  
A high-to-low transition of the SDA line (while SCLK is  
high) is the Start condition. All data transfers must be  
preceded by a Start condition from the master. If a Start  
condition is generated during data transfer, the  
MCP98242 resets and accepts the new Start condition.  
Read/Write A read or write to the MCP98242  
registers.  
ACK  
A receiver Acknowledges (ACK) the  
reception of each byte by polling the  
bus.  
A low-to-high transition of the SDA line (while SCLK is  
high) signifies a Stop condition. If a Stop condition is  
introduced during data transmission, the MCP98242  
releases the bus. All data transfers are ended by a Stop  
condition from the master.  
NAK  
A receiver Not-Acknowledges (NAK) or  
releases the bus to show End-of-Data  
(EOD).  
Busy  
Communication is not possible  
because the bus is in use.  
4.1.4  
ADDRESS BYTE  
Not Busy  
The bus is in the Idle state, both SDA  
and SCLK remain high.  
Following the Start condition, the host must transmit an  
8-bit address byte to the MCP98242. The address for  
the  
MCP98242  
Temperature  
Sensor  
is  
Data Valid SDA must remain stable before SCLK  
becomes high in order for a data bit to  
be considered valid. During normal  
data transfers, SDA only changes state  
while SCLK is low.  
0011,A2,A1,A0’ in binary, where the A2, A1 and A0  
bits are set externally by connecting the corresponding  
pins to VDD 1’ or GND ‘0’. The 7-bit address transmit-  
ted in the serial bit stream must match the selected  
address for the MCP98242 to respond with an ACK. Bit  
8 in the address byte is a read/write bit. Setting this bit  
to ‘1’ commands a read operation, while ‘0’ commands  
a write operation (see Figure 4-1).  
2010 Microchip Technology Inc.  
DS21996D-page 11  
MCP98242  
4.1.6  
ACKNOWLEDGE (ACK)  
Address Byte  
Each receiving device, when addressed, is obliged to  
generate an ACK bit after the reception of each byte.  
The master device must generate an extra clock pulse  
for ACK to be recognized.  
SCLK  
SDA  
1
2
3
4
5
6
7
8
9
A
C
K
0 0 1 1 A2 A1 A0  
The acknowledging device pulls down the SDA line for  
tSU-DATA before the low-to-high transition of SCLK from  
the master. SDA also needs to remain pulled down for  
Start  
Slave  
Address  
Code  
R/W  
Address  
t
H-DATA after a high-to-low transition of SCLK.  
MCP98242 Response  
During read, the master must signal an End-of-Data  
(EOD) to the slave by not generating an ACK bit (NAK)  
once the last bit has been clocked out of the slave. In  
this case, the slave will leave the data line released to  
enable the master to generate the Stop condition.  
FIGURE 4-1:  
Device Addressing.  
4.1.5 DATA VALID  
After the Start condition, each bit of data in  
transmission needs to be settled for a time specified by  
tSU-DATA before SCLK toggles from low-to-high (see  
“Sensor And EEPROM Serial Interface Timing  
Specifications” on Page 5).  
4.1.7  
TIME OUT (MCP98242)  
If the SCLK stays low or high for time specified by tOUT  
,
the MCP98242 temperature sensor resets the serial  
interface. This dictates the minimum clock speed as  
specified in the SMBus specification. However, the  
EEPROM does not reset the serial interface.  
Therefore, the master can hold the clock indefinitely to  
process data from the EEPROM.  
DS21996D-page 12  
2010 Microchip Technology Inc.  
MCP98242  
registers and a 2-wire I2C/SMBus protocol compatible  
serial interface. Figure 5-1 shows a block diagram of  
the register structure.  
5.0  
FUNCTIONAL DESCRIPTION  
The MCP98242 temperature sensors consists of a  
band gap type temperature sensor, a Delta-Sigma Ana-  
log-to-Digital Converter (ADC), user-programmable  
Temperature Sensor  
EEPROM  
Hysteresis  
Shutdown  
Critical Trip Lock  
Alarm Win. Lock Bit  
Clear Event  
HV Generator  
Event Status  
Output Control  
Critical Event only  
Write-  
Protected  
Array  
Band-Gap  
Temperature  
Sensor  
Event Polarity  
(00h-7Fh)  
Event Comp/Int  
Address  
Decoder  
X
Configuration  
Temperature  
 ADC  
Standard  
Array  
T
UPPER  
(80h-FFh)  
T
LOWER  
CRIT  
0.5°C/bit  
0.25°C/bit  
0.125°C/bit  
0.0625°C/bit  
T
Memory  
Control  
Logic  
Manufacturer ID  
Device ID/Rev  
Resolution  
Capability  
Write-Protect  
Circuitry  
Selected Resolution  
Temp. Range  
Accuracy  
Address Decoder  
Y
Output Feature  
Sense Amp  
R/W Control  
Register  
Pointer  
2
SMBus/Standard I C™  
Interface  
SCL  
SDA  
Functional Block Diagram.  
VDD  
Event  
GND  
A0  
A2  
A1  
FIGURE 5-1:  
2010 Microchip Technology Inc.  
DS21996D-page 13  
MCP98242  
The Capability register is used to provide bits  
describing the MCP98242’s capability in measurement  
resolution, measurement range and device accuracy.  
The device Configuration register provides access to  
configure the MCP98242’s various features. These  
registers are described in further detail in the following  
sections.  
5.1  
Registers  
The MCP98242 has several registers that are  
user-accessible. These registers include the Capability  
register, Configuration register, Event Temperature  
Upper-Boundary and Lower-Boundary Trip registers,  
Critical Temperature Trip register, Temperature  
register, Manufacturer Identification register and  
Device Identification register.  
The registers are accessed by sending a Register  
Pointer to the MCP98242 using the serial interface.  
This is an 8-bit write-only pointer. However, the three  
Least Significant bits are used as pointers and all  
unused bits (bits 7-3) need to be cleared or set to ‘0’.  
Register 5-1 describes the pointer or the address of  
each register.  
The Temperature register is read-only, used to access  
the ambient temperature data. The data is loaded in  
parallel to this register after tCONV. The Event  
Temperature Upper-Boundary and Lower-Boundary  
Trip registers are read/writes. If the ambient  
temperature drifts beyond the user-specified limits, the  
MCP98242 outputs a signal using the Event pin (refer  
to Section 5.2.3 “Event Output Configuration”). In  
addition, the Critical Temperature Trip register is used  
to provide an additional critical temperature limit.  
REGISTER 5-1:  
REGISTER POINTER (WRITE ONLY)  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
Pointer Bits  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
Writable Bits: Write ‘0’’  
Bits 7-4 must always be cleared or written to ‘0’. This device has additional registers that are reserved  
for test and calibration. If these registers are accessed, the device may not perform according to the  
specification.  
bit 3-0  
Pointer Bits:  
0000= Capability register  
0001= Configuration register (CONFIG)  
0010= Event Temperature Upper-Boundary Trip register (TUPPER  
)
0011= Event Temperature Lower-Boundary Trip register (TLOWER  
)
0100 = Critical Temperature Trip register (TCRIT  
0101= Temperature register (TA)  
0110= Manufacturer ID register  
0111= Device ID/Revision register  
1000= Resolution register  
)
1XXX= Reserved  
DS21996D-page 14  
2010 Microchip Technology Inc.  
