MIC2289-15BML [MICROCHIP]

LED Driver, 3-Segment, 2 X 2 MM, MLF-8;
MIC2289-15BML
型号: MIC2289-15BML
厂家: MICROCHIP    MICROCHIP
描述:

LED Driver, 3-Segment, 2 X 2 MM, MLF-8

驱动 接口集成电路
文件: 总10页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2289  
White LED Driver Internal Schottky  
Diode and OVP  
General Description  
Features  
The MIC2289 is a PWM (pulse width modulated), boost-  
switching regulator that is optimized for constant-current  
white LED driver applications. The MIC2289 features an  
internal Schottky diode and three levels of output  
overvoltage protection providing a small size and efficient  
DC/DC solution that requires only four external  
components.  
2.5V to 10V input voltage  
Output voltage up to 34V  
Internal Schottky diode  
15V, 24V, 34V output OVP options  
1.2 MHz PWM operation  
Over 500mA switch current  
95mV feedback voltage  
To optimize efficiency, the feedback voltage is set to only  
95mV. This reduces power dissipation in the current set  
resistor and allows the lowest total output voltage, hence  
minimal current draw from the battery.  
<1% line and load regulation  
<1µA shutdown current  
Overtemperature protection  
UVLO  
The MIC2289 implements a constant frequency 1.2MHz  
PWM control scheme. The high frequency, PWM operation  
saves board space by reducing external component sizes.  
The added benet of the constant frequency PWM scheme  
in caparison to variable frequency is much lower noise and  
input ripple injected to the input power source.  
2mm × 2mm 8-pin MLF® package  
–40°C to +125°C junction temperature range  
Applications  
The MIC2289 clamps the output voltage in case of open  
LED conditions, protecting itself and the output capacitor.  
The MIC2289 is available with three output OVP options of  
15V, 24V, and 34V. The different OVP options allows the  
use of the smallest possible output capacitor with the  
appropriate voltage rating for a given application.  
White LED driver for backlighting:  
– Cell phones  
– PDAs  
– GPS systems  
– Digital cameras  
– MP3 players  
– IP phones  
The MIC2289 is available in low profile 6-pin Thin SOT-23  
and 8-pin 2mm × 2mm MLF® package options. The  
MIC2289 has a junction temperature range of –40°C to  
+125°C.  
LED ashlights  
Constant current power supplies  
Data sheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
Typical Application  
10µH  
3-Series LED Efficiency  
82  
80  
78  
76  
74  
MIC2289-15BML  
VIN  
SW  
1-Cell  
Li Ion  
1µF  
0.22µF/16V  
OUT  
FB  
95mV  
EN  
GND  
72  
VIN =3.6V  
15 20 25  
70  
0
5
10  
IOUT (mA)  
3-Series White LED Driver  
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-071007  
July 2007  
Micrel, Inc.  
MIC2289  
Ordering Information  
Marking  
Overvoltage  
Protection  
Junction  
Temp. Range  
Part Number  
Code  
SM24  
SNA  
SNA  
SNB  
SNB  
SNC  
SNC  
Package  
Lead Finish  
MIC2289-24YD6  
MIC2289-15BML  
MIC2289-15YML  
MIC2289-24BML  
MIC2289-24YML  
MIC2289-34BML  
MIC2289-34YML  
24V  
15V  
15V  
24V  
24V  
34V  
34V  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
6-Pin Thin SOT-23  
Pb-Free  
Standard  
Pb-Free  
Standard  
Pb-Free  
Standard  
Pb-Free  
8-Pin 2mm x 2mm MLF®  
8-Pin 2mm x 2mm MLF®  
8-Pin 2mm x 2mm MLF®  
8-Pin 2mm x 2mm MLF®  
8-Pin 2mm x 2mm MLF®  
8-Pin 2mm x 2mm MLF®  
Note: Marking bars may not be to scale.  
Pin Configuration  
GND  
2
FB  
3
SW  
1
VOUT  
1
2
3
4
8
7
6
5
PGND  
SW  
VIN  
EN  
FB  
AGND  
EP  
NC  
4
5
6
EN VIN VOUT  
6- Pin Thin SOT-23 (D6)  
8-Pin MLF® (ML)  
(Top View)  
Fused Lead Frame  
Pin Description  
Pin Number  
TSOT-23-6  
Pin Number  
MLF® -8  
Pin Name  
SW  
Pin Name  
1
2
3
7
6
Switch node (Input): Internal power BIPOLAR collector.  
Ground (Return): Ground.  
GND  
FB  
Feedback (Input): Output voltage sense node. Connect the  
cathode of the LED to this pin. A resistor from this pin to ground  
sets the LED current.  
4
3
EN  
Enable (Input): Logic high enables regulator. Logic low shuts  
down regulator.  
5
6
2
1
VIN  
Supply (Input): 2.7V to 8V for internal circuitry.  
VOUT  
Output Pin and Overvoltage Protection (Output): Connect to the  
output capacitor and LEDs.  
4
8
AGND  
PGND  
NC  
Analog ground.  
Power ground.  
5
No connect (no internal connection to die).  
Ground (Return): Exposed backside pad.  
EP  
GND  
M9999-071007  
July 2007  
2
Micrel, Inc.  
MIC2289  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN).......................................................12V  
Switch Voltage (VSW)....................................... –0.3V to 34V  
Enable Pin Voltage (VEN)...................................0.3V to VIN  
FB Voltage (VFB)...............................................................6V  
Switch Current (ISW) .........................................................2A  
Ambient Storage Temperature (Ts)...........65°C to +150°C  
Schottky Reverse Voltage (VDA).....................................34V  
EDS Rating(3)..................................................................2kV  
Supply voltage (VIN) ........................................ 2.5V to +10V  
Output Voltage (VIN)............................................ VIN to VOVP  
Junction Temperature (TJ) ........................40°C to +125°C  
Package Thermal Resistance  
2mm x 2mm MLF® (θJA).....................................93°C/W  
Thin SOT-23-6 (θJA) ........................................177°C/W  
Electrical Characteristics(4)  
TA = 25°C, VIN = VEN = 3.6V, VOUT = 10V, IOUT = 20mA, unless otherwise noted. Bold values indicate –40°C< TJ < +125°C.  
Symbol  
VIN  
Parameter  
Condition  
Min  
2.5  
1.8  
Typ  
Max  
10  
2.4  
5
Units  
V
Supply Voltage Range  
Under Voltage Lockout  
Quiescent Current  
Shutdown Current  
Feedback Voltage  
Feedback Input Current  
Line Regulation(6)  
Load Regulation(6)  
Maximum Duty Cycle  
Switch Current Limit  
Switch Saturation Voltage  
Switch Leakage Current  
Enable Threshold  
VUVLO  
IVIN  
2.1  
2.5  
V
VFB > 200mV, (not switching)  
mA  
µA  
mV  
nA  
%
ISD  
V
EN = 0V(5)  
0.1  
1
VFB  
(±5%)  
90  
95  
100  
IFB  
VFB = 95mV  
3V VIN 5V  
5mA IOUT 20mA  
–450  
0.5  
1
0.5  
%
DMAX  
ISW  
85  
90  
%
750  
450  
0.01  
mA  
mV  
µA  
VSW  
ISW  
ISW = 0.5A  
VEN = 0V, VSW = 10V  
5
VEN  
TURN ON  
TURN OFF  
1.5  
V
V
0.4  
40  
1.35  
1
IEN  
Enable Pin Current  
VEN = 10V  
20  
1.2  
0.8  
µA  
MHz  
V
fSW  
VD  
Oscillator Frequency  
Schottky Forward Drop  
Schottky Leakage Current  
Overvoltage Protection  
1.05  
ID = 150mA  
VR = 30V  
IRD  
4
µA  
VOVP  
MIC2289-15  
MIC2289-24  
MIC2289-34  
13  
21  
30  
14  
22.5  
32  
16  
24  
34  
V
V
V
TJ  
Overtemperature  
Threshold Shutdown  
150  
10  
°C  
°C  
Hysteresis  
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specications do not apply when operating  
the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max), the  
junction-to-ambient thermal resistance, θJA, and the ambient temperature, TA. The maximum allowable power dissipation will result in excessive die  
temperature, and the regulator will go into thermal shutdown.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model.  
