MIC2179BSM-TR [MICROCHIP]

Switching Regulator, Current-mode, 5.5A, 240kHz Switching Freq-Max, PDSO20;
MIC2179BSM-TR
型号: MIC2179BSM-TR
厂家: MICROCHIP    MICROCHIP
描述:

Switching Regulator, Current-mode, 5.5A, 240kHz Switching Freq-Max, PDSO20

光电二极管
文件: 总13页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2179  
1.5A Synchronous Buck Regulator  
General Description  
Features  
The Micrel MIC2179 is a 200kHz synchronous buck (step-  
down) switching regulator designed for high-efficiency, bat-  
tery-powered applications.  
• 4.5V to 16.5V input voltage range  
• Dual-mode operation for high efficiency (up to 96%)  
PWM mode for > 150mA load current  
Skip mode for <150mA load current  
• 150mΩ internal power MOSFETs at 12V input  
• 200kHz preset switching frequency  
• Low quiescent current  
TheMIC2179operatesfroma4.5Vto16.5Vinputandfeatures  
internal power MOSFETs that can supply up to 1.5A output  
current. It can operate with a maximum duty cycle of 100%  
for use in low-dropout conditions. It also features a shutdown  
mode that reduces quiescent current to less than 5µA.  
1.0mA in PWM mode  
600µA in skip mode  
< 5µA in shutdown mode  
The MIC2179 achieves high efficiency over a wide output  
current range by operating in either PWM or skip mode. The  
operating mode is externally selected, typically by an intel-  
ligentsystem,whichchoosestheappropriatemodeaccording  
to operating conditions, efficiency, and noise requirements.  
The switching frequency is preset to 200kHz and can be  
synchronized to an external clock signal of up to 300kHz.  
• Current-mode control  
Simplified loop compensation  
Superior line regulation  
• 100% duty cycle for low dropout operation  
• Current limit  
• Thermal shutdown  
TheMIC2179usescurrent-modecontrolwithinternalcurrent  
sensing. Current-mode control provides superior line regula-  
tionandmakestheregulatorcontrolloopeasytocompensate.  
The output is protected with pulse-by-pulse current limiting  
andthermalshutdown. Undervoltagelockoutturnstheoutput  
off when the input voltage is less than 4.5V.  
• Undervoltage lockout  
Applications  
• High-efficiency, battery-powered supplies  
• Buck (step-down) dc-to-dc converters  
• Cellular telephones  
• Laptop computers  
• Hand-held instruments  
• Battery Charger  
The MIC2179 and is packaged in a 20-lead SSOP package  
with an operating temperature range of –40°C to +85°C.  
Typical Application  
VIN  
5.4V to 16.5V  
C1  
10µF  
16,17  
U1  
20V  
R1  
L1  
VIN  
20k  
15  
6
22µH  
EN  
3,4  
VOUT  
SW  
PGND  
FB  
3.3V/600mA  
Output Good  
Output Low  
D1  
MBRM120  
PWRGD  
1,2,  
C2  
MIC  
2179-3.3  
19,20  
100µF  
6.3V  
5
Skip Mode  
PWM Mode  
PWM  
13  
7
SYNC  
COMP  
8
SGND  
9–12  
BIAS  
14  
C3  
0.01µF  
R5  
4.02k  
Pins 4 and 18 are not connected.  
C4  
6.8nF  
Pins 3 and 4 can be connected  
together for a low-impedance  
connection.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
June 2009  
1
M9999-063009  
Micrel, Inc.  
MIC2179  
Ordering Information  
Part Number  
Voltage  
Temperature Range  
Package  
Standard*  
Pb-Free  
MIC2179BSM  
MIC2179YSM  
Adj.  
3.3V  
5.0V  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
20-Lead SSOP  
20-Lead SSOP  
20-Lead SSOP  
MIC2179-3.3BSM MIC2179-3.3YSM  
MIC2179-5.0BSM MIC2179-5.0YSM  
* Standard product will be supported as Pb-Free IAW PCCN #040004 effective 1-1-2005 pending residual depletion.  
Pin Configuration  
PGND 1  
20 PGND  
PGND  
SW  
PGND  
NC  
2
3
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
VIN  
4
VIN  
5
PWM  
PWRGD  
FB  
EN  
6
BIAS  
SYNC  
SGND  
SGND  
7
COMP  
SGND  
SGND  
8
9
10  
20-Lead Wide SSOP  
Pin Description  
Pin Number  
Pin Name  
PGND  
SW  
Pin Function  
1, 2, 19, 20  
Power Ground: Connect all pins to central ground point.  
Switch (Output): Internal power MOSFET output switches.  
3
5
PWM  
PWM/Skip-Mode Control (Input): Logic-level input. Controls regulator  
operating mode. Logic low enables PWM mode. Logic high enables skip  
mode. Do not allow pin to float.  
6
PWRGD  
Error Flag (Output): Open-drain output. Active low when FB input is 10%  
below the reference voltage (VREF).  
7
FB  
Feedback (Input): Connect to output voltage divider resistors.  
8
COMP  
Compensation: Output of internal error amplifier. Connect capacitor or  
series RC network to compensate the regulator control loop.  
9–12  
13  
SGND  
SYNC  
Signal Ground: Connect all pins to ground, PGND.  
Frequency Synchronization (Input): Optional. Connect an external clock  
signal to synchronize the oscillator. Leading edge of signal above 1.7V  
terminates switching cycle. Connect to SGND if not used.  
14  
15  
BIAS  
EN  
Internal 3.3V Bias Supply: Decouple with 0.01µF bypass capacitor to  
SGND. Do not apply any external load.  
Enable (Input): Logic high enables operation. Logic low shuts down  
regulator. Do not allow pin to float.  
16, 17  
4, 18  
VIN  
NC  
Supply Voltage (Input): Requires bypass capacitor to PGND. Both pins  
must be connected to VIN.  
not internally connected.  
June 2009  
2
M9999-063009  
Micrel, Inc.  
MIC2179  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage [100ms transient] (V ) .........................18V  
Supply Voltage (V ).......................................4.5V to 16.5V  
IN  
IN  
...................................................  
Output Switch Voltage (V  
)
18V  
Junction Temperature Range (T ) ............ –40°C to +125°C  
SW  
J
Output Switch Current (I )......................................... 6.0A  
SW  
Enable, PWM Control Voltage (V , V  
)..................18V  
EN  
PWM  
Sync Voltage (V  
)......................................................6V  
SYNC  
Electrical Characteristics(3)  
VIN = 7.0V; TA = 25°C, bold indicates –40°C ≤ TA ≤ 85°C; unless noted.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
ISS  
Input Supply Current  
PWM mode, output not switching,  
4.5V ≤ VIN ≤ 16.5V  
1.0  
1.5  
mA  
skip mode, output not switching,  
600  
750  
µA  
4.5V ≤ VIN ≤ 16.5V  
VEN = 0V, 4.5V ≤ VIN ≤ 16.5V  
VIN = 16.5V  
1
25  
3.4  
µA  
V
VBIAS  
VFB  
Bias Regulator Output Voltage  
Feedback Voltage  
3.10  
3.30  
1.245  
3.3  
MIC2179 [adj.]: VOUT = 3.3V, ILOAD = 0  
1.22  
1.27  
V
VOUT  
Output Voltage  
MIC2179 [adj.]: VOUT = 3.3V,  
5V ≤ VIN ≤ 16V, 10mA ≤ ILOAD ≤ 1A  
3.20  
3.14  
3.40  
3.46  
V
V
MIC2179-5.0: ILOAD = 0  
4.85  
5.0  
5.0  
5.15  
V
MIC2179-5.0:  
4.85  
5.15  
6V ≤ VIN ≤ 16V, 10mA ≤ ILOAD ≤ 1A  
4.75  
5.25  
V
V
MIC2179-3.3: ILOAD = 0  
3.20  
3.3  
3.3  
3.40  
MIC2179-3.3:  
5V ≤ VIN ≤ 16V, 10mA ≤ ILOAD ≤ 1A  
3.20  
3.14  
3.40  
3.46  
V
V
VTH  
VTL  
IFB  
Undervoltage Lockout  
Feedback Bias Current  
upper threshold  
lower threshold  
MIC2179 [adj.]  
4.25  
4.15  
60  
4.35  
V
V
3.90  
150  
40  
nA  
µA  
MIC2179-5.0, MIC2179-3.3  
0.6V ≤ VCOMP ≤ 0.8V  
upper limit  
20  
AVOL  
Error Amplifier Gain  
15  
18  
20  
Error Amplifier Output Swing  
0.9  
1.5  
0.05  
25  
V
V
lower limit  
0.1  
35  
Error Amplifier Output Current  
Oscillator Frequency  
Maximum Duty Cycle  
Minimum On-Time  
source and sink  
15  
µA  
kHz  
%
fO  
160  
100  
200  
240  
DMAX  
tON min  
VFB = 1.0V  
VFB = 1.5V  
300  
1.6  
400  
300  
2.2  
ns  
SYNC Frequency Range  
SYNC Threshold  
220  
0.8  
500  
–1  
kHz  
V
SYNC Minimum Pulse Width  
SYNC Leakage  
ns  
ISYNC  
ILIM  
VSYNC = 0V to 5.5V  
PWM mode, VIN = 12V  
skip mode  
0.01  
4.3  
600  
160  
140  
1
1
µA  
A
Current Limit  
3.4  
5.5  
mA  
mΩ  
mΩ  
µA  
RON  
ISW  
Switch On-Resistance  
Output Switch Leakage  
high-side switch, VIN = 12V  
low-side switch, VIN = 12V  
VSW = 16.5V  
350  
350  
10  
June 2009  
3
M9999-063009  
Micrel, Inc.  
MIC2179  
Symbol  
Parameter  
Condition  
Min  
0.8  
Typ  
1.6  
Max  
2.2  
1
Units  
V
Enable Threshold  
Enable Leakage  
PWM Threshold  
PWM Leakage  
PWRGD Threshold  
IEN  
VEN = 0V to 5.5V  
–1  
0.01  
1.1  
µA  
V
0.6  
1.4  
1
IPWM  
VPWM = 0V to 5.5V  
–1  
0.01  
1.13  
4.54  
3.00  
0.25  
0.01  
µA  
V
MIC2179 [adj.]: measured at FB pin  
MIC2179-5.0: measured at FB pin  
MIC2179-3.3: measured at FB pin  
ISINK = 1.0mA  
1.09  
4.33  
2.87  
1.17  
4.75  
3.13  
0.4  
1
V
V
PWRGD Output Low  
PWRGD Off Leakage  
V
VPWRGD = 5.5V  
µA  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Specification for packaged product only.  
General. Devices are ESD sensitive. Handling precautions recommended.  
June 2009  
4
M9999-063009  
Micrel, Inc.  
MIC2179  
Typical Characteristics  
Oscillator Frequency  
vs. Temperature  
Reference Voltage  
vs. Temperature  
Reference Voltage  
vs. Temperature  
1.252  
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
205  
MIC2179 [adj.]  
MIC2179-3.3  
200  
195  
190  
185  
180  
175  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Reference Voltage  
vs. Temperature  
Error-Amplifier Gain  
vs. Temperature  
Feedback Input Bias Current  
vs. Temperature  
5.030  
5.020  
5.010  
5.000  
4.990  
4.980  
4.970  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
120  
MIC2179-5.0  
100  
80  
60  
40  
20  
0
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Current Limit  
vs. Temperature  
High-Side Switch  
On-Resistance  
Low-Side Switch  
On-Resistance  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
125°C  
125°C  
85°C  
25°C  
0°C  
85°C  
25°C  
0°C  
0
2
0
4
6
8
10 12 14 16 18  
2
4
6
8
10 12 14 16 18  
-60 -30  
0
30 60 90 120 150  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
PWM-Mode  
Supply-Current  
Skip- and PWM-Mode  
Efficiency  
12  
10  
8
95  
90  
85  
80  
75  
70  
65  
5.4V  
PWM  
OUTPUT  
SWITCHING  
8.4V  
Skip  
6
8.4V  
PWM  
4
5.4V  
Skip  
2
0
60  
10  
2
4
6
8
10 12 14 16 18  
100  
600  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
June 2009  
5
M9999-063009  
Micrel, Inc.  
MIC2179  
Block Diagram  
VIN  
4.5V to 16.5V  
100µF  
16 17  
VIN  
UVLO,  
Thermal  
Shutdown  
R1  
V
= 1.245  
(
+ 1  
)
R2  
OUT  
110mΩ  
P-channel  
ISENSE  
Amp.  
Output  
Control  
Logic  
L
VOUT  
SW  
3
EN  
15  
3.3V  
Regulator  
Enable  
Shutdown  
D
COUT  
BIAS  
110mΩ  
14  
PGND  
N-channel  
R3  
4.02k  
0.01µF  
1
internal  
2
*
ILIMIT  
Comp.  
supplyVoltage  
19  
20  
* Connect  
GNDto PGND  
PWM  
PWM/  
Skip-Mode  
Select  
S
Skip Mode  
PWM Mode  
ILIMIT  
Thresh.  
Voltage  
5
Bold lines indicate  
high current traces  
Corrective  
Ramp  
SYNC  
Stop  
200kHz  
Oscillator  
13  
R1  
Skip-Mode  
Comp.  
Reset  
Pulse  
FB  
7
R
S
Q
R2  
VIN  
Power Good  
Comp.  
20k  
PWM  
Comp.  
PWRGD  
6
Output Good  
RC  
COMP  
8
CC  
1.13V  
VREF 1.245V  
MIC2179 [Adjustable]  
9
10 11 12  
SGND  
June 2009  
6
M9999-063009  
Micrel, Inc.  
MIC2179  
connect an external load to the BIAS pin. It is not designed  
to provide an external supply voltage.  
Functional Description  
Micrel’s MIC2179 is a synchronous buck regulator that oper-  
ates from an input voltage of 4.5V to 16.5V and provides a  
regulated output voltage of 1.25V to 16.5V. Its has internal  
power MOSFETs that supply up to 1.5A load current and  
operates with up to 100% duty cycle to allow low-dropout  
operation. To optimize efficiency, the MIC2179 operates in  
PWM and skip mode. Skip mode provides the best efficiency  
when load current is less than 150mA, while PWM mode is  
more efficient at higher current. PWM or skip-mode opera-  
tion is selected externally, allowing an intelligent system (i.e.  
microprocessor controlled) to select the correct operating  
mode for efficiency and noise requirements.  
Frequency Synchronization  
The MIC2179 operates at a preset switching frequency of  
200kHz. It can be synchronized to a higher frequency by con-  
necting an external clock to the SYNC pin. The SYNC pin is  
a logic level input that synchronizes the oscillator to the rising  
edge of an external clock signal. It has a frequency range of  
220kHz to 300kHz, and can operate with a minimum pulse  
width of 500ns. If synchronization is not required, connect  
SYNC to ground.  
Power Good Flag  
The power good flag (PWRGD) is an error flag that alerts a  
system when the output is not in regulation. When the output  
voltage is 10% below its nominal value, PWRGD is logic low,  
During PWM operation, the MIC2179 uses current-mode  
control which provides superior line regulation and makes  
the control loop easier to compensate. The PWM switching  
frequencyissetinternallyto200kHzandcanbesynchronized  
to an external clock frequency up to 300kHz. Other features  
include a low-current shutdown mode, current limit, under-  
voltage lockout, and thermal shutdown. See the following  
sections for more detail.  
signalingthatV  
istolow. PWRGDisanopen-drainoutput  
OUT  
that can sink 1mA from a pull-up resistor connected to V .  
IN  
Low-Dropout Operation  
Output regulation is maintained in PWM or skip mode even  
when the difference between V and V  
decreases below  
IN  
OUT  
1V. As V – V  
decreases, the duty cycle increases until  
IN  
OUT  
Switch Output  
it reaches 100%. At this point, the P-channel is kept on for  
several cycles at a time, and the output stays in regulation  
The switch output (SW) is a half H-bridge consisting of a  
high-sideP-channelandlow-sideN-channelpowerMOSFET.  
TheseMOSFETshaveatypicalon-resistanceof150mΩwhen  
the MIC2179 operates from a 12V supply. Antishoot-through  
circuitry prevents the P-channel and N-channel from turning  
on at the same time.  
until V – V  
falls below the dropout voltage (dropout  
IN  
OUT  
voltage = P-channel on-resistance × load current).  
PWM-Mode Operation  
Refer to “PWM Mode Functional Diagram” which is a simpli-  
fied block diagram of the MIC2179 operating in PWM mode  
and its associated waveforms.  
Current Limit  
The MIC2179 uses pulse-by-pulse current limiting to protect  
the output. During each switching period, a current limit com-  
paratordetectsiftheP-Channelcurrentexceeds4.3A. When  
it does, the P-channel is turned off until the next switching  
period begins.  
When operating in PWM mode, the output P-channel and N-  
channel MOSFETs are alternately switched on at a constant  
frequency and variable duty cycle. Aswitching period begins  
whentheoscillator generates aresetpulse.Thispulse resets  
the RS latch which turns on the P-channel and turns off the  
Undervoltage Lockout  
N-channel. During this time, inductor current (I ) increases  
L1  
Undervoltage lockout (UVLO) turns off the output when the  
and energy is stored in the inductor. The current sense ampli-  
input voltage (V ) is to low to provide sufficient gate drive  
for the output MOSFETs. It prevents the output from turning  
fier (I  
Amp) measures the P-channel drain-to-source  
IN  
SENSE  
voltage and outputs a voltage proportional to I . The output  
L1  
on until V exceeds 4.3V. Once operating, the output will  
of I  
Amp is added to a sawtooth waveform (corrective  
IN  
SENSE  
not shut off until V drops below 4.2V.  
ramp)generatedbytheoscillator,creatingacompositewave-  
form labeled I on the timing diagram. When I is  
IN  
Thermal Shutdown  
SENSE  
SENSE  
greater than the error amplifier output, the PWM comparator  
will set the RS latch which turns off the P-channel and turns  
on the N-channel. Energy is then discharged from the induc-  
Thermal shutdown turns off the output when the MIC2179  
junction temperature exceeds the maximum value for safe  
operation. After thermal shutdown occurs, the output will not  
turn on until the junction temperature drops approximately  
10°C.  
tor and I decreases until the next switching cycle begins.  
L1  
By varying the P-channel on-time (duty cycle), the average  
inductor current is adjusted to whatever value is required to  
regulate the output voltage.  
Shutdown Mode  
The MIC2179 has a low-current shutdown mode that is con-  
trolled by the enable input (EN). When a logic 0 is applied  
to EN, the MIC2179 is in shutdown mode, and its quiescent  
current drops to less than 5µA.  
The MIC2179 uses current-mode control to adjust the duty  
cycle and regulate the output voltage. Current-mode control  
has two signal loops that determine the duty cycle. One is an  
outer loop that senses the output voltage, and the other is  
a faster inner loop that senses the inductor current. Signals  
from these two loops control the duty cycle in the following  
Internal Bias Regulator  
An internal 3.3V regulator provides power to the MIC2179  
control circuits.Thisinternal supply isbrought outtotheBIAS  
pin for bypassing by an external 0.01µF capacitor. Do not  
way: V  
is fed back to the error amplifier which compares  
OUT  
the feedback voltage (V ) to an internal reference voltage  
FB  
June 2009  
7
M9999-063009  
Micrel, Inc.  
(V ). When V  
MIC2179  
is lower than its nominal value, the error  
the P-channel. The output switch voltage (V ) then swings  
REF  
OUT  
SW  
amplifieroutputvoltageincreases.Thisvoltagethenintersects  
the current sense waveform later in switching period which  
increases the duty cycle and the average inductor current. If  
from V to 0.4V below ground, and I flows through the  
IN  
L1  
Schottky diode. L1 discharges its energy to the output and  
decreases to zero. When I = 0, V swings from –0.4V  
I
L1  
L1  
SW  
V
ishigherthannominal,theerroramplifieroutputvoltage  
to V  
, and this triggers a one-shot that resets the RS latch.  
OUT  
OUT  
decreases, reducing the duty cycle.  
ResettingtheRSlatchturnsontheP-channel,andthisbegins  
another switching cycle.  
The PWM control loop is stabilized in two ways. First, the  
innersignalloopiscompensatedbyaddingacorrectiveramp  
to the output of the current sense amplifier. This allows the  
regulator to remain stable when operating at greater than  
50% duty cycle. Second, a series resistor-capacitor load  
is connected to the error amplifier output (COMP pin). This  
places a pole-zero pair in the regulator control loop.  
The skip-mode comparator regulates V  
by controlling  
OUT  
when the MIC2179 skips cycles. It compares V to V  
FB  
REF  
and has 10mV of hysteresis to prevent oscillations in the  
control loop. When V is less than V – 5mV, the com-  
FB  
REF  
parator output is logic 1, allowing the P-channel to turn on.  
Conversely, when V is greater than V  
+ 5mV, the P-  
FB  
REF  
channel is turned off.  
One more important item is synchronous rectification. As  
mentioned earlier, the N-channel output MOSFET is turned  
on after the P-channel turns off. When the N-channel turns  
on, its on-resistance is low enough to create a short across  
the output diode. As a result, inductor current flows through  
the N-channel and the voltage drop across it is significantly  
lower than a diode forward voltage. This reduces power dis-  
sipation and improves efficiency to greater than 95% under  
certain operating conditions.  
Note that this is a self oscillating topology which explains  
why the switching frequency and duty cycle are a function  
of V , V  
, and the value of L1. It has the unique feature  
IN  
OUT  
(for a pulse-skipping regulator) of supplying the same value  
of maximum load current for any value of V , V , or L1.  
This allows the MIC2179 to always supply up to 300mA of  
load current when operating in skip mode.  
IN  
OUT  
Selecting PWM- or Skip-Mode Operation  
To prevent shoot through current, the output stage employs  
break-before-makecircuitrythatprovidesapproximately50ns  
of delay from the time one MOSFET turns off and the other  
turns on. As a result, inductor current briefly flows through  
the output diode during this transition.  
PWM or skip mode operation is selected by an external  
logic signal applied to the PWM pin. A logic low places the  
MIC2179 into PWM mode, and logic high places it into skip  
mode.Skipmodeoperationprovidesthebestefficiencywhen  
load current is less than 150mA, and PWM operation is more  
efficient at higher currents.  
Skip-Mode Operation  
RefertoSkipModeFunctionalDiagramwhichisasimplified  
block diagram of the MIC2179 operating in skip mode and  
its associated waveforms.  
The MIC2179 was designed to be used in intelligent sys-  
tems that determine when it should operate in PWM or skip  
mode. This makes the MIC2179 ideal for applications where  
a regulator must guarantee low noise operation when sup-  
plying light load currents, such as cellular telephone, audio,  
and multimedia circuits.  
Skip-mode operation turns on the output P-channel at a  
frequency and duty cycle that is a function of V , V  
, and  
IN OUT  
the output inductor value. While in skip mode, the N-chan-  
nel is kept off to optimize efficiency by reducing gate charge  
There are two important items to be aware of when selecting  
PWM or skip mode. First, the MIC2179 can start-up only in  
PWM mode, and therefore requires a logic low at PWM dur-  
ing start-up. Second, in skip mode, the MIC2179 will supply  
a maximum load current of approximately 300mA, so the  
output will drop out of regulation when load current exceeds  
this limit. To prevent this from occurring, the MIC2179 should  
change from skip to PWM mode when load current exceeds  
200mA.  
dissipation. V  
is regulated by skipping switching cycles  
OUT  
that turn on the P-channel.  
To begin analyzing MIC2179 skip mode operation, assume  
the skip-mode comparator output is high and the latch out-  
put has been reset to a logic 1. This turns on the P-channel  
and causes I to increase linearly until it reaches a current  
L1  
limit of 400mA. When I reaches this value, the current limit  
L1  
comparator sets the RS latch output to logic 0, turning off  
June 2009  
8
M9999-063009  
Micrel, Inc.  
MIC2179  
PWM-Mode Functional Diagram  
VIN  
4.5V to 16.5V  
CIN  
VIN  
16 17  
R1  
R2  
VOUT = 1.245  
(
+ 1)  
110mΩ  
P-channel  
ISENSE  
Amp.  
L1  
IL1  
COUT  
VOUT  
SW  
3
D
110mΩ  
PGND  
1
N-channel  
2
19  
20  
Corrective  
Ramp  
SYNC  
Stop  
200kHz  
13  
Oscillator  
R1  
Reset  
Pulse  
FB  
7
R2  
R
Q
PWM  
S
Comp.  
Error  
Amp.  
COMP  
8
RC  
CC  
VREF1.245V  
MIC2179 [Adjustable] PWM-Mode Signal Path  
SGND  
9
10 11 12  
VSW  
Reset  
Pulse  
ILOAD  
IL1  
IL1  
Error Amp.  
Output  
ISENSE  
June 2009  
9
M9999-063009  
Micrel, Inc.  
MIC2179  
Skip-Mode Functional Diagram  
VIN  
4.5V to 16.5V  
CIN  
VIN  
16 17  
Output Control Logic  
S
R
Q
R1  
R2  
VOUT = 1.245  
(
+ 1)  
110mΩ  
P-channel  
One  
Shot  
ISENSE  
Amp.  
L1  
IL1  
COUT  
VOUT  
SW  
3
D
PGND  
1
2
ILIMIT  
Comp.  
19  
20  
ILIMIT  
Thresh.  
Voltage  
R1  
R2  
Skip-Mode  
Comp.  
FB  
7
VREF1.245V  
MIC2179 [Adjustable] Skip-Mode Signal Path  
9
10 11 12  
SGND  
VIN  
VOUT  
VSW  
0
One-Shot  
Pulse  
ILIM  
IL1  
0
VREF+ 5mV  
VFB  
VREF– 5mV  
June 2009  
10  
M9999-063009  
Micrel, Inc.  
MIC2179  
To maximize efficiency, the inductor’s resistance must  
be less than the output switch on-resistance (preferably,  
50mΩ or less).  
Application Information  
Feedback Resistor Selection (Adjustable Version)  
The output voltage is programmed by connecting an external  
resistive divider to the FB pin as shown in “MIC2179 Block  
Diagram.” TheratioofR1toR2determinestheoutputvoltage.  
Tooptimizeefficiencyduringlowoutputcurrentoperation, R2  
should not be less than 20kΩ. However, to prevent feedback  
error due to input bias current at the FB pin, R2 should not  
be greater than 100kΩ. After selecting R2, calculate R1 with  
the following formula:  
Output Capacitor Selection  
Select an output capacitor that has a low value of ESR.  
This parameter determines a regulator’s output ripple volt-  
age (V  
) which is generated by I × ESR. Therefore,  
RIPPLE  
L
ESR must be equal or less than a maximum value calculated  
for a specified V  
(typically less than 1% of the output  
RIPPLE  
voltage) and I  
:
L(max)  
VRIPPLE  
VOUT  
ESR MAX  
=
R1 = R2 ((1.245V ) -1)  
∆IL(max)  
Typically, capacitors in the range of 100 to 220µF have ESR  
less than this maximum value. The output capacitor can be  
a low ESR electrolytic or tantalum capacitor, but tantalum is  
a better choice for compact layout and operation at tempera-  
tures below 0°C. The voltage rating of a tantalum capacitor  
Input Capacitor Selection  
TheinputcapacitorisselectedforitsRMScurrentandvoltage  
ratingandshouldbealowESR(equivalentseriesresistance)  
electrolytic or tantalum capacitor. As a rule of thumb, the  
voltage rating for a tantalum capacitor should be twice the  
must be 2 × V  
must be 1.4 × V  
, and the voltage rating of an electrolytic  
.
OUT  
value of V , and the voltage rating for an electrolytic should  
IN  
OUT  
be 40% higher than V  
The RMS current rating must be  
IN.  
Output Diode Selection  
equal or greater than the maximum RMS input ripple cur-  
rent. A simple, worst case formula for calculating this RMS  
current is:  
In PWM operation, inductor current flows through the output  
diode approximately 50ns during the dead time when one  
output MOSFET turns off the other turns on. In skip mode,  
the inductor current flows through the diode during the entire  
P-channel off time. The correct diode for both of these condi-  
tions is a 1A diode with a reverse voltage rating greater than  
ILOAD(max)  
IRMS(max)  
=
2
Tantalum capacitors are a better choice for applications that  
require the most compact layout or operation below 0°C.  
The input capacitor must be located very close to the VIN  
pin (within 0.2in, 5mm). Also, place a 0.1µF ceramic bypass  
capacitor as close as possible to VIN.  
V . It must be a schottky or ultrafast-recovery diode  
IN  
(t < 100ns) to minimize power dissipation from the diode’s  
R
reverse-recovery charge.  
Compensation  
Inductor Selection  
Compensation is provided by connecting a series RC load  
to the COMP pin. This creates a pole-zero pair in the regu-  
lator control loop, allowing the regulator to remain stable  
with enough low frequency loop-gain for good load and line  
regulation. At higher frequencies, the pole-zero reduces  
loop-gain to a level referred to as the mid-band gain. The  
mid-band gain is low enough so that the loop gain crosses  
0db with sufficient phase margin. Typical values for the RC  
load are 4.7nF to 10nF for the capacitor and 5kΩ to 20kΩ  
for the resistor.  
The MIC2179 is a current-mode controller with internal slope  
compensation. As a result, the inductor must be at least a  
minimum value to prevent subharmonic oscillations. This  
minimum value is calculated by the following formula:  
LMIN = VOUT x 3.0 µH/V  
In general, a value at least 20% greater than L  
should  
MIN  
be selected because inductor values have a tolerance of  
±20%.  
Two other parameters to consider in selecting an inductor  
are winding resistance and peak current rating. The inductor  
must have a peak current rating equal or greater than the  
peak inductor current. Otherwise, the inductor may satu-  
rate, causing excessive current in the output switch. Also,  
the inductor’s core loss may increase significantly. Both of  
these effects will degrade efficiency. The formula for peak  
inductor current is:  
Printed Circuit Board Layout  
A well designed PC board will prevent switching noise and  
ground bounce from interfering with the operation of the  
MIC2179. Agooddesigntakesintoconsiderationcomponent  
placement and routing of power traces.  
The first thing to consider is the locations of the input ca-  
pacitor, inductor, output diode, and output capacitor. The  
input capacitor must be placed very close to the VIN pin,  
the inductor and output diode very close to the SW pin, and  
the output capacitor near the inductor. These components  
pass large high-frequency current pulses, so they must use  
short, wide power traces. In addition, their ground pins and  
PGND are connected to a ground plane that is nearest the  
power supply ground bus.  
∆IL(max)  
IL(peak) = ILOAD(max)  
Where:  
∆IL(max) = VOUT (1 -  
+
2
VOUT  
1
) x  
VIN(max)  
L • f  
June 2009  
11  
M9999-063009  
Micrel, Inc.  
MIC2179  
The feedback resistors, RC compensation network, and  
BIAS pin bypass capacitor should be located close to their  
respective pins. To prevent ground bounce, their ground  
traces and SGND should not be in the path of switching  
currents returning to the power supply ground bus. SGND  
and PGND should be tied together by a ground plane that  
extends under the MIC2179.  
Suggested Manufacturers List  
Inductors  
Capacitors  
Diodes  
Transistors  
Coilcraft  
1102 Silver Lake Rd.  
Cary, IL 60013  
tel: (708) 639-2361  
fax: (708) 639-1469  
AVX Corp.  
General Instruments (GI)  
10 Melville Park Rd.  
Melville, NY 11747  
tel: (516) 847-3222  
fax: (516) 847-3150  
Siliconix  
801 17th Ave. South  
Myrtle Beach, SC 29577  
tel: (803) 448-9411  
fax: (803) 448-1943  
2201 Laurelwood Rd.  
Santa Clara, CA 96056  
tel: (800) 554-5565  
Coiltronics  
Sanyo Video Components Corp.  
2001 Sanyo Ave.  
San Diego, CA 92173  
tel: (619) 661-6835  
International Rectifier Corp.  
233 Kansas St.  
El Segundo, CA 90245  
tel: (310) 322-3331  
fax: (310) 322-3332  
6000 Park of Commerce Blvd.  
Boca Raton, FL 33487  
tel: (407) 241-7876  
fax: (407) 241-9339  
fax: (619) 661-1055  
Bi Technologies  
4200 Bonita Place  
Fullerton, CA  
tel: (714) 447-2345  
fax: (714) 447-2500  
Sprague Electric  
Lower Main St.  
60005 Sanford, ME 04073  
tel: (207) 324-4140  
Motorola Inc.  
MS 56-126  
3102 North 56th St.  
Phoenix, AZ 85018  
tel: (602) 244-3576  
fax: (602) 244-4015  
June 2009  
12  
M9999-063009  
Micrel, Inc.  
MIC2179  
Package Information  
20-Pin SSOP (SM)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
tel + 1 (408) 944-0800 fax + 1 (408) 474-1000 web http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2001 Micrel Incorporated  
June 2009  
13  
M9999-063009  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY