MCS3142-I/ST [MICROCHIP]

MCS3142 Dual KEELOQ® Technology Encoder Data Sheet;
MCS3142-I/ST
型号: MCS3142-I/ST
厂家: MICROCHIP    MICROCHIP
描述:

MCS3142 Dual KEELOQ® Technology Encoder Data Sheet

文件: 总37页 (文件大小:888K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCS3142  
®
MCS3142 Dual KEELOQ Technology Encoder Data Sheet  
Features Overview:  
Typical Applications:  
MCS3142 is ideal for Remote Keyless Entry (RKE)  
applications. These applications include:  
SECURITY  
• Ultimate KEELOQ® Technology:  
- Programmable 32-bit serial number  
- AES-128 block cipher  
- Programmable 128-bit crypt key  
- Timekeeping based on external 32.768 kHz  
crystal  
• Automotive RKE Systems  
• Automotive Alarm Systems  
• Gate and Garage Door Openers  
• Home Security Systems  
• Security and Safety Sensors  
• Remote Control  
- 192-bit transmission code length:  
- 32-bit unencrypted portion  
• Remote Keypad  
• Wireless Sensors  
- 128-bit encrypted, hopping code portion  
- 32-bit authorization check  
Package Type:  
• Classic KEELOQ Technology:  
- Programmable 28-bit serial number  
- Data based on Classic KEELOQ Technology:  
- KEELOQ technology 32-bit block cipher  
- Programmable 64-bit crypt key  
- KEELOQ technology secure learn  
- Programmable 60-bit seed value  
- 66-bit transmission code length:  
• 20-pin TSSOP  
FIGURE 1:  
20-PIN TSSOP  
VDD  
SOSCI  
SOSCO  
SW3  
1
VSS  
20  
19  
18  
17  
16  
15  
14  
- 34-bit unencrypted portion  
SW0  
2
3
4
- 32-bit encrypted, hopping code portion  
SW1  
SW2  
• Operating Features:  
- 1.8 to 3.6V operation  
- Four switch inputs  
PGC  
LED  
5
- 15 functions available  
- Configurable button modes  
- One active-low LED drive  
- Configurable minimum code word completion  
• RF:  
- Configurable bit rate  
- Configurable modulation, supporting FSK  
and OOK  
DATA_OUT  
PGD  
VSS  
VDD  
6
CTRL_OUT  
XTAL  
7
8
13  
12  
11  
CTRL_IN  
RFOUT  
DATA_IN  
VSS  
9
10  
- Configurable data modulation, supporting  
PWM and Manchester  
• Other:  
- Button inputs have internal pull-up resistors  
- LED output  
2014 Microchip Technology Inc.  
DS40001747A-page 1  
MCS3142  
TABLE 1:  
Name  
PIN DESCRIPTION  
20-Pin TSSOP  
Input Type  
Output Type  
Description  
VDD  
1
2
Power  
Analog  
Analog  
TTL  
Power  
SOSCI  
SOSCO  
SW3  
Secondary Oscillator  
Secondary Oscillator  
Switch 3 Input  
3
4
PGC  
5
TTL  
Programming Clock  
Programming Data  
No Connection; Tie to Vss  
Power  
PGD  
6
TTL  
TTL  
7
VDD  
8
Power  
TTL  
CTRL_IN  
RFOUT  
VSS  
9
Transmitter Clock  
Transmitter Output  
Power  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RF  
Power  
TTL  
DATA_IN  
XTAL  
Transmitter Data  
Transmitter Reference Oscillator  
Transmitter Clock  
Transmitter Data  
LED Output (active-low)  
Switch 2 Input  
Analog  
CTRL_OUT  
DATA_OUT  
LED  
TTL  
TTL  
TTL  
SW2  
TTL  
SW1  
TTL  
Switch 1 Input  
SW0  
TTL  
Switch 0 Input  
VSS  
Power  
Power  
DS40001747A-page 2  
2014 Microchip Technology Inc.  
MCS3142  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description................................................................................................................................................................... 4  
Device Description .................................................................................................................................................................... 6  
Memory Organization ................................................................................................................................................................ 7  
®
Classic KEELOQ Operation..................................................................................................................................................... 16  
Ultimate KEELOQ Operation ..................................................................................................................................................... 18  
Transmitter Operation.............................................................................................................................................................. 21  
Device Operation..................................................................................................................................................................... 25  
Integrating MCS3142 into a System........................................................................................................................................ 27  
Electrical Specifications........................................................................................................................................................... 29  
10.0 Packaging Information............................................................................................................................................................. 30  
The Microchip Web Site....................................................................................................................................................................... 34  
Customer Change Notification Service ................................................................................................................................................ 34  
Customer Support................................................................................................................................................................................ 34  
Product Identification System ............................................................................................................................................................. 35  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2014 Microchip Technology Inc.  
DS40001747A-page 3  
MCS3142  
Crypt Key: A unique and secret number (64-bit  
for Classic KEELOQ technology, 128-bit for  
Ultimate KEELOQ technology) used to encrypt and  
decrypt data. In a symmetrical block cipher such  
as those used on MCS3142, the encryption and  
decryption keys are equal and, therefore, will  
generally be referred to as the crypt key.  
1.0  
GENERAL DESCRIPTION  
MCS3142 is a dual encoder, designed for secure  
Remote Keyless Entry (RKE) and secure remote  
control systems. MCS3142 utilizes both the Classic  
KEELOQ code hopping technology and the new  
Ultimate KEELOQ technology time-stamping solution.  
Both of these encoders incorporate high security, a  
small package outline and low cost to make this device  
a perfect solution for unidirectional authentication  
systems and access control systems.  
Encoder: A device that generates and encodes  
data  
Encryption Algorithm: A method whereby data  
is scrambled using a crypt key. The data can only  
be interpreted by the respective decryption  
algorithm using the same crypt key.  
Classic KEELOQ technology combines a hopping code  
generated by a nonlinear encryption algorithm, a serial  
number and Status bits to create a secure transmission  
code. The length of the transmission eliminates the  
threat of code scanning and code grabbing access  
techniques.  
Decoder: A device that decodes data received  
from an encoder  
Decryption Algorithm: A recipe whereby data,  
scrambled by an encryption algorithm, can be  
unscrambled using the same crypt key  
Ultimate KEELOQ technology is generated using the  
industry standard AES-128 encryption algorithm, a  
serial number and a timer-driven message counter  
which continuously increments, independent of events,  
to provide a better, more secure solution. The  
Time-Stamp: The time-derived value recorded  
with a message  
Learn: Learning involves the receiver calculating  
the transmitter’s appropriate crypt key, decrypting  
the received hopping code and storing the serial  
number, synchronization counter or timer value,  
and crypt key in EEPROM. The KEELOQ technol-  
ogy product family facilitates several learning  
strategies to be implemented on the decoder. The  
following are examples of what can be done:  
timekeeping  
jam-and-replay attack techniques.  
functionality  
protects  
against  
The crypt key, serial number and configuration data are  
stored in an EEPROM array which is not accessible via  
any external connection. The EEPROM data is  
programmable but read-protected. The data can be  
verified only after an automatic erase and programming  
operation. This protects against attempts to gain  
access to keys or manipulate synchronization values.  
In addition, MCS3142 provides an easy to use serial  
interface for programming the necessary keys, system  
parameters and configuration data.  
- Simple Learning: The receiver uses a fixed  
crypt key. The crypt key is common to every  
component used by the same manufacturer.  
- Normal Learning: The receiver derives a  
crypt key from the encoder serial number.  
Every transmitter has a unique crypt key.  
- Secure Learning: The receiver derives a  
crypt key from the encoder seed value. Every  
encoder has a unique seed value that is only  
transmitted by a special button combination.  
1.1  
Key Terms  
The following is a list of key terms used throughout this  
data sheet. For additional information on KEELOQ tech-  
nology and code hopping, refer to “An Introduction to  
KEELOQ® Code HoppingTechnical Brief (DS91002).  
Manufacturer’s Code: A unique and secret  
number (64-bit for Classic KEELOQ technology,  
128-bit for Ultimate KEELOQ technology) used to  
derive crypt keys. Each encoder is programmed  
with a crypt key that is a function of the  
RKE: Remote Keyless Entry  
Function Code: It indicates what button input(s)  
activated the transmission. It encompasses the  
function code bits.  
manufacturer’s  
code.  
Each  
decoder  
is  
programmed with the manufacturer’s code itself.  
Code Hopping: A method by which a code,  
viewed externally to the system, appears to  
change unpredictably each time it is transmitted  
The MCS3142 code hopping encoder is designed  
specifically for keyless entry systems. Typical  
applications include vehicles and home garage door  
openers. The encoder portion of a keyless entry system  
is integrated into a transmitter carried by the user. The  
transmitter is operated to gain access to a vehicle or a  
restricted area. MCS3142 is meant to be a cost-  
effective, yet secure solution to such systems, requiring  
very few external components (see Figure 2-1).  
Code Word: A block of data that is repeatedly  
transmitted upon button activation  
Transmission: A data stream consisting of  
repeating code words  
DS40001747A-page 4  
2014 Microchip Technology Inc.  
MCS3142  
Most low-end keyless entry transmitters are given a  
fixed identification code that is transmitted every time a  
button is pushed. The number of unique identification  
codes in a low-end system is usually a relatively small  
number. These shortcomings provide an opportunity  
for a sophisticated thief to create a device that ‘grabs’  
a transmission and retransmits it later, or a device that  
quickly ‘scans’ all possible identification codes until the  
correct one is found.  
MCS3142, on the other hand, employs both the Classic  
and Ultimate KEELOQ code hopping technology. The  
high-security level of MCS3142 is based on the  
patented KEELOQ technology.  
For Classic KEELOQ technology, a block cipher based  
on a block length of 32 bits and a key length of 64 bits  
is used. The algorithm obscures the information in such  
a way that if a single hopping code data bit changes  
(before encryption), statistically more than 50% of the  
encrypted data bits will change.  
Ultimate KEELOQ technology uses the industry  
standard AES-128 encryption algorithm to obscure  
data using 128 bits for both its block and key length. In  
addition to the security of Classic KEELOQ technology,  
Ultimate KEELOQ technology sends a time-stamp as  
part of the transmission. This can prevent other more  
sophisticated attacks such as the ‘jam-and-relay’  
attack.  
2014 Microchip Technology Inc.  
DS40001747A-page 5  
MCS3142  
2.0  
DEVICE DESCRIPTION  
As shown in the typical application circuit (Figure 2-1),  
MCS3142 is a simple device to use. It requires only the  
addition of buttons, an external 32.768 kHz watch  
crystal, a transmitter reference oscillator, and RF  
circuitry for use as the transmitter in your security  
application. See Table 1 for a description of each pin.  
FIGURE 2-1:  
TYPICAL CIRCUIT  
Rev. 20-000011A  
9/23/2013  
VDD  
VDD  
VDD  
VSS  
S0  
CLKIN  
CLKOUT  
S3  
B0  
B1  
B2  
S1  
S2  
B3  
PGC  
PGD  
NA  
LED  
DATA  
CTRL  
XTAL  
DATA  
VSS  
VDD  
CTRL  
RFOUT  
Matching  
Circuit  
Block  
DS40001747A-page 6  
2014 Microchip Technology Inc.  
MCS3142  
3.0  
MEMORY ORGANIZATION  
MCS3142 has 128 bytes of configuration data. In  
general, the Configuration bytes can be divided into  
three categories: those options related to the Classic  
KEELOQ technology encoder, those options related to  
the Ultimate KEELOQ technology encoder, and those  
options related to the transmitter and device operation  
shared by the two encoders.  
TABLE 3-1:  
Address  
CONFIGURATION REGISTERS  
Size (Bytes)  
Description  
0x00-0x07  
0x08-0x0F  
0x10-0x13  
0x14-0x15  
0x16-0x17  
0x18-0x19  
0x1A  
8
8
4
2
2
2
1
2
1
16  
16  
4
2
16  
2
2
1
2
1
3
2
2
3
1
2
1
2
1
4
1
3
1
2
1
2
1
4
Classic KEELOQ® Technology Crypt Key  
Classic KEELOQ Technology Seed Value  
Classic KEELOQ Technology Serial Number  
Classic KEELOQ Technology DISC Value  
Classic KEELOQ Technology Encoder Configuration  
Classic KEELOQ Technology Transmitter Configuration  
Classic KEELOQ Technology Minimum Packet  
Classic KEELOQ Technology Maximum Packet  
Classic KEELOQ Technology Time Element PR2 Value  
Ultimate KEELOQ Technology Crypt Key  
Ultimate KEELOQ Technology Seed Value  
Ultimate KEELOQ Technology Serial Number  
Reserved  
0x1B-0x1C  
0x1D  
0x1E-0x2D  
0x2E-0x3D  
0x3E-0x41  
0x42-0x43  
0x44-0x53  
0x54-0x55  
0x56-0x57  
0x58  
Ultimate KEELOQ Technology Authorization Code  
Ultimate KEELOQ Technology Encoder Configuration  
Ultimate KEELOQ Technology Transmitter Configuration  
Ultimate KEELOQ Technology Minimum Packet  
Ultimate KEELOQ Technology Maximum Packet  
Ultimate KEELOQ Technology Time Element PR2 Value  
Encoder Frequency Setting  
0x59-0x5A  
0x5B  
0x5C-0x5E  
0x5F-0x60  
0x61-0x62  
0x63-0x65  
0x66  
Encoder Button Configuration  
Seed Packet Button Configuration  
Ultimate KEELOQ Technology Synchronization Counter, Copy 1  
Ultimate KEELOQ Technology Synchronization Counter CRC, Copy 1  
Classic KEELOQ Technology Synchronization Counter, Copy 1  
Classic KEELOQ Technology Synchronization Counter CRC, Copy 1  
Ultimate KEELOQ Technology Reset Counter, Copy 1  
Ultimate KEELOQ Technology Reset Counter CRC, Copy 1  
Ultimate KEELOQ Technology Low-Speed Timer, Copy 1  
Ultimate KEELOQ Technology Low-Speed Timer CRC, Copy 1  
Ultimate KEELOQ Technology Synchronization Counter, Copy 2  
Reserved  
0x67-0x68  
0x69  
0x6A-0x6B  
0x6C  
0x6D-0x70  
0x71  
0x72-0x74  
0x75  
0x76-0x77  
0x78  
Classic KEELOQ Technology Synchronization Counter, Copy 2  
Reserved  
0x79-0x7A  
0x7B  
Ultimate KEELOQ Technology Reset Counter, Copy 2  
Reserved  
0x7C-0x7F  
Ultimate KEELOQ Technology Timer, Copy 2  
2014 Microchip Technology Inc.  
DS40001747A-page 7  
MCS3142  
3.1  
Counter and Timer Protection  
Because they are written during normal operation of  
the device, the two synchronization counters, Reset  
counter and time value receive special protection to  
guard against data loss from unexpected power loss.  
An 8-bit CRC is calculated and stored alongside each  
variable. Further, each variable is duplicated in a  
different portion of memory. Whenever a value is read,  
the CRC is calculated and verified against the stored  
value. If there is a mismatch, the second copy of the  
data is read instead. The CRC calculation uses a  
polynomial represented by  
x8 + x4 + x3 + x2 + 1 .  
Example 3-1 describes a sample C function to compute  
this value.  
EXAMPLE 3-1:  
CRC CALCULATION  
static uint8_t crc(const uint8_t* buffer, size_t len){  
uint8_t bitcount;  
uint8_t c = 0xFF;  
while(len--)  
{
c ^= *buffer++;  
for(bitcount = 0; bitcount < 8; bitcount++){  
if((c & 0x80)!= 0) {  
c <<= 1;  
c ^= 0x1D;  
}else{  
c <<= 1;  
}
}
}
return ~c;  
}
DS40001747A-page 8  
2014 Microchip Technology Inc.  
MCS3142  
3.2  
Configuration Byte Details  
The following tables describe Configuration bytes in  
detail.  
TABLE 3-2:  
Byte Address  
CLASSIC KEELOQ® TECHNOLOGY CRYPT KEY CONFIGURATION REGISTERS  
Bit Description Values  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
7:0 Crypt Key  
Least Significant eight bits of the crypt key  
Byte 1 of the crypt key  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Byte 2 of the crypt key  
Byte 3 of the crypt key  
Byte 4 of the crypt key  
Byte 5 of the crypt key  
Byte 6 of the crypt key  
Most Significant eight bits of the crypt key  
TABLE 3-3:  
CLASSIC KEELOQ® TECHNOLOGY SEED CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
7:0 Seed  
Least Significant eight bits of the seed  
Byte 1 of the seed  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Byte 2 of the seed  
Byte 3 of the seed  
Byte 4 of the seed  
Byte 5 of the seed  
Byte 6 of the seed  
Most Significant eight bits of the seed  
TABLE 3-4:  
CLASSIC KEELOQ® TECHNOLOGY SERIAL NUMBER CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x10  
0x11  
0x12  
0x13  
7:0 Serial Number  
Least Significant eight bits of the serial number  
Byte 1 of the serial number  
7:0  
7:0  
Byte 2 of the serial number  
3:0  
Most Significant four bits of the serial number  
Maintain as ‘0000’  
7:4 Reserved  
TABLE 3-5:  
CLASSIC KEELOQ® TECHNOLOGY DISC CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x14  
0x15  
7:0 DISC Value  
1:0  
Least Significant eight bits of DISC value  
Most Significant two bits of DISC value  
Maintain as ‘000000’  
7:2 Reserved  
2014 Microchip Technology Inc.  
DS40001747A-page 9  
MCS3142  
TABLE 3-6:  
Byte Address  
0x16  
CLASSIC KEELOQ® TECHNOLOGY ENCODER CONFIGURATION REGISTERS  
Bit Description Values  
7:6 Seed Option  
00= No seed  
01= Limited and immediate  
10= Permanent and delayed  
11= Permanent and immediate  
Leave ‘0000’  
5:2 Reserved  
1:0 Time Element Clock Prescaler 00= 1:1  
01= 1:4  
10= 1:16  
11= 1:64  
0x17  
7
Reserved  
Leave ‘0’  
6:5 Blank Alternate Code Word  
Configuration  
00= All words transmitted  
01= One in two words transmitted  
10= One in four words transmitted  
11= Reserved; illegal value  
4:1 Reserved  
0
Line Encoding  
0= PWM  
1= Manchester  
TABLE 3-7:  
Byte Address  
0x18  
CLASSIC KEELOQ® TECHNOLOGY TRANSMITTER CONFIGURATION REGISTERS  
Bit  
Description  
Values  
7:5 Frequency Deviation  
Low three bits of frequency deviation calculation (see  
Section 6.4 “Center Frequency and Frequency Devia-  
tion”)  
4
Output Power  
0= 0 dBm  
1= +10 dBm  
3:0 Reserved  
Reserved, maintain as ‘1100’  
Reserved, maintain as ‘0’  
0= FSK  
0x19  
7
6
Reserved  
Data Encoding  
1= OOK  
5
Band  
0= 310-450 MHz  
1= 868-870, 902-928 MHz  
High five bits of frequency deviation calculation  
4:0 Frequency Deviation  
®
TABLE 3-8:  
Byte Address  
CLASSIC KEELOQ TECHNOLOGY MINIMUM AND MAXIMUM CODE WORDS COUNT  
CONFIGURATION REGISTERS  
Bit  
Description  
Values  
0x1A  
0x1B  
7:0  
7:0  
Minimum Code Word Count Integer value of the minimum number of code words sent  
Maximum Code Word Count Least Significant eight bits of value of the maximum  
number of code words sent  
0x1C  
7:0  
Most Significant eight bits of value of the maximum  
number of code words sent  
DS40001747A-page 10  
2014 Microchip Technology Inc.  
MCS3142  
TABLE 3-9:  
CLASSIC KEELOQ® TECHNOLOGY TIME ELEMENT VALUE CONFIGURATION  
REGISTER  
Byte Address  
0x1D  
Bit  
Description  
Values  
7:0  
Time Element Timer Value  
See Section 6.2 “Baud Rate”  
TABLE 3-10: ULTIMATE KEELOQ® TECHNOLOGY CRYPT KEY CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Crypt Key  
Values  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Least Significant eight bits of the crypt key  
Byte 1 of the crypt key  
Byte 2 of the crypt key  
Byte 3 of the crypt key  
Byte 4 of the crypt key  
Byte 5 of the crypt key  
Byte 6 of the crypt key  
Byte 7 of the crypt key  
Byte 8 of the crypt key  
Byte 9 of the crypt key  
Byte 10 of the crypt key  
Byte 11 of the crypt key  
Byte 12 of the crypt key  
Byte 13 of the crypt key  
Byte 14 of the crypt key  
Most Significant eight bits of the crypt key  
TABLE 3-11: ULTIMATE KEELOQ® TECHNOLOGY SEED CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
7:0 Seed  
7:0  
Least Significant eight bits of the seed  
Byte 1 of the seed  
7:0  
Byte 2 of the seed  
7:0  
Byte 3 of the seed  
7:0  
Byte 4 of the seed  
7:0  
Byte 5 of the seed  
7:0  
Byte 6 of the seed  
7:0  
Byte 7 of the seed  
7:0  
Byte 8 of the seed  
7:0  
Byte 9 of the seed  
7:0  
Byte 10 of the seed  
Byte 11 of the seed  
Byte 12 of the seed  
Byte 13 of the seed  
Byte 14 of the seed  
Most Significant eight bits of the seed  
7:0  
7:0  
7:0  
7:0  
7:0  
2014 Microchip Technology Inc.  
DS40001747A-page 11  
MCS3142  
TABLE 3-12: ULTIMATE KEELOQ® TECHNOLOGY SERIAL NUMBER CONFIGURATION  
REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x3E  
0x3F  
0x40  
0x41  
7:0 Serial Number  
Least Significant eight bits of the serial number  
Byte 1 of the serial number  
7:0  
7:0  
7:0  
Byte 2 of the serial number  
Most Significant eight bits of the serial number  
TABLE 3-13: ULTIMATE KEELOQ® TECHNOLOGY AUTHORIZATION KEY CONFIGURATION  
REGISTERS  
Byte Address  
Bit  
Description  
Authorization Key  
Values  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Least Significant eight bits of the authorization key  
Byte 1 of the authorization key  
Byte 2 of the authorization key  
Byte 3 of the authorization key  
Byte 4 of the authorization key  
Byte 5 of the authorization key  
Byte 6 of the authorization key  
Byte 7 of the authorization key  
Byte 8 of the authorization key  
Byte 9 of the authorization key  
Byte 10 of the authorization key  
Byte 11 of the authorization key  
Byte 12 of the authorization key  
Byte 13 of the authorization key  
Byte 14 of the authorization key  
Most Significant eight bits of the authorization key  
TABLE 3-14: ULTIMATE KEELOQ® TECHNOLOGY ENCODER CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Seed Option  
Values  
0x54  
7:6  
00= No seed  
01= Limited and immediate  
10= Permanent and delayed  
11= Permanent and immediate  
Leave ‘0000’  
5:2  
1:0  
Reserved  
Time Element Clock Prescaler 00= 1:1  
01= 1:4  
10= 1:16  
11= 1:64  
DS40001747A-page 12  
2014 Microchip Technology Inc.  
MCS3142  
TABLE 3-14: ULTIMATE KEELOQ® TECHNOLOGY ENCODER CONFIGURATION REGISTERS  
0x55  
7
Reserved  
Leave ‘0’  
6:5  
Blank Alternate Code Word  
Configuration  
00= All words transmitted  
01= One in two words transmitted  
10= One in four words transmitted  
11= Reserved; illegal value  
4:1  
0
Reserved  
Line Encoding  
0= PWM  
1= Manchester  
TABLE 3-15: ULTIMATE KEELOQ® TECHNOLOGY TRANSMITTER CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x56  
7:5 Frequency Deviation  
Low three bits of frequency deviation calculation (see  
Section 6.4 “Center Frequency and Frequency  
Deviation”)  
4
Output Power  
0= 0 dBm  
1= +10 dBm  
3:0 Reserved  
Reserved, maintain as ‘1100’  
Reserved, maintain as ‘0’  
0= FSK  
0x57  
7
6
Reserved  
Data Encoding  
1= OOK  
5
Band  
0= 310-450 MHz  
1= 868-870, 902-928 MHz  
4:0 Frequency Deviation  
High five bits of frequency deviation calculation (see  
Section 6.4 “Center Frequency and Frequency  
Deviation”)  
TABLE 3-16: ULTIMATE KEELOQ® TECHNOLOGY MINIMUM AND MAXIMUM CODE WORDS  
COUNT CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x58  
7:0  
Minimum Code Word Count  
Integer value of the minimum number of code words  
sent  
0x59  
0x5A  
7:0  
7:0  
Maximum Code Word Count  
Least Significant eight bits of value of the maximum  
number of code words sent  
Most Significant eight bits of value of the maximum  
number of code words sent  
TABLE 3-17: ULTIMATE KEELOQ® TECHNOLOGY TIME ELEMENT VALUE CONFIGURATION  
REGISTER  
Byte Address  
Bit  
Description  
Values  
0x5B  
7:0  
Time Element Timer Value  
See Section 5.2 “Encoder Time-Stamp”  
TABLE 3-18: ENCODER FREQUENCY CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
RF Frequency  
Values  
0x5C  
0x5D  
0x5E  
7:0  
7:0  
7:0  
Least Significant Byte of encoder frequency  
Middle byte of encoder frequency  
Most Significant Byte of encoder frequency  
2014 Microchip Technology Inc.  
DS40001747A-page 13  
MCS3142  
TABLE 3-19: ENCODER BUTTON ASSIGNMENT CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
®
0x5F  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Encoder Assignment when S0, S1, S2 active; S3 inactive 0= Classic KEELOQ  
®
1= Ultimate KEELOQ  
Encoder Assignment when S1, S2 active; S0, S3 inactive  
Encoder Assignment when S0, S2 active; S1, S3 inactive  
Encoder Assignment when S2 active; S0, S1, S3 inactive  
Encoder Assignment when S0, S1 active; S2, S3 inactive  
Encoder Assignment when S1 active; S0, S2, S3 inactive  
Encoder Assignment when S0 active; S1, S2, S3 inactive  
Reserved  
0x60  
Encoder Assignment when S0, S1, S2, S3 active  
Encoder Assignment when S1, S2, S3 active; S0 inactive  
Encoder Assignment when S0, S2, S3 active; S1 inactive  
Encoder Assignment when S2, S3 active; S0, S1 inactive  
Encoder Assignment when S0, S1, S3 active; S2 inactive  
Encoder Assignment when S1, S3 active; S0, S2 inactive  
Encoder Assignment when S0, S3 active; S1, S2 inactive  
Encoder Assignment when S3 active; S0, S1, S2 inactive  
TABLE 3-20: SEED BUTTON ASSIGNMENT CONFIGURATION REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x61  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Seed Assignment when S0, S1, S2 active; S3 inactive  
Seed Assignment when S1, S2 active; S0, S3 inactive  
Seed Assignment when S0, S2 active; S1, S3 inactive  
Seed Assignment when S2 active; S0, S1, S3 inactive  
Seed Assignment when S0, S1 active; S2, S3 inactive  
Seed Assignment when S1 active; S0, S2, S3 inactive  
Seed Assignment when S0 active; S1, S2, S3 inactive  
Reserved  
0= Typical transmission  
1= Seed transmission  
0x62  
Seed Assignment when S0, S1, S2, S3 active  
Seed Assignment when S1, S2, S3 active; S0 inactive  
Seed Assignment when S0, S2, S3 active; S1 inactive  
Seed Assignment when S2, S3 active; S0, S1 inactive  
Seed Assignment when S0, S1, S3 active; S2 inactive  
Seed Assignment when S1, S3 active; S0, S2 inactive  
Seed Assignment when S0, S3 active; S1, S2 inactive  
Seed Assignment when S3 active; S0, S1, S2 inactive  
DS40001747A-page 14  
2014 Microchip Technology Inc.  
MCS3142  
®
TABLE 3-21: ULTIMATE KEELOQ TECHNOLOGY SYNCHRONIZATION COUNTER INITIAL VALUE  
REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x63  
0x64  
0x65  
0x66  
7:0  
7:0  
7:0  
7:0  
Synchronization Counter Value,  
Primary Copy  
Least Significant Byte of counter value  
Middle byte of counter value  
Most Significant Byte of counter value  
Synchronization Counter CRC  
See Section 3.1 “Counter and Timer Pro-  
tection”  
0x72  
0x73  
0x74  
7:0  
7:0  
7:0  
Synchronization Counter Value,  
Secondary Copy  
Least Significant Byte of counter value  
Middle byte of counter value  
Most Significant Byte of counter value  
TABLE 3-22: CLASSIC KEELOQ® TECHNOLOGY SYNCHRONIZATION COUNTER INITIAL VALUE  
REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x67  
0x68  
0x69  
7:0  
7:0  
7:0  
Synchronization Counter Value,  
Primary Copy  
Least Significant Byte of counter value  
Most Significant Byte of counter value  
Synchronization Counter CRC  
See Section 3.1 “Counter and Timer Pro-  
tection”  
0x76  
0x77  
7:0  
7:0  
Synchronization Counter Value,  
Secondary Copy  
Least Significant Byte of counter value  
Most Significant Byte of counter value  
TABLE 3-23: ULTIMATE KEELOQ® TECHNOLOGY RESET COUNTER INITIAL VALUE REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x6A  
0x6B  
0x6C  
7:0 Synchronization Counter Value,  
Least Significant Byte of counter value  
Most Significant Byte of counter value  
Primary Copy  
7:0  
7:0 Synchronization Counter CRC  
7:0 Synchronization Counter Value,  
See Section 3.1 “Counter and Timer Pro-  
tection”  
0x79  
0x7A  
Least Significant Byte of counter value  
Most Significant Byte of counter value  
Secondary Copy  
7:0  
TABLE 3-24: ULTIMATE KEELOQ® TECHNOLOGY TIMER INITIAL VALUE REGISTERS  
Byte Address  
Bit  
Description  
Values  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
7:0 Timer Value, Primary Copy  
Least Significant Byte of counter value  
Byte 1 of the counter value  
7:0  
7:0  
Byte 2 of the counter value  
7:0  
Most Significant Byte of counter value  
7:0 Timer CRC  
See Section 3.1 “Counter and Timer Pro-  
tection”  
0x7C  
0x7D  
0x7E  
0x7F  
7:0 Timer Value, Secondary Copy  
Least Significant Byte of counter value  
Byte 1 of the counter value  
7:0  
7:0  
7:0  
Byte 2 of the counter value  
Most Significant Byte of counter value  
2014 Microchip Technology Inc.  
DS40001747A-page 15  
MCS3142  
®
4.0  
CLASSIC KEELOQ  
TECHNOLOGY OPERATION  
4.1  
Synchronization Counter  
This is the 16-bit synchronization value that is used to  
create the hopping code for transmission. This value  
will be incremented after every transmission. The initial  
value of the synchronization counter may be set via the  
Synchronization Counter Initial Value registers (see  
Table 3-22).  
4.2  
DISC Bits  
The Discrimination bits are used to validate the  
decrypted code word. The discrimination value is  
typically programmed with the ten Least Significant bits  
of the serial number or some other fixed value, as  
desired by the manufacturer.  
The Discrimination bits are programmed into the  
Configuration registers at program-time. SeeTable 3-5.  
4.3  
Function Code (Button Status  
Code)  
The function code is a bitmapped representation of the  
state of each button on the transmitter. States are  
active-high.  
®
TABLE 4-1:  
CLASSIC KEELOQ BUTTON  
CODE TRANSLATION  
Button  
Function Code  
S0  
S1  
S2  
S3  
xxx1  
xx1x  
x1xx  
1xxx  
4.4  
Serial Number  
Each Classic KEELOQ encoder transmits its 28-bit serial  
number with each transmission. It is intended that this  
serial number be unique to a system. It is set in the  
Serial Number Configuration registers, described in  
Table 3-4.  
DS40001747A-page 16  
2014 Microchip Technology Inc.  
MCS3142  
4.5  
Code Word Format  
®
FIGURE 4-1:  
CLASSIC KEELOQ CODE WORD FORMAT  
Rev. 20-000 006A  
8/29/201 3  
34 bits  
Fixed Portion  
32 bits  
Encrypted Portion  
Counter  
Over  
Flow  
Function  
Code  
Function  
Code  
Sync  
Blank  
2-bits  
Serial Number  
DISC  
Counter  
4-bits  
28-bits  
4-bits  
2-bits  
10-bits  
16-bits  
4.5.1  
HOPPING CODE PORTION  
The hopping code portion is calculated by encrypting  
the synchronization counter, discrimination value and  
function code with the encoder key. The hopping code  
is calculated when a button press is registered.  
4.5.2  
FIXED CODE PORTION  
The fixed code portion consists of 28 bits of the serial  
number and a copy of the 4-bit function code. Two bits  
of constant zero are prepended to the fixed code  
portion.  
4.5.3  
SEED WORD FORMAT  
A seed transmission transmits a code word that  
consists of 60 bits of fixed data that is stored in the NVM  
by the manufacturer. This can be used for secure  
learning of encoders or whenever a fixed code  
transmission is required. The seed code word format is  
shown is Figure 4-2. The function code for a seed  
transmission is always ‘1111’.  
The seed word is transmitted whenever  
a
seed-configured button combination is registered. If the  
Delayed option is enabled, the encoder will transmit 25  
typical code words before transmitting seed words. If  
the Limited option is enabled, the seed word will only  
be transmitted if the encoder’s synchronization counter  
is less than 256. If the synchronization counter is above  
this, a typical code word will be transmitted instead.  
®
FIGURE 4-2:  
CLASSIC KEELOQ SEED WORD FORMAT  
Rev. 20-000008A  
10/2/2013  
6 bits  
Fixed  
60 bits  
Seed  
Function  
Blank  
2-bits  
Serial Number  
60-bits  
Code  
4-bits  
Note: In Seed code word, the fixed portion is sent as 0b001111.  
2014 Microchip Technology Inc.  
DS40001747A-page 17  
MCS3142  
5.4  
Battery Level and Low Battery  
Flag  
5.0  
ULTIMATE KEELOQ  
TECHNOLOGY OPERATION  
Each Ultimate KEELOQ transmission contains a battery  
level indicator byte. It includes 7-bit digital  
5.1  
Synchronization Counter  
a
representation of the battery level and a 1-bit low  
battery flag. The battery level is captured by measuring  
an on-board 1.024V source using the battery as  
reference. The low battery flag is high whenever the  
measured battery voltage is estimated to be below  
2.5V. Equation 5-1 converts the reference value into a  
voltage.  
The  
synchronization  
counter  
is  
an  
always-incrementing, event-based counter. The  
counter is incremented whenever a new button  
combination is registered and a new code word is  
prepared.  
For increased security, the synchronization counter will  
not overflow. The device will cease operating when the  
counter reaches its maximum value.  
EQUATION 5-1:  
The initial value of the synchronization counter may be  
set via the Synchronization Counter Initial Value  
registers (see Table 3-21).  
1.024 27  
VBAT = ------------------------  
BATT  
5.2  
Encoder Time-Stamp  
MCS3142 requires an external 31.768 kHz oscillator  
connected to the secondary oscillator drive pins of the  
internal timer. This timer is used to track the passage of  
time over the lifetime of the encoder. Each Ultimate  
KEELOQ transmission includes this time with  
quarter-second resolution (i.e., each count represents  
one quarter of a second).  
5.5  
Button Press Timer  
The button press timer is a high-resolution timer  
representing the duration of the current button press at  
the time the code word was prepared. Each count  
represents 50 ms of time. It resets whenever a new  
button combination is registered.  
The initial value of the timer may be set at programming  
time via the Timer Initial Value registers, described in  
Table 3-24.  
5.6  
Delta Time  
The delta time represents the elapsed time since the  
previous code word was sent. The timer increments  
every second.  
5.3  
Function Code  
The function code is a bitmapped representation of the  
state of each button on the transmitter. States are  
5.7  
Reset Counter  
active-high.  
The Reset counter is an always-incrementing counter  
representing the number of Power-on Reset events  
experienced by the device. It is intended to be used by  
the receiver as an indication that the transmitter has  
been without power and that there will be a discrepancy  
in the time-stamp.  
®
TABLE 5-1:  
ULTIMATE KEELOQ  
FUNCTION CODE  
TRANSLATION  
Button  
Function Code  
S0  
S1  
S2  
S3  
xxx1  
xx1x  
x1xx  
1xxx  
For increased security, the Reset counter will not  
overflow. The device will cease operating when the  
counter reaches its maximum value.  
The initial value of the Reset counter may be set using  
the Reset Counter Configuration registers, described in  
Table 3-23.  
DS40001747A-page 18  
2014 Microchip Technology Inc.  
MCS3142  
5.8  
Authorization Code  
The Authorization Code is a cryptographically-strong  
industry standard representation of the code word  
suitable for authentication and integrity verification. It is  
generated by using the on-board AES encryption  
algorithm in CBC-MAC mode. The calculation takes  
place over the entire code word, including the  
encrypted and unencrypted portions, using the  
Authorization Key as input. Figure 5-1 shows a  
representation of how this calculation is performed.  
This calculation is truncated to its Least Significant 32  
bits for transmission.  
The Authorization Code requires a shared secret called  
the Authorization Key. This key is set in the  
Authorization Key Configuration Register, described in  
Table 3-13.  
FIGURE 5-1:  
AUTHORIZATION CODE  
CALCULATION  
Encrypted  
Code Word  
Serial  
Number  
0
Authorization  
Key  
Authorization  
Code  
E
E
5.9  
Serial Number  
Each Ultimate KEELOQ encoder transmits its 32-bit  
serial number with each transmission. It is intended  
that this serial number be unique to a system. It is set  
in the Serial Number Configuration registers, described  
in Table 3-12.  
2014 Microchip Technology Inc.  
DS40001747A-page 19  
MCS3142  
5.10 Code Word Format  
The Ultimate KEELOQ technology code word is 192 bits  
long. It comprises three sections (see Figure 5-2):  
• 32 bits of the encoder’s serial number  
• 128 bits of the encrypted hopping code  
• 32 bits of authorization code  
These segments are described in detail in the following  
sections.  
®
FIGURE 5-2:  
ULTIMATE KEELOQ CODE WORD FORMAT  
Rev. 20-000 009A  
8/29/201 3  
32 bits  
Fixed Portion  
32 bits  
Auth Portion  
128 bits Encrypted Hopping Code  
Delta  
Time  
Sync  
Function Low Speed  
Battery  
Button  
Timer  
Resync  
Counter  
Authorization  
Code  
Serial Number  
32-bits  
Counter  
Code  
Timestamp  
24-bits  
24-bits  
8-bits  
8-bits  
32-bits  
16-bits  
16-bits  
32-bits  
5.10.1  
HOPPING CODE PORTION  
The hopping portion of an Ultimate KEELOQ code word  
contains nearly all of the transmitted data. The  
time-stamp and Button Timer ensure that each  
transmission is unique.  
5.10.2  
FIXED CODE PORTION  
The fixed, unencrypted portion of an Ultimate KEELOQ  
code word consists of the encoder’s serial number.  
Unlike Classic KEELOQ, there is no copy of the function  
code.  
5.10.3  
AUTHORIZATION CODE  
The 32-bit Authorization Code is appended after the  
hopping portion of the code word.  
5.11 Seed Word Format  
The seed word is used when pairing the transmitter to  
a receiver using a secure learn methodology.  
®
FIGURE 5-3:  
ULTIMATE KEELOQ SEED WORD FORMAT  
Rev. 20-000010A  
10/2/2013  
32 bits  
Fixed Portion  
32 bits  
Auth Portion  
128 bit Seed  
Authorization  
Code  
Serial Number  
Seed  
Note: In the Seed code word, the serial number is sent as 0xFFFFFFFF.  
DS40001747A-page 20  
2014 Microchip Technology Inc.  
MCS3142  
6.0  
6.1  
TRANSMITTER OPERATION  
Data Modulation Format and Baud  
Rate  
A transmission is made of up several code words. Each  
code word contains a preamble, header and data. A  
code word is separated from another code word by  
guard time.  
All timing specifications for the modulation formats are  
based on a basic Time Element, described as TE. See  
Section 6.2 “Baud Rate” for details on baud rate  
calculation. This timing element can be set to a wide  
range of values. The length of the preamble, header  
and guard is fixed.  
The data modulation format is selected for each  
encoder. See Table 3-6 for the Classic KEELOQ  
encoder and Table 3-14 for Ultimate KEELOQ encoder.  
FIGURE 6-1:  
PWM TRANSMISSION FORMAT  
Rev. 20-000 003A  
8/29/201 3  
TE TE  
TE  
Logic ‘0’  
Logic ‘1’  
TBP  
1
16  
3-10 TE  
Guard  
Time  
31 TE Preamble  
Header  
Encrypted Portion  
Fixed Code Portion  
FIGURE 6-2:  
MANCHESTER TRANSMISSION FORMAT  
Rev. 20-000 004A  
8/29/201 3  
TE  
TE  
Logic ‘0’  
Logic ‘1’  
TBP  
START bit bit 0 bit 1 bit 2  
16  
STOP bit  
1
2
Guard  
Time  
Preamble  
Header  
Encrypted Portion  
Fixed Code Portion  
2014 Microchip Technology Inc.  
DS40001747A-page 21  
MCS3142  
6.2  
Baud Rate  
The baud rate of an encoder’s transmission is highly  
configurable using two configuration options:  
• The Time Element Clock Prescaler  
• The Time Element Clock Value  
Each encoder has its own independent configuration  
and can therefore operate at a rate independent of the  
other encoder. See Table 3-6 and Table 3-9 for the  
Classic KEELOQ encoder and Table 3-14 and Table 3-17  
for the Ultimate KEELOQ encoder.  
The Time Element is calculated using the formula in  
Equation 6-1.  
EQUATION 6-1:  
4
TE = PRE TIME -----------------  
8 106  
Table 3-17 lists appropriate settings for some baud  
rates common to KEELOQ systems.  
TABLE 6-1:  
TE (µs)  
CONFIGURATION FOR  
COMMON BAUD RATES  
PRE  
TIME  
100  
200  
400  
800  
1:1  
1:4  
200  
100  
200  
100  
1:4  
1:16  
6.3  
Transmission Modulation Format  
The RF transmission can be configured to modulate  
using Frequency-Shift Keying (FSK) or On-Off Keying  
(OOK). Each encoder may be configured  
independently. See Table 3-7 and Table 3-15 for the  
Classic KEELOQ and Ultimate KEELOQ encoders,  
respectively.  
DS40001747A-page 22  
2014 Microchip Technology Inc.  
MCS3142  
6.4  
Center Frequency and Frequency  
Deviation  
The RF transmitter is capable of generating many of  
the popular RF frequencies that are permitted within  
the radio regulations of the country the finished product  
will be sold. The RF frequency configuration is  
performed by selecting the frequency band, the  
reference crystal frequency and the frequency value to  
be stored in the Encoder Frequency Configuration  
register. If FSK modulation is used, the frequency  
deviation is set in the Transmitter Configuration  
register.  
Unlike other configuration options, the two encoders of  
the MCS3142 device share the same frequency  
configuration, which is shown in Table 3-18. Frequency  
deviation is individually configurable. See Table 3-7  
and Table 3-15 for the Classic KEELOQ and Ultimate  
KEELOQ encoders, respectively.  
6.4.1  
BAND SELECTION  
The Band bit in the Transmitter Configuration register  
configures the RF transmitter for a range of frequencies  
for a given crystal frequency, as shown in Table 6-2. The  
Transmitter Configuration registers are shown in Table 3-  
7 for the Classic KEELOQ encoder and Table 3-15 for the  
Ultimate KEELOQ encoder.  
Although each encoder has its own band selection  
configuration, the requirements of proper antenna  
tuning and the inability to configure the fundamental  
frequency per encoder will likely require that this setting  
be identical for both encoders.  
TABLE 6-2:  
Reference Oscillator  
(fREF  
FREQUENCY CALCULATION(1)  
Frequency Range  
(fRF  
Band  
fRF Equation  
fDEV Equation  
)
)
22 MHz  
24 MHz  
26 MHz  
0
310-450 MHz  
312-450 MHz  
338-450 MHz  
860-928 MHz  
fRF  
14fDEV  
DF = 214----------  
DA = 2 -----------  
fREF  
fREF  
1
fRF  
13fDEV  
DF = 213----------  
DA = 2 -----------  
fREF  
fREF  
Note 1: 212992 < DF < 344064 and 10 kHz fDEV 200kHz.  
The reference crystal frequency tolerance and  
frequency stability over the operating temperature  
range depend on the system frequency budget.  
Typically, the receiver crystal frequency tolerance,  
stability and receiver bandwidth will have the greatest  
influence. For OOK modulation, the transmitted RF  
signal should remain inside the receiver bandwidth,  
otherwise signal degradation will occur. For FSK  
modulation, fRF should remain inside the receiver  
bandwidth and within 0.5 fDEV  
As a general practice, do not choose an RF transmit  
signal with an integer or near integer multiple of fXTAL  
.
.
This will result in higher noise and spurious emissions.  
2014 Microchip Technology Inc.  
DS40001747A-page 23  
MCS3142  
6.4.2  
CRYSTAL SELECTION  
Once the frequency band has been selected, the choice  
of crystal frequency is flexible provided the crystal  
meets the specifications summarized in Table 6-3, the  
boundaries of the Encoder Frequency Configuration  
value are followed and the RF transmit frequency error  
is acceptable to the system design.  
TABLE 6-3:  
Symbol  
CRYSTAL RESONATOR SPECIFICATIONS  
Description  
Min.  
Typ.  
Max.  
Unit  
fREF  
CL  
Crystal Frequency  
22  
15  
26  
MHz  
pF  
Load Capacitance  
ESR  
Equivalent Series Resistance  
100  
6.4.3  
FREQUENCY CALCULATION  
Once the frequency band and crystal frequency are  
selected, the transmit frequency is calculated by setting  
the Encoder Frequency Configuration bits according to  
the formula shown in Table 6-2. If the calculated value  
for Encoder Frequency Configuration is not an integer,  
there will be an associated transmit frequency error.  
6.4.4  
POWER OUTPUT  
The RF output power is configurable to either +0 dBm  
or +10 dBm (typical). This option is configurable for  
each encoder. See Table 3-7 for the Classic KEELOQ  
encoder and Table 3-15 for the Ultimate KEELOQ  
encoder.  
DS40001747A-page 24  
2014 Microchip Technology Inc.  
MCS3142  
typical code word or a seed word for the assigned  
encoder. This gives complete flexibility to the system  
designer.  
7.0  
7.1  
DEVICE OPERATION  
LED Operation  
The button configuration is stored as two 16-bit words.  
Each bit in a Configuration Word represents one  
particular combination of active/inactive states of the  
buttons. The bit is determined by taking the four  
switches as one 4-bit value, with S0 being Least  
Significant, followed by S1, S2 and S3. For example,  
the Configuration bit corresponding to S1 and S2 active  
(or binary ‘1’) and S0 and S3 inactive (or binary ‘0’) is  
The LED pin will be driven low periodically while  
MCS3142 is transmitting data. This output is designed  
to drive an external LED with an appropriate  
current-limiting resistor. The duty cycle varies between  
normal operation and a low battery condition (see  
Figure 7-1). Refer to Section 5.4 “Battery Level and  
Low Battery Flag” for details on low battery  
conditions.  
S3S2S1S0= 01102 = 6  
given by  
. Configuration  
bit zero is considered “do not care” as it represents all  
buttons in their inactive state, which is a special  
condition for the encoder.  
FIGURE 7-1:  
LED OPERATION  
Rev. 20-000012A  
9/25/2013  
One Configuration Word controls the encoder  
assignment, with a ‘0’ representing the Classic KEELOQ  
encoder and a ‘1’ representing the Ultimate KEELOQ  
encoder. The second word controls transmission type,  
with ‘0’ representing a typical transmission and ‘1’  
S[3210]  
VDD > VLOW  
TLEDON  
TLEDOFF  
representing  
a seed transmission. Because the  
LED  
MCS3142 memory is byte-oriented, each 16-bit  
Configuration Word is stored as two 8-bit bytes in “little  
endian” order. See Table 3-19 for encoder assignment  
and Table 3-20 for seed assignment.  
TLEDON = 200 ms  
TLEDOFF = 800 ms  
VDD < VLOW  
TLEDON TLEDOFF  
Table 7-1 may assist in calculating configuration values  
by iterating all button state combinations in the order in  
which they correspond to Configuration bits. In this  
worksheet, each column represents a specific set of  
states of the buttons, which in turn represents one bit in  
the Configuration Word. A stated button, for example  
S0 or S1, represents that button in its active state. A  
hyphen in place of a switch label represents that switch  
in its inactive state. Once all states have been assigned  
an encoder and a transmission type, the result can be  
examined as a 16-bit binary number and transcribed  
into the configuration values.  
LED  
TLEDON = 200 ms  
TLEDOFF = 200 ms  
7.2  
Button Configuration  
MCS3142 allows all combinations of the four buttons to  
be individually assigned to an encoder. Each  
combination can also be assigned to transmit either a  
TABLE 7-1:  
BUTTON CONFIGURATION WORKSHEET  
S0  
S0  
S0  
S0  
S0  
S0  
S0  
S0  
S1  
S2  
S3  
S1  
S2  
S3  
S2  
S3  
S2  
S3  
S1  
S1  
S1  
S2  
S1  
S2  
S2  
S2  
S1  
S1  
S3  
S3  
S3  
S3  
BTN  
CFG  
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ =  
___  
Button Configuration Byte 1  
Button Configuration Byte 0  
LSb  
* 0 = Classic KeeLoq, 1 = Ultimate KeeLoq  
Seed  
CFG  
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ =  
___  
Seed Button Configuration Byte 1  
Seed Button Configuration Byte 0  
LSb  
* 0 = Typical transmission, 1 = Seed transmission  
2014 Microchip Technology Inc.  
DS40001747A-page 25  
MCS3142  
7.3  
Code Word Completion  
MCS3142 always ensures that a full and complete  
code word is transmitted even if all buttons are  
released before transmission is complete. Multiple  
code words may be transmitted after release to comply  
with the minimum code word configuration option.  
7.4  
Minimum and Maximum Code  
Word  
The Minimum and Maximum Code Word feature places  
boundaries on the total duration of a transmission.  
This feature is configured by setting the number of  
code words for a given encoder. The device will always  
transmit a complete code word. Because the code  
word durations are fixed and known, it is possible to  
convert code word counts into a duration time.  
Code word duration is fixed and based on the selected  
bit rate, data encoding method and encoder type. As  
described in Section 6.1 “Data Modulation Format  
and Baud Rate”, all timing is derived from TE, the Time  
Element, which describes the duration of a single  
element of transmission. A Manchester-encoded signal  
has two TE per bit; a PWM-encoded signal has three TE  
per bit.  
This feature is configured with the Minimum and  
Maximum Code Words Count Configuration registers  
(see Table 3-8 for the Classic KEELOQ encoder and  
Table 3-16 for the Ultimate KEELOQ encoder). Table 7-2  
defines equations to convert code word length into time.  
TABLE 7-2:  
TRANSMISSION DURATION EQUATIONS  
Data Encoding  
Manchester  
Encoder Type  
Code Word Duration  
TC = 187TE + 23.979 ms  
TC = 201TE + 23.979 ms  
TC = 437TE + 46.527 ms  
TC = 629TE + 46.527 ms  
Classic KEELOQ® Encoder  
PWM  
Manchester  
PWM  
Ultimate KEELOQ® Encoder  
7.5  
Blank Alternate Code Word  
The Blank Alternate Code Word feature may be used to  
reduce the average power of a transmission by  
transmitting only every second or every fourth code word.  
Enabling this option may allow the manufacturer to  
transmit  
a higher amplitude transmission as the  
time-averaged power is reduced. This feature is  
configured in the Encoder Configuration registers, see  
Table 3-6 for the Classic KEELOQ encoder and Table 3-14  
for the Ultimate KEELOQ encoder.  
DS40001747A-page 26  
2014 Microchip Technology Inc.  
MCS3142  
8.1  
Decoder Operation  
8.0  
INTEGRATING MCS3142 INTO  
A SYSTEM  
The decoder waits until a transmission is received. The  
received serial number is compared to the EEPROM  
table of learned transmitters to first determine if this  
transmitter’s use is allowed in the system. If from a  
paired transmitter, the transmission is decrypted using  
the stored crypt key and authenticated via the  
Discrimination bits for appropriate crypt key usage. If  
the decryption is valid, the synchronization value is  
evaluated (see Figure 8-1).  
FIGURE 8-1:  
TYPICAL DECODER  
OPERATION  
Rev. 20-000013A  
1/29/2014  
Start  
8.2  
Synchronization with a Decoder  
No  
No  
Transmission  
Received?  
Note:  
The synchronization method described in  
this section is an exemplar method. It may  
be altered to fit the needs and capabilities  
of a particular system.  
Yes  
The KEELOQ technology includes a sophisticated  
synchronization technique that does not require the  
calculation and storage of future codes. The technique  
securely blocks invalid transmission while providing  
Does  
Serial  
Number  
Match?  
transparent  
resynchronization  
to  
transmitters  
inadvertently activated away from the receiver.  
Yes  
Figure 8-2 shows three-partition,  
a
rotating  
Decrypt Transmission  
Synchronization window. The size of each window is  
optional but the technique is fundamental. Each time a  
transmission is authenticated, the intended function is  
executed and the transmission’s synchronization  
counter value is stored in EEPROM. From the currently  
stored counter value there is an initial Single Operation  
Forward window of 16 codes. If the difference between  
a received synchronization counter and the last stored  
counter is within 16, the intended function will be  
executed on a single button press and the new  
synchronization counter will be stored. Storing the new  
synchronization counter value effectively rotates the  
entire Synchronization window.  
Is  
No  
Decryption  
Valid?  
Yes  
Execute  
Command and  
Update Counter  
Yes  
Is Counter  
Within 16?  
A
Double Operation (Resynchronization) window  
No  
further exists from the Single Operation window up to  
32K code forward of the currently stored counter value.  
It is referred to as Double Operation because a  
transmission with a synchronization counter in this  
window will require an additional, sequential counter  
transmission prior to executing the intended function.  
Upon receiving the sequential transmission the  
decoder executes the intended function and stores the  
synchronization counter value. This resynchronization  
occurs transparently to the user, as it is human nature  
to press the button a second time if the first was  
unsuccessful.  
No  
Is Counter  
Within 32K?  
Yes  
Save Counter in  
Temporary Location  
The third window is a Blocked window ranging from the  
Double Operation window to the currently stored  
synchronization counter value. Any transmission with  
synchronization counter value within this window will  
be ignored. This window excludes previously used  
code-grabbed transmissions from accessing the  
system.  
2014 Microchip Technology Inc.  
DS40001747A-page 27  
MCS3142  
FIGURE 8-2:  
SYNCHRONIZATION WINDOW  
The main benefit of hopping codes is to prevent the  
retransmission of captured code words. This works  
very well for code words which the receiver decodes.  
Its weakness is that, if a code is captured when the  
receiver misses it, the code may trick the receiver once  
if it is used before the next valid transmission. The  
receiver should increment the counter on questionable  
code word receptions. The transmitter should use  
separate buttons for lock and unlock functions. A  
different method would be to require two different  
buttons in sequence to gain access.  
8.3  
Security Considerations  
The strength of this security is based on keeping a  
secret inside the transmitter that can be verified by  
encrypted transmissions to a trained receiver. The  
transmitter’s secret is the manufacturer’s key, not the  
encryption algorithm. If that key is compromised, then  
a smart transceiver can capture any serial number,  
create a valid code word and trick all receivers trained  
with that serial number. The key cannot be read from  
the EEPROM without costly die probing, but it can be  
calculated by brute force decryption attacks on  
transmitted code words. The cost for these attacks  
should exceed what the manufacturer would want to  
protect.  
There are more ways to make KEELOQ systems more  
secure, but they all have trade-offs. The user should  
find a balance between security, design effort and  
usability, particularly in failure modes. For example, if a  
button sticks or kids play with it, the counter should not  
advance into the Blocked Code window, rendering the  
transmitter useless or requiring retraining.  
To protect the security of other receivers with the same  
manufacturer’s code, the manufacturer should use the  
random seed for secure learn. It is a second secret that  
is unique for each transmitter. Its transmission on a  
special button press combination can be disabled if the  
receiver has another way to find it, or limited to the first  
127 transmissions for the receiver to learn it. This way,  
it is very unlikely to ever be captured. If  
a
manufacturer’s key is compromised, clone transmitters  
can be created, but without the unique seed, they have  
to be relearned by the receiver. In the same way, if the  
transmissions are decrypted by brute force on a  
computer, the random seed hides the manufacturer’s  
key and prevents more than one transmitter from being  
compromised.  
The length of the code word at these baud rates make  
brute force attacks that guess the hopping code take  
years. To make the receiver less susceptible to this  
attack, it should test all bits in the decrypted code for  
the correct value, not just the low counter bits and  
function code.  
DS40001747A-page 28  
2014 Microchip Technology Inc.  
MCS3142  
9.0  
9.1  
ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias........................................................................................................ -40°C to +85°C  
Storage temperature ........................................................................................................................ -55°C to +150°C  
Voltage on pins with respect to VSS  
on VDD pin ................................................................................................................................... -0.3V to +4V  
on all other pins ............................................................................................................ -0.3V to (VDD + 0.3V)  
Maximum current  
on any output pin ................................................................................................................................ 25 mA  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
9.2  
Standard Operating Conditions  
The standard operating conditions for any device are defined as:  
Operating Voltage:  
Operating Temperature:  
VDDMIN VDD VDDMAX  
TA_MIN TA TA_MAX  
VDD — Operating Supply Voltage  
VDDMIN ................................................................................................................................................... +1.8V  
VDDMAX .................................................................................................................................................. +3.6V  
TA — Operating Ambient Temperature Range  
TA_MIN .................................................................................................................................................... -40°C  
TA_MAX................................................................................................................................................... +85°C  
IDD — Supply Current  
At 315 MHz, +10 dBm, FSK, typical(1) ................................................................................................ +15 mA  
At 315 MHz, +10 dBm, OOK, typical(1) ............................................................................................... +11 mA  
At 315 MHz, +0 dBm, FSK, typical(1) .................................................................................................... +9 mA  
At 915 MHz, +10 dBm, FSK, typical(1) ............................................................................................. +17.5 mA  
At 915 MHz, +0 dBm, FSK, typical(1) ............................................................................................... +10.5 mA  
IPD — Standby Current  
VDD = 3 V, typical(1)............................................................................................................................. +2.3 µA  
VDD = 3 V, maximum.............................................................................................................................. +4 µA  
VIH — Input High Voltage, minimum.............................................................................................. 0.25 VDD + 0.8V  
VIL — Input Low Voltage, maximum ..........................................................................................................0.15 VDD  
VOH — Output High Voltage  
IOH = 3 mA, VDD = 3.3V, minimum..................................................................................................VDD – 0.7V  
VOL — Output Low Voltage  
IOL = 6 mA, VDD = 3.3V, maximum .........................................................................................................+0.6V  
ILED — LED Sink Current, maximum .......................................................................................................... +25 mA  
Note 1: Typical values are at 25°C.  
2014 Microchip Technology Inc.  
DS40001747A-page 29  
MCS3142  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
20-Lead TSSOP  
Example  
MCS3142  
e
3
017  
-I/ST  
1406  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PIC® device marking consists of Microchip part number, year code, week code, and traceability  
code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in QTP price.  
DS40001747A-page 30  
2014 Microchip Technology Inc.  
MCS3142  
10.2  
Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢏꢒꢌꢐꢓꢇꢑꢔꢅꢉꢉꢇꢕꢖꢋꢉꢌꢐꢄꢇꢗꢑꢎꢘꢇMꢇꢙꢚꢙꢇꢔꢔꢇꢛꢜꢆ ꢇ!ꢎꢑꢑꢕꢈ"  
#ꢜꢋꢄ$ 2ꢌꢊꢅ&ꢎꢉꢅ'ꢌ!&ꢅꢍ"ꢊꢊꢉꢄ&ꢅꢑꢇꢍ3ꢇꢔꢉꢅ#ꢊꢇ*ꢃꢄꢔ!(ꢅꢑꢈꢉꢇ!ꢉꢅ!ꢉꢉꢅ&ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ3ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ%ꢃꢍꢇ&ꢃꢌꢄꢅꢈꢌꢍꢇ&ꢉ#ꢅꢇ&ꢅ  
ꢎ&&ꢑ144***ꢁ'ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ'4ꢑꢇꢍ3ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
L
A1  
L1  
ꢒꢚ66ꢚꢒ+ꢘ+ꢙꢖ  
5ꢄꢃ&!  
ꢐꢃ'ꢉꢄ!ꢃꢌꢄꢅ6ꢃ'ꢃ&!  
ꢒꢚ7  
78ꢒ  
ꢒꢕ9  
7"')ꢉꢊꢅꢌ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢍꢎ  
7
ꢏꢓ  
ꢓꢁ:,ꢅ/ꢖ0  
8ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ&  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ3ꢇꢔꢉꢅꢘꢎꢃꢍ3ꢄꢉ!!  
ꢖ&ꢇꢄ#ꢌ%%ꢅ  
8ꢆꢉꢊꢇꢈꢈꢅ>ꢃ#&ꢎ  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ3ꢇꢔꢉꢅ>ꢃ#&ꢎ  
ꢒꢌꢈ#ꢉ#ꢅꢂꢇꢍ3ꢇꢔꢉꢅ6ꢉꢄꢔ&ꢎ  
2ꢌꢌ&ꢅ6ꢉꢄꢔ&ꢎ  
M
ꢓꢁ=ꢓ  
ꢓꢁꢓ,  
M
ꢀꢁꢓꢓ  
M
:ꢁꢗꢓꢅ/ꢖ0  
ꢗꢁꢗꢓ  
:ꢁ,ꢓ  
ꢓꢁ:ꢓ  
ꢀꢁꢏꢓ  
ꢀꢁꢓ,  
ꢓꢁꢀ,  
ꢕꢏ  
ꢕꢀ  
+
+ꢀ  
ꢗꢁ-ꢓ  
:ꢁꢗꢓ  
ꢓꢁꢗ,  
ꢗꢁ,ꢓ  
:ꢁ:ꢓ  
ꢓꢁꢛ,  
6
2ꢌꢌ&ꢑꢊꢃꢄ&  
2ꢌꢌ&ꢅꢕꢄꢔꢈꢉ  
6ꢉꢇ#ꢅꢘꢎꢃꢍ3ꢄꢉ!!  
6ꢉꢇ#ꢅ>ꢃ#&ꢎ  
6ꢀ  
ꢀꢁꢓꢓꢅꢙ+2  
ꢓꢜ  
ꢓꢁꢓꢝ  
ꢓꢁꢀꢝ  
M
M
M
=ꢜ  
)
ꢓꢁꢏꢓ  
ꢓꢁ-ꢓ  
#ꢜꢋꢄꢊ$  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ!"ꢇꢈꢅꢃꢄ#ꢉ$ꢅ%ꢉꢇ&"ꢊꢉꢅ'ꢇꢋꢅꢆꢇꢊꢋ(ꢅ)"&ꢅ'"!&ꢅ)ꢉꢅꢈꢌꢍꢇ&ꢉ#ꢅ*ꢃ&ꢎꢃꢄꢅ&ꢎꢉꢅꢎꢇ&ꢍꢎꢉ#ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ'ꢉꢄ!ꢃꢌꢄ!ꢅꢐꢅꢇꢄ#ꢅ+ꢀꢅ#ꢌꢅꢄꢌ&ꢅꢃꢄꢍꢈ"#ꢉꢅ'ꢌꢈ#ꢅ%ꢈꢇ!ꢎꢅꢌꢊꢅꢑꢊꢌ&ꢊ"!ꢃꢌꢄ!ꢁꢅꢒꢌꢈ#ꢅ%ꢈꢇ!ꢎꢅꢌꢊꢅꢑꢊꢌ&ꢊ"!ꢃꢌꢄ!ꢅ!ꢎꢇꢈꢈꢅꢄꢌ&ꢅꢉ$ꢍꢉꢉ#ꢅꢓꢁꢀ,ꢅ''ꢅꢑꢉꢊꢅ!ꢃ#ꢉꢁ  
-ꢁ ꢐꢃ'ꢉꢄ!ꢃꢌꢄꢃꢄꢔꢅꢇꢄ#ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ+ꢅ.ꢀꢗꢁ,ꢒꢁ  
/ꢖ01 /ꢇ!ꢃꢍꢅꢐꢃ'ꢉꢄ!ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ&ꢃꢍꢇꢈꢈꢋꢅꢉ$ꢇꢍ&ꢅꢆꢇꢈ"ꢉꢅ!ꢎꢌ*ꢄꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ!ꢁ  
ꢙ+21 ꢙꢉ%ꢉꢊꢉꢄꢍꢉꢅꢐꢃ'ꢉꢄ!ꢃꢌꢄ(ꢅ"!"ꢇꢈꢈꢋꢅ*ꢃ&ꢎꢌ"&ꢅ&ꢌꢈꢉꢊꢇꢄꢍꢉ(ꢅ%ꢌꢊꢅꢃꢄ%ꢌꢊ'ꢇ&ꢃꢌꢄꢅꢑ"ꢊꢑꢌ!ꢉ!ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ*ꢃꢄꢔ 0ꢓꢗꢞꢓ==/  
2014 Microchip Technology Inc.  
DS40001747A-page 31  
MCS3142  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001747A-page 32  
2014 Microchip Technology Inc.  
MCS3142  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
Revision A (03/2014)  
Initial release of the data sheet.  
2014 Microchip Technology Inc.  
DS40001747A-page 33  
MCS3142  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or Field Application Engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support.  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
DS40001747A-page 34  
2014 Microchip Technology Inc.  
MCS3142  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
[X]  
PART NO.  
X
/XX  
XXX  
-
Examples:  
a) MCS3142 - I/ST  
Device Tape and Reel  
Option  
Temperature  
Range  
Package  
Pattern  
Industrial temperature,  
TSSOP package  
Device:  
MCS3142  
Tape and Reel  
Option:  
Blank = Standard packaging (tube or tray)  
T
= Tape and Reel(1)  
Temperature  
Range:  
I
=
-40C to +85C (Industrial)  
Package:(2)  
Pattern:  
ST  
=
TSSOP  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2:  
For other small form-factor package  
availability and marking information, please  
visit www.microchip.com/packaging or  
contact your local sales office.  
2014 Microchip Technology Inc.  
DS40001747A-page 35  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2013, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-63276-006-7  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
DS40001747A-page 36  
2014 Microchip Technology Inc.  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/13/14  
2014 Microchip Technology Inc.  
DS40001747A-page 37  

相关型号:

MCS3142_14

MCS3142 Dual KEELOQ® Technology Encoder Data Sheet
MICROCHIP

MCS3264

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS3264R005FER

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS3264R010FER

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS3264R015FER

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS3264R020FER

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS3264R025FER

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS3264R050FER

Metal Element Current Sense Resistive Metal Alloy mOhm Technology, SMD
OHMITE

MCS38140PG05C

GPS Digital Correlator
MOTOROLA

MCS3AO

3-element colour sensor - TO5 with optics
ETC

MCS3AS

3-element colour sensor - SMD/SO8
ETC

MCS3AT

3-element colour sensor - TO5
ETC