MIC2580A-1.6YTS-TR [MICROCHIP]

Power Supply Support Circuit, Adjustable, 4 Channel, PDSO24, LEAD FREE, TSSOP-24;
MIC2580A-1.6YTS-TR
型号: MIC2580A-1.6YTS-TR
厂家: MICROCHIP    MICROCHIP
描述:

Power Supply Support Circuit, Adjustable, 4 Channel, PDSO24, LEAD FREE, TSSOP-24

光电二极管
文件: 总21页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2580A  
Micrel, Inc.  
MIC2580A  
Hot-Swap PCI Power Controller  
General Description  
Features  
The MIC2580A is a hot-swap controller that provides for safe  
andorderlyinsertionandremovalofPCIbasedadaptercards  
from a PCI hot-plug compliant system backplane or  
CompactPCI™ system.  
• PCI hot-plug and CompactPCI™ hot-swap support  
• +12V, +5V, +3.3V, and –12V power supply control  
• Circuit breaker function to protect system  
• Programmable slew rate control for all supplies  
• Foldback current-limiting  
The MIC2580A incorporates a circuit breaker function that  
protects all four supplies (+12V, +5V, +3.3V, and –12V) upon  
an overcurrent fault condition. Current foldback limiting pre-  
vents large transient currents caused by plugging adapter  
cards into live backplanes, such as in a CompactPCI system.  
A programmable slew-rate control limits high inrush currents  
to all loads that occur when power is applied to large capaci-  
tive loads.  
• +5V and +3.3V programmable current-limit thresholds  
• Undervoltage and overcurrent diagnostic outputs  
• Deglitch filters on diagnostic fault outputs  
• Integrated +12V and –12V MOSFET switches  
• Integrated high-side drivers for 3.3V and 5V external  
switches  
• Precharge supply for CompatPCI™ I/O termination  
Applications  
Voltage supervisory functions for all four power supplies are  
provided by “power good” (/PWRGD) and “overcurrent fault”  
(/FAULT) diagnostic outputs. Power good and overcurrent  
fault include deglitch filters to prevent nuisance tripping.  
Power good is active when all four supplies are within  
tolerance. Fault (/FAULT) goes active upon overcurrent or  
overtemperature conditions. The on-off control input (/ON) is  
used to cycle power to the adapter card.  
• PCI hot-plug systems  
• CompactPCI™ hot-swap systems  
Typical Application  
10m  
IRF7413  
IRF7413  
1µF  
10mΩ  
MIC2580A  
+12V  
+5V  
+12V/1A  
+5V/8A  
+3.3V/8A  
GND  
+12V  
12VIN  
5VIN  
3VIN  
12VOUT  
5VSENSE  
5VGATE  
5VOUT  
3VSENSE  
3VGATE  
3VOUT  
VPCHG  
/POR  
+3.3V  
GND  
–12V  
+5V  
–12V/1A  
1µF  
+3.3V  
VIO  
VIO  
1µF  
1.2k  
VPCH = +1V ±20%  
VIO  
(PRECHARGE SUPPLY)  
/PCI_RST  
/BD_SEL  
/PCIRST  
/ON  
CRST  
/PCIRST  
/ON  
Overcurrent  
Fault  
/LPCIRST  
/FAULT  
CSLEW  
/EPWRGD  
/PWRGD  
CSTART  
GND  
/HEALTHY  
/ENUM  
/PGD  
–12V  
M12VIN M12VOUT  
1µF  
/LPCIRST  
D0  
D0  
D1  
D2  
PCI  
D1  
D2  
Controller  
Dn  
Dn  
CompactPCI™ Adapter with Early Power  
CompactPCI is a trademark of the PCI Industrial Computer Manufacturer’s Group.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
February 2005  
1
MIC2580A  
MIC2580A  
Micrel, Inc.  
Ordering Information  
Part Number  
Precharge  
Voltage  
Temperature  
Range  
Standard  
Pb-Free  
Package  
MIC2580A-1.0BTS  
MIC2580A-1.6BTS  
MIC2580A-1.0YTS  
MIC2580A-1.6YTS  
1V  
–40°C to +85°C  
–40°C to +85°C  
24-lead TSSOP  
24-lead TSSOP  
1.6V  
Pin Configuration  
12VOUT  
3VGATE  
3VOUT  
3VSENSE  
3VIN  
/PCIRST  
/LPCIRST  
/EPWRGD  
/PWRGD  
1
2
3
4
5
6
7
8
9
24 12VIN  
23 5VGATE  
22 5VOUT  
21 5VSENSE  
20 5VIN  
19 /FAULT  
18 CSTART  
17 CSLEW  
16 /POR  
VPCHG 10  
GND 11  
15 CRST  
14 /ON  
M12VIN 12  
13 M12VOUT  
24-lead TSSOP (TS)  
Pin Function  
Pin Description  
Pin Number  
Pin Name  
12VOUT  
3VGATE  
1
2
+12V Switched Supply (Output): Load carrying output.  