MCP98242  
TABLE 5-1:  
BIT ASSIGNMENT SUMMARY FOR ALL REGISTERS (SEE SECTION 5.4)  
Register  
Pointer  
(Hex)  
Bit Assignment  
MSB/  
LSB  
7
6
5
4
3
2
1
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
LSB  
0
0
0
0
0
0
0
0
0
0
0
Resolution  
0
Range  
Accuracy  
Event  
SHDN  
Evt Pol  
0
Crt Loc  
0
0
Win Loc  
0
0
Int Clr  
0
0
Hysteresis  
Evt Stat  
SIGN  
Evt Cnt  
Evt Sel  
Evt Pol  
7
6
5
4
2 °C  
2 °C  
2 °C  
2 °C  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
7
6
5
4
0
0
0
SIGN  
2 °C  
2 °C  
2 °C  
2 °C  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
7
6
5
4
0
0
0
SIGN  
2 °C  
2 °C  
2 °C  
2 °C  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
7
6
5
4
T
T  
T
T  
T
T  
SIGN  
2 °C  
2 °C  
2 °C  
2 °C  
A
CRIT  
A
UPPER  
A
LOWER  
3
2
1
0
-1  
-2  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
2010 Microchip Technology Inc.  
DS21996D-page 15  
MCP98242  
5.1.1  
CAPABILITY REGISTER  
This is a read-only register used to identify the  
temperature sensor capability. In this case, the  
MCP98242 is capable of providing temperature at  
0.25°C resolution, measuring temperature below and  
above 0°C, providing ±1°C and ±2°C accuracy over the  
active and monitor temperature ranges (respectively)  
and providing user-programmable temperature event  
boundary trip limits. Register 5-2 describes the  
Capability register. These functions are described in  
further detail in the following sections.  
REGISTER 5-2:  
CAPABILITY REGISTER (READ-ONLY) ADDRESS ‘0000 0000’b  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0  
R-1  
R-1  
R-1  
R-1  
Resolution  
Meas Range  
Accuracy  
Temp Alarm  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-3  
Unimplemented: Read as ‘0’  
Resolution:  
00= 0.5°C  
01= 0.25°C (power-up default)  
10= 0.125°C  
11= 0.0625°C  
These bits reflect the selected resolution (see Section 5.2.3.3 “Temperature Resolution”)  
bit 2  
bit 1  
Temperature Measurement Range (Meas. Range):  
0= TA 0(decimal) for temperature below 0°C  
1= The part can measure temperature below 0°C (power-up default)  
Accuracy:  
0= Accuracy ±2°C from +75°C to +95°C (Active Range) and ±3°C from +40°C to +125°C  
(Monitor Range)  
1= Accuracy ±1°C from +75°C to +95°C (Active Range) and ±2°C from +40°C to +125°C  
(Monitor Range)  
bit 0  
Temperature Alarm:  
0= No defined function (This bit will never be cleared or set to ‘0’).  
1= The part has temperature boundary trip limits (TUPPER/TLOWER/TCRIT registers) and a  
temperautre event output (JC 42.4 required feature).  
DS21996D-page 16  
2010 Microchip Technology Inc.  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
0 0 0 0 0 0 0 0  
W
2 1 0  
Address Byte  
Capability Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
A
2
A
1 0  
A
S
0 0 1 1  
0 0 0 0 0 0 0 0  
0 0 0 0 1  
1 1 1  
P
R
SDA  
MSB Data  
Address Byte  
LSB Data  
Master  
MCP98242  
Master  
FIGURE 5-2:  
Timing Diagram for Reading the Capability Register (See Section 4.0 “Serial  
Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 17  
MCP98242  
The Continuous Conversion or Shutdown mode is  
selected using bit 8. In Shutdown mode, the band gap  
5.1.2  
SENSOR CONFIGURATION  
REGISTER (CONFIG)  
temperature  
sensor  
circuit  
stops  
converting  
The MCP98242 has a 16-bit Configuration register  
(CONFIG) that allows the user to set various functions  
for a robust temperature monitoring system. Bits 10  
thru 0 are used to select Event output boundary  
hysteresis, device Shutdown or Low-Power mode,  
temperature boundary and critical temperature lock,  
temperature Event output enable/disable. In addition,  
the user can select the Event output condition (output  
set for TUPPER and TLOWER temperature boundary or  
TCRIT only), read Event output status and set Event  
output polarity and mode (Comparator Output or  
Interrupt Output mode).  
temperature and the Ambient Temperature register  
(TA) holds the previous successfully converted  
temperature data (see Section 5.2.1 “Shutdown  
Mode”). Bits  
7 and 6 are used to lock the  
user-specified boundaries TUPPER, TLOWER and TCRIT  
to prevent an accidental rewrite. Bits 5 thru 0 are used  
to configure the temperature Event output pin. All  
functions are described in Register 5-3 (see  
Section 5.2.3 “Event Output Configuration”).  
The temperature hysteresis bits 10 and 9 can be used  
to prevent output chatter when the ambient  
temperature  
gradually  
changes  
beyond  
the  
user-specified  
temperature  
boundary  
(see  
Section 5.2.2 “Temperature Hysteresis (THYST)”.  
REGISTER 5-3:  
CONFIGURATION REGISTER (CONFIG) ADDRESS ‘0000 0001’b  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SHDN  
THYST  
bit 15  
bit 8  
R/W-0  
Crit. Lock  
bit 7  
R/W-0  
R/W-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Event Mod.  
bit 0  
Win. Lock  
Int. Clear  
Event Stat. Event Cnt.  
Event Sel.  
Event Pol.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-9  
Unimplements: Read as ‘0’  
TUPPER and TLOWER Limit Hysteresis (THYST):  
00= 0°C (power-up default)  
01= 1.5°C  
10= 3.0°C  
11= 6.0°C  
This bit cannot be altered when either of the lock bits are set (bit 6 and bit 7), refer to Section 5.2.3  
“Event Output Configuration”.  
bit 8  
Shutdown Mode (SHDN):  
0= Continuous Conversion (power-up default)  
1= Shutdown (Low-Power mode)  
In shutdown, all power-consuming activities are disabled, though all registers can be written to or read.  
This bit cannot be set ‘1’ when either of the lock bits is set (bit 6 and bit 7). However, it can be cleared  
0’ for Continuous Conversion while locked. (Refer to Section 5.2.1 “Shutdown Mode”)  
DS21996D-page 18  
2010 Microchip Technology Inc.  
MCP98242  
REGISTER 5-3:  
CONFIGURATION REGISTER (CONFIG) ADDRESS ‘0000 0001’b  
bit 7  
TCRIT Lock Bit (Crit. Lock):  
0= Unlocked. TCRIT register can be written. (power-up default)  
1= Locked. TCRIT register cannot be written  
When enabled, this bit remains set ‘1’ or locked until cleared by internal Reset (Section 5.4 “Sum-  
mary of Temperature Sensor Power-on Default”). This bit does not require a double-write.  
bit 6  
TUPPER and TLOWER Window Lock Bit (Win. Lock):  
0= Unlocked. TUPPER and TLOWER registers can be written. (power-up default)  
1= Locked. TUPPER and TLOWER registers cannot be written  
When enabled, this bit remains set ‘1’ or locked until cleared by internal Reset (Section 5.4 “Sum-  
mary of Temperature Sensor Power-on Default”). This bit does not require a double-write.  
bit 5  
bit 4  
bit 3  
Interrupt Clear (Int. Clear) Bit:  
0= No effect (power-up default)  
1= Clear interrupt output. When read this bit returns ‘0’  
Event Output Status (Event Stat.) Bit:  
0= Event output is not asserted by the device (power-up default)  
1= Event output is asserted as a comparator/Interrupt or critical temperature output  
Event Output Control (Event Cnt.) Bit:  
0= Disabled (power-up default)  
1= Enabled  
This bit cannot be altered when either of the lock bits is set (bit 6 and bit 7).  
bit 2  
Event Output Select (Event Sel.) Bit:  
0= Event output for TUPPER, TLOWER and TCRIT (power-up default)  
1= TA > TCRIT only. (TUPPER and TLOWER temperature boundaries are disabled.)  
When the Alarm Window Lock bit is set, this bit cannot be altered until unlocked (bit 6).  
bit 1  
bit 0  
Event Output Polarity (Event Pol.) Bit:  
0= Active-low (power-up default)  
1= Active-high  
This bit cannot be altered when either of the lock bits is set (bit 6 and bit 7).  
Event Output Mode (Event Mod.) Bit:  
0= Comparator output (power-up default)  
1= Interrupt output  
This bit cannot be altered when either of the lock bits is set (bit 6 and bit 7).  
2010 Microchip Technology Inc.  
DS21996D-page 19  
MCP98242  
• Writing to the CONFIG Register to Enable the Event Output pin <0000 0000 0000 1000>b.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
W
0 0 0 0 0  
0 0 1  
2 1 0  
Address Byte  
Configuration Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
C
K
0 0 0 0 0  
P
0 0 0  
0 0 0 0 1 0 0 0  
MSB Data  
LSB Data  
MCP98242  
MCP98242  
• Reading the CONFIG Register.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write.  
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
0 0 0 0 0  
0 0 1  
W
2 1 0  
Address Byte  
Configuration Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
A
A
A
0 0 0 0 0 0 0 0  
0 0 0 0 1  
S 0 0 1 1  
R
0 0 0  
P
SDA  
2 1 0  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
MCP98242  
FIGURE 5-3:  
Timing Diagram for Writing and Reading from the Configuration Register (See  
Section 4.0 “Serial Communication”).  
DS21996D-page 20  
2010 Microchip Technology Inc.  
MCP98242  
5.1.3  
UPPER/LOWER/CRITICAL  
TEMPERATURE LIMIT REGISTERS  
(TUPPER/TLOWER/TCRIT  
)
The MCP98242 has a 16-bit read/write Event output  
Temperature Upper-Boundary Trip register (TUPPER), a  
16-bit Lower-Boundary Trip register (TLOWER) and a  
16-bit Critical Boundary Trip register (TCRIT) that  
contains 11-bit data in two’s complement format  
(0.25 °C). This data represents the maximum and  
minimum temperature boundary or temperature  
window that can be used to monitor ambient  
temperature. If this feature is enabled (Section 5.1.2  
“Sensor Configuration Register (CONFIG)”) and the  
ambient temperature exceeds the specified boundary  
or window, the MCP98242 asserts an Event output.  
(Refer  
to  
Section 5.2.3  
“Event  
Output  
Configuration”).  
REGISTER 5-4:  
UPPER/LOWER/CRITICAL TEMPERATURE LIMIT REGISTER (TUPPER/TLOWER  
CRIT) ADDRESS ‘0000 0010’b/‘0000 0011’b‘0000 0100’b  
/
T
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
27°C  
R/W-0  
26°C  
R/W-0  
25°C  
R/W-0  
24°C  
Sign  
bit 15  
bit 8  
bit 0  
R/W-0  
23°C  
R/W-0  
22°C  
R/W-0  
21°C  
R/W-0  
20°C  
R/W-0  
2-1°C  
R/W-0  
2-2°C  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
Sign:  
0= TA 0°C  
1= TA 0°C  
bit 11-2  
TUPPER/TLOWER/TCRIT:  
Temperature boundary trip data in two’s complement format.  
bit 1-0  
Unimplemented: Read as ‘0’  
Note:  
This table shows two 16-bit registers for TUPPER, TLOWER and TCRIT located at ‘0000 0010b’,  
0000 0011b’ and ‘0000 0100b’, respectively.  
2010 Microchip Technology Inc.  
DS21996D-page 21  
MCP98242  
• Writing 90°C to the TUPPER Register <0000 0101 1010 0000>b.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
W
0 0 0 0 0 0 1 0  
2 1 0  
Address Byte  
TUPPER Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
C
K
0 0 0 0 0  
P
1 0 1  
1 0 1 0 0 0 0 0  
MSB Data  
LSB Data  
MCP98242  
MCP98242  
• Reading from the TUPPER Register.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set from  
the previous read/write.  
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
0 0 0 0 0  
0 1 0  
W
2 1 0  
Address Byte  
TUPPER Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
A
A
A
0 0 0 0 0 1 0 1  
1 0 1 0 0  
S 0 0 1 1  
R
0 0 0  
P
SDA  
2 1 0  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
MCP98242  
FIGURE 5-4:  
Timing Diagram for Writing and Reading from the TUPPER Register (See Section 4.0  
“Serial Communication”).  
DS21996D-page 22  
2010 Microchip Technology Inc.  
MCP98242  
5.1.4  
AMBIENT TEMPERATURE  
REGISTER (TA)  
EQUATION 5-1:  
DECIMAL CODE TO  
TEMPERATURE  
CONVERSION  
The MCP98242 uses a band gap temperature sensor  
circuit to output analog voltage proportional to absolute  
temperature. An internal  ADC is used to convert the  
analog voltage to a digital word. The converter  
resolution is set to 0.25 °C + sign (11-bit data). The  
digital word is loaded to a 16-bit read-only Ambient  
Temperature register (TA) that contains 11-bit  
temperature data in two’s complement format.  
TA = Code 24  
Where:  
TA = Ambient Temperature (°C)  
Code = MCP98242 temperature output  
magnitude in decimal (bits 0-11)  
The TA register bits (bits 12 thru 0) are double-buffered.  
Therefore, the user can access the register while, in the  
background, the MCP98242 performs an analog-to-  
digital conversion. The temperature data from the   
ADC is loaded in parallel to the TA register at tCONV  
refresh rate.  
In addition, the TA register uses three bits (bits 15, 14  
and 13) to reflect the Event pin state. This allows the  
user to identify the cause of the Event output trigger  
(see Section 5.2.3 “Event Output Configuration”);  
bit 15 is set to ‘1’ if TA is greater than or equal to TCRIT  
bit 14 is set to ‘1’ if TA is greater than TUPPER and bit 13  
is set to ‘1’ if TA is less than TLOWER  
,
The TA magnitude in decimal to ambient temperature  
conversion is shown in Equation 5-1:  
.
The TA register bit assignment and boundary  
conditions are described in Register 5-5.  
REGISTER 5-5:  
AMBIENT TEMPERATURE REGISTER (TA) ADDRESS ‘0000 0101’b  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TA vs. TCRIT TA vs. TUPPER TA vs. TLOWER  
bit 15  
SIGN  
27 °C  
26 °C  
25 °C  
24 °C  
bit 8  
R-0  
23 °C  
R-0  
22 °C  
R-0  
21 °C  
R-0  
20 °C  
R-0  
2-1 °C  
R-0  
2-2 °C  
R-0  
R-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
TA vs. TCRIT ( 1) Bit:  
0 = TA TCRIT  
1 = TA TCRIT  
TA vs. TUPPER ( 1) Bit:  
0= TA TUPPER  
1= TA TUPPER  
TA vs. TLOWER ( 1) Bit:  
0= TA TLOWER  
1= TA TLOWER  
SIGN Bit:  
0= TA 0°C  
1= TA 0°C  
bit 11-2  
bit 1-0  
Ambient Temperature (TA) Bits:  
10-bit Ambient Temperature data in two’s complement format.  
TA: Data in 2’s complement format. Depending on the status of the Resolution Register (Register 5-8),  
these bits may display 2-3°C (0.125°C) and 2-4°C (0.0625°C), respectively.  
Note 1: Not affected by the status of the Event output Configuration (bits 5 to 0 of CONFIG), Register 5-3.  
2010 Microchip Technology Inc.  
DS21996D-page 23  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write.  
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
0 0 0 0 0  
1 0 1  
W
2 1 0  
Address Byte  
TA Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
A
A
A
0 0 0 0 0  
S 0 0 1 1  
R
0 0 1  
1 0 0 1 0 1 0 0  
P
SDA  
2 1 0  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
MCP98242  
FIGURE 5-5:  
Timing Diagram for Reading +25.25°C Temperature from the TA Register (See  