4. Specification for packaged product only.  
5. ISD = IVIN  
.
6. Guaranteed by design  
M9999-071007  
July 2007  
3
Micrel, Inc.  
MIC2289  
Typical Characteristics  
Shutdown Voltage  
vs. Input Voltage  
Quiescent Current  
vs. Input Current  
Feedback Voltage  
vs. Input Voltage  
100  
5
4
3
2
1
0
5
4
3
2
1
0
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
VIN (V)  
VIN (V)  
VIN (V)  
Schottky Forward  
Voltage Drop  
EN Pin Bias Current  
vs. Temperature  
Switch Frequency  
vs. Temperature  
700  
600  
500  
400  
300  
200  
100  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
IE N = 10V  
IE N = 4.2V  
IE N = 3.0V  
IE N = 3.6V  
0
-40 -20  
0
20 40 60 80 100  
-50  
0
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SCHOTTKY FORWARD VOLTAGE DROP (mV)  
Saturation Voltage  
vs. Temperature  
Current Limit  
vs. Temperature  
900  
Schottky Reverse  
Leakage Current  
550  
500  
450  
400  
350  
300  
2.5  
2
850  
800  
750  
700  
VR = 25V  
VR = 16V  
VR = 10V  
1.5  
1
0.5  
0
650  
VIN = 2.5V  
IS W = 500mA  
600  
30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Switch Saturation Voltage  
vs. Current  
600  
500  
400  
300  
200  
100  
0
VIN = 2.5V  
VIN = 5V  
0
100 200 300 400 500  
ISW (mA)  
M9999-071007  
July 2007  
4
Micrel, Inc.  
MIC2289  
Functional Diagram  
VIN  
FB  
EN  
OUT  
OVP  
SW  
PWM  
Generator  
gm  
VREF  
95mV  
S
GND  
1.2MHz  
Ramp  
Oscillator  
Generator  
MIC2289 Block Diagram  
The gm error amplier measures the LED current through  
the external sense resistor and amplies the error  
between the detected signal and the 95mV reference  
voltage. The output of the gm error amplier provides the  
voltage-loop signal that is fed to the other input of the  
PWM generator. When the current-loop signal exceeds  
the voltage-loop signal, the PWM generator turns off the  
bipolar output transistor. The next clock period initiates  
the next switching cycle, maintaining the constant  
frequency current-mode PWM control. The LED is set by  
the feedback resistor:  
Functional Description  
The MIC2289 is a constant frequency, PWM current  
mode boost regulator. The block diagram is shown  
above. The MIC2289 is composed of an oscillator, slope  
compensation ramp generator, current amplier, gm error  
amplier, PWM generator, 500mA bipolar output  
transistor, and Schottky rectier diode. The oscillator  
generates a 1.2MHz clock. The clock’s two functions are  
to trigger the PWM generator that turns on the output  
transistor and to reset the slope compensation ramp  
generator. The current amplier is used to measure the  
switch current by amplifying the voltage signal from the  
internal sense resistor. The output of the current  
amplier is summed with the output of the slope  
compensation ramp generator. This summed current-  
loop signal is fed to one of the inputs of the PWM  
generator.  
95mW  
ILED  
=
RFB  
The Enable pin shuts down the output switching and  
disables control circuitry to reduce input current-to-  
leakage levels. Enable pin input current is zero at zero  
volts.  
M9999-071007  
July 2007  
5
Micrel, Inc.  
MIC2289  
inductor and output capacitor values for various series-  
LED applications.  
External Component Selection  
The MIC2289 can be used across a wide rage of  
applications. The table below shows recommended  
Series LEDs  
L
Manufacturer  
Min COUT  
Manufacturer  
2
22µH  
LQH32CN220K21 (Murata)  
NLC453232T-220K(TDK)  
LQH32CN150K21 (Murata)  
NLC453232T-150K(TDK)  
LQH32CN100K21 (Murata)  
NLC453232T-100K(TDK)  
LQH32CN6R8K21 (Murata)  
NLC453232T-6R8K(TDK)  
LQH32CN4R7K21 (Murata)  
NLC453232T-4R7K(TDK)  
LQH43MN220K21 (Murata)  
NLC453232T-220K(TDK)  
LQH43MN 150K21 (Murata)  
NLC453232T-150K(TDK)  
LQH43MN 100K21 (Murata)  
NLC453232T-100K(TDK)  
LQH43MN 6R8K21 (Murata)  
NLC453232T-6R8K(TDK)  
LQH43MN 4R7K21 (Murata)  
NLC453232T-4R7K(TDK)  
LQH43MN220K21 (Murata)  
NLC453232T-220K(TDK)  
LQH43MN 150K21 (Murata)  
NLC453232T-150K(TDK)  
LQH43MN 100K21 (Murata)  
NLC453232T-100K(TDK)  
LQH43MN 6R8K21 (Murata)  
NLC453232T-6R8K(TDK)  
LQH43MN 4R7K21 (Murata)  
NLC453232T-4R7K(TDK)  
LQH43MN220K21 (Murata)  
NLC453232T-220K(TDK)  
LQH43MN 150K21 (Murata)  
NLC453232T-150K(TDK)  
LQH43MN 100K21 (Murata)  
NLC453232T-100K(TDK)  
LQH43MN 6R8K21 (Murata)  
NLC453232T-6R8K(TDK)  
LQH43MN 4R7K21 (Murata)  
NLC453232T-4R7K(TDK)  
LQH43MN220K21 (Murata)  
NLC453232T-220K(TDK)  
LQH43MN 150K21 (Murata)  
NLC453232T-150K(TDK)  
LQH43MN 100K21 (Murata)  
NLC453232T-100K(TDK)  
LQH43MN 6R8K21 (Murata)  
NLC453232T-6R8K(TDK)  
LQH43MN 4R7K21 (Murata)  
NLC453232T-4R7K(TDK)  
2.2µF  
0805ZD225KAT(AVX)  
GRM40X5R225K10(Murata)  
0805ZD105KAT(AVX)  
GRM40X5R105K10(Murata)  
0805ZD224KAT(AVX)  
GRM40X5R224K10(Murata)  
0805ZD225KAT(AVX)  
GRM40X5R225K10(Murata)  
0805ZD224KAT(AVX)  
GRM40X5R224K10(Murata)  
0805YD225MAT(AVX)  
GRM40X5R225K16(Murata)  
0805YD105MAT(AVX)  
GRM40X5R105K16(Murata)  
0805YD224MAT(AVX)  
GRM40X5R224K16(Murata)  
0805YD224MAT(AVX)  
GRM40X5R224K16(Murata)  
0805YD274MAT(AVX)  
GRM40X5R224K16(Murata)  
0805YD105MAT(AVX)  
GRM40X5R105K25(Murata)  
0805YD105MAT(AVX)  
GRM40X5R105K25(Murata)  
0805YD274MAT(AVX)  
GRM40X5R274K25(Murata)  
0805YD274MAT(AVX)  
GRM40X5R274K25(Murata)  
0805YD274MAT(AVX)  
GRM40X5R274K25(Murata)  
08053D224MAT(AVX)  
GRM40X5R224K25(Murata)  
08053D224MAT(AVX)  
GRM40X5R224K25(Murata)  
08053D274MAT(AVX)  
GRM40X5R274K25(Murata)  
08053D274MAT(AVX)  
GRM40X5R274K25(Murata)  
08053D274MAT(AVX)  
GRM40X5R274K25(Murata)  
08053D224MAT(AVX)  
GRM40X5R224K25(Murata)  
08053D224MAT(AVX)  
GRM40X5R224K25(Murata)  
08053D274MAT(AVX)  
GRM40X5R274K25(Murata)  
08053D274MAT(AVX)  
15µH  
10µH  
6.8µH  
4.7µH  
22µH  
15µH  
10µH  
6.8µH  
4.7µH  
22µH  
15µH  
10µH  
6.8µH  
4.7µH  
22µH  
15µH  
10µH  
6.8µH  
4.7µH  
22µH  
15µH  
10µH  
6.8µH  
4.7µH  
1µF  
0.22µF  
0.22µF  
0.22µF  
2.2µF  
3
1µF  
0.22µF  
0.22µF  
0.27µF  
1µF  
4
1µF  
0.27µF  
0.27µF  
0.27µF  
0.22µF  
0.22µF  
0.27µF  
0.27µF  
0.27µF  
0.22µF  
0.22µF  
0.27µF  
0.27µF  
0.27µF  
5, 6  
7, 8  
GRM40X5R274K25(Murata)  
08053D274MAT(AVX)  
GRM40X5R274K25(Murata)  
M9999-071007  
July 2007  
6
Micrel, Inc.  
MIC2289  
Dimming Control  
Open-Circuit Protection  
There are two techniques for dimming control. One is  
PWM dimming, and the other is continuous dimming.  
If the LEDs are disconnected from the circuit, or in case  
an LED fails open, the sense resistor will pull the FB pin  
to ground. This will cause the MIC2289 to switch with a  
high duty-cycle, resulting in output overvoltage. This may  
cause the SW pin voltage to exceed its maximum  
voltage rating, possibly damaging the IC and the  
external components. To ensure the highest level of  
protection, the MIC2289 has 3 product options in the  
2mm × 2mm MLF®-8 with overvoltage protection, OVP.  
The extra pins of the 2mm × 2mm MLF®-8 package  
allow a dedicated OVP monitor with options for 15V,  
24V, or 34V (see Figure 3). The reason for the three  
OVP levels is to let users choose the suitable level of  
OVP for their application. For example, a 3-LED  
application would typically see an output voltage of no  
more than 12V, so a 15V OVP option would offer a  
suitable level of protection. This allows the user to select  
the output diode and capacitor with the lowest voltage  
ratings, therefore smallest size and lowest cost. The  
OVP will clamp the output voltage to within the specied  
limits.  
1. PWM dimming control is implemented by  
applying a PWM signal on EN pin as shown in  
Figure 1. The MIC2289 is turned on and off by  
the PWM signal. With this method, the LEDs  
operate with either zero or full current. The  
average LED current is increased proportionally  
to the duty-cycle of the PWM signal. This  
technique has high-efciency because the IC  
and the LEDs consume no current during the off  
cycle of the PWM signal. Typical frequency  
should be between 100Hz and 10kHz.  
2. Continuous dimming control is implemented by  
applying a DC control voltage to the FB pin of  
the MIC2289 through a series resistor as shown  
in Figure 2. The LED current is decreased  
proportionally with the amplitude of the control  
voltage. The LED intensity (current) can be  
dynamically varied applying a DC voltage to the  
FB pin. The DC voltage can come from a DAC  
signal, or a ltered PWM signal. The advantage  
of this approach is that a high frequency PWM  
signal (>10kHz) can be used to control LED  
intensity.  
VIN  
VIN  
EN  
SW  
OUT  
FB  
VIN  
GND  
VIN  
EN  
SW  
OUT  
FB  
Figure 3. OVP Circuit  
PWM  
GND  
Start-Up and Inrush Current  
During start-up, inrush current of approximately double  
the nominal current ows to set up the inductor current  
and the voltage on the output capacitor. If the inrush  
current needs to be limited, a soft-start circuit similar to  
Figure 4 could be implemented. The soft-start capacitor,  
CSS, provides over-drive to the FB pin at start-up,  
resulting in gradual increase of switch duty cycle and  
limited inrush current.  
Figure 1. PWM Dimming Method  
VIN  
VIN  
EN  
SW  
VIN  
OUT  
FB  
2200pF  
CSS  
5.11k  
49.9k  
GND  
VIN  
EN  
SW  
OUT  
FB  
DC  
Equivalent  
Figure 2. Continuous Dimming  
GND  
R
10k  
Figure 4. One of Soft-Start Circuit  
M9999-071007  
July 2007  
7
Micrel, Inc.  
MIC2289  
6-Series LED Circuit without External Soft-Start  
6-Series LED Circuit with External Soft-Start  
L = 10µH  
L = 10µH  
C
C
V
IN = 1µF  
OUT = 0.22µF  
IN = 3.6V  
CIN = 1µF  
COUT = 0.22µF  
VIN = 3.6V  
IOUT = 20mA  
6 LEDs  
CSS = 2200pF  
IOUT = 20mA  
6 LEDs  
TIME (100µs/dvi.)  
TIME (100µs/dvi.)  
Figure 5. 6-Series LED Circuit  
without External Soft Start  
Figure 6. 6-Series LED Circuit  
with External Soft Start  
M9999-071007  
July 2007  
8
Micrel, Inc.  
MIC2289  
Package Information  
6-Pin Thin SOT-23 (D6)  
8-Pin MLF® (ML)  
M9999-071007  
July 2007  
9
Micrel, Inc.  
MIC2289  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
M9999-071007  
July 2007  
10  

相关型号:

MIC2289-15YML

2mm 】 2mm White LED Driver with Internal Schottky Diode and OVP
MICREL

MIC2289-15YML-TR

LED DISPLAY DRIVER, DSO8
MICROCHIP
MICROCHIP

MIC2289-15YMLTR

暂无描述
MICREL

MIC2289-24BML

2mm 】 2mm White LED Driver with Internal Schottky Diode and OVP
MICREL

MIC2289-24BMLTR

LED Driver, 3-Segment, 2 X 2 MM, MLF-8
MICROCHIP

MIC2289-24YD6

White LED Driver Internal Schottky Diode and OVP
MICREL

MIC2289-24YD6-TR

LED DISPLAY DRIVER
MICROCHIP
MICROCHIP

MIC2289-24YML

2mm 】 2mm White LED Driver with Internal Schottky Diode and OVP
MICREL

MIC2289-24YML

LED DISPLAY DRIVER, DSO8
MICROCHIP

MIC2289-24YML-TR

LED DISPLAY DRIVER, DSO8
MICROCHIP