MIC2296YMLTR [MICROCHIP]

2.5A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO8, 2 X 2 MM, LEAD FREE, MLF-8;
MIC2296YMLTR
型号: MIC2296YMLTR
厂家: MICROCHIP    MICROCHIP
描述:

2.5A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO8, 2 X 2 MM, LEAD FREE, MLF-8

开关 光电二极管 输出元件
文件: 总10页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2296  
High Power Density 1.2A  
Boost Regulator  
General Description  
Features  
The MIC2296 is a 600kHz, PWM dc/dc boost switching  
regulator available in a 2mm x 2mm MLF™ package  
option. High power density is achieved with the MIC2296’s  
internal 34V / 1.2A switch, allowing it to power large loads  
in a tiny footprint. The MIC2296 is a version of the  
MIC2295 1.2MHz, PWM dc/dc boost switching regulator,  
that offers improved efficiency resulting from 600kHz  
operation.  
2.5V to 10V input voltage range  
Output voltage adjustable to 34V  
1.2A switch current  
600kHz PWM operation  
Stable with small size ceramic capacitors  
High efficiency  
Low input and output ripple  
<1µA shutdown current  
UVLO  
Output over-voltage protection (MIC2296BML)  
Over temperature shutdown  
2mm x 2mm leadless 8-lead MLF™ package option  
–40oC to +125oC junction temperature range  
The MIC2296 implements constant frequency 600kHz  
PWM current mode control. The MIC2296 offers internal  
compensation that offers excellent transient response and  
output regulation performance. The high frequency  
operation saves board space by allowing small, low-profile  
external components. The fixed frequency PWM scheme  
also reduces spurious switching noise and ripple to the  
input power source.  
The MIC2296 is available in a low-profile Thin SOT23 5-  
lead package and a 2mm x2mm 8-lead MLF™ leadless  
package. The 2mm x 2mm MLF™ package option has an  
output over-voltage protection feature.  
Applications  
Organic EL power supplies  
3.3V to 5V/500mA conversion  
TFT-LCD bias supplies  
Positive and negative output regulators  
SEPIC converters  
The MIC2296 has an operating junction temperature range  
of –40°C to +125°C  
Positive to negative Cuk converters  
12V supply for DSL applications  
Multi-output dc/dc converters  
L1  
10µH  
VOUT  
15V/100mA  
VOUT  
5V/400mA  
10µH  
1000 pF  
MIC2296BML  
MIC2296 BD5  
R1  
10k  
SW  
OVP  
FB  
VIN  
VIN  
R1  
10k  
VIN  
SW  
1-Cell  
Li Ion  
3V to 4.2V  
VIN  
1-Cell  
Li Ion  
EN  
10µF  
FB  
EN  
C1  
2.2µF  
2.2µF  
C1  
2.2µF  
R2  
901  
R2  
3.3k  
AGND PGND  
GND  
MLF and MicroLeadFrame is a trademark of Amkor Technology  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-042005  
(408) 955-1690  
April 2005  
Micrel, Inc.  
MIC2296  
Package  
Ordering Information  
Part Number  
Marking Code  
Output Over  
Voltage Protection  
Junction Temperature  
Range  
Standard  
Lead-Free  
MIC2296YML  
MIC2296YD5*  
Standard  
Lead-Free  
WDA  
2mm x2mm  
MLF-8L  
MIC2296BML  
MIC2296BD5*  
34V  
-
WDA  
-40°C to 125°C  
-40°C to 125°C  
WDAA  
WDAA  
Thin SOT-23-5  
* Contact factory for availability.  
Pin Configuration  
GND  
2
FB  
3
SW  
1
OVP  
1
2
3
4
8
7
6
5
PGND  
VIN  
EN  
SW  
FB  
AGND  
NC  
4
5
EP  
EN  
VIN  
TSOT-23-5 (BD5)  
8-pin MLF™ (BML)  
Pin Description  
MIC2296BD5  
MIC2296BML  
2x2 MLF-8L  
Thin SOT-23-5  
Pin Name Pin Function  
Output Over-Voltage Protection (Input): Tie this pin to VOUT to clamp  
the output voltage to 34V maximum in fault conditions. Tie this pin to  
ground if OVP function is not required.  
1
OVP  
5
4
2
3
VIN  
EN  
Supply (Input): 2.5V to 10V input voltage.  
Enable (Input): Logic high enables regulator. Logic low shuts down  
regulator.  
4
5
AGND  
N/C  
Analog ground  
No connect. No internal connection to die.  
Feedback (Input): 1.24V output voltage sense node. VOUT = 1.24V ( 1 +  
R1/R2)  
3
6
FB  
1
2
7
8
SW  
PGND  
GND  
GND  
Switch Node (Input): Internal power BIPOLAR collector.  
Power ground  
EP  
Ground (Return): Ground.  
Ground (Return). Exposed backside pad.  
M9999-042005  
(408) 955-1690  
April 2005  
2
Micrel, Inc.  
MIC2296  
Absolute Maximum Rating (1)  
Operating Range (2)  
Supply voltage (VIN)........................................................12V  
Switch voltage (VSW) ........................................-0.3V to 34V  
Enable pin voltage (VEN)....................................... -0.3 to VIN  
FB Voltage (VFB)...............................................................6V  
Switch Current (ISW) ......................................................2.5A  
Ambient Storage Temperature (TS)............-65°C to +150°C  
ESD Rating(3)................................................................. 2KV  
Supply Voltage (VIN).......................................... 2.5V to 10V  
Junction Temperature Range (TJ)..............-40°C to +125°C  
Package Thermal Impedance  
θ
JA 2x2 MLF-8L lead..........................................93°C/W  
Electrical Characteristics (4)  
TA=25oC, VIN =VEN = 3.6V, VOUT = 15V, IOUT = 40mA, unless otherwise noted. Bold values indicate -40  
°
C
TJ  
125  
°
C.  
Max  
Symbol  
VIN  
Parameter  
Condition  
Min  
2.5  
1.8  
Typ  
Units  
V
Supply Voltage Range  
Under-Voltage Lockout  
Quiescent Current  
Shutdown Current  
Feedback Voltage  
10  
2.4  
VUVLO  
IVIN  
2.1  
2.8  
0.1  
V
VFB = 2V (not switching)  
VEN = 0V(5)  
5
mA  
µA  
ISD  
1
VFB  
(+/-1%)  
1.227  
1.24  
1.252  
1.265  
V
(+/-2%) (Over Temp)  
1.215  
Feedback Input Current  
Line Regulation  
IFB  
VFB = 1.24V  
-450  
0.04  
0.5  
nA  
%
%
%
1
3V  
VIN  
5V  
40mA  
Load Regulation  
5mA  
IOUT  
DMAX  
Maximum Duty Cycle  
90  
95  
ISW  
VSW  
ISW  
Switch Current Limit  
Note 5  
ISW = 0.5A  
1.2  
1.7  
250  
0.01  
2.5  
1
A
Switch Saturation Voltage  
Switch Leakage Current  
mV  
µA  
VEN = 0V, VSW = 10V  
TURN ON  
1.5  
VEN  
Enable Threshold  
V
TURN OFF  
0.4  
40  
IEN  
Enable Pin Current  
VEN = 10V  
20  
600  
32  
µA  
kHz  
V
fSW  
VOVP  
TJ  
Oscillator Frequency  
VIN = 3.6V  
525  
30  
675  
34  
Output over-voltage protection  
MIC2296BML only  
150  
10  
°
°
C
C
Over-Temperature Threshold  
Shutdown  
Hysteresis  
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when  
operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction  
temperature, TJ(Max), the junction-to-ambient thermal resistance, θ JA, and the ambient temperature, TA. The maximum allowable power  
dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.  
2. This device is not guaranteed to operate beyond its specified operating rating.  
3. IC devices are inherently ESD sensitive. Handling precautions required. Human body model rating: 1.5K in series with 100pF.  
4. Specification for packaged product only.  
5. ISD = IVIN  
.
M9999-042005  
(408) 955-1690  
April 2005  
3
Micrel  
MIC2296  
Typical Characteristics  
Switch Saturation Voltage  
12V Output with L = 4.7µH  
5V Output with L = 4.7µH  
vs. Input Voltage  
84  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
VIN = 4.2V  
VIN = 4.2V  
82  
VIN = 3.6V  
80  
78  
76  
74  
72  
VIN = 3.6V  
VIN = 3.2V  
VIN = 3.2V  
0
200 400 600 800 1000  
OUTPUT CURRENT (mA)  
0
50  
100 150 200 250  
10  
OUTPUT CURRENT (mA)  
Input Voltage (V)  
Current Limit  
vs. Input Voltage  
Frequency  
vs. Input Voltage  
Max Duty Cycle  
vs. Input Voltage  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
100  
98  
96  
94  
92  
90  
800  
600  
400  
200  
0
2.5  
5
7.5  
10  
2.5  
5
7.5  
10  
2.5  
5
7.5  
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
FB Pin Current  
vs. Temperature  
Feedback Voltage  
vs. Temperature  
Load Regulation  
12.2  
12.15  
12.1  
700  
600  
500  
400  
300  
200  
100  
0
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
12.05  
12  
11.95  
11.9  
VIN = 3.6V  
11.85  
11.8  
0
25 50 75 100 125 150  
LOAD (mA)  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
M9999-042005  
(408) 955-1690  
April 2005  
4
Micrel  
MIC2296  
Functional Characteristics  
Enable Characteristics  
Step Load Response  
VIN = 3.6V  
VOUT = 12V  
IOUT = 150mA  
VIN = 3.6V  
VOUT = 12V  
OUT = 50mA to 150mA  
I
TIME (100µs/div)  
TIME (2µs/div)  
M9999-042005  
(408) 955-1690  
April 2005  
5
Micrel  
MIC2296  
slope compensation ramp generator. This summed  
current-loop signal is fed to one of the inputs of the PWM  
generator.  
Functional Description  
The MIC2296 is a high power density, PWM dc/dc boost  
regulator. The block diagram is shown in Figure 1. The  
MIC2296 is composed of an oscillator, slope  
compensation ramp generator, current amplifier, gm error  
amplifier, PWM generator, and a 1.2A bipolar output  
transistor. The oscillator generates a 600kHz clock. The  
clock’s two functions are to trigger the PWM generator that  
turns on the output transistor, and to reset the slope  
compensation ramp generator. The current amplifier is  
used to measure the switch current by amplifying the  
voltage signal from the internal sense resistor. The output  
of the current amplifier is summed with the output of the  
The gm error amplifier measures the feedback voltage  
through the external feedback resistors and amplifies the  
error between the detected signal and the 1.24V reference  
voltage. The output of the gm error amplifier provides the  
voltage-loop signal that is fed to the other input of the  
PWM generator. When the current-loop signal exceeds the  
voltage-loop signal, the PWM generator turns off the  
bipolar output transistor. The next clock period initiates the  
next switching cycle, maintaining constant frequency  
current-mode PWM control  
VIN  
FB  
OVP*  
EN  
MIC2296  
OVP*  
SW  
PWM  
Generator  
gm  
VRE  
F
1.24V  
CA  
600kHz  
Oscillator  
Ramp  
Generator  
GND  
*
OVP available on MLFTM package option only.  
MIC2296 Block Diagram  
Figure 1  
M9999-042005  
(408) 955-1690  
April 2005  
6
Micrel  
MIC2296  
voltage condition is detected saving itself and other  
sensitive circuitry downstream.  
Application Information  
DC to DC PWM Boost Conversion  
Component Selection  
Inductor  
The MIC2296 is a constant frequency boost converter. It  
operates by taking a DC input voltage and regulating a  
higher DC output voltage. Figure 2 shows a typical circuit.  
Inductor selection is a balance between efficiency,  
stability, cost, size and rated current. For most applications  
a 10µH is the recommended inductor value. It is usually a  
good balance between these considerations. Efficiency is  
affected by inductance value in that larger inductance  
values reduce the peak to peak ripple current. This has an  
effect of reducing both the DC losses and the transition  
losses.  
L1  
10µH  
VIN  
VOUT  
SW  
VIN  
EN  
R1  
R2  
U1  
OVP  
FB  
MIC2296-BML  
C2  
10µF  
There is also a secondary effect of an inductors DC  
resistance (DCR). The DCR of an inductor will be higher  
for more inductance in the same package size. This is due  
to the longer windings required for an increase in  
inductance. Since the majority of input current (minus the  
MIC2296 operating current) is passed through the  
inductor, higher DCR inductors will reduce efficiency.  
GND  
GND  
GND  
Figure 2  
Boost regulation is achieved by turning on an internal  
switch, which draws current through the inductor (L1).  
When the switch turns off, the inductor’s magnetic field  
collapses. This causes the current to be discharged into  
the output capacitor through an external Schottkey diode  
(D1). Voltage regulation is achieved my modulating the  
pulse width or pulse width modulation (PWM).  
Also, to maintain stability, increasing inductor size will  
have to be met with an increase in output capacitance.  
This is due to the unavoidable “right half plane zero” effect  
for the continuous current boost converter topology. The  
frequency at which the right half plane zero occurs can be  
calculated as follows;  
Duty Cycle Considerations  
2
V
Duty cycle refers to the switch on-to-off time ratio and can  
be calculated as follows for a boost regulator;  
IN  
Frhpz =  
VOUT ×L ×IOUT ×2π  
V
IN  
The right half plane zero has the undesirable effect of  
increasing gain, while decreasing phase. This requires that  
the loop gain is rolled off before this has significant effect  
on the total loop response. This can be accomplished by  
either reducing inductance (increasing RHPZ frequency) or  
increasing the output capacitor value (decreasing loop  
gain).  
D = 1−  
V
OUT  
The duty cycle required for voltage conversion should be  
less than the maximum duty cycle of 90%. Also, in light  
load conditions where the input voltage is close to the  
output voltage, the minimum duty cycle can cause pulse  
skipping. This is due to the energy stored in the inductor  
causing the output to overshoot slightly over the regulated  
output voltage. During the next cycle, the error amplifier  
detects the output as being high and skips the following  
pulse. This effect can be reduced by increasing the  
minimum load or by increasing the inductor value.  
Increasing the inductor value reduces peak current, which  
in turn reduces energy transfer in each cycle.  
Output Capacitor  
Output capacitor selection is also a trade-off between  
performance, size and cost. Increasing output capacitance  
will lead to an improved transient response, but also an  
increase in size and cost. X5R or X7R dielectric ceramic  
capacitors are recommended for designs with the  
MIC2296. Y5V values may be used, but to offset their  
tolerance over temperature, more capacitance is required.  
The following table shows the recommended ceramic  
(X5R) output capacitor value vs. output voltage.  
Over Voltage Protection  
For MLF package of MIC2296, there is an over voltage  
protection function. If the feedback resistors are  
disconnected from the circuit or the feedback pin is  
shorted to ground, the feedback pin will fall to ground  
potential. This will cause the MIC2296 to switch at full  
duty-cycle in an attempt to maintain the feedback voltage.  
As a result the output voltage will climb out of control. This  
may cause the switch node voltage to exceed its maximum  
voltage rating, possibly damaging the IC and the external  
components. To ensure the highest level of protection, the  
MIC2296 OVP pin will shut the switch off when an over-  
Output Voltage  
Recommended Output  
Capacitance  
<6V  
<16V  
<34V  
10µF  
4.7µF  
2.2µF  
M9999-042005  
(408) 955-1690  
April 2005  
7
Micrel  
MIC2296  
Diode Selection  
Capacitor Selection  
The MIC2296 requires an external diode for operation. A  
Schottkey diode is recommended for most applications  
due to their lower forward voltage drop and reverse  
recovery time. Ensure the diode selected can deliver the  
peak inductor current and the maximum reverse voltage is  
rated greater than the output voltage.  
Multi-layer ceramic capacitors are the best choice for input  
and output capacitors. They offer extremely low ESR,  
allowing very low ripple, and are available in very small,  
cost effective packages. X5R dielectrics are preferred. A  
4.7µF to 10µF output capacitor is suitable for most  
applications.  
Input Capacitor  
Diode Selection  
A minimum 1µF ceramic capacitor is recommended for  
designing with the MIC2296. Increasing input capacitance  
will improve performance and greater noise immunity on  
the source. The input capacitor should be as close as  
possible to the inductor and the MIC2296, with short traces  
for good noise performance.  
For maximum efficiency, Schottky diode is recommended  
for use with MIC2296. An optimal component selection can  
be made by choosing the appropriate reverse blocking  
voltage rating and the average forward current rating for a  
given application. For the case of maximum output voltage  
(34V) and maximum output current capability, a 40V / 1A  
Schottky diode should be used.  
Feedback Resistors  
Open-Circuit Protection  
The MIC2296 utilizes a feedback pin to compare the  
output to an internal reference. The output voltage is  
adjusted by selecting the appropriate feedback resistor  
values. The desired output voltage can be calculated as  
follows;  
For MLF package option of MIC2296, there is an output  
over-voltage protection function that clamps the output to  
below 34V in fault conditions. Possible fault conditions  
may include: if the device is configured in a constant  
current mode of operation and the load opens, or if in the  
standard application the feedback resistors are  
disconnected from the circuit. In these cases the FB pin  
will pull to ground, causing the MIC2296 to switch with a  
high duty-cycle. As a result, the output voltage will climb  
out of regulation, causing the SW pin to exceed its  
maximum voltage rating and possibly damaging the IC and  
the external components. To ensure the highest level of  
safety, the MIC2296 has a dedicated pin, OVP, to monitor  
and clamp the output voltage in over-voltage conditions.  
R1  
VOUT = V  
×
+1  
REF  
R2  
Where VREF is equal to 1.24V.  
Duty-Cycle  
The MIC2296 is a general-purpose step up DC-DC  
converter. The maximum difference between the input  
voltage and the output voltage is limited by the maximum  
duty-cycle (Dmax) of the converter. In the case of MIC2296,  
DMAX = 85%. The actual duty cycle for a given application  
can be calculated as follows:  
The OVP function is offered in the 2mm x 2mm MLF-8L  
package option only. To disable OVP function, tie the OVP  
pin to ground  
V
IN  
D = 1−  
V
OUT  
The actual duty-cycle, D, cannot surpass the maximum  
rated duty-cycle, Dmax  
.
Output Voltage Setting  
The following equation can be used to select the feedback  
resistors R1 and R2 (see figure 1).  
V
OUT  
R1 = R2 ⋅  
1  
1.24V  
A high value of R2 can increase the whole system  
efficiency, but the feedback pin input current (IFB) of the gm  
operation amplifier will affect the output voltage. The R2  
resistor value must be less than or equal to 5k(R2 ≤  
5k).  
Inductor Selection  
In MIC2296, the switch current limit is 1.2A. The selected  
inductor should handle at least 1.2A current without  
saturating. The inductor should have a low DC resistor to  
minimize power losses. The inductor’s value can be 4.7µH  
to 10µH for most applications.  
M9999-042005  
(408) 955-1690  
April 2005  
8
Micrel  
MIC2296  
L1  
4.7µH  
L1  
4.7µH  
VIN  
3V to 4.2V  
VOUT  
5V @ 400mA  
VIN  
3V to 4.2V  
VOUT  
9V @ 180mA  
D1  
D1  
560 pF  
470 pF  
MIC2296BML  
MIC2296BML  
VIN  
SW  
OVP  
FB  
VIN  
SW  
OVP  
FB  
R1  
31.6k  
R1  
5.62k  
C1  
4.7µF  
6.3V  
C2  
22µF  
6.3V  
C1  
2.2µF  
10V  
C2  
4.7µF  
16V  
EN  
EN  
GND  
R2  
1.87k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
3VIN to 4.2VOUT @ 400mA  
3VIN - 4.2VIN to 9VOUT @ 180mA  
L1  
15µH  
L1  
15µH  
VIN  
3V to 4.2V  
VOUT  
12V @ 120mA  
VIN  
5V  
VOUT  
24V @160mA  
D1  
D1  
1200 pF  
MIC2296BML  
MIC2296BML  
R1  
43.2k  
VIN  
SW  
OVP  
FB  
VIN  
SW  
OVP  
FB  
R1  
43.2k  
C1  
2.2µF  
10V  
C2  
4.7µF  
16V  
C1  
2.2µF  
10V  
C2  
2.2µF  
25V  
EN  
EN  
GND  
R2  
5k  
GND  
R2  
2.32k  
GND  
GND  
GND  
GND  
3VIN - 4.2Vin to 12VOUT @ 120mA  
5VIN to 24VOUT @ 160mA  
L1  
15µH  
VIN  
3V to 4.2V  
VOUT  
24V@80mA  
D1  
1200 pF  
MIC2296BML  
VIN  
SW  
OVP  
FB  
R1  
43.2k  
C1  
2.2µF  
10V  
C2  
2.2µF  
25V  
EN  
GND  
R2  
2.32k  
GND  
GND  
3VIN to 4.2VIN to 24VOUT @ 80mA  
M9999-042005  
(408) 955-1690  
April 2005  
9
Micrel  
MIC2296  
Package Information  
8-Pin Package MLF (ML)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2005 Micrel, Incorporated.  
M9999-042005  
(408) 955-1690  
April 2005  
10  

相关型号:

MIC2296_10

High Power Density 1.2A Boost Regulator
MICREL

MIC2297

40V PWM Boost Regulator White LED Driver
MICREL

MIC2297-15YML

40V PWM Boost Regulator White LED Driver
MICREL

MIC2297-15YML

3A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO10
MICROCHIP

MIC2297-15YMLTR

暂无描述
MICREL

MIC2297-15YMLTR

3A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO10, 2.50 X 2.50 MM, LEAD FREE, MLF-10
MICROCHIP

MIC2297-42YML

40V PWM Boost Regulator White LED Driver
MICREL

MIC2297-42YML

3A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO10, 2.50 X 2.50 MM, LEAD FREE, MLF-10
ROCHESTER

MIC2297-42YMLTR

3 A SWITCHING REGULATOR, 675 kHz SWITCHING FREQ-MAX, PDSO10, 2.50 X 2.50 MM, LEAD FREE, MLF-10
ROCHESTER

MIC2297-42YMLTR

3A SWITCHING REGULATOR, 675kHz SWITCHING FREQ-MAX, PDSO10, 2.50 X 2.50 MM, LEAD FREE, MLF-10
MICROCHIP

MIC2297_08

40V PWM Boost Regulator White LED Driver
MICREL

MIC2298

3.5A Minimum, 1MHz Boost High Brightness White LED Driver
MICREL