Section 4.0 “Serial Communication”).  
DS21996D-page 24  
2010 Microchip Technology Inc.  
MCP98242  
5.1.5  
MANUFACTURER ID REGISTER  
This register is used to identify the manufacturer of the  
device in order to perform manufacturer specific  
operation. The Manufacturer ID for the MCP98242 is  
0x0054 (hexadecimal).  
REGISTER 5-6:  
MANUFACTURER ID REGISTER (READ-ONLY) ADDRESS ‘0000 0110’b  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Manufacturer ID  
bit 15  
R-0  
bit 8  
bit 0  
R-1  
R-0  
R-1  
R-0  
R-1  
R-0  
R-0  
Manufacturer ID  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
.
Device Manufacturer Identification Number  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write.  
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
0 0 0 0  
0
1 1 0  
W
2 1 0  
Address Byte  
Manuf. ID Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
A
A
A
0 0 0 0 0 0 0 0  
0 1 0 1 0  
S 0 0 1 1  
R
1 0 0  
P
SDA  
2 1 0  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
MCP98242  
FIGURE 5-6:  
Timing Diagram for Reading the Manufacturer ID Register (See Section 4.0 “Serial  
Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 25  
MCP98242  
5.1.6  
DEVICE ID AND REVISION  
REGISTER  
The upper byte of this register is used to specify the  
device identification and the lower byte is used to  
specify device revision. The device ID for the  
MCP98242 is 0x21 (hex).  
The revision begins with 0x00 (hex) for the first release,  
with the number being incremented as revised versions  
are released.  
REGISTER 5-7:  
DEVICE ID AND DEVICE REVISION (READ-ONLY) ADDRESS ‘0000 0111’b  
R-0  
R-0  
R-1  
R-0  
R-0  
R-0  
R-0  
R-0  
Device ID  
bit 15  
R-0  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-1  
Device Revision  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Device ID: Bit 15 to bit 8 are used for device ID  
Device Revision: Bit 7 to bit 0 are used for device revision  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write.  
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
0 0 0 0 0 1 1 1  
W
2 1 0  
Address Byte  
Device ID Pointer  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
A
A
A
0 0 1 0 0 0 0 0  
S 0 0 1 1  
0 0 0 0 0 0 0 0  
P
R
SDA  
2 1 0  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
MCP98242  
FIGURE 5-7:  
Timing Diagram for Reading Device ID and Device Revision Register (See Section 4.0  
“Serial Communication”).  
DS21996D-page 26  
2010 Microchip Technology Inc.  
MCP98242  
5.1.7  
RESOLUTION REGISTER  
This register allows the user to change the sensor  
resolution (see Section 5.2.3.3 “Temperature  
Resolution”). The POR default resolution is 0.25°C.  
The selected resolution is also reflected in the  
Capability register (see Register 5-2).  
REGISTER 5-8:  
RESOLUTION ADDRESS ‘0000 1000’b  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
Resolution  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘0’  
Resolution:  
00= LSB = 0.5°C (tCONV = 30 ms typical)  
01= LSB = 0.25°C (power-up default, tCONV = 65 ms typical)  
10= LSB = 0.125°C (tCONV = 130 ms typical)  
11= LSB = 0.0625°C (tCONV = 260 ms typical)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
A
C
K
A
A
A
S 0 0 1 1  
W
0 0 0 0 1 0 0 0  
0 0 0 0 0  
SDA  
0 1 1  
P
2 1 0  
Address Byte  
Resolution Pointer  
Data  
MCP98242  
MCP98242  
MCP98242  
FIGURE 5-8:  
Timing Diagram for Changing TA Resolution to 0.0625°C <0000 0011>b (See  
Section 4.0 “Serial Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 27  
MCP98242  
The Event output can also be used as a critical  
temperature output using bit 2 of CONFIG (critical  
output only). When this feature is selected, the Event  
output becomes a comparator output. In this mode, the  
interrupt output configuration (bit 0 of CONFIG) is  
ignored.  
5.2  
SENSOR FEATURE DESCRIPTION  
5.2.1  
SHUTDOWN MODE  
Shutdown mode disables all power-consuming  
activities (including temperature sampling operations)  
while leaving the serial interface active. This mode is  
selected by setting bit 8 of CONFIG to ‘1’. In this mode,  
the device consumes ISHDN. It remains in this mode  
until bit 8 is cleared ‘0’ to enable Continuous  
Conversion mode, or until power is recycled.  
5.2.3.1  
Comparator Mode  
Comparator mode is selected using bit 0 of CONFIG. In  
this mode, the Event output is asserted as active-high  
or active-low using bit 1 of CONFIG. Figure 5-2 shows  
the conditions that toggle the Event output.  
The Shutdown bit (bit 8) cannot be set to ‘1’ while bits  
6 and 7 of CONFIG (Lock bits) are set to ‘1’. However,  
it can be cleared ‘0’ or returned to Continuous  
Conversion while locked.  
If the device enters Shutdown mode with asserted  
Event output, the output remains asserted during  
Shutdown. The device must be operating in  
Continuous Conversion mode for tCONV; the TA vs.  
TUPPER, TLOWER and TCRIT boundary conditions need  
to be satisfied in order for the Event output to deassert.  
In Shutdown mode, all registers can be read or written.  
However, the serial bus activity increases the shutdown  
current. In addition, if the device is shutdown while the  
Event pin is asserted as active-low or deasserted  
active-low (see Section 5.2.3.1 “Comparator Mode”),  
the device will retain the active-low state. This  
increases the shutdown current due to the additional  
Event output pull-down current.  
Comparator mode is useful for thermostat-type  
applications, such as turning on a cooling fan or  
triggering a system shutdown when the temperature  
exceeds a safe operating range.  
5.2.3.2  
Interrupt Mode  
5.2.2  
TEMPERATURE HYSTERESIS  
(THYST  
A hysteresis of 0°C, 1.5°C, 3°C or 6°C can be selected  
for the TUPPER TLOWER and TCRIT temperate  
)
In the Interrupt mode, the Event output is asserted as  
active-high or active-low (depending on the polarity  
configuration) when TA drifts above or below TUPPER  
and TLOWER limits. The output is deasserted by setting  
bit 5 (Interrupt Clear) of CONFIG. Note that when  
switching from Comparator mode to Interrupt mode, it  
is recommended to send interrupt clear command (set  
bit 5) to reset the interrupt flag. Shutting down the  
device will not reset or deassert the Event output. This  
mode cannot be selected when the Event output is  
used as critical temperature output only, using bit 2 of  
CONFIG. This mode is designed for interrupt driven  
microcontroller-based systems. The microcontroller  
receiving the interrupt will have to acknowledge the  
interrupt by setting bit 5 of CONFIG register from the  
MCP98242.  
,
boundaries using bits 10 and 9 of CONFIG. The  
hysteresis applies for decreasing temperature only (hot  
to cold), or as temperature drifts below the specified  
limit.  
The TUPPER, TLOWER and TCRIT boundary conditions  
are described graphically in Figure 5-2.  
5.2.3  
EVENT OUTPUT CONFIGURATION  
The Event output can be enabled using bit 3 of  
CONFIG (Event output control bit) and can be  
configured as either a comparator output or as Interrupt  
Output mode using bit 0 of CONFIG (Event mode). The  
polarity can also be specified as an active-high or  
active-low using bit 1 of CONFIG (Event polarity).  
5.2.3.3  
Temperature Resolution  
When the ambient temperature increases above the  
critical temperature limit, the Event output is forced to a  
comparator output (regardless of bit 0 of CONFIG).  
When the temperature drifts below the critical  
temperature limit minus hysteresis, the Event output  
automatically returns to the state specified by bit 0 of  
CONFIG.  
The MCP98242 is capable of providing a temperature  
data with 0.5°C to 0.0625°C resolution. The Resolution  
can be selected using the Resolution register  
(Register 5-8) which is located in address  
00001000’b. This address location is not specified in  
JEDEC Standard JC42.4. However, it provides  
additional flexibility while being functionally compatible  
with JC42.4 and provide a 0.25°C resolution at 125 ms  
(maximum). The selected resolution can be read by  
user using bit 4 and bit 3 of the Capability register  
(Register 5-2). A 0.25°C resolution is set as POR  
default by factory.  
The status of the Event output can be read using bit 4  
of CONFIG (Event status).  
Bit 7 and 6 of the CONFIG register can be used to lock  
the TUPPER, TLOWER and TCRIT registers. The bits  
prevent false triggers at the Event output due to an  
accidental rewrite to these registers.  
DS21996D-page 28  
2010 Microchip Technology Inc.  
MCP98242  
TABLE 5-2:  
TEMPERATURE  
CONVERSION TIME  
tCONV  
(ms)  
Samples/sec  
(typical)  
Resolution  
0.5°C  
30  
65  
33  
15  
0.25°C  
(POR default)  
0.125°C  
130  
260  
8
4
0.0625°C  
TCRIT - THYST  
TCRIT  
TUPPER - THYST  
TUPPER - THYST  
TUPPER  
TA  
TLOWER -THYST  
TLOWER  
TLOWER -THYST  
Comparator  
Interrupt  
S/w Int. Clear  
Critical Only  
Note:  
1
3
3
5
1
4
*
6 4  
2
2
Event Output  
Comparator Interrupt  
TA Bits  
14  
Event Output Boundary  
Conditions  
Note  
Critical  
15  
13  
1
2
3
4
5
6
TA  TLOWER  
TA TLOWER - THYST  
TA  TUPPER  
H
L
L
H
L
L
L
L
L
L
L
H
H
H
H
H
L
0
0
0
0
1
0
0
0
1
0
1
1
0
1
0
0
0
0
TA TUPPER - THYST  
TA TCRIT  
TA TCRIT - THYST  
H
*
When TA  TCRIT and TA TCRIT - THYST the Event output is Comparator mode and bits 0 of  
CONFIG (Event output mode) is ignored.  
FIGURE 5-9:  
Event Output Condition.  
2010 Microchip Technology Inc.  
DS21996D-page 29  
MCP98242  
5.3  
EEPROM FEATURE  
DESCRIPTION  
5.3.1  
BYTE WRITE  
To write a byte in the MCP98242 EEPROM, the master  
has to specify the memory location or address. Once  
the address byte is transmitted correctly followed by a  
word address, the word address is stored in the  
EEPROM Address Pointer. The following byte is data  
to be stored in the specified memory location.  
Figure 5-10 shows the timing diagram.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
C
K
A
A
A
S 1 0 1 0  
X
X
X
X
X
W
X
X
X
X
X
X
X
X
X
X
X
P
2 1 0  
Address Byte  
Word Address  
Data  
MCP98242  
MCP98242  
MCP98242  
FIGURE 5-10:  
Timing Diagram for Byte Write (See Section 4.0 “Serial Communication”).  
DS21996D-page 30  
2010 Microchip Technology Inc.  
MCP98242  
5.3.2  
PAGE WRITE  
Note:  
Page write operations are limited to writing  
bytes within a single physical page,  
regardless of the number of bytes actually  
being written. Physical page boundaries  
start at addresses that are integer  
multiples of the page buffer size (or ‘page  
size’) and end at addresses that are  
integer multiples of [page size - 1]. If a  
Page Write command attempts to write  
across a physical page boundary, the  
result is that the data wraps around to the  
beginning of the current page (overwriting  
data previously stored there), instead of  
being written to the next page, as might be  
expected. It is therefore necessary for the  
application software to prevent page write  
operations that would attempt to cross a  
page boundary.  
The write Address Byte, word address and the first data  
byte are transmitted to the MCP98242 in the same way  
as in a byte write. Instead of generating a Stop  
condition, the master transmits up to 15 additional data  
bytes to the MCP98242, which are temporarily stored  
in the on-chip page buffer and will be written into the  
memory after the master has transmitted a Stop  
condition. Upon receipt of each word, the four lower  
order Address Pointer bits are internally incremented  
by one. The higher order four bits of the word address  
remain constant. If the master should transmit more  
than 16 bytes prior to generating the Stop condition, the  
address counter will roll over and the previously  
received data will be overwritten. As with the byte write  
operation, once the Stop condition is received, an  
internal write cycle will begin (Figure 5-11).  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 1 0 1 0  
W
X
X
X
X
X
X
X
X
2 1 0  
Address Byte  
Word Address (n)  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
C
K
A
C
K
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
P
Data at (n)  
Data at (n+1)  
Data at (n+15)  
MCP98242  
Note:  
MCP98242  
‘n’ is the initial address for a page.  
MCP98242  
FIGURE 5-11:  
Timing Diagram for Page Write (See Section 4.0 “Serial Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 31  
MCP98242  
To access write protection, the device address code of  
the Address Byte is set to ‘0110’ instead of ‘1010’.  
The ‘1010’ Address code is used to access the mem-  
ory area and the ‘0110’ address code is used to  
access the write protection. Once the device is write-  
protected it will not acknowledge certain commands.  
Table 5-3 shows the corresponding Address Bytes for  
the write-protect feature.  
5.3.3  
WRITE PROTECTION  
The MCP98242 has a Software Write-Protect (SWP)  
feature that allows the lower half array (addresses  
00h - 7Fh) to be write-protected or permanently  
write-protected (PWP). The write-protected area can  
be cleared by sending Clear Write-Protect (CWP)  
command. However, once the PWP is executed the  
protected memory can not be cleared. The device will  
not respond to the CWP command.  
TABLE 5-3:  
WRITE-PROTECT DEVICE ADDRESSING  
Address Pins  
Address Byte  
Slave Address  
EEPROM  
Operation  
A2  
A1  
A0  
Address Code  
R/W  
A2  
A1  
A0  
SWP  
CWP  
WRITE  
READ  
WRITE  
READ  
WRITE  
READ  
GND GND VHI_A0  
0110  
0
0
1
0
1
0
1
0
1
GND VDD VHI_A0  
0110  
0110  
0
X
1
X
1
X
PWP (Note)  
X
X
X
Note:  
The address pins are ‘X’ or don’t cares. However, the slave address bits need to match the address pins.  
TABLE 5-4:  
Status  
DEVICE RESPONSE WHEN WRITING DATA OR ACCESSING SWP/CWP/PWP  
Command  
ACK Address ACK Data Byte ACK Write Cycle  
Not  
Protected  
SWP/CWP/PWP  
Page/byte write  
SWP  
ACK  
ACK  
X
ACK  
ACK  
X
Data  
X
ACK  
ACK  
Yes  
Yes  
No  
Address  
Protected  
with  
SWP  
NoACK  
ACK  
X
NoACK  
ACK  
NoACK  
ACK  
CWP  
X
X
X
Yes  
Yes  
No  
PWP  
ACK  
ACK  
X
ACK  
Page/byte write lower 128 bytes  
SWP/CWP/PWP  
Page/byte write lower 128 bytes  
ACK  
Address  
X
ACK  
Data  
X
NoACK  
NoACK  
NoACK  
Permanently  
Protected  
NoACK  
ACK  
NoACK  
ACK  
No  
Address  
Data  
No  
Note:  
X is defined as ‘don’t care’.  
DS21996D-page 32  
2010 Microchip Technology Inc.  
MCP98242  
The Slave Address bits need to correspond to the  
address pin logic configuration. For SWP, a high  
voltage VHI_WP needs to be applied to the A0 pin and  
the corresponding slave address needs to be set to ‘1’,  
as shown in Table 5-3. Both A2 and A1 pins are  
grounded and the corresponding slave address bits are  
set to ‘0’.  
5.3.3.1  
Software Write-Protect (SWP)  
The SWP feature is invoked by writing to the  
write-protect register. This is done by sending an  
Address Byte similar to a normal Write command.  
Figure 5-14 shows the timing diagram. SWP can be  
cleared  
using  
the  
CWP  
command.  
See  
Section 5.3.3.2 “Clear Write-Protect (CWP)”.  
The device response in this mode is shown in  
Table 5-4 and Table 5-5.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
C
K
S 0 1 1 0 0 0 1  
X
X
X
X
X
W
X
X
X
X
X
X
X
X
X
X
X
P
Address Byte  
Word Address  
Data  
MCP98242  
MCP98242  
MCP98242  
Note:  
Apply VHI_WP at A0 pin and connect GND to A1 and A2 pins to initiate SWP cycle.  
FIGURE 5-12:  
Communication”).  
Timing Diagram for Setting Software Write-Protect (See Section 4.0 “Serial  
The Slave Address bits need to correspond to the  
address pin logic configuration. For CWP, a high  
voltage VHI_WP needs to be applied to the A0 pin and  
the corresponding slave address needs to be set to ‘1’.  
The A1 pin is set to VDD and the corresponding slave  
address bit is set to ‘1’. And A2 pin is set to ground  
and the corresponding slave address bits are set to ‘0’.  
Table 5-3 shows the bit configuration. The device  
response in this mode is shown in Table 5-4 and  
Table 5-5.  
5.3.3.2  
Clear Write-Protect (CWP)  
The CWP feature is invoked by writing to the clear  
write-protect register. This is done by sending an  
Address Byte similar to a normal Write command.  
Figure 5-14 shows the timing diagram. CWP clears  
SWP only. PWP can not be cleared using this  
command.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
C
K
S 0 1 1 0 0 1 1  
W
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
P
Address Byte  
Word Address  
Data  
MCP98242  
MCP98242  
MCP98242  
Note:  
Apply VHI_WP at A0 pin, apply VDD at A1 pin, connect A2 pin to GND to initiate CWP cycle.  
FIGURE 5-13:  
Timing Diagram for Setting Clear Write-Protect (See Section 4.0 “Serial  
Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 33  
MCP98242  
5.3.3.3  
PWP (Permanent Write-Protect)  
Note: Once the Permanent Write-Protect is  
executed, it cannot be reversed, even if  
the device power is cycled.  
Once the PWP register is written, the lower half of the  
memory will be permanent protected and the device  
will not acknowledge any command. The protected  
area of the memory can not be cleared, reversed, or  
re-written. If a write is attempted to the protected area,  
the device will acknowledge the address byte and word  
address but not the data byte. (See Table 5-4 and  
Table 5-5).  
Unlike SWP and CWP, a VHI_WP is not applied on the  
A0 pin to execute PWP. The state of A2, A1, and A0 is  
user selectable. However, the address pin states need  
to match the slave address bits, as shown in Table 5-3.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
C
K
A
A
A
S 0 1 1 0  
W
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
P
2 1 0  
Address Byte  
Word Address  
Data  
MCP98242  
MCP98242  
MCP98242  
Note:  
Unlike SWP and CWP, a VHI_WP is not applied on the A0 pin to execute PWP.  
FIGURE 5-14:  
Timing Diagram for Setting Permanently Write-Protect (See Section 4.0 “Serial  
Communication”).  
DS21996D-page 34  
2010 Microchip Technology Inc.  
MCP98242  
5.3.4  
READ OPERATION  
Read operations are initiated in the same way as write  
operations, with the exception that the R/W bit of the  
slave address is set to ‘1’. There are three basic types  
of read operations: current address read, random read,  
and sequential read.  
TABLE 5-5:  
Status  
DEVICE RESPONSE WHEN READING SWP/CWP/PWP  
Command  
ACK  
Address  
ACK  
Data Byte  
ACK  
Not Protected  
SWP/CWP/PWP  
SWP  
ACK  
NoACK  
ACK  
X
X
X
X
X
NoACK  
NoACK  
NoACK  
NoACK  
NoACK  
X
X
X
X
X
NoACK  
NoACK  
NoACK  
NoACK  
NoACK  
Protected with SWP  
CWP  
PWP  
ACK  
Permanently Protected  
SWP/CWP/PWP  
NoACK  
Note:  
X is defined as ‘don’t care’.  
5.3.4.1  
Current Address Read  
The MCP98242 contains an address counter that  
maintains the address of the last word accessed,  
internally incremented by ‘1’. Therefore, if the previous  
access (either a read or write operation) was to  
address n, the next current address read operation  
would access data from address n+1. Upon receipt of  
the slave address with R/W bit set to ‘1’, the MCP98242  
issues an Acknowledge and transmits the 8-bit data  
word. The master will not acknowledge (NAK) the  
transfer but does generate a Stop condition and the  
MCP98242 discontinues transmission (Figure 5-15).  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
N
A
K
A
A
A
S 1 0 1 0  
R
0 0 0 0 0 0 0 0  
P
2 1 0  
Address Byte  
Current Word Address  
Master  
MCP98242  
Note:  
In this example, the current word address is the  
previously accessed address location n plus 1.  
FIGURE 5-15:  
Reading Current Word Address (See Section 4.0 “Serial Communication”).  
2010 Microchip Technology Inc.  
DS21996D-page 35  
MCP98242  
5.3.4.2  
Random Read  
Random read operations allow the master to access  
any memory location in a random manner. To perform  
this type of read operation, the word address must first  
be set. This is done by sending the word address to the  
MCP98242 as part of a write operation. Once the word  
address is sent, the master generates a Start condition  
following the Acknowledge. This terminates the write  
operation, but not before the internal Address Pointer is  
set. The master then issues the Address Byte again,  
but with the R/W bit set to a ‘1’. The MCP98242 then  
issues an Acknowledge and transmits the 8-bit data  
word. The master will not acknowledge the transfer but  
does generate a Stop condition and the MCP98242  
discontinues transmission (Figure 5-16).  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 1 0 1 0  
0 0 0 0 0  
0 0 0  
W
2 1 0  
Address Byte  
Word Address (n)  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
N
A
K
A
A
A
S 1 0 1 0  
R
X
X
X
X
X
X
X
X
P
2 1 0  
Address Byte  
Data at (n)  
Master  
MCP98242  
Note:  
In this example, ‘n’ is the current Address Word which ‘00’h and the data is the byte at address ‘n’.  
FIGURE 5-16:  
Timing Diagram for Random Read (See Section 4.0 “Serial Communication”).  
DS21996D-page 36  
2010 Microchip Technology Inc.  
MCP98242  
To provide sequential reads, the MCP98242 contains  
an internal Address Pointer, which is incremented by  
one at the completion of each operation. This Address  
Pointer allows the entire memory contents to be serially  
read during one operation.  
5.3.4.3  
Sequential Read  
Sequential reads are initiated in the same way as a  
random read, with the exception that after the  
MCP98242 transmits the first data byte, the master  
issues an Acknowledge, as opposed to a Stop condi-  
tion in a random read. This directs the MCP98242 to  
transmit the next sequentially addressed 8-bit word  
(Figure 5-17).  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
A
C
K
A
A
A
S 1 0 1 0  
R
X
X
X
X
X
X
X
X
2 1 0  
Data (n)1  
Address Byte  
MCP98242  
MCP98242  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
N
A
K
C
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
P
K
Data at (n+m)(1)  
Data at (n+1)  
Data at (n+2)  
MCP98242  
MCP98242  
Master  
Note 1: ‘n’ is the initial address location and ‘m’ is the final address location (‘n+m’ < 256).  
Timing Diagram for Sequential Read (See Section 4.0 “Serial Communication”).  
FIGURE 5-17:  
5.3.5  
STANDBY MODE  
The design will incorporate a low-power Standby mode  
(ISHDN). Standby mode will be entered after a normal  
termination of any operation and after all internal  
functions are complete. This would include any error  
conditions occurring, such as improper number of clock  
cycles or improper instruction byte as defined  
previously.  
2010 Microchip Technology Inc.  
DS21996D-page 37  
MCP98242  
5.4  
Summary of Temperature Sensor  
Power-on Default  
The MCP98242 temperature sensor has an internal  
Power-on Reset (POR) circuit. If the power supply  
voltage VDD glitches down to the VPOR threshold, the  
device resets the registers to the power-on default  
settings.  
Table 5-6 shows the power-on default summary.  
TABLE 5-6:  
POWER-ON DEFAULTS  
Registers  
Default Register  
Power-up Default  
Data (Hexadecimal)  
Register Description  
Address (Hexadecimal)  
Register Label  
0.25°  
Measures temperature below 0°C  
±1°C accuracy over active range  
Temperature event output  
0x00  
Capability  
0x000F  
Comparator mode  
Active-Low output  
Event and critical output  
Output disabled  
Event not asserted  
Interrupt cleared  
0x01  
CONFIG  
0x0000  
Event limits unlocked  
Critical limit unlocked  
Continuous conversion  
0°C Hysteresis  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
TUPPER  
TLOWER  
0x0000  
0x0000  
0x0000  
0x0000  
0x0054  
0x2001  
0x01  
0°C  
0°C  
TCRIT  
0°C  
TA  
0°C  
Manufacturer ID  
Device ID/ Device Revision  
Resolution  
0x0054 (hex)  
0x2001 (hex)  
0x01 (hex)  
DS21996D-page 38  
2010 Microchip Technology Inc.  
MCP98242  
6.2  
Layout Considerations  
6.0  
6.1  
APPLICATIONS INFORMATION  
Connecting to the Serial Bus  
The MCP98242 does not require any additional  
components besides the master controller in order to  
measure temperature. However, it is recommended  
that a decoupling capacitor of 0.1 µF to 1 µF be used  
between the VDD and GND pins. A high-frequency  
ceramic capacitor is recommended. It is necessary for  
the capacitor to be located as close as possible to the  
power and ground pins of the device in order to provide  
effective noise protection.  
The SDA and SCLK serial interface pins are  
open-drain pins that require pull-up resistors. This  
configuration is shown in Figure 6-1.  
VDD  
MCP98242  
6.3  
Thermal Considerations  
R
R
R
A potential for self-heating errors can exist if the  
MCP98242 SDA, SCLK and Event lines are heavily  
loaded with pull-ups (high current). Typically, the  
self-heating error is negligible because of the relatively  
small current consumption of the MCP98242. A  
temperature accuracy error of approximately 0.5°C  
could result from self-heating if the communication pins  
sink/source the maximum current specified.  
SDA  
SCLK  
Event  
Master  
Slave  
Pull-up Resistors On Serial  
FIGURE 6-1:  
Interface.  
For example, if the Event output is loaded to maximum  
IOL, Equation 6-1 can be used to determine the effect  
of self-heating.  
The number of devices connected to the bus is limited  
only by the maximum rise and fall times of the SDA and  
SCLK lines. Unlike I2C specifications, SMBus does not  
specify a maximum bus capacitance value. Rather, the  
SMBus specification requires that the maximum  
current through the pull-up resistor be 350 µA and  
minimum 100 µA. Because of this, the value of the  
pull-up resistors will vary depending on the system’s  
bias voltage (VDD). The pull-up resistor values for a  
3.3 V system ranges 9 kto 33 k. Minimizing bus  
capacitance is still very important as it directly affects  
the rise and fall times of the SDA and SCLK lines.  
EQUATION 6-1:  
EFFECT OF  
SELF-HEATING  
T
=  V  
I  
+ V  
I  
+ V  
I   
JA DD DD  
OL_Event OL_Event  
OL_SDA OL_SDA  
Where:  
T= TJ - TA  
TJ = Junction Temperature  
TA = Ambient Temperature  
Although SMBus specifications only require the SDA  
and SCLK lines to pull-down 350 µA, with a maximum  
voltage drop of 0.4 V, the MCP98242 is designed to  
meet a maximum voltage drop of 0.4 V, with 3 mA of  
current. This allows lower pull-up resistor values to be  
used, allowing the MCP98242 to handle higher bus  
capacitance. In such applications, all devices on the  
bus must meet the same pull-down current  
requirements.  
JA = Package Thermal Resistance  
VOL_Event, SDA = Event and SDA Output VOL  
(0.4 Vmax  
IOL_Event, SDA = Event and SDA Output IOL  
(3 mAmax  
)
)
At room temperature (TA = +25°C) with maximum  
IDD = 500 µA and VDD = 3.6V, the self-heating due to  
power dissipation Tis 0.2°C for the DFN-8 package  
and 0.5°C for the TSSOP-8 package.  
A possible configuration using multiple devices on the  
SMBus is shown in Figure 6-2.  
SDA SCLK  
MCP98242  
24LCS52  
Temperature  
Sensor  
EEPROM  
FIGURE 6-2:  
SMBus.  
Multiple Devices on DIMM  
2010 Microchip Technology Inc.  
DS21996D-page 39  
MCP98242  
NOTES:  
DS21996D-page 40  
2010 Microchip Technology Inc.  
MCP98242  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (MC)  
Example:  
XXX  
YWW  
NN  
ABJ  
010  
25  
8-Lead TDFN (MNY)  
Example:  
XXX  
YWW  
NN  
ABX  
010  
25  
8-Lead UDFN (MUY)  
Example:  
XXX  
YWW  
NN  
ABX  
010  
25  
Example:  
8-Lead TSSOP (ST)  
242B  
E010  
256  
XXXX  
YYWW  
NNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS21996D-page 41  
MCP98242  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆꢙꢆꢚꢛꢜꢛꢝꢞꢟꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢍꢏꢑꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
ꢭꢄꢃꢏꢇꢢꢮꢯꢯꢮꢢꢣꢩꢣꢪꢡ  
A3  
A1  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢯꢃꢑꢃꢏꢇ  
ꢢꢮꢰ  
ꢰꢱꢢ  
ꢢꢠꢲ  
ꢰꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇꢰ  
ꢂꢃꢏꢖꢘ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢵꢌꢃꢛꢘꢏ  
ꢡꢏꢉꢄꢋꢕꢎꢎꢅ  
ꢧꢕꢄꢏꢉꢖꢏꢅꢩꢘꢃꢖꢚꢄꢌꢇꢇ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢯꢌꢄꢛꢏꢘ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢷꢃꢋꢏꢘ  
ꢣꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅꢯꢌꢄꢛꢏꢘ  
ꢣꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅꢷꢃꢋꢏꢘ  
ꢧꢕꢄꢏꢉꢖꢏꢅꢷꢃꢋꢏꢘ  
ꢠꢀ  
ꢠꢝ  
ꢴꢁꢥꢴꢅꢦꢡꢧ  
ꢴꢁꢶꢴ  
ꢴꢁꢴꢙ  
ꢴꢁꢙꢴꢅꢪꢣꢫ  
ꢙꢁꢴꢴꢅꢦꢡꢧ  
ꢝꢁꢴꢴꢅꢦꢡꢧ  
ꢴꢁꢙꢥ  
ꢴꢁꢞꢴ  
ꢴꢁꢳꢴ  
ꢴꢁꢴꢴ  
ꢀꢁꢴꢴ  
ꢴꢁꢴꢥ  
ꢟꢙ  
ꢣꢙ  
ꢀꢁꢝꢴ  
ꢀꢁꢥꢴ  
ꢴꢁꢙꢴ  
ꢴꢁꢝꢴ  
ꢴꢁꢙꢴ  
ꢀꢁꢥꢥ  
ꢀꢁꢹꢥ  
ꢴꢁꢝꢴ  
ꢴꢁꢥꢴ  
ꢧꢕꢄꢏꢉꢖꢏꢅꢯꢌꢄꢛꢏꢘ  
ꢧꢕꢄꢏꢉꢖꢏꢺꢏꢕꢺꢣꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋ  
ꢑꢒꢊꢃꢉꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢑꢉꢒꢅꢘꢉꢆꢌꢅꢕꢄꢌꢅꢕꢐꢅꢑꢕꢐꢌꢅꢌꢍꢜꢕꢇꢌꢋꢅꢏꢃꢌꢅꢔꢉꢐꢇꢅꢉꢏꢅꢌꢄꢋꢇꢁ  
ꢝꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢃꢇꢅꢇꢉꢗꢅꢇꢃꢄꢛꢈꢊꢉꢏꢌꢋꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅꢠꢡꢢꢣꢅꢤꢀꢞꢁꢥꢢꢁ  
ꢦꢡꢧꢨ ꢦꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢩꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢪꢣꢫꢨ ꢪꢌꢎꢌꢐꢌꢄꢖꢌꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢜ ꢖꢘꢄꢕꢊꢕꢛꢒ ꢟꢐꢉꢗꢃꢄꢛ ꢧꢴꢞꢺꢀꢙꢝꢧ  
DS21996D-page 42  
2010 Microchip Technology Inc.  
MCP98242  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆꢙꢆꢚꢛꢜꢛꢝꢞꢟꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢍꢏꢑꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
2010 Microchip Technology Inc.  
DS21996D-page 43  
MCP98242  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21996D-page 44  
2010 Microchip Technology Inc.  
MCP98242  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS21996D-page 45  
MCP98242  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢑꢘꢆꢙꢆꢚꢛꢜꢛꢝꢞꢦꢧꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢨꢍꢏꢑꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
DS21996D-page 46  
2010 Microchip Technology Inc.  
MCP98242  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢩꢘꢆꢙꢆꢚꢛꢜꢛꢝꢞꢧꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢩꢍꢏꢑꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
2010 Microchip Technology Inc.  
DS21996D-page 47  
MCP98242  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢩꢘꢆꢙꢆꢚꢛꢜꢛꢝꢞꢧꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢩꢍꢏꢑꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
DS21996D-page 48  
2010 Microchip Technology Inc.  
MCP98242  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢨꢪꢋꢫꢆꢬꢪꢭꢋꢫꢓꢆꢬꢠꢄꢈꢈꢆꢮꢎꢊꢈꢋꢫꢃꢆꢕꢬꢨꢘꢆꢙꢆꢯꢞꢯꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢨꢬꢬꢮꢇꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
ꢭꢄꢃꢏꢇꢢꢮꢯꢯꢮꢢꢣꢩꢣꢪꢡ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢯꢃꢑꢃꢏꢇ  
ꢢꢮꢰ  
ꢰꢱꢢ  
ꢢꢠꢲ  
ꢰꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇꢰ  
ꢂꢃꢏꢖꢘ  
ꢴꢁOꢥꢅꢦꢡꢧ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢵꢌꢃꢛꢘꢏ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅꢩꢘꢃꢖꢚꢄꢌꢇꢇ  
ꢡꢏꢉꢄꢋꢕꢎꢎꢅ  
ꢴꢁꢳꢴ  
ꢴꢁꢴꢥ  
ꢀꢁꢴꢴ  
ꢀꢁꢙꢴ  
ꢀꢁꢴꢥ  
ꢴꢁꢀꢥ  
ꢠꢙ  
ꢠꢀ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢷꢃꢋꢏꢘ  
Oꢁꢞꢴꢅꢦꢡꢧ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅꢷꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅꢯꢌꢄꢛꢏꢘ  
ꢫꢕꢕꢏꢅꢯꢌꢄꢛꢏꢘ  
ꢣꢀ  
ꢞꢁꢝꢴ  
ꢙꢁꢶꢴ  
ꢴꢁꢞꢥ  
ꢞꢁꢞꢴ  
ꢝꢁꢴꢴ  
ꢴꢁOꢴ  
ꢞꢁꢥꢴ  
ꢝꢁꢀꢴ  
ꢴꢁꢹꢥ  
ꢫꢕꢕꢏꢜꢐꢃꢄꢏ  
ꢫꢕꢕꢏꢅꢠꢄꢛꢊꢌ  
ꢯꢌꢉꢋꢅꢩꢘꢃꢖꢚꢄꢌꢇꢇ  
ꢯꢌꢉꢋꢅꢷꢃꢋꢏꢘ  
ꢯꢀ  
ꢀꢁꢴꢴꢅꢪꢣꢫ  
ꢴꢼ  
ꢴꢁꢴꢶ  
ꢴꢁꢀꢶ  
ꢳꢼ  
ꢴꢁꢙꢴ  
ꢴꢁꢝꢴ  
ꢑꢒꢊꢃꢉꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢣꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢴꢁꢀꢥꢅꢑꢑꢅꢜꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢝꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅꢠꢡꢢꢣꢅꢤꢀꢞꢁꢥꢢꢁ  
ꢦꢡꢧꢨ ꢦꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢩꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢪꢣꢫꢨ ꢪꢌꢎꢌꢐꢌꢄꢖꢌꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢜ ꢖꢘꢄꢕꢊꢕꢛꢒ ꢟꢐꢉꢗꢃꢄꢛ ꢧꢴꢞꢺꢴꢳOꢦ  
2010 Microchip Technology Inc.  
DS21996D-page 49  
MCP98242  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21996D-page 50  
2010 Microchip Technology Inc.  
MCP98242  
APPENDIX A: REVISION HISTORY  
Revision D (October 2010)  
The following is the list of modifications:  
1. Added the UDFN package.  
Revision C (July 2009)  
The following is the list of modifications:  
1. Updated the DFN/TDFN package throughout  
document.  
2. Updated Table 5-1 and Table 5-6.  
3. Updated Register 5-3, Register 5-5, Register 5-  
7 and Register 5-8.  
4. Updated Section 5.1.6 “Device ID and  
Revision Register”.  
5. Added Section 5.2.3.2 “Interrupt Mode”.  
6. Updated Figure 5-9.  
7. Section 7.0  
“Packaging  
Information”:  
Updated package outline drawings.  
Revision B (February 2008)  
The following is the list of modifications:  
1. Added TDFN package throughout document.  
Revision A (September 2006)  
• Original Release of this Document.  
2010 Microchip Technology Inc.  
DS21996D-page 51  
MCP98242  
NOTES:  
DS21996D-page 52  
2010 Microchip Technology Inc.  
MCP98242  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
–X  
X
/XXX  
a)  
MCP98242-BE/MC: Extended Temp.,  
Grade Temperature Package  
Range  
8LD DFN pkg.  
b)  
MCP98242T-BE/MC: Tape and Reel,  
Extended Temp.,  
8LD DFN pkg.  
Device:  
Grade:  
MCP98242: Digital Temperature Sensor  
MCP98242T: Digital Temperature Sensor  
(Tape and Reel)  
c)  
d)  
MCP98242-BE/ST: Extended Temp.,  
8LD TSSOP pkg.  
MCP98242T-BE/ST: Tape and Reel,  
Extended Temp.,  
B
B
B
=
=
±1°C (max.) from +75°C to +95°C,  
±2°C (max.) from +40°C to +125°C, and  
±3°C (max.) from -20°C to +125°C  
8LD TSSOP pkg.  
e)  
f)  
MCP98242-BE/MNY: Extended Temp.,  
8LD TDFN (nickel  
palladium gold) pkg.  
Temperature Range:  
Package:  
E
-40°C to +125°C  
MCP98242-BE/MUY: Extended Temp.,  
8LD UDFN (nickel  
palladium gold) pkg.  
MC  
= Dual Flat No Lead (2x3 mm Body), 8-lead,  
MCBAC(1) = Dual Flat No Lead (2x3 mm Body), 8-lead,  
MUY(2)  
MNY(2)  
=
=
Dual Flat No Lead (2x3 mm Body), 8-lead,  
Dual Flat No Lead (2x3 mm Body), 8-lead,  
MNYBAC(1,2) = Dual Flat No Lead (2x3 mm Body), 8-lead,  
ST  
=
Plastic Thin Shrink Small Outline  
(4x4 mm Body), 8-lead  
Note 1: “Y” is Nickel Palladium Gold manufacturing designator. Only available  
on the TDFN and UDFN packages for this family of products.  
2: “BAC” is a non-standard reel manufacturing designator. It designates  
parts in 8 mm wide by 4 mm wide pitch (Tape and Reel) on a 13 inch  
reel with 11k base quantity.  
2010 Microchip Technology Inc.  
DS21996D-page 53  
MCP98242  
NOTES:  
DS21996D-page 54  
2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-688-3  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010 Microchip Technology Inc.  
DS21996D-page 55  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS21996D-page 56  
2010 Microchip Technology Inc.  

相关型号:

MCP98242T-CE/ST

2-Wire Interface Temperature Sensor with EEPROM, -40C to +125C, 8-TSSOP, T/R
MICROCHIP

MCP98242_09

Memory Module Temperature Sensor w/EEPROM for SPD
MICROCHIP

MCP98243

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243-BE/MC

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243-BE/MNY

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243-BE/MUY

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243-BE/ST

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243T

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243T-BE/MC

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP

MCP98243T-BE/MCAA

IC,TEMPERATURE SENSOR,LLCC,8PIN,PLASTIC
MICROCHIP

MCP98243T-BE/MCAB

IC,TEMPERATURE SENSOR,LLCC,8PIN,PLASTIC
MICROCHIP

MCP98243T-BE/MNY

Memory Module Temperature Sensor w/ EEPROM for SPD
MICROCHIP