3.3V Gate Drive (Output): Drives gate of external N-channel MOSFET +3V  
switch. Adding capacitance will slow the slew rate of the external MOSFET  
switch turn-on. (The external MOSFET’s gate is charged by an internal  
current source.)  
3
4
3VOUT  
+3.3V Output Voltage Sense (Input): Connect to source of external  
N-channel MOSFET (+3V switched output) to monitor for output undervolt-  
age conditions.  
+3.3V Current Sense (Input): Measures voltage drop across an external  
sense resistor with respect to 3VIN for overcurrent detection through the  
+3.3V switch.  
3VSENSE  
5
6
3VIN  
3V Supply (Input): +3.3V-supply input for current monitoring (reference input  
for 3VSENSE). Not a load-current carrying input.  
/PCIRST  
PCI-Bus Reset (Input): Input from PCI bus that resets the internal logic.  
MIC2580A  
2
February 2005  
MIC2580A  
Micrel, Inc.  
Pin Number  
Pin Name  
/LPCIRST  
Pin Function  
7
Local PCI Reset (Open-Drain Output): Local PCI reset output to PCI  
controller. Compliant to CompactPCI specification for LOCAL_PCI_RESET.  
8
/EPWRGD  
Early Power Good (Open-Drain Output): This signal goes active should  
/FAULT or /PWRGD go active. No deglitch filtering is provided. This signal  
satisfies PCI /RST timing for TFAIL per PCI Local Bus Specification, ver-  
sion 2.1.  
9
/PWRGD  
VPCHG  
Power Good (Open-Drain Output): Active-low output goes active when all  
supplies are within tolerance. (A 20µs delay is inserted prior to activation to  
reduce nuisance tripping.)  
10  
Precharge Supply (Output): (MIC2580A-1.0) +1V ±20% supply used for  
precharge bias for I/O terminations (CompactPCI only).  
11  
12  
13  
GND  
M12VIN  
M12VOUT  
Ground  
–12V Supply (Input): Input for internal –12V switch.  
–12V Switched Supply (Output): Switched –12V supply to PCI Hot Plug  
compliant socket. Load carrying output.  
14  
/ON  
On-Off Control (Input): Logic low turns on all switches; logic high turns off all  
switches. Also used to reset the device from a circuit breaker condition. The  
/ON pin is edge-triggered and requires a high-to-low transition once all four  
supplies are above their respective thresholds.  
15  
16  
CRST  
/POR  
Reset Delay (External Component): Connect to external capactior (CRST) to  
increase power-on reset delay.  
Reset (Open-Drain Output): Active-low signal remains active for a time  
determined by CRST after all supplies are within tolerance; i.e., /PWRGD is  
active. This signal may be used as a reset for logic controllers.  
17  
18  
19  
CSLEW  
CSTART  
/FAULT  
Slew (External Component): Connect to external capacitor (CSLEW) to  
program the output slew rate of 3VGATE, 5VGATE, 12VGATE (internal) and  
M12VGATE (internal).  
Start-Up Timer (External Component): Connect to external capacitor  
(CSTART) to increase the filter delay used to gate the /FAULT output upon  
start-up. Used to prevent nuisance tripping during turn-on of supplies.  
Fault (Open-Drain Output/Input): This active-low output signal activated  
upon overcurrent or thermal shutdown. Includes 20µs deglitch filter. Fault is  
reset using /ON.  
Forcing pin low turns off all switches but does not activate the circuit breaker  
function.  
20  
21  
5VIN  
5V Supply (Input): +5V-supply input for current monitoring (reference  
voltage for 5VSENSE). Not a load-current carrying input.  
+5V Current Sense (Input): Measures voltage drop across an external  
sense resistor with respect to 5VIN for overcurrent detection through the +5V  
switch.  
5VSENSE  
22  
23  
5VOUT  
+5V Output Voltage Sense (Input): Connect to source of external N-channel  
MOSFET (+5V switched output) to monitor for output undervoltage condi-  
tions.  
5V Gate Drive (Output): Drives gate of external N-channel MOSFET +5V  
switch. Adding capacitance will slow the slew rate of the external MOSFET  
switch turn-on. (The external MOSFET’s gate is charged by an internal  
current source.)  
5VGATE  
24  
12VIN  
12V Supply (Input): MIC2580A power supply and input for internal +12  
switch. Supplies power for internal circuitry.  
February 2005  
3
MIC2580A  
MIC2580A  
Micrel, Inc.  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltages  
Supply Voltages  
+12V Input (V  
) .................................................+14V  
+12V Input (V  
) ............................. +11.4V to +12.6V  
12VIN  
12VIN  
+5V Input (V  
).......................................................+7V  
–12V Input (V  
)........................... –11.4V to –12.6V  
M12VIN  
5VIN  
+3.3V Input (V  
–12V Input (V  
)....................................................+7V  
)...............................................14V  
+5V Input (V  
)................................... +4.75V to +5.25  
).............................. +3.125V to +3.5V  
3VIN  
5VIN  
+3.3V Input (V  
3VIN  
M12VIN  
/PWRGD, /FAULT, /POR, /EPWRGD, and /PCIRST  
Temperature Range (T ) ........................... –40°C to +85°C  
A
Output Current ...........................................................10mA  
Junction Temperature (T ) ........................................ 150°C  
J
Lead Temperature (Soldering)  
Package Thermal Resistance (θ )  
JA  
Standard Package (-x.xBTS)  
24-Lead TSSOP ..................................................83°C/W  
IR Reflow......................................... 240°C + 0ºC/-5ºC  
Lead-free Package (-x.xYTS)  
IR Reflow......................................... 260ºC + 0ºC/-5ºC  
ESD Rating, Note 3  
ElHeucmtraincbaoldCy mhoadrealc..t..e...r.i..s..t..i.c...s................................. 2kV  
V12VIN = 12V, V5VIN = 5V, V3VIN = 3.3V, VM12VIN = –12V; TA = 25°C, bold values indicate –40°C TA +85°C; unless noted  
Symbol  
I12IN  
I5IN  
I3IN  
I12MIN  
VUVLO  
Parameter  
Supply Current  
Condition  
/ON > VIH  
Min  
Typ  
2.2  
4
0.23  
3
Max  
3
6
0.4  
5
9.8  
Units  
mA  
mA  
mA  
mA  
V
mV  
V
mV  
V
Undervoltage Lockout  
V12VIN increasing  
8.9  
-10.5  
2.1  
V12VIN UVLO hysteresis  
VM12VIN decreasing  
VM12VIN UVLO hysteresis  
V5VIN increasing  
V5VIN UVLO hysteresis  
V3VIN increasing  
300  
100  
20  
-8.3  
3.1  
2.6  
mV  
V
2.4  
V3VIN UVLO hysteresis  
60  
11  
11  
–40  
6
–40  
6
mV  
V
V
µA  
mA  
µA  
mA  
V
mV  
V
mV  
V
mV  
V
mV  
V
V
V5VGATE  
V3VGATE  
I5VGATE  
5VGATE Voltage  
3VGATE Voltage  
5VGATE Output Current  
10.5  
10.5  
during start-up, V5VGATE = 5V  
during turnoff; /FAULT = 0  
during start-up, V5VGATE = 5V  
during turnoff; /FAULT = 0  
V12VOUT increasing  
V12VOUT Power-Good hysteresis  
VM12VOUT decreasing  
VM12VOUT Power-Good hysteresis  
V5VOUT increasing  
V5VOUT Power-Good hysteresis  
V3VOUT increasing  
I3VGATE  
VPGTH  
3VGATE Output Current  
Power Good Threshold Voltage  
11  
11.4  
–10  
4.7  
3.10  
0.8  
1
200  
50  
–11.2  
4.45  
2.90  
100  
60  
V3VOUT Power-Good hysteresis  
logic low  
logic high  
VIL  
VIH  
IIL  
Input Voltage Level (/ON)  
2.0  
–1  
Input Leakage Currnet (/ON)  
µA  
MIC2580A  
4
February 2005  
MIC2580A  
Micrel, Inc.  
Symbol  
VOL  
Parameter  
Condition  
IOL = 2mA  
Min  
Typ  
Max  
0.4  
Units  
V
Output-Low Voltage  
(/PWRGD, /FAULT, /POR,  
EPWRGD, /LPCIRST)  
TOV  
Overtemperature Shutdown  
TJ increasing  
TJ decreasing  
170  
160  
˚C  
˚C  
Threshold  
ICRST  
CRST Charge Current  
during turn-on  
during turn-on  
during turn-on  
–9  
–9  
–30  
–11.5  
–11.5  
–45  
600  
600  
100  
300  
67  
µA  
µA  
µA  
mΩ  
mΩ  
µA  
µA  
mV  
mV  
A
ICSTART  
ICSLEW  
RDS(on)12  
RDS(on)M12  
CSTART Charge Current  
CSLEW Charge Current  
Output MOSFET Resistance  
–39  
450  
430  
+12V internal MOSFET, IDS = 500mA  
–12V internal MOSFET, IDS = 200mA  
+12V internal MOSFET  
–12V internal MOSFET  
V5VIN – V5VSENSE  
V3VIN – V3VSENSE  
+12V internal MOSFET, ramped load  
–12V internal MOSFET, ramped load  
Output MOSFET Leakage  
–100  
0
45  
45  
1.0  
–0.4  
VCLTH  
Current Limit Threshold Voltage  
56  
55  
1.3  
–0.5  
67  
1.5  
–0.7  
ILIM12  
ILIM12M  
Current-Limit  
Threshold  
A
Short-Circuit Current  
+12V internal MOSFET, VOUT = 0V  
140  
mA  
–12V internal MOSFET, VOUT = 0V  
–170  
mA  
VPOR(thr)  
VPCH  
Power-On Reset Threshold Voltage  
Precharge Bias Supply  
2.4  
1.0  
1.6  
2.4  
V
V
V
V
MIC2580A-1.0, IPCH = 10mA  
MIC2580A-1.6, IPCH = 10mA  
0.8  
1.28  
1.2  
1.92  
VSTART  
Start-up Threshold Voltage  
AC Parameters  
tGOOD  
Early Power-Good  
See Figure 4  
See Figure 4  
200  
100  
ns  
ns  
Response Low  
t/GOOD  
Early Power-Good  
Response High  
Undervoltage to Power-Good Delay  
Current-limit to Fault Delay  
20  
20  
7
µs  
µs  
µs  
+5V Current-Limit-to-Off Delay  
V
V
SENSE = 10mΩ  
SENSE = 10mΩ  
Note 4  
+3.3V Current-Limit-to-Off Delay  
7
µs  
µs  
µs  
Note 4  
+12V Current-Limit-to-Off Delay  
+12V  
–12V  
25  
25  
Note 4  
–12V Current-Limit-to-Off Delay  
Note 4  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
Note 4. Off refers to the condition in which the circuit breaker turns all outputs off.  
February 2005  
5
MIC2580A  
MIC2580A  
Micrel, Inc.  
Timing Diagrams  
/ON  
/ON  
+5V  
5VOUT  
0V  
+5V  
5VOUT  
0V  
Short Circuit  
+3.3V  
+3.3V  
3VOUT  
3VOUT  
0V  
0V  
+12V  
+12V  
12VOUT  
12VOUT  
0V  
0V  
0V  
0V  
M12VOUT  
M12VOUT  
–12V  
–12V  
/PWRGD  
/PWRGD  
tSTART  
/FAULT  
/POR  
/FAULT  
/POR  
tRESET  
Figure 1. Controller Timing: Normal Cycle  
Figure 2. Controller Timing: Enable Into Short  
Circuit Breaker  
Reset  
/ON  
+5V  
Fault  
5VOUT  
0V  
+3.3V  
3VOUT  
0V  
+12V  
12VOUT  
0V  
0V  
VIN  
M12VOUT  
VPGTH  
}
1V  
–12V  
t/good  
tgood  
+5V  
/EPWRGD  
0V  
/PWRGD  
/FAULT  
Figure 3. Controller Timing: Short on 5V  
Figure 4. Early Power Good Response Time  
MIC2580A  
6
February 2005  
MIC2580A  
Micrel, Inc.  
Typical Characteristics  
Power-On  
Output Rise Time vs.  
Start-Up  
Time  
Reset Time  
Slew-Rate Capacitance  
-3  
-3  
-3  
-3  
-3  
100x10  
100x10  
100x10  
10x10  
-3  
10x10  
10x10  
-3  
1x10  
-3  
-3  
1x10  
1x10  
-6  
-6  
100x10  
-6  
-6  
100x10  
100x10  
0.0001  
10x10  
0.001  
0.01  
(µF)  
0.1  
0.001  
0.01  
(µF)  
0.1  
0.0001  
0.001  
0.01  
(µF)  
0.1  
C
C
C
START  
POR  
SLEW  
February 2005  
7
MIC2580A  
MIC2580A  
Micrel, Inc.  
Functional Characteristics  
10mIRF7413  
IRF7413  
10mΩ  
MIC2580A  
12VOUT  
+12V  
+5V  
12VIN  
5VIN  
3VIN  
C12L  
C5L  
C3L  
R12L  
R5L  
R3L  
5VSENSE  
5VGATE  
5VOUT  
3VSENSE  
3VGATE  
3VOUT  
VPCHG  
/POR  
+3.3V  
+5V  
2.2k 2.2k  
CRST  
2.2k 2.2k  
/PCIRST  
/ON  
CRST  
/LPCIRST  
/FAULT  
CSLEW  
CSLEW  
CSTART  
/EPWRGD CSTART  
/PWRGD  
GND  
–12V  
M12VIN M12VOUT  
CM12L  
RM12L  
Functional Test Circuit  
MIC2580A  
8
February 2005  
MIC2580A  
Micrel, Inc.  
3V and 5V  
Gate-Voltage Response  
C
RST = 0.01µF  
SLEW = 0.03µF  
V
/ON  
C
(5V/div)  
CSTART = 0.01µF  
V
CSLEW  
(5V/div)  
V
3VGATE  
(5V/div)  
V
5VGATE  
(5V/div)  
Time (2.5ms/div)  
Power-On  
Reset Response  
CRST = 0.01µF  
V
/ON  
(10V/div)  
V
/PWRGD  
(5V/div)  
V
CRST  
(2V/div)  
tRESET = 2.6ms  
V
/POR  
(5V/div)  
Time (1ms/div)  
Power-Good  
Response  
V
/EPWRGD  
(5V/div)  
V
/PWRGD  
(5V/div)  
Time (10µs/div)  
February 2005  
9
MIC2580A  
MIC2580A  
Micrel, Inc.  
CRST = 0.01µF  
Fault Response  
V
/ON  
(10V/div)  
Pull /FAULT Low  
V
/FAULT  
(10V/div)  
V
3VOUT  
(5V/div)  
V
5VOUT  
(5V/div)  
V
12VOUT  
(10V/div)  
V
M12VOUT  
(10V/div)  
Time (10ms/div)  
MIC2580A  
10  
February 2005  
MIC2580A  
Micrel, Inc.  
Turn-On and Turn-off  
CSTART = 0.01µF  
V
/ON  
C
SLEW = 0.03µF  
(10V/div)  
CRST = 0.01µF  
V
3VOUT  
(5V/div)  
V
5VOUT  
(5V/div)  
V
12VOUT  
(10V/div)  
V
M12VOUT  
(10V/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Time (2.5ms/div)  
-12V Turn-On  
CSTART = 0.01µF  
V
/ON  
C
SLEW = 0.07µF  
(10V/div)  
CRST = 0.01µF  
V
C
M12L = 1µF  
M12L = 80  
CSTART  
(5V/div)  
R
V
M12VOUT  
(10V/div)  
I
M12VIN  
150mA  
(100mA/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Time (2.5ms/div)  
February 2005  
11  
MIC2580A  
MIC2580A  
Micrel, Inc.  
3V Turn-On  
V
CSTART = 0.01µF  
SLEW = 0.03µF  
/ON  
(10V/div)  
C
CRST = 0.01µF  
C3L = 100µF  
3L = 2.2Ω  
V
CSTART  
R
(5V/div)  
V
3VOUT  
1.5A  
(2V/div)  
I
3VIN  
0.6A/ms  
(1A/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Time (2.5ms/div)  
5V Turn-On  
CSTART = 0.01µF  
SLEW = 0.03µF  
V
/ON  
C
(10V/div)  
CRST = 0.01µF  
C5L = 100µF  
5L = 3.3Ω  
V
CSTART  
R
(5V/div)  
V
5VOUT  
1.5A  
(5V/div)  
I
5VIN  
0.375A/ms  
(1A/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/diV)  
Time (2.5ms/div)  
MIC2580A  
12  
February 2005  
MIC2580A  
Micrel, Inc.  
12V Turn-On  
CSTART = 0.01µF  
SLEW = 0.04µF  
V
/ON  
C
(10V/div)  
CRST = 0.01µF  
C12L = 1µF  
12L = 80Ω  
V
CSTART  
R
(5V/div)  
V
12VOUT  
150mA  
(10V/div)  
I
12VIN  
(100mA/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Enable Into  
-12V Output Short Circuit  
CSTART = 0.01µF  
V
/ON  
C
C
R
C
SLEW = 0.01µF  
RST = 0.01µF  
12L = 100  
12L = 1µF  
(10V/div)  
V
CSTART  
(5V/div)  
M12VOUT = GND  
V
3VOUT  
(5V/div)  
V
5VOUT  
(5V/div)  
V
12VOUT  
(10/div)  
V
M12VOUT  
(10V/div)  
I
M12VIN  
(200mA/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Time (1ms/div)  
February 2005  
13  
MIC2580A  
MIC2580A  
Micrel, Inc.  
Enable Into  
3V Output Short Circuit  
CSTART = 0.01µF  
V
/ON  
(10V/div)  
CSLEW = 0.01µF  
CRST = 0.01µF  
3VOUT = GND  
R12L = 100Ω  
V
CSTART  
(5V/div)  
C
R
C
12L = 1µF  
V
3VOUT  
(5V/div)  
M12L = 100Ω  
M12L = 1µF  
I
3VIN  
(1A/div)  
V
5VOUT  
(5V/div)  
V
12VOUT  
(10V/div)  
V
M12VOUT  
(10V/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Time (1ms/div)  
Enable Into  
5V Output Short Circuit  
CSTART = 0.01µF  
SLEW = 0.01µF  
V
/ON  
C
(10V/div)  
CRST = 0.01µF  
R
C
R
C
12L = 100Ω  
V
CSTART  
12L = 1µF  
(5V/div)  
M12L = 100Ω  
M12L = 1µF  
V
3VOUT  
(5V/div)  
5VOUT = GND  
V
5VOUT  
(5V/div)  
I
5VIN  
(200mA/div)  
V
12VOUT  
(10V/div)  
V
M12VOUT  
(10V/div)  
V
/PWRGD  
(5V/div)  
(5V/div)  
V
/POR  
V
/FAULT  
(5V/div)  
MIC2580A  
14  
February 2005  
MIC2580A  
Micrel, Inc.  
Enable Into  
12V Output Short Circuit  
V
CSTART = 0.01µF  
CSLEW = 0.01µF  
CRST = 0.01µF  
/ON  
(10V/div)  
C
R
C
12L = 1µF  
V
CSTART  
M12L = 100  
M12L = 1µF  
(5V/div)  
V
3VOUT  
(5V/div)  
12VOUT = GND  
V
5VOUT  
(5V/div)  
V
12VOUT  
(10V/div)  
I
12VIN  
(500MA/div)  
V
M12VOUT  
(10V/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Start-up Blanking Response  
CSTART = 0.01µF  
V
/ON  
(10V/div)  
C
SLEW = 0.01µF  
CRST = 0.01µF  
V
CSTART  
(5V/div)  
V
5VOUT  
Short Removed  
(5V/div)  
I
5VIN  
(200mA/div)  
V
/PWRGD  
(5V/div)  
V
/POR  
(5V/div)  
V
/FAULT  
(5V/div)  
Time (1ms/div)  
February 2005  
15  
MIC2580A  
MIC2580A  
Micrel, Inc.  
Circuit Breaker  
Reset Response  
New Start Cycle  
CSTART = 0.01µF  
SLEW = 0.01µF  
CRST = 0.01µF  
ON#  
(10V/div)  
C
Circuit Breaker  
3VOUT  
(5V/div)  
Short Circuit  
5VOUT  
(5V/div)  
12VOUT  
(10V/div)  
M12VOUT  
(10V/div)  
PWRGD#  
(5V/div)  
FAULT#  
(5V/div)  
POR#  
(5V/div)  
Time (10ms/div)  
MIC2580A  
16  
February 2005  
MIC2580A  
Micrel, Inc.  
Functional Diagram  
12VIN  
5VIN  
3VIN  
12VOUT  
12V  
Switch  
R5SNS  
Q5OUT  
5VSENSE  
5VGATE  
5VOUT  
5V  
Switch  
Control  
R3SNS  
Q3OUT  
3VSENSE  
3VGATE  
3VOUT  
3.3V  
Switch  
Control  
VPCHG  
Precharge  
Supply  
CSLEW  
CSLEW  
/POR  
Slew  
Control  
Reset  
CRST  
CRST  
Current  
Limit  
Thermal  
Shutdown  
/FAULT  
CSTART  
Control Logic  
and  
/ON  
tD = 20µs  
(delay)  
Power Good  
CSTART  
/EPWRGD  
/PWRGD  
tD = 20µs  
(delay)  
/LPCIRST  
M12VOUT  
/PCIRST  
M12VIN  
–12V  
Switch  
MIC2580A  
GND  
February 2005  
17  
MIC2580A  
MIC2580A  
Micrel, Inc.  
Thermal Shutdown  
Functional Description  
The+12Vand12VinternalMOSFETswitchesareprotected  
by current limit and overtemperature shutdown circuitry.  
When the die temperature exceeds 160°C, /FAULT is as-  
serted and all supplies are shut off. The power dissipated in  
the MIC2580A is primarily due to the sum of current flowing  
through the internal MOSFET switches and, to a lesser  
extent, power dissipated due to the supply current. To com-  
pute the total power dissipation of the MIC2580A the follow-  
ing equation is used:  
Start-Up Sequence  
The start-up sequence iniates after all four supplies are  
connected to the inputs and then /ON is asserted by  
transistioning from high to low. During the start-up sequence,  
all four gates ramp up at a rate determined by C  
. During  
SLEW  
this time /PWRGD is deasserted until all four supplies are  
withinspecifiedlevels.When/PWRGDisassertedthepower-  
on-resetsignal/POR timerbegins. Thetimeperiodisdefined  
by C  
. Refer to Figure 1 for a timing diagram of the signals  
RST  
P
= P  
+ P  
+ P  
D(supplies)  
D(total)  
D(+12V switch)  
D(–12V switch)  
during the start-up sequence.  
where:  
During the start-up sequence, a current source charges  
2
P
= R  
× I  
DS(on) OUT  
SUPPLY SUPPLY  
C
at a constant rate until a threshold voltage of 2.4V is  
D(switches)  
D(supplies)  
START  
reached. This period of time defines an interval during which  
overcurrent events are ignored. This prevents high inrush  
currents that normally occur when charging capacitance  
erroneously asserting /FAULT. The magnitude of the start-  
P
= V  
× I  
To relate this to operating junction temperature:  
T = P × θ + T  
A
J
D
JA  
where:  
up time, t  
is defined by C  
.
START  
START  
T = ambient temperature  
A
JA  
The MIC2580A employs foldback current limiting that en-  
suresthedevicestartsupincurrentlimit. Thisminimizeshigh  
inrush currents due to ramping a voltage into capacitance  
regardless of the size of the load capacitance.  
θ
= package thermal resistance  
Precharge Voltage  
For CompactPCI applications, the MIC2580A-1.0BSM/BTS  
integrates a 1V ±20% voltage source that satisfies  
CompactPCI precharge requirements. The voltage source  
can provide up to 10mA. For higher current, the MIC2580A-  
1.6BSM/BTS integrates a 1.6V ±20% voltage source to bias  
a NPN transistor.  
Overcurrent Detection  
The MIC2580A senses overcurrent via the use of external  
sense resistors for the 5V and 3.3V supply rails. When the  
sense voltage across these resistors is greater than or equal  
to 50mV an overcurrent condition is detected. Therefore the  
overcurrentsetpointisdeterminedbyI  
=50mV/R  
.
SENSE  
+5V  
LIMIT  
For the +12V and –12V supply rails overcurrent detection is  
set internally at 1.3A and –0.5A respectively.  
R
MIC2580A-1.6  
When an overcurrent condition is detected /FAULT is as-  
serted only if the overcurrent condition lasts for a minimum  
time period of 10µs. This delay prevents spurious noise from  
the system erroneously tripping the circuit breaker and as-  
serting /FAULT. Upon /FAULT being asserted an internal  
latch is set that immediately turns off all four supplies to  
preventfurtherdamagetothesystem.Toggling/ONwillreset  
the latch and initiate another start-up sequence. Figures 2  
and 3 depict the timing for two fault conditions.  
VPCHG  
I > 10mA  
DATA  
BUS  
Figure 5. Voltage Source  
Turnoff  
Deasserting /ON will turn off all four supplies. Alternatively  
driving /FAULT low will turn off all supplies but will not latch  
the supplies off. Releasing /FAULT will initiate a new start  
sequence.  
MIC2580A  
18  
February 2005  
MIC2580A  
Application Information  
Micrel, Inc.  
must also be added to the dc voltage drop across the  
MOSFET to compute total loss. In addition to meeting the  
voltageregulationspecifications,thermalspecificationsmust  
also be considered. During normal operation very little power  
Whenever voltage is applied to a highly capacitive load, high  
inrush currents may result in voltage droop that may bring the  
supply voltage out of regulation for the duration of the  
transient. The MIC2580A solves this problem by specifically  
controlling the current and voltage supply ramps so that the  
system supply voltages are not disturbed. Very large capaci-  
tive loads are easily supported with this device.  
should be dissipated in the MOSFET. DC power dissipation  
2
of the MOSFET is easily computed as I R where I is the  
DS  
drain current and R is the specified on-resistance of the  
DS  
MOSFET at the expected operating drain current. However,  
during excessive drain current or short-circuit faults, the  
power dissipation in the external MOSFET will increase  
dramatically. To help compute the effective power dissipated  
during such transients, MOSFET manufacturers provide  
transient thermal impedance curves for each MOSFET.  
These curves provide the effective thermal impedance of the  
MOSFET under pulsed or repetitive conditions; for example,  
as will be the case when enabling into a short circuit fault.  
From these curves the effective rise in junction temperature  
of the MOSFET for a given condition can be computed. The  
equation is given as:  
Figure 1 shows the timing during turn-on. When /ON is forced  
low,allsuppliesareturnedonataslewratedeterminedbythe  
external capacitor, C  
.
SLEW  
Figure 2 shows the foldback characteristics for the supply  
voltages. This foldback affect bounds the magnitude of the  
current step when the supplies are turned on or shorted. This  
specifies the compact PCI specification of 1.5A/ms, thereby  
ensuring reliable operation. In discrete FET implementa-  
tions, this magnitude can exceed several amps and may  
cause the main supply to go out of regulation during this  
transient event. This, in turn, could cause the system to  
behave unpredictably. In addition, should a fault occur, the  
MIC2580A will prevent system malfunctions by limiting the  
current to within specifications.  
peak T = PDM × Z  
+ T  
A
J
θJA  
where PDM is the power dissipated in the MOSFET usually  
computed as V x I  
and Z  
is the thermal response  
θJA  
IN  
DRAIN  
factor provided from the curves. Since the MIC2580A re-  
ducesthecurrentto30%offullscaleevenunderseverefaults  
such as short-circuits the MOSFET power dissipation is held  
to safe levels. This feature allows MOSFETs with smaller  
packages to be used for a given application thereby reducing  
cost and PCB real-estate requirements.  
MOSFET Selection  
The external MOSFET should be selected to provide low  
enough dc loss to satisfy the application’s voltage regulation  
requirements. Notethatthevoltageacrossthesenseresistor  
10m  
IRF7413  
IRF7413  
10mΩ  
Power  
MIC2580A  
12VOUT  
Supply  
12V  
5V  
12V/500mA  
5V/5A  
12VIN  
5VIN  
3VIN  
+12V  
5VSENSE  
5VGATE  
5VOUT  
3VSENSE  
3VGATE  
3VOUT  
VPCHG  
/POR  
+5V  
+3.3V  
GND  
–12V  
3.3V/7.6A  
3.3V  
+5V  
GND  
CRST  
/PCIRST  
/ON  
PCI Hot-Plug  
Controller  
/LPCIRST  
/FAULT  
CSLEW  
/EPWDGD  
/PWDGD  
CSTART  
GND  
–12V  
–12V /100mA  
/CIRST  
M12VIN M12VOUT  
/CIRST  
BUS EN  
/CIRST  
D0  
D0  
D1  
D2  
D1  
D2  
Bus  
Switch  
Dn  
Dn  
Figure 6. Hot-Plug PCI Application  
February 2005  
19  
MIC2580A  
MIC2580A  
Micrel, Inc.  
CompactPCI™ BD_SEL# Pin Tied to Ground  
PCB Layout Considerations  
For applications that use system backplanes with the  
BD_SEL# pin tied to ground, the MIC2580A /ON pin is edge  
sensitive. Therefore, the /ON pin requires a delay circuit for  
proper start-up when the board has already been inserted  
into the backplane and the supplies are switched off, then  
back on. The circuit, shown in the figure below, allows the  
MIC2580A /ON pin to transition from high to low which is  
necessary for start-up. The delay time may be increased or  
decreased by changing the RC time constant in the circuit,  
but the delay time must exceed the ramp time of all system  
backplane supplies. The same circuit is functional for hot  
swap insertion.  
To achieve accurate current sensing Kelvin connections are  
recommended between the supply pin and the respective  
sense resistor as shown in Figure 8. PCB trace length should  
be kept at a minimum. 0.02 inches per ampere is a minimum  
width for 1 oz. copper to prevent damage to traces carrying  
high current. Keep these high-current traces as short as  
possible.  
short-length, high-current  
(wide) copper traces  
sense resistor  
from  
to  
supply  
load  
Kelvin  
connections  
MIC2580A  
2k  
/FAULT  
VIO  
to  
VIN SENSE  
pin pin  
to  
(3.3V or 5V)  
2k  
/RESET  
/ON  
Figure 8. Layout Recommendation  
1N914  
50k  
On PCB  
10k  
1.2k  
2N3904  
BD_SEL#  
3.3µF  
Figure 7. /ON Pin Assertion Delay Circuit  
MIC2580A  
20  
February 2005  
MIC2580A  
Micrel, Inc.  
Package Information  
4.50 (0.177)  
4.30 (0.169)  
DIMENSIONS:  
MM (INCH)  
6.4 BSC (0.252)  
0.30 (0.012)  
0.19 (0.007)  
7.90 (0.311)  
7.70 (0.303)  
1.10 MAX (0.043)  
0.20 (0.008)  
0.09 (0.003)  
0.65 BSC  
(0.026)  
1.00 (0.039) REF  
8°  
0°  
0.15 (0.006)  
0.05 (0.002)  
0.70 (0.028)  
0.50 (0.020)  
24-Lead TSSOP (TS)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2001 Micrel Incorporated  
February 2005  
21  
MIC2580A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY