MIC2230-GFHYML-TR [MICROCHIP]

1.8A SWITCHING REGULATOR, 2875kHz SWITCHING FREQ-MAX, PDSO12;
MIC2230-GFHYML-TR
型号: MIC2230-GFHYML-TR
厂家: MICROCHIP    MICROCHIP
描述:

1.8A SWITCHING REGULATOR, 2875kHz SWITCHING FREQ-MAX, PDSO12

开关 光电二极管 输出元件
文件: 总26页 (文件大小:1275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2230  
Dual Synchronous 800 mA/800 mA Step-Down DC/DC Regulator  
Features  
General Description  
• High Efficiency: Over 96%  
The MIC2230 is a dual output, high-efficiency  
synchronous step-down DC/DC converter. The  
MIC2230 is ideally suited for portable and embedded  
systems that demand high power conversion  
efficiencies and fast transient performance, while  
offered in a very small package. The MIC2230 offers an  
ultra-low quiescent current in light load mode, assuring  
minimum current draw from battery powered  
applications in standby modes. The MIC2230 was  
designed to only require miniature 2.2 μH inductors  
and 10 μF ceramic capacitors.  
• Ultra-Low Quiescent Current: Only 28 μA  
• Ultra-Low Shutdown Current: Less Than 1 μA  
• Fast Transient Performance  
• 2.5 MHz PWM Operation  
• High Output Current Capability per Channel:  
800 mA  
• No Schottky Diodes Required  
• Stable with 2.2 μH Inductor, 10 μF Ceramic  
Capacitor  
The MIC2230 features a selectable mode that allows  
the user to trade-off lowest noise performance for low  
power efficiency. Trickle mode operation provides  
ultra-high efficiency at light loads, while PWM operation  
provides very low ripple noise performance. To  
maximize battery life in low-dropout conditions,  
MIC2230 can operate with a maximum duty cycle of  
100%.  
• Adjustable Output Voltage Down to 0.8V  
• Built-In Soft-Start Circuitry  
• Current-Limit Protection  
• Automatic Switching into Light Load Mode  
Operation  
• /FPWM Pin allows Low-Noise Forced PWM Mode  
Operation  
• Power Good Output with Internal 5 μA Current  
Source allows Sequencing with Programmable  
Delay Time  
The MIC2230 is available in  
3 mm × 3 mm TDFN-12L package with a junction  
temperature range from –40°C to +125°C.  
a
space-saving  
• Small Thermally Enhanced 3 mm × 3 mm  
TDFN-12L Package  
Package Types  
Applications  
• MPU & ASIC Power  
• PDAs  
MIC2230  
3x3 TDFN* (Fixed)  
Top View  
• Digital Cameras  
• PC Cards  
OUT2  
EN2  
1
2
3
4
5
6
12 OUT1  
11 EN1  
• Wireless and DSL Modems  
AVIN  
10 PGOOD  
SW2  
9
8
7
VIN  
AGND  
PGND  
SW1  
/FPWM  
MIC2230  
3x3 TDFN* (Adjustable)  
Top View  
FB2  
1
2
3
4
5
6
12 FB1  
EN2  
AVIN  
11 EN1  
10 PGOOD  
SW2  
9
8
7
VIN  
AGND  
PGND  
SW1  
/FPWM  
2017 Microchip Technology Inc.  
DS20005748A-page 1  
MIC2230  
Typical Application Circuit  
MIC2230  
3x3 TDFN  
VIN  
2.5V to 5.5V  
10μF  
AVIN  
EN1  
VIN  
ON  
ON  
OFF  
EN2  
OFF  
390pF  
/FPWM  
SW1  
PGOOD  
2.2μH  
2.2μH  
MIC2230  
VOUT  
2
VOUT  
1.8V / 800mA  
10μF  
1
SW2  
OUT2  
PGND  
1.575V / 800mA  
OUT1  
AGND  
10μF  
Functional Block Diagram  
AVIN  
EN2  
VIN  
EN1  
ISENSE1  
ISENSE2  
ENABLE  
LOGIC  
HSD  
HSD  
Anti  
SW1  
Anti  
Shoot-through  
Logic  
SW2  
Shoot-through  
Logic  
EA1  
EA2  
AVIN  
LSD  
LSD  
Compensation  
Trickle Mode  
Logic  
0.8V  
0.8V  
/FPWM  
1kΩ  
5μA  
PGOOD  
FB1  
FB2  
PGND  
AGND  
DS20005748A-page 2  
2017 Microchip Technology Inc.  
MIC2230  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage, (VIN) ................................................................................................................................................. +6V  
Enable 1 Voltage........................................................................................................................................................ +6V  
Enable 2 Voltage........................................................................................................................................................ +6V  
Logic Input Voltage, (VEN, VFPWM)..................................................................................................................... 0V to VIN  
ESD Protection.........................................................................................................................................................+2 kV  
Operating Ratings ††  
Supply Voltage, VIN..................................................................................................................................... +2.5V to 5.5V  
† Notice: Exceeding the absolute maximum rating may damage the device.  
†† Notice: The device is not guaranteed to function outside its operating rating.  
DC CHARACTERISTICS (Note 1)  
Electrical Characteristics: Unless otherwise indicated, TA = 25°C with VIN = VEN1 = VEN2 = 3.6V, VOUT1, VOUT2  
:
L = 2.2 μH, C = 10 μF. Bold values indicate –40ºC TJ +125ºC.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Voltage and Current  
Supply Voltage Range  
UVLO (Rising)  
2.5  
2.3  
2.4  
100  
5.5  
2.5  
V
V
UVLO Hysteresis  
mV  
/FPWM = Low; VOUT1  
OUT2 = 1.03 * VNOM (not  
switching)  
,
PWM Mode Supply  
Current  
560  
950  
μA  
V
/FPWM = High; VOUT1  
OUT2 = 1.03 * VNOM (not  
switching)  
,
Trickle Mode Supply  
Current  
28  
50  
μA  
μA  
V
Shutdown Quiescent  
Current  
0.1  
1
VEN = 0V  
Output Voltage Accuracy  
Feedback Voltage, VFB  
Output Voltage, VOUT  
Feedback Bias Current  
0.780  
–2.5  
0.8  
0.820  
+2.5  
V
%
Adjustable  
Fixed Output Options  
10  
nA  
Output Voltage Line  
Regulation  
0.1  
0.5  
40  
0.5  
%
%
2.5V VIN 5.5V  
VIN = 5V, IOUT = 10 mA to  
800 mA, /FPWM = 0V  
Output Voltage Load  
Regulation  
VIN = 3V; IOUT = 10 mA to  
800 mA, /FPWM = 0V  
VIN=3.6V; IOUT = 1 mA;  
Ripple in Trickle Mode  
mV  
C
OUT = 10 μF, L = 2.2 μH.  
Note 1: Specification for packaged product only.  
2017 Microchip Technology Inc.  
DS20005748A-page 3  
 
MIC2230  
DC CHARACTERISTICS (Note 1) (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = 25°C with VIN = VEN1 = VEN2 = 3.6V, VOUT1, VOUT2  
:
L = 2.2 μH, C = 10 μF. Bold values indicate –40ºC TJ +125ºC.  
Parameters  
Logic Inputs  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
0.3  
0.8  
0.7  
0.01  
1.2  
V
V
On  
Off  
EN Input Threshold  
EN Input Current  
1
0.6×VIN  
μA  
V
On  
Off  
/FPWM Input Threshold  
0.3×VIN  
V
/FPWM Input Current  
Protection  
0.01  
1
μA  
Current-Limit  
0.9  
100  
1.2  
1.8  
A
%
Control  
Maximum Duty Cycle  
Oscillator  
PWM Mode Frequency  
Power Good  
2.125  
2.5  
2.875  
MHz  
6.25  
–8.5  
12  
%
%
Upper Threshold  
Lower Threshold  
Power Good Reset  
Threshold  
–14  
PGOOD Series  
Resistance  
1
5
1.4  
kΩ  
μA  
Output within 8.5% of  
regulation  
PGOOD Pull-Up Current  
Power Switch  
0.4  
Ω
Ω
ISW = 150 mA (PFET)  
ISW = 150 mA (NFET)  
Switch On-Resistance  
0.35  
Note 1: Specification for packaged product only.  
DS20005748A-page 4  
2017 Microchip Technology Inc.  
MIC2230  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Storage Temperature Range  
Junction Operating Temperature  
Package Thermal Resistances  
TA  
TJ  
–65  
–40  
+150  
+125  
°C  
°C  
JA  
JC  
60  
15  
°C/W  
°C/W  
Thermal Resistance, 3 x 3 QFN-12Ld  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
2017 Microchip Technology Inc.  
DS20005748A-page 5  
 
MIC2230  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
FIGURE 2-1:  
Temperature.  
Enabled Threshold vs.  
Frequency vs. Temperature.  
Efficiency.  
FIGURE 2-4:  
V = 1.575V.  
OUT  
MIC2230 Efficiency  
MIC2230 Efficiency  
MIC2230 Efficiency  
FIGURE 2-2:  
FIGURE 2-5:  
= 1.8V.  
V
OUT  
FIGURE 2-3:  
FIGURE 2-6:  
= V  
V
= 1.8V.  
OUT1  
OUT2  
DS20005748A-page 6  
2017 Microchip Technology Inc.  
MIC2230  
.
FIGURE 2-7:  
Time.  
Capacitance vs. Delay  
Trickle Mode Current vs.  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load.  
FIGURE 2-11:  
Supply Voltage.  
Enable Threshold vs.  
FIGURE 2-8:  
Input Voltage.  
FIGURE 2-12:  
Temperature.  
Feedback Voltage vs.  
FIGURE 2-9:  
Voltage.  
2017 Microchip Technology Inc.  
DS20005748A-page 7  
MIC2230  
FIGURE 2-16:  
Mode.  
Load Transient Trickle  
FIGURE 2-13:  
Temperature.  
Output Voltage vs.  
V
= 3.6V  
VIN = 1.8V  
LO=UT2.2μH  
0A  
/FPWM = 0  
IOUT = 400mA  
200ns/div  
FIGURE 2-17:  
Mode.  
Load Transient Trickle  
FIGURE 2-14:  
FPWM Mode.  
FIGURE 2-15:  
Trickle Mode.  
FIGURE 2-18:  
Load Transient PWM Mode.  
DS20005748A-page 8  
2017 Microchip Technology Inc.  
MIC2230  
FIGURE 2-19:  
Load Transient PWM Mode.  
FIGURE 2-20:  
Enable Response.  
2017 Microchip Technology Inc.  
DS20005748A-page 9  
MIC2230  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MIC2230  
MIC2230  
Adjustable  
3X3 QFN  
Fixed  
Symbol  
Description  
3X3 QFN  
1
FB2  
Feedback 2: For adjustable voltage options connect the exter-  
nal resistor divider network to FB2 to set the output voltage of  
regulator 2. Nominal value is 0.8V.  
Enable 2 input. Logic low powers down regulator 2. Logic high  
powers up regulator 2. MIC2230 features built-in soft-start  
circuitry that reduces in-rush current and prevents the output  
voltage from overshooting at start up.  
2
3
2
3
EN2  
Analog Supply Voltage: Supply voltage for the analog control  
circuitry. Requires bypass capacitor to GND.  
AVIN  
4
5
6
4
5
6
SW2  
AGND  
PGND  
Switch node for regulator 2, connected to external inductor.  
Analog (signal) ground.  
Power ground.  
Forced PWM Mode Bar. Grounding this pin forces the device to  
7
7
/FPWM stay in constant frequency PWM mode only. Pulling this pin  
high enables automatic Trickle Mode operation.  
8
9
8
9
SW1  
Switch node for regulator 1, connected to external inductor.  
Supply Voltage: Supply voltage for the internal switches and  
drivers. Requires bypass capacitor to GND.  
VIN  
Power Good Output. This output is pulled down unless the  
regulator 1 output voltage is within +6.25% and –8.5% of  
10  
10  
PGOOD regulation. After the output voltage is in regulation, the output  
starts to go high with an internal 5 μA current source. A delay  
time could be programmed by tying a capacitor to this pin.  
Enable 1 input. Logic low powers down regulator 1. Logic high  
powers up regulator 1. MIC2230 features built-in soft-start  
circuitry that reduces in-rush current and prevents the output  
voltage from overshooting at start up.  
11  
12  
11  
EN1  
Feedback 1: For adjustable voltage options connect to the  
external resistor divider network to FB1 to set the output  
voltage of regulator 1. Nominal value is 0.8V.  
FB1  
Output Voltage 2. For fixed output voltage options connect  
OUT2 to the output voltage of regulator 2.  
1
OUT2  
OUT1  
EP  
Output Voltage 1. For fixed output voltage options connect  
OUT1 to the output voltage of regulator 1.  
12  
EP  
Exposed Thermal pad. Should be connected to the Ground  
plane.  
EP  
DS20005748A-page 10  
2017 Microchip Technology Inc.  
 
MIC2230  
is recommended to prevent large output voltage  
transients from triggering the PGOOD flag  
unexpectedly.  
4.0  
4.1  
FUNCTIONAL DESCRIPTION  
V
IN  
VIN provides power to the MOSFETs for the switch  
mode regulator section, along with the current limiting  
sensing. Due to the high switching speeds, a 10 μF  
capacitor is recommended close to VIN and the power  
ground (PGND) pin for bypassing.  
5μA  
PGOOD Pin  
1k  
External Cap  
4.2  
AV  
IN  
Analog VIN (AVIN) provides power to the analog supply  
circuitry. AVIN and VIN must be tied together. Careful  
layout should be considered to ensure high frequency  
switching noise caused by VIN is reduced before  
reaching AVIN. A 1 μF capacitor as close to AVIN as  
possible is recommended.  
FIGURE 4-1:  
Power Good Circuit.  
4.7  
FB1/FB2  
The feedback pin (FB) provides the control path to  
control the output. For adjustable versions, a resistor  
divider connecting the feedback to the output is used to  
adjust the desired output voltage. The output voltage is  
calculated as follows:  
4.3  
EN1  
Enable 1 controls the on and off state of regulator 1. A  
high logic on Enable 1 (EN1) activates regulator 1 while  
a low logic deactivates regulator 1. MIC2230 features  
built-in soft-start circuitry that reduces in-rush current  
and prevents the output voltage from overshooting at  
start-up.  
EQUATION 4-1:  
R1  
R2  
V OUT = V REF ------ + 1  
4.4  
EN2  
Enable 2 controls the on and off state of regulator 2. A  
high logic on Enable 2 (EN2) activates regulator 2 while  
a low logic deactivates regulator 2. MIC2230 features  
built-in soft-start circuitry that reduces in-rush current  
and prevents the output voltage from overshooting at  
start-up.  
Where:  
VREF  
=
0.8V  
The external feedback resistors add some quiescent  
current consumption for adjustable versions. To reduce  
battery current draw, high resistance values are  
recommended in the feedback divider. A feedforward  
capacitor should be connected between the output and  
feedback (across R1) because of the high resistance  
value. The large resistor value and the parasitic  
capacitance of the FB pin can cause a high frequency  
pole that can reduce the overall system phase margin.  
By placing a feedforward capacitor, these effects can  
be significantly reduced. Refer to the Feedback section  
for recommended feedforward capacitor values.  
4.5  
/FPWM  
The Forced PWM Mode selects the mode of operation  
for this device. Grounding this pin forces the device to  
stay in constant frequency PWM mode only. Pulling this  
pin high enables automatic selection of Trickle or PWM  
mode operation, depending on the load. While /FPWM  
is high and the load is below 100 mA, the device will go  
into Trickle Mode. If the load is above 100 mA, PWM  
mode will automatically be selected. Do not leave this  
pin floating.  
4.8  
SW1/SW2  
The switch (SW) pin connects directly to the inductor  
and provides the switching current necessary to  
operate in PWM mode. Due to the high speed  
switching on this pin, the switch node should be routed  
away from sensitive nodes.  
4.6  
PGOOD  
The Power Good Output is pulled down unless the  
regulator 1 output voltage is within +6.25% or –8.5% of  
regulation. When the output voltage is in regulation, the  
PGOOD capacitor will be charged to AVIN by an  
internal 5 μA current source through a 1 kresistor.  
The charge time is approximately 1 μs per 1 pF of  
capacitance. For example, a 390 pF capacitor at the  
PGOOD pin will cause the PGOOD pin voltage to rise  
from low to high in around 390 μs. A PGOOD capacitor  
4.9  
PGND  
Power ground (PGND) is the ground path for the high  
current PWM mode. The current loop for the power  
ground should be as small as possible and separate  
from the Analog ground (AGND) loop.  
2017 Microchip Technology Inc.  
DS20005748A-page 11  
MIC2230  
4.10 AGND  
Signal ground (AGND) is the ground path for the  
biasing and control circuitry. The current loop for the  
signal ground should be separate from the Power  
ground (PGND) loop.  
DS20005748A-page 12  
2017 Microchip Technology Inc.  
MIC2230  
The MIC2230 is designed to be stable with a 2.2 μH  
inductor with a 10 μF ceramic (X5R) output capacitor.  
5.0  
5.1  
APPLICATION INFORMATION  
Input Capacitor  
5.5  
Feedback  
A minimum 2.2 μF ceramic is recommended on the VIN  
pin for bypassing. X5R or X7R dielectrics are  
recommended for the input capacitor. Y5V dielectrics,  
aside from losing most of their capacitance over  
temperature, they also become resistive at high  
frequencies. This reduces their ability to filter out high  
frequency noise.  
The MIC2230 provides a feedback pin to adjust the  
output voltage to the desired level. This pin connects  
internally to an error amplifier. The error amplifier then  
compares the voltage at the feedback to the internal  
0.8V reference voltage and adjusts the output voltage  
to maintain regulation. Calculating the resistor divider  
network for the desired output is shown in  
Equation 5-1.  
5.2  
Output Capacitor  
The MIC2230 was designed specifically for use with a  
10 μF or greater ceramic output capacitor. The output  
capacitor requires either an X7R or X5R dielectric. Y5V  
and Z5U dielectric capacitors, aside from the  
undesirable effect of their wide variation in capacitance  
over temperature, become resistive at high  
frequencies.  
EQUATION 5-1:  
R1  
R2 = -----------------------------  
V OUT  
-------------- – 1  
V REF  
Where:  
VREF  
VOUT  
=
=
0.8V  
Desired Output Voltage  
5.3  
Inductor Selection  
Inductor selection will be determined by the following  
(not necessarily in the order of importance):  
For adjustable versions, the FB bias current (10 nA  
typical) should be a negligible fraction of the current  
flowing in the feedback resistor divider. This improves  
the accuracy of the output voltage setting. A small  
current, in the range of a few microamperes, is typically  
sufficient and does not significantly increase the  
operating quiescent current in battery-operated  
applications. This choice leads to high resistance  
values.  
• Inductance  
• Rated current value  
• Size requirements  
• DC resistance (DCR)  
The MIC2230 was designed for use with a 2.2 μH  
inductor.  
Maximum current ratings of the inductor are generally  
given in two methods: permissible DC current and  
saturation current. Permissible DC current can be rated  
either for a 40°C temperature rise or a 10 to 20% loss  
in inductance. Ensure the inductor selected can handle  
the maximum operating current. When saturation  
current is specified, make sure that there is enough  
margin that the peak current will not saturate the  
inductor.  
If operating quiescent current is less of a concern,  
lower resistance values can be used. Larger resistor  
values require an additional capacitor (feed-forward)  
from the output to the feedback. The large high-side  
resistor value and the parasitic capacitance on the  
feedback pin (~10 pF) can cause an additional pole in  
the control loop. The additional pole can create a phase  
loss at high frequencies. This phase loss degrades  
transient response by reducing phase margin. Adding  
feed-forward capacitance negates the parasitic  
capacitive effects of the feedback pin. See Table 5-1  
for recommended feedforward capacitor values.  
The size requirements refer to the area and height  
requirements that are necessary to fit a particular  
design. Please refer to the inductor dimensions on their  
datasheet.  
TABLE 5-1:  
RECOMMENDED  
FEED-FORWARD  
CAPACITOR  
DC resistance is also important. While DCR is inversely  
proportional to size, DCR can represent a significant  
efficiency loss. Refer to the Efficiency Considerations.  
Total Feedback  
Resistance  
Recommended CFF  
5.4  
Compensation  
22 pF  
47 pF  
1 M- 2 Mꢀ  
500 k- 1 Mꢀ  
100 k- 500 kꢀ  
10 k- 100 kꢀ  
The MIC2230 is an internally compensated, current  
mode buck regulator. Current mode is achieved by  
sampling the peak current and using the output of the  
error amplifier to pulse width modulate the switch node  
and maintain output voltage regulation.  
100 pF  
180 pF  
2017 Microchip Technology Inc.  
DS20005748A-page 13  
 
 
MIC2230  
Large feedback resistor values increase impedance,  
making the feedback node more susceptible to noise  
pick-up. A feed forward capacitor would also reduce  
noise pick-up by providing a low impedance path to the  
output. Refer to Table 5-1 for recommended  
feedforward capacitor values  
DS20005748A-page 14  
2017 Microchip Technology Inc.  
MIC2230  
Over 100 mA, efficiency loss is dominated by MOSFET  
RDS(ON) and inductor losses. Higher input supply  
voltages will increase the Gate-to-Source threshold on  
5.6  
Efficiency Considerations  
Efficiency is defined as the amount of useful output  
power, divided by the amount of power supplied.  
the internal MOSFETs, reducing the internal RDS(ON)  
.
This improves efficiency by reducing DC losses in the  
device. All but the inductor losses are inherent to the  
device. In which case, inductor selection becomes  
increasingly critical in efficiency calculations. As the  
inductors are reduced in size, the DC resistance (DCR)  
can become quite significant. The DCR losses can be  
calculated as shown in Equation 5-3.  
EQUATION 5-2:  
V OUT IOUT  
Efficiency_% = ---------------------------------- 100  
V IN IIN  
Maintaining high efficiency serves two purposes. It  
reduces power dissipation in the power supply,  
reducing the need for heat sinks and thermal design  
considerations and it reduces consumption of current  
for battery powered applications. Reduced current  
draw from a battery increases the devices operating  
time and is critical in hand held devices.  
EQUATION 5-3:  
L_Pd = IOUT2 DCR  
From that, the loss in efficiency due to inductor  
resistance can be calculated as shown in Equation 5-4.  
There are two types of losses in switching converters:  
DC losses and switching losses. DC losses are simply  
the power dissipation of I2R. Power is dissipated in the  
high-side switch during the on cycle. Power loss is  
equal to the high side MOSFET RDS(ON) multiplied by  
the Switch Current2. During the off cycle, the low side  
N-channel MOSFET conducts, also dissipating power.  
Device operating current also reduces efficiency. The  
product of the quiescent (operating) current and the  
supply voltage is another DC loss. The current required  
driving the gates on and off at a constant 2.5 MHz  
frequency and the switching transitions make up the  
switching losses.  
EQUATION 5-4:  
VOUT IOUT  
Efficiency_Loss = 1 ----------------------------------------------------- 100  
V OUT IOUT + L_Pd  
Efficiency loss due to DCR is minimal at light loads and  
gains significance as the load is increased. Inductor  
selection becomes a trade-off between efficiency and  
size in this case.  
5.7  
Trickle Mode Operation  
Trickle Mode operation is achieved by clamping the  
minimum peak current to approximately 150 mA. This  
forces a PFM mode by comparing the output voltage to  
the internal reference. If the feedback voltage is less  
than 0.8V, the MIC2230 turns on the high side until the  
peak inductor current reaches approximately 150 mA.  
A separate comparator then monitors the output  
voltage. If the feedback voltage is greater than 0.8V,  
the high side switch is then used as a 10 μA current  
source, never turning off completely. This creates a  
highly efficient light load mode by increasing the time it  
takes for the output capacitor to discharge, delaying the  
amount of switching required and increasing light load  
efficiency. While operating in this mode without any  
load, the output voltage may rise over the nominal  
operating voltage range. For applications that require  
tight voltage tolerances, a minimum load of 150 μA is  
recommended.  
FIGURE 5-1:  
= 1.575.  
MIC2230 Efficiency  
V
OUT  
The figure above shows an efficiency curve. From no  
load to 100 mA, efficiency losses are dominated by  
quiescent current losses, gate drive and transition  
losses. By forcing the MIC2230 into Trickle Mode  
(/FPWM = High), the buck regulator significantly  
reduces the required switching current by entering into  
a PFM (Pulse Frequency Modulation) mode. This  
significantly increases efficiency at low output currents.  
This load may either be used by the attached system,  
by lowering the feedback resistors or by adding an  
additional load resistor in parallel with the output  
capacitor.  
2017 Microchip Technology Inc.  
DS20005748A-page 15  
 
 
MIC2230  
When the load current is greater than approximately  
100 mA, the MIC2230 automatically switches to PWM  
mode.  
5.8  
FPWM Operation  
In forced PWM Mode (/FPWM = LOW) the MIC2230 is  
forced to provides constant switching at 2.5 MHz with  
synchronous internal MOSFETs throughout the load  
current. In FPWM Mode, the output ripple can be as  
low as 7 mV.  
DS20005748A-page 16  
2017 Microchip Technology Inc.  
MIC2230  
6.0  
MIC2230 EVALUATION BOARD SCHEMATIC  
J1  
+VIN 2.5V to 5.5V  
U1 MIC2230YML  
3
9
AVIN  
VIN  
C2  
C1  
1μF  
10μF  
J7  
2
7
4
1
5
11  
10  
8
J8  
EN2  
EN1  
EN2  
EN1  
J4  
FPWM  
SW2  
PGOOD  
SW1  
PGOOD  
L1  
2.2μH  
L2  
C3  
2.2μH  
390pF  
J3  
VO2  
1.8V  
J5  
VO1  
1.8V  
C5  
C6  
R3  
R1  
22pF  
22pF  
549k  
549k  
12  
6
FB2/Vo2  
AGND  
FB1/Vo1  
PGND  
C4  
C7  
10μF  
10μF  
R4  
R2  
442k  
442k  
J2  
J6  
GND  
GND  
FIGURE 6-1:  
MIC2230 Adjustable Option (1.8V, 1.8V).  
TABLE 6-1:  
Item  
BILL OF MATERIALS  
Part Number  
Manufacturer  
Description  
Qty  
10 μF Ceramic Capacitor, 6.3V, X5R,  
Size 0603  
C1  
C2  
C1608X5R0J106K  
TDK  
TDK  
1
1
1
2
1 μF Ceramic Capacitor, 6.3V, X5R,  
Size 0402  
C1005X5R0J105K  
C0603Y391KXXA  
0603ZD106MAT  
390 pF Ceramic Capacitor, 25V, X7R,  
Size 0603  
C3  
Vishay  
AVX  
10 μF Ceramic Capacitor, 6.3V, X5R,  
Size 0603  
C4, C5  
CDRH2D11/HPNP-2  
R2NC  
2.2 μH, 1.1A ISAT., 120 m,  
(1.2 mm × 3.2 mm × 3.2 mm)  
Sumida  
Murata  
Coilcraft  
2.2 μH, 900 mA ISAT., 110 m,  
(2.6 mm × 3.2 mm × 4.5 mm)  
L1, L2  
LQH43CN2R2M03  
EPL2014-222MLB  
2
2.2 μH, 1.3A ISAT., 120 m,  
(1.4 mm x 1.8 mm x 2.0 mm)  
R2, R4  
R1, R3  
U1  
CRCW06034423FT1  
CRCW06035493FT1  
MIC2230-AAYML  
Vishay  
Vishay  
442 k, 1%, Size 0603  
2
2
1
549 k, 1%, Size 0603  
Microchip  
2.5 MHz Dual Phase PWM Buck Regulator  
CDRH2D11/HPNP-2  
R2NC  
2.2 μH, 1.1A ISAT., 120 m,  
(1.2 mm × 3.2 mm × 3.2 mm)  
L1, L2  
Sumida  
2
2017 Microchip Technology Inc.  
DS20005748A-page 17  
MIC2230  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
12-lead QFN*  
Example  
XX  
XXXX  
YWWY  
AA  
2230  
1246  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
DS20005748A-page 18  
2017 Microchip Technology Inc.  
MIC2230  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005748A-page 19  
MIC2230  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005748A-page 20  
2017 Microchip Technology Inc.  
MIC2230  
APPENDIX A: REVISION HISTORY  
Revision A (April 2017)  
• Converted Micrel document MIC2230 to Micro-  
chip data sheet template DS20005748A.  
• Minor grammatical text changes throughout.  
2017 Microchip Technology Inc.  
DS20005748A-page 21  
MIC2230  
NOTES:  
DS20005748A-page 22  
2017 Microchip Technology Inc.  
MIC2230  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
-XX  
X
XX  
a)  
MIC2230-AAYML TR: Dual Synchronous  
800 mA/800 mA, Step-  
Down DC/DC Regulator,  
Adjustable Output Volt-  
age, –40°C to +125°C,  
12LD TDFN, Tape and  
Reel  
Output  
Voltage  
Temperature  
Range  
Package  
Device:  
MIC2230:  
Dual Synchronous 800 mA/800 mA  
Step-Down DC/DC Regulator  
b)  
MIC2230-G4YML TR: Dual Synchronous  
800 mA/800 mA, Step-  
Down DC/DC Regulator,  
1.8V/1.2V Output Volt-  
age, –40°C to +125°C,  
12LD TDFN, Tape and  
Reel  
Output Voltages:  
AA  
G4  
GFH  
GS  
J4  
=
=
=
=
=
=
=
Adjustable  
1.8V / 1.2V  
1.8V / 1.575V  
1.8V / 3.3V  
2.5V / 1.2V  
3.3V / 1.2V  
3.3V / 3.3V  
(VOUT1, VOUT2  
)
S4  
SS  
c)  
d)  
MIC2230-GFHYML TR: Dual Synchronous  
800 mA/800 mA, Step-  
Down DC/DC Regulator,  
1.8V/1.575V Output Volt-  
age, –40°C to +125°C,  
12LD TDFN  
Temperature  
Range:  
Y
=
–40C to +125C  
Packages:  
ML  
TR  
=
=
12-Lead, 3 mm × 3 mm TDFN  
Tape and Reel; 5000/reel.  
MIC2230-GSYML:  
Dual Synchronous  
800 mA/800 mA, Step-  
Down DC/DC Regulator,  
1.8V/3.3V Output Volt-  
age, –40°C to  
Media Type:  
+125°C,12LD TDFN  
e)  
f)  
MIC2230-J4YML:  
MIC2230-S4YML:  
MIC2230-SSYML:  
Dual Synchronous 800  
mA/800 mA, Step-Down  
DC/DC Regulator, 2.5V/  
1.2V Output Voltage,  
–40°C to +125°C, 12LD  
TDFN  
Dual Synchronous 800  
mA/800 mA, Step-Down  
DC/DC Regulator, 3.3V/  
1.2V Output Voltage,  
–40°C to +125°C, 12LD  
TDFN  
g)  
Dual Synchronous 800  
mA/800 mA, Step-Down  
DC/DC Regulator, 3.3V/  
3.3V Output Voltage,  
–40°C to +125°C, 12LD  
TDFN  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and  
is not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2017 Microchip Technology Inc.  
DS20005748A-page 23  
MIC2230  
NOTES:  
DS20005748A-page 24  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
Information contained in this publication regarding device  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,  
applications and the like is provided only for your convenience  
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
and may be superseded by updates. It is your responsibility to  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
ensure that your application meets with your specifications.  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
MICROCHIP MAKES NO REPRESENTATIONS OR  
are registered trademarks of Microchip Technology  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
Incorporated in the U.S.A. and other countries.  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2017, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-1653-1  
2017 Microchip Technology Inc.  
DS20005748A-page 25  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005748A-page 26  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MIC2230-GFHYMLTR

1.8 A SWITCHING REGULATOR, 2875 kHz SWITCHING FREQ-MAX, PDSO12, 3 X 3 MM, LEAD FREE, MLF-12
ROCHESTER

MIC2230-GSYML

Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
MICREL

MIC2230-GWYML

Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
MICREL

MIC2230-J4YML

Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
MICREL

MIC2230-J4YML-TR

1.8A SWITCHING REGULATOR, 2875kHz SWITCHING FREQ-MAX, PDSO12
MICROCHIP

MIC2230-S4YML

Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
MICREL

MIC2230-S4YML-TR

1.8A SWITCHING REGULATOR, 2875kHz SWITCHING FREQ-MAX, PDSO12
MICROCHIP

MIC2230-S4YMLTR

暂无描述
MICREL

MIC2230-SSYML

Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
MICREL

MIC2230-SSYML-TR

1.8A SWITCHING REGULATOR, 2875kHz SWITCHING FREQ-MAX, PDSO12
MICROCHIP

MIC2230-SSYMLTR

1.8A SWITCHING REGULATOR, 2875kHz SWITCHING FREQ-MAX, PDSO12, 3 X 3 MM, LEAD FREE, MLF-12
MICREL

MIC2230_10

Dual Synchronous 800mA/800mA Step-Down DC/DC Regulator
MICREL