MIC28514T-E/PHA [MICROCHIP]

75V HIGH PERFORMANCE BUCK REGULA;
MIC28514T-E/PHA
型号: MIC28514T-E/PHA
厂家: MICROCHIP    MICROCHIP
描述:

75V HIGH PERFORMANCE BUCK REGULA

开关
文件: 总38页 (文件大小:950K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC28514  
75V/5A Hyper Speed Control®  
Synchronous DC/DC Buck Regulator with External Soft Start  
Features  
Applications  
• Distributed Power Systems  
• Communications/Networking Infrastructure  
• Industrial Power Supplies  
• Solar Energy  
• Hyper Speed Control® Architecture Enables:  
- High Input to Output Voltage Conversion  
Ratio Capability (VIN = 75V and VOUT = 0.6V)  
- Small Output Capacitance  
• 4.5V to 75V Input Voltage  
General Description  
• 5A Output Current Capability with up to 95% Efficiency  
• Adjustable Output Voltage from 0.6V to 32V  
• ±1% FB Accuracy  
The MIC28514 is an adjustable frequency,  
synchronous buck regulator that features a unique  
adaptive on-time control architecture. The MIC28514  
operates over an input supply range of 4.5V to 75V, and  
provides a regulated output of up to 5A of output  
current. The output voltage is adjustable down to 0.6V  
with an accuracy of ±1%.  
• Any Capacitor™ Stable:  
- Zero-ESR to High-ESR Output Capacitors  
• 270 kHz to 800 kHz Adjustable Switching Frequency  
• Internal Compensation  
• Built-in 5V Regulator for Single-Supply Operation  
• Auxiliary Bootstrap LDO for Improving System  
Efficiency  
• Internal Bootstrap Diode  
• Adjustable Soft Start Time  
Hyper Speed Control architecture allows for an ultra-fast  
transient response, while reducing the output capaci-  
tance, and also makes high-VIN/low-VOUT operation  
possible. This adaptive on-time control architecture  
combines the advantages of fixed frequency operation  
and fast transient response in a single device.  
• Programmable Current Limit  
The MIC28514 offers a full suite of features that ensure  
the protection of the Integrated Circuit (IC) during Fault  
conditions. These features include Undervoltage Lock-  
out (UVLO) to ensure proper operation under power sag  
conditions, soft start to reduce inrush current, “Hiccup”  
mode short-circuit protection and thermal shutdown.  
• “Hiccup” Mode Short-Circuit Protection  
• Thermal Shutdown  
• Supports Safe Start-up into a Prebiased Output  
• -40°C to +125°C Junction Temperature Range  
• Available in 32-Pin, 6 mm x 6 mm VQFN Package  
Typical Application Circuit  
MIC28514  
2.2Ÿ  
1 μF  
PV  
SV  
DD  
IN  
2.2 μF  
2.2 μF  
2.2Ÿ  
V
IN  
V
V
IN  
DD  
9V to 75V  
2.2 μF x 3  
PG  
EN  
SS  
BST  
SW  
0.1 μF  
8.2 μH  
VOUT  
5V/5A  
1.42 kŸ  
10 nF  
16.2 kŸ  
I
LIM  
47 μF  
10 kŸ  
4.7 nF  
0.1 μF  
200 kŸ  
VIN  
FB  
FREQ  
1.37 kŸ  
100 kŸ  
EXTVDD  
EXTVDD  
AGND PGND  
1 μF  
2017 Microchip Technology Inc.  
DS20005693C-page 1  
 
MIC28514  
Package Type  
MIC28514  
6 mm x 6 mm 32-Lead VQFN  
32 31  
29 28 27 26 25  
PGND  
30  
ILIM  
EN  
1
24  
23  
22  
21  
EXTVDD  
PGND  
PVDD  
PGND 2  
3
SW  
BST 4  
20 SW  
19  
VIN  
VIN  
VIN  
VIN  
5
6
7
8
PGND  
18 PGND  
PGND  
V
SW  
IN  
17  
9 10 11 12 13 14 15 16  
Functional Block Diagram  
MIC28514  
V
DD  
SV  
IN  
V
R3  
DD  
HV LDO  
LV LDO  
FREQ  
PV  
DD  
R5  
FIXED TON  
ESTIMATE  
UVLO  
R4  
PV  
VIN  
IN  
MODIFIED  
TOFF  
5V to 75V  
BST  
EXTVDD  
C
IN  
4.6V  
HSD  
C
BOOST  
CONTROL  
VDD  
L
LOGIC  
TIMER  
SOFT-  
START  
SW  
VOUT  
3.3V/5A  
EN  
EN  
SS  
ICL  
V
DD  
135 μA  
R
ILIM  
CL  
R1  
C
FF  
C
ISS  
1.4 μA  
OUT  
R
THERMAL  
SHUTDOWN  
INJ  
OVERCURRENT  
PROTECTION  
PV  
DD  
C
INJ  
SGND  
PGND  
LSD  
C
SS  
COMPENSATION  
gm EA  
FB  
COMP  
V
DD  
R2  
PG  
VREF  
0.6V  
0.9  
DS20005693C-page 2  
2017 Microchip Technology Inc.  
 
 
MIC28514  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
PVIN, SVIN, FREQ to PGND ....................................................................................................................... -0.3V to +76V  
PVDD, VDD to PGND ..................................................................................................................................... -0.3V to +6V  
SW, ILIM to PGND .......................................................................................................................... -0.3V to (PVIN + 0.3V)  
V
V
BST to VSW .................................................................................................................................................. -0.3V to +6V  
BST to PGND............................................................................................................................................. -0.3V to +82V  
EN to AGND................................................................................................................................... -0.3V to (SVIN + 0.3V)  
FB, PG to AGND............................................................................................................................. -0.3V to (VDD + 0.3V)  
EXTVDD to AGND...................................................................................................................................... -0.3V to +12V  
PGND to SGND ......................................................................................................................................... -0.3V to +0.3V  
Junction Temperature ........................................................................................................................................... +150°C  
Storage Temperature ..............................................................................................................................-65°C to +150°C  
ESD Rating(1).............................................................................................................................................................1 kV  
Operating Ratings‡  
Supply Voltage (SVIN, PVIN) .......................................................................................................................... 4.5V to 75V  
Bias Voltage (PVDD, VDD) ............................................................................................................................. 4.5V to 5.5V  
EN, FB, PG ....................................................................................................................................................... 0V to VDD  
EXTVDD ............................................................................................................................................................ 0V to12V  
Junction Temperature .............................................................................................................................-40°C to +125°C  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
‡ Notice: The device is not ensured to function outside its operating ratings.  
Note 1: Devices are ESD-sensitive. Handling precautions are recommended. Human body model, 1.5 kin series  
with 100 pF.  
(1)  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: PVIN = 12V, VOUT = 5V, VDD = 5V, VBST – VSW = 5V; fSW = 300 kHz, RCL = 1.42 k,  
L = 8.2 µH; TA = +25°C, unless noted. Boldface values indicate -40°C TJ +125°C.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Input  
Input Voltage Range  
VDD Bias Voltage  
PVIN, SVIN  
4.5  
75  
V
Operating Bias Voltage  
Undervoltage Lockout Trip Level  
UVLO Hysteresis  
VDD  
UVLO  
4.8  
3.7  
5.1  
4.2  
600  
5.4  
4.6  
V
V
V
DD rising  
UVLO_HYS  
mV  
mV  
V
VDD Dropout Voltage  
700  
4.4  
1250  
4.8  
VIN = 5.5V, IPVDD = 25 mA  
EXTVDD Switchover Voltage  
EXTVDD Switchover Hysteresis  
Quiescent Supply Current  
Shutdown Supply Current  
4.6  
0.2  
1.25  
0.15  
35  
V
IQ  
mA  
µA  
µA  
VFB = 1.5V  
IQSHDN  
2
Power from VIN, VEN = 0V  
VIN = VDD = 5.5V, VEN = 0V  
60  
Note 1: Specification for packaged product only.  
2: The ICL is trimmed to get the current in the limits at room temperature.  
2017 Microchip Technology Inc.  
DS20005693C-page 3  
 
 
 
 
 
 
 
 
MIC28514  
(1)  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: PVIN = 12V, VOUT = 5V, VDD = 5V, VBST – VSW = 5V; fSW = 300 kHz, RCL = 1.42 k,  
L = 8.2 µH; TA = +25°C, unless noted. Boldface values indicate -40°C TJ +125°C.  
Parameters  
Reference  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Feedback Reference Voltage  
VFB  
0.597  
0.594  
0.6  
0.6  
0.603  
0.606  
V
TJ = +25°C  
-40°C TJ +125°C  
IOUT = 0A to 5A  
Load Regulation  
0.04  
0.1  
%
%
Line Regulation  
PVIN = 7V to 75V  
VFB = 0.6V  
FB Bias Current  
IFB_BIAS  
0.05  
0.5  
µA  
Enable Control  
EN Logic Level High  
EN Logic Level Low  
EN Bias Current  
ENHIGH  
ENLOW  
IENBIAS  
1.6  
6
0.6  
30  
V
V
µA  
VEN = 0V  
On Timer  
Maximum Switching Frequency  
Minimum Switching Frequency  
Maximum Duty Cycle  
FREQ  
FREQ  
DMAX  
720  
230  
800  
270  
85  
880  
300  
kHz  
kHz  
%
FREQ = PVIN, IOUT = 5A  
FREQ = 33% PVIN  
VFB = 0V, FREQ = PVIN  
(Note 1)  
Minimum Duty Cycle  
Minimum Off-Time  
Minimum On-Time  
Soft Start  
DMIN  
0
300  
%
ns  
ns  
VFB > 0.6V  
tOFF(MIN)  
tON(MIN)  
100  
200  
60  
Soft Start Current Source  
Soft Start Period Range  
Current Limit  
ISS  
0.8  
2.5  
1.4  
3
µA  
ms  
40  
Current Limit  
ICLIM  
ICL  
5.5  
6.25  
135  
0.3  
7
A
RCL = 1.42 k(Note 2)  
ILIM Source Current  
µA  
I
LIM Source Current Tempco  
µA/°C  
Internal FETs  
Top MOSFET RDS(ON)  
Bottom MOSFET RDS(ON)  
SW Leakage Current  
PVIN Leakage Current  
BST Leakage Current  
Power Good (PG)  
PG Threshold  
RDS(ON)  
RDS(ON)  
ISWLEAK  
IVINLEAK  
IBSTLEAK  
25  
25  
5
mꢀ  
mꢀ  
µA  
PVIN = 48V, VEN = 0V  
PVIN = 48V, VEN = 0V  
PVIN = 48V, VEN = 0V  
10  
10  
µA  
µA  
VPG_TH  
VPG_HYS  
tPG_DLY  
85  
90  
6
95  
%
%
VFB rising  
VFB falling  
VFB rising  
PG Threshold Hysteresis  
PG Delay Time  
150  
70  
µs  
mV  
PG Low Voltage  
VPG_LOW  
200  
VFB < 90% × VNOM  
,
IPG = 1 mA  
Thermal Protection  
Overtemperature Shutdown  
TSHD  
150  
15  
°C  
°C  
TJ rising  
Overtemperature Shutdown  
Hysteresis  
TSHD_HYS  
Note 1: Specification for packaged product only.  
2: The ICL is trimmed to get the current in the limits at room temperature.  
DS20005693C-page 4  
2017 Microchip Technology Inc.  
MIC28514  
TEMPERATURE SPECIFICATIONS  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
(Note 1)  
Temperature Ranges  
Junction Operating Temperature  
Storage Temperature Range  
Junction Temperature  
TJ  
TS  
TJ  
-40  
-65  
+125  
+150  
+150  
+260  
°C  
°C  
°C  
°C  
Lead Temperature  
Soldering, 10s  
Package Thermal Resistance  
Thermal Resistance, 6 mm x 6 mm,  
QFN-32LD  
JA  
33.3  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
2017 Microchip Technology Inc.  
DS20005693C-page 5  
 
MIC28514  
NOTES:  
DS20005693C-page 6  
2017 Microchip Technology Inc.  
MIC28514  
2.0  
TYPICAL CHARACTERISTIC CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.5V  
VOUT = 1V  
V
= 1.8V  
V=1.2V  
OUT  
OUT  
V=2.5V  
V=1.5V  
OUT  
OUT  
VOUT = 3.3V  
V=1.8V  
OUT  
VOUT = 5V  
V=2.5V  
OUT  
VOUT = 12V  
V
= 3.3V  
OUT  
V=28V  
OUT  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOUT (A)  
IOUT (A)  
FIGURE 2-1:  
Efficiency vs. Output  
FIGURE 2-4:  
Efficiency vs. Output  
Current (V = 5V).  
Current (V = 48V).  
IN  
IN  
1
0.999  
0.998  
0.997  
0.996  
0.995  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1V  
V=1.2V  
OUT  
VOUT = 1.5V  
VOUT = 1.8V  
VOUT = 2.5V  
V
= 12V  
= 24V  
= 48V  
IN
VOUT = 3.3V  
V
IN
VOUT = 5V  
V
IN  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
IOUT (A)  
3
3.5  
4
4.5  
5
IOUT (A)  
FIGURE 2-2:  
Efficiency vs. Output  
FIGURE 2-5:  
Current (V  
Output Voltage vs. Output  
= 1V).  
OUT  
Current (V = 12V).  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.785  
1.784  
1.783  
1.782  
1.781  
1.78  
VOUT = 1V  
V
= 1.2V  
OUT  
V=1.5V  
OUT  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VIN = 12V  
V=5V  
OUT  
V=24V  
IN  
V
= 12V  
V
OUT  
V
= 48V  
IN  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOUT (A)  
IOUT (A)  
FIGURE 2-3:  
Current (V = 24V).  
Efficiency vs. Output  
FIGURE 2-6:  
Current (V  
Output Voltage vs. Output  
= 1.8V).  
OUT  
IN  
2017 Microchip Technology Inc.  
DS20005693C-page 7  
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
.
3.33  
3.328  
3.326  
3.324  
3.322  
3.32  
1.785  
1.784  
1.783  
1.782  
1.781  
1.78  
VIN = 12V  
VIN=24V  
V
= 48V  
IN  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
15  
30  
45  
60  
75  
IOUT (A)  
IOUT (A)  
FIGURE 2-7:  
Output Voltage vs. Output  
= 3.3V).  
FIGURE 2-10:  
Output Voltage vs. Input  
= 1.8V).  
Current (V  
Voltage (V  
OUT  
OUT  
4.99  
3.33  
3.328  
3.326  
3.324  
3.322  
3.32  
4.986  
V
VIN = 12V  
VIN = 24V  
4.982  
VIN = 48V  
4.978  
4.974  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
15  
30  
45  
60  
75  
IOUT (A)  
IOUT (A)  
FIGURE 2-8:  
Output Voltage vs. Output  
= 5V).  
FIGURE 2-11:  
Output Voltage vs. Input  
= 3.3V).  
Current (V  
Voltage (V  
OUT  
OUT  
1
0.999  
0.998  
0.997  
0.996  
0.995  
4.99  
4.986  
4.982  
4.978  
4.974  
4.97  
4.966  
0
15  
30  
45  
60  
75  
0
15  
30  
IOUT (A)  
45  
60  
75  
IOUT (A)  
FIGURE 2-9:  
Output Voltage vs. Input  
= 1V).  
FIGURE 2-12:  
Output Voltage vs. Input  
= 5V).  
Voltage (V  
Voltage (V  
OUT  
OUT  
DS20005693C-page 8  
2017 Microchip Technology Inc.  
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
1.5  
1.45  
1.4  
1.35  
1.3  
1.25  
1.2  
1.15  
1.1  
1500  
1200  
900  
600  
300  
0
VOUT = 3.3V  
VFB = 1.5V  
1.05  
1
F
SW = 300 kHz  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
15  
30  
VIN (V)  
45  
60 75  
FIGURE 2-13:  
V
Operating Supply  
FIGURE 2-16:  
V
Shutdown Current vs.  
IN  
IN  
Current vs. Input Voltage.  
Temperature.  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
5.1  
5.05  
5
I
IVDD = 10 mA  
IVDD
I
= 40 mA  
4.95  
4.9  
VOUT = 5V  
VFB = 1.5V  
4.85  
F
SW = 300 kHz  
4.8  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
15  
30  
45  
VIN (V)  
60  
75  
FIGURE 2-14:  
V
Operating Supply  
FIGURE 2-17:  
V
Voltage vs. Input  
DD  
IN  
Current vs. Temperature.  
Voltage.  
2000  
1600  
1200  
800  
400  
0
5.1  
5.05  
5
I
IVDD = 10 mA  
I
VDD  
I
= 40 mA  
4.95  
4.9  
4.85  
4.8  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
15  
30  
45  
60  
75  
VIN (V)  
FIGURE 2-15:  
V
Shutdown Current vs.  
FIGURE 2-18:  
V
Voltage vs. Temperature.  
IN  
DD  
Input Voltage.  
2017 Microchip Technology Inc.  
DS20005693C-page 9  
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
1.3  
1.2  
1.1  
1
350  
340  
330  
320  
310  
300  
START  
STOP  
0.9  
0
15  
30  
45  
60  
75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VIN (V)  
FIGURE 2-19:  
Enable Threshold vs. Input  
FIGURE 2-22:  
Switching Frequency vs.  
Voltage.  
Temperature.  
1.4  
1.3  
1.2  
1.1  
1
7
6.6  
6.2  
5.8  
5.4  
START  
STOP  
RCL = 1.5 kOhm  
0.9  
5
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
15  
30  
45  
60  
75  
VIN (V)  
FIGURE 2-20:  
Enable Threshold vs.  
FIGURE 2-23:  
Output Current Limit vs.  
Temperature.  
Input Voltage.  
8
7
6
5
4
350  
340  
330  
320  
310  
RCL = 1.5 kOhm  
300  
0
15  
30  
45  
60  
75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VIN (V)  
FIGURE 2-21:  
Switching Frequency vs.  
FIGURE 2-24:  
Output Current Limit vs.  
Input Voltage.  
Temperature.  
DS20005693C-page 10  
2017 Microchip Technology Inc.  
 
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
100  
80  
60  
40  
20  
0
V
IN  
10V/div  
I
= 1A  
OUT  
V
OUT  
2V/div  
Rise  
Fall  
EN  
5V/div  
PG  
5V/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2 ms/div  
FIGURE 2-25:  
Power Good Threshold vs.  
FIGURE 2-28:  
Enable Turn-On and Rise  
Temperature.  
Time.  
4.5  
4.2  
3.9  
3.6  
3.3  
V
IN  
10V/div  
V
OUT  
2V/div  
= 1A  
I
OUT  
Rise  
Fall  
EN  
5V/div  
PG  
5V/div  
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2 ms/div  
FIGURE 2-26:  
Undervoltage Lockout vs.  
FIGURE 2-29:  
Enable Turn-Off.  
Temperature.  
0.602  
0.601  
0.6  
V
OUT  
2V/div  
V
=3V  
PREBIAS  
V
IN  
10V/div  
0.599  
SW  
5V/div  
0.598  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2 ms/div  
FIGURE 2-27:  
Feedback Voltage vs.  
FIGURE 2-30:  
V
Start-up with Prebiased  
IN  
Temperature.  
Output.  
2017 Microchip Technology Inc.  
DS20005693C-page 11  
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
V
IN  
10V/div  
V
OUT  
2V/div  
I
= 1A  
V
OUT  
OUT  
V
IN  
2V/div  
10V/div  
EN  
5V/div  
EN  
5V/div  
R
= 1.6 k  
CL  
PG  
5V/div  
I
L
5A/div  
2 ms/div  
4 ms/div  
FIGURE 2-31:  
Enable Turn-On and  
FIGURE 2-34:  
Enable into Short Circuit.  
Turn-Off.  
V
OUT  
V
20 mV/div  
OUT  
2V/div  
AC coupled  
I
L
V
IN  
1A/div  
10V/div  
PG  
5V/div  
R
= 1.6 k  
CL  
SW  
5V/div  
I
L
5A/div  
2 ms/div  
2 µs/div  
FIGURE 2-32:  
Switching Waveform  
FIGURE 2-35:  
Power-up into Short Circuit.  
(I  
= 0A).  
OUT  
V
OUT  
20 mV/div  
AC coupled  
V
OUT  
2V/div  
I
L
2A/div  
PG  
5V/div  
R
= 1.6 k  
CL  
SW  
5V/div  
I
L
5A/div  
400 µs/div  
2 µs/div  
FIGURE 2-36:  
Behavior when Entering  
FIGURE 2-33:  
Switching Waveform  
Short Circuit.  
(I  
= 5A).  
OUT  
DS20005693C-page 12  
2017 Microchip Technology Inc.  
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
V
OUT  
100 mV/div  
AC coupled  
V
OUT  
2V/div  
PG  
5V/div  
R
= 1.6 k  
CL  
I
OUT  
I
L
2A/div  
5A/div  
200 µs/div  
2 ms/div  
FIGURE 2-37:  
Recovery from Short Circuit.  
FIGURE 2-40:  
Load Transient Response  
(0 to 2.5A).  
PG  
1V/div  
V
OUT  
100 mV/div  
AC coupled  
V
OUT  
1V/div  
I
OUT  
100 mA/div  
I
OUT  
2A/div  
SW  
5V/div  
200 µs/div  
4 ms/div  
FIGURE 2-38:  
Behavior when Entering  
FIGURE 2-41:  
Load Transient Response  
Thermal Shutdown.  
(0 to 5A).  
V
V
OUT  
OUT  
100 mV/div  
1V/div  
5V offset  
PG  
1V/div  
V
IN  
2V/div  
SW  
12V offset  
5V/div  
I
OUT  
100 mA/div  
4 ms/div  
400 µs/div  
FIGURE 2-39:  
Recovery from Thermal  
FIGURE 2-42:  
Line Transient Response  
Shutdown.  
(12V to 18V).  
2017 Microchip Technology Inc.  
DS20005693C-page 13  
MIC28514  
Note: Unless otherwise indicated, VIN = 12V, VOUT = 5V, IOUT = 0A, fSW = 300 kHz, RCL = 1.42 k, L = 8.2 µH.  
V
OUT  
100 mV/div  
5V offset  
V
IN  
5V/div  
12V offset  
400 µs/div  
FIGURE 2-43:  
Line Transient Response  
FIGURE 2-45:  
Thermal Picture (I  
= 5A).  
OUT  
(12V to 24V).  
FIGURE 2-44:  
Thermal Picture  
(I  
= 2.5A).  
OUT  
DS20005693C-page 14  
2017 Microchip Technology Inc.  
MIC28514  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin  
Number  
Symbol  
Description  
1
ILIM  
Current Limit Adjust Input. Connect a resistor from ILIM to the SW node to set the current  
limit. Refer to Section 4.3 “Current Limit” for more details.  
2, 16, 17,  
18, 19,  
22, 29  
PGND  
Power Ground. PGND is the ground path for the MIC28514 buck converter power stage. The  
PGND pin connects to the sources of the low-side N-channel internal MOSFET, the negative  
terminals of the input capacitors and the negative terminals of the output capacitors. The  
loop for the Power Ground should be as small as possible and separate from the Analog  
Ground (AGND) loop.  
3, 12, 13,  
14, 15,  
20  
SW  
BST  
Switch Node (Output). Internal connection for the high-side MOSFET source and low-side  
MOSFET drain. Connect one terminal of the Inductor to the SW node.  
4
Boost Pin (Output). Bootstrapped voltage to the high-side N-channel internal MOSFET  
driver. An internal diode is connected between the PVDD pin and the BST pin. A boost  
capacitor of 0.1 μF is connected between the BST pin and the SW pin.  
5, 6, 7, 8,  
9, 10, 11  
PVIN  
PVDD  
High-Side Internal N-Channel MOSFET Drain Connection (Input). The PVIN operating  
voltage range is from 4.5V to 75V. Input capacitors between the PVIN pins and the Power  
Ground (PGND) are required and the connection should be kept as short as possible.  
21  
23  
Supply for the MOSFET Drivers. Connect to VDD through a 2series resistor. Connect a  
minimum 4.7 µF low-ESR ceramic capacitor from PVDD to PGND.  
EXTVDD Auxiliary LDO Input. Connect to a supply higher than 4.7V (typical) to bypass the internal  
high-voltage LDO or leave unconnected/connected to ground.  
Connect a 2.2 µF low-ESR ceramic capacitor between EXTVDD and PGND when EXTVDD  
is connected to an external supply.  
24  
25  
EN  
Enable (Input). A logic level control of the output. The EN pin is CMOS-compatible. Logic  
high = enable, logic low = shutdown. In the OFF state, the VDD supply current of the device  
is reduced. Do not pull the EN pin above the VDD supply.  
FREQ  
Frequency Programming Input. Connect to VIN to set the switching frequency to 800 kHz.  
Connect to the mid-point of a resistor divider from PVIN to AGND to set the switching  
frequency. Refer to Section 5.1 “Setting the Switching Frequency”.  
26  
27  
SS  
FB  
Soft Start Adjustment Pin. Connect a capacitor from the SS pin to AGND to adjust the  
soft start time. See more details in Section 5.0 “Application Information”.  
Feedback (Input). Input to the transconductance amplifier of the control loop. The FB pin is  
regulated to 0.6V. A resistor divider connecting the feedback to the output is used to adjust  
the desired output voltage.  
28  
30  
31  
32  
AGND  
VDD  
Analog Ground. Reference node for all the control logic circuits inside the MIC28514.  
Connect AGND to PGND at one point; see Section 6.0 “PCB Layout Guidelines” for  
details.  
VDD Bias (Input). Power to the internal reference and control sections of the MIC28514. The  
VDD operating voltage range is from 4.5V to 5.5V. A 2.2 µF ceramic capacitor from the VDD  
pin to the PGND pin must be placed next to the IC.  
SVIN  
PG  
Input Voltage to the internal regulator, which powers the internal reference and control  
section of the MIC28514. Connect to PVIN through a 2resistor. Connect a 1 µF capacitor  
from this pin to AGND.  
Open-Drain Power Good Output. PG is pulled to ground when the output voltage is below  
90% of the target voltage. Pull-up to VDD through a 10 kresistor to set a logic high level  
when the output voltage is above 90% of the target voltage.  
2017 Microchip Technology Inc.  
DS20005693C-page 15  
 
MIC28514  
NOTES:  
DS20005693C-page 16  
2017 Microchip Technology Inc.  
MIC28514  
The maximum duty cycle is obtained from the 240 ns  
4.0  
FUNCTIONAL DESCRIPTION  
tOFF(MIN)  
:
The MIC28514 is an adaptive on-time synchronous,  
step-down DC/DC regulator. It is designed to operate  
over a wide input voltage range, from 4.5V to 75V, and  
provides a regulated output voltage at up to 5A of  
output current. An adaptive on-time control scheme is  
employed in order to obtain a constant switching  
frequency and to simplify the control compensation.  
Overcurrent protection is implemented with the use of  
an external sense resistor which sets the current limit.  
The device includes a programmable soft start function  
that reduces the power supply input surge current at  
start-up by controlling the output voltage rise time.  
EQUATION 4-2:  
tS tOFFMIN  
DMAX = ---------------------------------- = 1 --------------  
tS  
tS  
240ns  
Where:  
tS = 1/fSW  
It is not recommended to use the MIC28514 with an  
off-time close to tOFF(MIN) during steady-state operation.  
The actual on-time and resulting switching frequency will  
vary with the part-to-part variation in the rise and fall  
times of the internal MOSFETs, the output load current,  
and variations in the VDD voltage. Also, the minimum tON  
results in a lower switching frequency in high VIN to VOUT  
applications, such as 75V to 1.0V.  
4.1  
Theory of Operation  
The MIC28514 Functional Block Diagram appears on  
page 2. The output voltage is sensed by the MIC28514  
Feedback pin, FB, via the voltage dividers, R1 and R2,  
and compared to a 0.6V reference voltage (VREF), at  
the main comparator, through a low-gain transconduc-  
tance (gm) amplifier. If the feedback voltage decreases  
and the output of the gm amplifier is below 0.6V, then  
the main comparator will trigger the control logic and  
generate an on-time period. The on-time period is  
predetermined by the fixed tON estimator circuitry value  
from Equation 4-1:  
Figure 4-1 shows the MIC28514 control loop timing  
during steady-state operation. During steady-state oper-  
ation, the gm amplifier senses the feedback voltage  
ripple. The feedback ripple is proportional to the output  
voltage ripple, and the inductor current ripple, to trigger  
the on-time period. The on-time is predetermined by the  
tON estimator. The termination of the off-time is controlled  
by the feedback voltage. At the valley of the feedback  
voltage ripple, which occurs when VFB falls below VREF  
,
the off period ends and the next on-time period is  
triggered through the control logic circuitry.  
EQUATION 4-1:  
VOUT  
tONESTIMATED= -----------------------  
VIN fSW  
I
L
IL(PP)  
I
OUT  
Where:  
V
VOUT = Output Voltage  
OUT  
V  
= ESR  
OUT x L(PP)  
OUT(PP) C  
I
VIN  
fSW  
= Power Stage Input Voltage  
= Switching Frequency  
V
FB  
R
2
V  
= V  
x
FB(PP)  
OUT(PP)  
V
REF  
DH  
R + R  
1 2  
At the end of the on-time period, the internal high-side  
driver turns off the high-side MOSFET and the low-side  
driver turns on the low-side MOSFET. The off-time  
period length depends upon the feedback voltage in  
most cases. When the feedback voltage decreases  
and the output of the gm amplifier is below 0.6V, the  
on-time period is triggered and the off-time period  
ends. If the off-time period, determined by the feedback  
Trigger On-Time if V is Below V  
FB  
REF  
Estimated On-Time  
FIGURE 4-1:  
Timing.  
MIC28514 Control Loop  
voltage, is less than the minimum off-time, tOFF(MIN)  
,
which is about 240 ns, then the MIC28514 control logic  
will apply the tOFF(MIN) instead. The minimum tOFF(MIN)  
period is required to maintain enough energy in the  
Boost Capacitor (CBST) to drive the high-side MOSFET.  
2017 Microchip Technology Inc.  
DS20005693C-page 17  
 
 
 
 
MIC28514  
Figure 4-2 shows the operation of the MIC28514 during  
load transient. The output voltage drops due to the  
sudden load increase, which causes VFB to be less than  
VREF. This will cause the error comparator to trigger an  
on-time period. At the end of the on-time period, a  
minimum off-time is generated to charge CBST because  
the feedback voltage is still below VREF. Then, the next  
on-time period is triggered due to the low feedback  
voltage. Therefore, the switching frequency changes  
during the load transient, but returns to the nominal fixed  
frequency once the output has stabilized at the new load  
current level. With the varying duty cycle and switching  
frequency, the output recovery time is fast and the output  
voltage deviation is small in the MIC28514 converter.  
4.2  
Soft Start  
Soft start reduces the power supply input surge current  
at start-up by controlling the output voltage rise time.  
The input surge appears while the output capacitor is  
charged up. A slower output rise time will draw a lower  
input surge current.  
The MIC28514 features an adjustable soft start time.  
The soft start time can be adjusted by adjusting the  
value of the capacitor connected from the SS pin to  
AGND. The soft start time can be adjusted from 5 ms  
to 100 ms. The MIC28514 forces 1.4 µA current from  
the SS pin. This constant current flows through the  
capacitor connected from the SS pin to AGND to adjust  
the soft start time.  
I
Full Load  
OUT  
4.3  
Current Limit  
The MIC28514 uses the low-side MOSFET RDS(ON) to  
sense the inductor current. In each switching cycle of  
the MIC28514 converter, the inductor current is sensed  
by monitoring the voltage across the low-side MOSFET  
during the off period of the switching cycle, during  
which, the low-side MOSFET is on. An internal current  
source of 135 µA generates a voltage across the  
No Load  
V
OUT  
V
FB  
external Current Limit Setting Resistor, RCL  
.
V
REF  
The ILIM Pin Voltage (VILIM) is the difference of the volt-  
age across the low-side MOSFET and the voltage  
across the resistor (VCL). The sensed voltage, VILIM,is  
compared with the Power Ground (PGND) after a  
blanking time of 150 ns.  
DH  
If the absolute value of the voltage drop across the  
low-side MOSFET is greater than the absolute value of  
the voltage across the current setting resistor (VCL), the  
MIC28514 triggers the current limit event. A consecu-  
tive eight current limit events trigger the Hiccup mode.  
Once the controller enters into Hiccup mode, it initiates  
a soft start sequence after a hiccup time-out of 4 ms  
(typical). Both the high-side and low-side MOSFETs  
are turned off during a hiccup time-out. The hiccup  
sequence, including the soft start, reduces the stress  
on the switching FETs, and protects the load and  
supply from severe short conditions.  
T
OFF(MIN)  
FIGURE 4-2:  
Response.  
MIC28514 Load Transient  
Unlike true Current-mode control, the MIC28514 uses  
the output voltage ripple to trigger an on-time period.  
The output voltage ripple is proportional to the inductor  
current ripple if the ESR of the output capacitor is large  
enough.  
In order to meet the stability requirements, the  
MIC28514 feedback voltage ripple should be in phase  
with the inductor current ripple and large enough to be  
sensed by the gm amplifier. The recommended feed-  
back voltage ripple is 20 mV ~ 100 mV. If a low-ESR  
output capacitor is selected, then the feedback voltage  
ripple may be too small to be sensed by the gm ampli-  
fier and the error comparator. Also, the output voltage  
ripple and the feedback voltage ripple are not neces-  
sarily in phase with the inductor current ripple if the  
ESR of the output capacitor is very low. For these appli-  
cations, ripple injection is required to ensure proper  
operation. Refer to Section 5.8 “Ripple Injection”  
under Section 5.0 “Application Information” for  
details about the ripple injection technique.  
Since the MOSFET RDS(ON) varies from 30% to 40%  
with temperature, it is recommended to consider the  
RDS(ON) variation, while calculating RCL in the above  
equation, to avoid false current limiting due to  
increased MOSFET junction temperature rise.  
To improve the current limit variation, the MIC28514  
adjusts the internal Current Limit Source Current (ICL  
)
at a rate of 0.3 µA/°C when the MIC28514 junction tem-  
perature changes to compensate the RDS(ON) variation  
of the low-side MOSFET. Figure 2-23 indicates the  
temperature variation of the current limit with  
RCL= 1.5 k.  
DS20005693C-page 18  
2017 Microchip Technology Inc.  
 
MIC28514  
A small capacitor (CCL) can be connected from the ILIM  
pin to PGND to filter the switch node ringing during the  
off period, allowing a better current sensing. The time  
constant of RCL and CCL should be less than the  
minimum off-time.  
The drive voltage is derived from the PVDD supply volt-  
age. The nominal low-side gate drive voltage is PVDD  
and the nominal high-side gate drive voltage is approx-  
imately PVDD – VDIODE, where VDIODE is the voltage  
drop across the internal diode. An approximate 30 ns  
delay between the high-side and low-side driver transi-  
tions is used to prevent current from simultaneously  
flowing unimpeded through both MOSFETs.  
4.4  
Negative Current Limit  
The MIC28514 implements a negative current limit by  
sensing the SW voltage when the low-side MOSFET is  
on. If the SW node voltage exceeds 48 mV, typical, or  
an equivalent of 2A, the device turns off the low-side  
MOSFET for 500 ns.  
4.6  
Auxiliary Bootstrap LDO  
(EXTVDD)  
The MIC28514 features an auxiliary bootstrap LDO  
which improves the system efficiency by supplying the  
MIC28514 internal circuit bias power and gate drivers  
from the converter output voltage. This LDO is enabled  
when the voltage on the EXTVDD pin is above 4.6V  
(typical), and at the same time, the main LDO which  
operates from VIN is disabled to reduce power  
consumption.  
4.5  
Internal MOSFET Gate Drive  
The functional block diagram shows a bootstrap circuit,  
consisting of an internal diode from PVDD to BST and  
an external capacitor connected from the SW pin to the  
BST pin (CBST). This circuit supplies energy to the  
high-side drive circuit. Capacitor, CBST, is charged  
while the low-side MOSFET is on and the voltage on  
the SW pin is approximately 0V. Energy from CBST is  
used to turn on the high-side MOSFET. As the  
high-side MOSFET turns on, the voltage on the SW pin  
increases to approximately VIN. The internal diode is  
reverse-biased and CBST floats high while continuing to  
keep the high-side MOSFET on. The bias current of the  
high-side driver is less than 10 mA, so a 0.1 μF to 1 μF  
is sufficient to hold the gate voltage with minimal droop  
for the power stroke (high-side switching) cycle (i.e.,  
BST = 10 mA x 4 μs/0.1 μF = 400 mV). When the  
low-side MOSFET is turned back on, CBST is  
recharged through D1. A small resistor in series with  
CBST can be used to slow down the turn-on time of the  
high-side N-channel MOSFET.  
2017 Microchip Technology Inc.  
DS20005693C-page 19  
MIC28514  
NOTES:  
DS20005693C-page 20  
2017 Microchip Technology Inc.  
MIC28514  
The output voltage is determined by Equation 5-3:  
5.0  
5.1  
APPLICATION INFORMATION  
Setting the Switching Frequency  
EQUATION 5-3:  
R1  
VO = VFB 1 + -----  
The MIC28514 is an adjustable frequency, synchro-  
nous buck regulator that features an adaptive on-time  
control architecture. The switching frequency can be  
adjusted between 270 kHz and 800 kHz by changing  
the resistor divider network, consisting of R3 and R4.  
R2  
Where:  
VFB = 0.6V  
A typical value of R1 can be between 3 kand 10 k.  
If R1 is too large, it may allow noise to be introduced  
into the voltage feedback loop. If R1 is too small, it will  
decrease the efficiency of the power supply, especially  
at light loads. Once R1 is selected, R2 can be  
calculated using Equation 5-4.  
Equation 5-1 gives the estimated switching frequency.  
EQUATION 5-1:  
R3  
------------------  
fSWADJ= fO  
R3 + R4  
Where:  
EQUATION 5-4:  
fO = Switching Frequency when R4 is 100 k  
and R3 is open. fO is typically 800 kHz.  
VFB R1  
R2 = -----------------------------  
VOUT VFB  
5.2  
Setting the Soft Start Time  
The output soft start time can be set by connecting a  
capacitor from SS to AGND.  
5.4  
Setting the Current Limit  
The Source Current Limit (ICL) is trimmed at the factory  
to achieve a higher current limit accuracy with  
RCL = 1.42 k, as specified in Table in Section 1.0  
“Electrical Characteristics”. It is possible to adjust  
other current limits by changing the RCL value using  
Equation 5-5.  
The value of the capacitor can be calculated using  
Equation 5-2.  
EQUATION 5-2:  
ISS tSS  
CSS = -------------------  
VREF  
EQUATION 5-5:  
Where:  
CSS = Capacitor from SS pin to AGND  
ILPP  
ILIM + ------------------ RDSON  
ISS  
tSS  
= Internal Soft Start Current(1.4 μA, typical)  
2
RCL = --------------------------------------------------------------------  
= Output Soft Start Time  
ICL  
VREF = 0.6V  
Where:  
ILIM  
= Load Current Limit  
RDS(ON) = On-Resistance of the Low-Side MOSFET  
(25 m, typical)  
5.3  
Setting Output Voltage  
The MIC28514 requires two resistors to set the output  
voltage, as shown in Figure 5-1.  
ΔIL(PP) = Inductor Ripple Current  
ICL  
= Current Limit Source Current (135 μA, typical)  
R1  
FB  
gm AMP  
R2  
VREF  
FIGURE 5-1:  
Voltage Divider Configuration.  
2017 Microchip Technology Inc.  
DS20005693C-page 21  
 
 
 
 
 
 
MIC28514  
Maximizing efficiency requires the proper selection of  
core material while minimizing the winding resistance.  
The high-frequency operation of the MIC28514 requires  
the use of ferrite materials for all but the most  
cost-sensitive applications. Lower cost iron powder  
cores may be used, but the increase in core loss will  
reduce the efficiency of the power supply. This is  
especially noticeable at low output power. The winding  
resistance decreases efficiency at the higher output cur-  
rent levels. The winding resistance must be minimized,  
although this usually comes at the expense of a larger  
inductor. The power dissipated in the inductor is equal to  
the sum of the core and copper losses. At higher output  
loads, the core losses are usually insignificant and can  
be ignored. At lower output currents, the core losses can  
be significant. Core loss information is usually available  
from the magnetics vendor. Copper loss in the inductor  
is calculated by Equation 5-10.  
5.5  
Inductor Selection  
Values for inductance, peak and RMS currents are  
required to select the inductor. The input voltage, output  
voltage, switching frequency and the inductance value  
determine the peak-to-peak inductor ripple current. Gen-  
erally, higher inductance values are used with higher  
input voltages. Larger peak-to-peak ripple currents will  
increase the power dissipation in the inductor and  
MOSFETs. Larger output ripple currents will also require  
more output capacitance to smooth out the larger ripple  
current. Smaller peak-to-peak ripple currents require a  
larger inductance value, and therefore, a larger and  
more expensive inductor. A good compromise between  
size, loss and cost is to set the inductor ripple current to  
be equal to 20% of the maximum output current. The  
inductance value is calculated by Equation 5-6.  
EQUATION 5-6:  
EQUATION 5-10:  
VOUT  VINMAXVOUT  
L = ----------------------------------------------------------------------------------------  
INMAXfSW 20% IOUTMAX  
V
PINDUCTORCU= ILRMS2 RWINDING  
Where:  
fSW  
= Switching Frequency  
The resistance of the copper wire, RWINDING, increases  
with the temperature. The value of the winding resistance  
used should be at the operating temperature.  
20%  
= Ratio of AC Ripple Current to DC Output  
Current  
VIN(MAX) = Maximum Power Stage Input Voltage  
EQUATION 5-11:  
RWINDINGHT  
= RWINDING20C1 + 0.004 TH T20C  
For a selected inductor, the peak-to-peak inductor  
current ripple is:  
Where:  
EQUATION 5-7:  
TH  
= Temperature of Wire Underload  
= Ambient Temperature  
T20C  
VOUT  VIN VOUT  
ILPP= -----------------------------------------------------  
VIN fSW L  
RWINDING(20C) = Room Temperature Winding Resistance  
(usually specified by the manufacturer)  
The peak inductor current is equal to the average  
output current plus one-half of the peak-to-peak  
inductor current ripple.  
5.6  
Output Capacitor Selection  
The type of the output capacitor is usually determined by  
its Equivalent Series Resistance (ESR). Voltage and  
RMS current capability are two other important factors  
for selecting the output capacitor. Recommended  
capacitor types are ceramic, low-ESR aluminum  
electrolytic, OS-CON, and POSCAP. The output capaci-  
tor’s ESR is usually the main cause of the output ripple.  
The output capacitor ESR also affects the control loop  
from a stability point of view. The maximum value of the  
ESR is calculated using Equation 5-12.  
EQUATION 5-8:  
ILPK= IOUT + 0.5  ILPP  
The RMS inductor current is used to calculate the I2R  
losses in the inductor.  
EQUATION 5-9:  
2
ILPP  
EQUATION 5-12:  
2
ILRMS  
=
IOUT + --------------------  
12  
VOUTPP  
ILPP  
---------------------------  
ESRC  
OUT  
Where:  
ΔVOUT(PP) = Peak-to-Peak Output Voltage Ripple  
ΔIL(PP)  
= Peak-to-Peak Inductor Current Ripple  
DS20005693C-page 22  
2017 Microchip Technology Inc.  
 
 
 
MIC28514  
The total output ripple is a combination of the ESR and  
output capacitance. The total ripple is calculated in  
Equation 5-13.  
5.7  
Input Capacitor Selection  
The input capacitor for the power stage input, VIN,  
should be selected for ripple current rating and voltage  
rating. Tantalum input capacitors may fail when sub-  
jected to high inrush currents caused by turning on the  
input supply. A tantalum input capacitor’s voltage rating  
should be at least two times the maximum input voltage  
to maximize reliability. Aluminum electrolytic, OS-CON  
and multilayer polymer film capacitors can handle the  
higher inrush currents without voltage derating. The  
input voltage ripple will primarily depend on the input  
capacitor’s ESR. The peak input current is equal to the  
peak inductor current, so:  
EQUATION 5-13:  
VOUTPP  
ILPP  
COUT fSW 8  
+ ILPPESRC 2  
2  
-------------------------------------  
=
OUT  
Where:  
COUT = Output Capacitance Value  
fSW = Switching Frequency  
EQUATION 5-16:  
As described in Section 4.1 “Theory of Operation”, a  
subsection of Section 4.0 “Functional Description”,  
the MIC28514 requires at least 20 mV peak-to-peak  
ripple at the FB pin to make the gm amplifier and the  
error comparator behave properly. Also, the output volt-  
age ripple should be in phase with the inductor current.  
Therefore, the output voltage ripple caused by the  
output capacitors’ value should be much smaller than  
the ripple caused by the output capacitor ESR. If  
low-ESR capacitors, such as ceramic capacitors, are  
selected as the output capacitors, a ripple injection  
method should be applied to provide enough feedback  
voltage ripple. Refer to Section 5.8 “Ripple Injection”  
for details.  
VIN = ILPKCESR  
The input capacitor must be rated for the input current  
ripple. The RMS value of the input capacitor current is  
determined at the maximum output current. Assuming  
the peak-to-peak inductor current ripple is low:  
EQUATION 5-17:  
I
CINRMSIOUTMAXD 1 D  
The voltage rating of the capacitor should be 20%  
greater for aluminum electrolytic or OS-CON. The  
output capacitor RMS current is calculated in  
Equation 5-14.  
The power dissipated in the input capacitor is:  
EQUATION 5-18:  
PDISSCIN= ICINRMS2 CESR  
EQUATION 5-14:  
ILPP  
IC  
= ------------------  
12  
OUTRMS  
The power dissipated in the output capacitor is:  
EQUATION 5-15:  
PDISSCOUT= ICOUTRMS2 ESRCOUT  
2017 Microchip Technology Inc.  
DS20005693C-page 23  
 
 
MIC28514  
With the feed-forward capacitor, the feedback  
voltage ripple is very close to the output voltage  
ripple.  
5.8  
Ripple Injection  
The VFB ripple required for proper operation of the  
MIC28514 gm amplifier and comparator is 20 mV to  
100 mV. However, the output voltage ripple is generally  
designed as 1% to 2% of the output voltage. For low  
output voltages, such as 1V, the output voltage ripple is  
only 10 mV to 20 mV and the feedback voltage ripple is  
less than 20 mV. If the feedback voltage ripple is so  
small that the gm amplifier and comparator cannot  
sense it, then the MIC28514 loses control and the out-  
put voltage is not regulated. In order to have sufficient  
VFB ripple, a ripple injection method should be applied  
for low output voltage ripple applications.  
EQUATION 5-20:  
VFB(PP) ESRCOUT  IL(PP)  
3. Virtually no ripple at the FB pin voltage due to  
the very low-ESR of the output capacitors.  
In this situation, the output voltage ripple is less  
than 20 mV. Therefore, additional ripple is  
injected into the FB pin from the Switching  
Node, SW, via a resistor, RINJ, and a capacitor,  
CINJ, as shown in Figure 5-4.  
The applications are divided into three situations  
according to the amount of the feedback voltage ripple:  
1. Enough ripple at the feedback voltage due to the  
large ESR of the output capacitors (Figure 5-2).  
The converter is stable without any ripple  
injection.  
L
SW  
CINJ  
COUT  
R1  
RINJ  
MIC28514  
FB  
CFF  
R2  
ESR  
L
SW  
R1  
COUT  
MIC28514  
FB  
FIGURE 5-4:  
Invisible Ripple at FB.  
R2  
ESR  
The injected ripple is:  
EQUATION 5-21:  
FIGURE 5-2:  
Enough Ripple at FB.  
1
----------------  
VFBPP= VIN KDIV D 1 D  
fSW    
The feedback voltage ripple is:  
Where:  
EQUATION 5-19:  
VIN = Power Stage Input Voltage  
R2  
------------------  
VFBPP  
=
ESR  
 ILPP  
COUT  
D
= Duty Cycle  
R1 + R2  
fSW = Switching Frequency  
Where:  
= (R1//R2//RINJ) x Cff  
τ
ΔIL(PP) = Peak-to-Peak Value of the Inductor  
Current Ripple  
EQUATION 5-22:  
2. Inadequate ripple at the feedback voltage due to  
the small ESR of the output capacitors.  
R1//R2  
KDIV = -----------------------------------  
RINJ + R1//R2  
In this situation, the output voltage ripple is fed into  
the FB pin through a Feed-Forward Capacitor, Cff,  
as shown in Figure 5-3. The typical Cff value is  
between 1 nF and 22 nF.  
In Equation 5-21 and Equation 5-22, it is assumed that  
the time constant associated with Cff must be much  
greater than the switching period:  
L
SW  
EQUATION 5-23:  
COUT  
R1  
MIC28514  
1
T
FB  
Cff  
---------------- = -- « 1  
fSW    
R2  
ESR  
FIGURE 5-3:  
Inadequate Ripple at FB.  
DS20005693C-page 24  
2017 Microchip Technology Inc.  
 
 
 
 
 
MIC28514  
If the voltage divider resistors, R1 and R2, are in the kꢀ  
range, a Cff of 1 nF to 22 nF can easily satisfy the large  
time constant requirements. Also, a 100 nF Injection  
Capacitor, CINJ, is used in order to be considered as  
short for a wide range of the frequencies.  
5.9  
Thermal Measurements  
Measuring the IC’s case temperature is recommended  
to ensure it is within its operating limits. Although this  
might seem like a very elementary task, it is easy to get  
erroneous results. The most common mistake is to use  
the standard thermocouple that comes with a thermal  
meter. This thermocouple wire gauge is large, typically  
22 gauge, and behaves like a heat sink, resulting in a  
lower case measurement.  
The process of sizing the ripple injection resistor and  
capacitors is as follows.  
1. Select Cff to feed all output ripples into the Feed-  
back pin and make sure the large time constant  
assumption is satisfied. A typical choice for Cff is  
1 nF to 22 nF if R1 and R2 are in the krange.  
Two methods of temperature measurement are using a  
smaller thermocouple wire or an infrared thermometer.  
If a thermocouple wire is used, it must be constructed  
of 36 gauge wire or higher (smaller wire size) to  
minimize the wire heat sinking effect. In addition, the  
thermocouple tip must be covered in either thermal  
grease or thermal glue to make sure that the thermo-  
couple junction is making good contact with the case of  
the IC.  
2. Select RINJ according to the expected feedback  
voltage ripple using Equation 5-24:  
EQUATION 5-24:  
VFBPP  
fSW    
D 1 D  
----------------------- ----------------------------  
KDIV  
=
VIN  
Wherever possible, an infrared thermometer is recom-  
mended. An optional stand makes it easy to hold the  
beam on the IC for long periods of time.  
Then, the value of RINJ is obtained as:  
EQUATION 5-25:  
1
RINJ = R1//R2------------ 1  
KDIV  
3. Select CINJ as 100 nF, which could be considered  
as short for a wide range of the frequencies.  
2017 Microchip Technology Inc.  
DS20005693C-page 25  
 
MIC28514  
NOTES:  
DS20005693C-page 26  
2017 Microchip Technology Inc.  
MIC28514  
6.3  
Inductor  
6.0  
PCB LAYOUT GUIDELINES  
• Keep the inductor connection to the Switch Node  
(SW) short.  
PCB layout is critical to achieve reliable, stable and  
efficient performance. A ground plane is required to  
control EMI and minimize the inductance in power,  
signal and return paths. The thickness of the copper  
planes is also important in terms of dissipating heat.  
The 2 oz. copper thickness is adequate from a thermal  
point of view and a thick copper plain helps in terms of  
noise immunity. Keep in mind, thinner planes can be  
easily penetrated by noise. The following guidelines  
should be followed to ensure proper operation of the  
MIC28514 converter.  
• Do not route any digital lines underneath or close  
to the inductor.  
• Keep the Switch Node (SW) away from the  
Feedback (FB) pin.  
6.4  
Output Capacitor  
• Use a wide trace to connect the output capacitor  
ground terminal to the input capacitor ground  
terminal.  
6.1  
IC  
• Phase margin will change as the output capacitor  
value and ESR changes. Contact the factory if the  
output capacitor is different from what is shown in  
the BOM.  
• The 2.2 µF ceramic capacitor, which is connected  
to the VDD pin, must be located right at the IC.  
The VDD pin is very noise-sensitive and  
placement of the capacitor is very critical. Use  
wide traces to connect to the VDD pin.  
• The feedback trace should be separate from the  
power trace and connected as close as possible  
to the output capacitor. Sensing a long  
high-current load trace can degrade the DC load  
regulation.  
• The Signal Ground pin (SGND) must be  
connected directly to the ground planes. The  
SGND and PGND connection should be done at a  
single point near the IC. Do not route the SGND  
pin to the PGND pad on the top layer.  
• Use thick traces to route the input and output  
power lines.  
6.2  
Input Capacitor  
• Place the input capacitor next to the power pins.  
• Place the input capacitors on the same side of the  
board and as close to the IC as possible.  
• Keep both the PVIN pin and PGND connections  
short.  
• Place several vias to the ground plane, close to  
the input capacitor ground terminal.  
• Use either X7R or X5R dielectric input capacitors.  
Do not use Y5V or Z5U-type capacitors.  
• If a tantalum input capacitor is placed in parallel  
with the input capacitor, it must be recommended  
for switching regulator applications and the  
operating voltage must be derated by 50%.  
• In hot-plug applications, a tantalum or electrolytic  
bypass capacitor must be used to limit the  
overvoltage spike seen on the input supply when  
power is suddenly applied.  
2017 Microchip Technology Inc.  
DS20005693C-page 27  
MIC28514  
NOTES:  
DS20005693C-page 28  
2017 Microchip Technology Inc.  
MIC28514  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
32-Pin VQFN (6 x 6 mm)  
Example  
MIC28514  
1704256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2017 Microchip Technology Inc.  
DS20005693C-page 29  
MIC28514  
32-Lead Very Thin Plastic Quad Flat, No Lead Package (PHA) - 6x6 mm Body [VQFN]  
Wettable Flanks, Multiple Exposed Pads  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
(A3)  
D
A
B
E
N
NOTE 1  
1
2
(DATUM B)  
(DATUM A)  
DETAIL 1  
2X  
0.15 C  
2X  
TOP VIEW  
0.15 C  
32X  
A1  
0.08 C  
K2  
K2  
D4  
A
D3  
D5  
K3  
E3  
0.10 C  
SIDE VIEW  
D5  
e
2
DETAIL 2  
K2  
E2  
32X b  
0.10  
0.05  
2
C A B  
C
A
1
0.10  
C A B  
N
A
NOTE 1  
K1  
L
e
D2  
BOTTOM VIEW  
Microchip Technology Drawing C04-1196A Sheet 1 of 2  
DS20005693C-page 30  
2017 Microchip Technology Inc.  
MIC28514  
32-Lead Very Thin Plastic Quad Flat, No Lead Package (PHA) - 6x6 mm Body [VQFN]  
Wettable Flanks, Multiple Exposed Pads  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
R0.05  
0.064  
R0.125  
DETAIL 2  
DETAIL 1  
ROTATED 180°  
0.15  
0.045  
SECTION A-A  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Length  
Overall Width  
Exposed Pad Length  
Exposed Pad Width  
Exposed Pad Length  
Exposed Pad Width  
Exposed Pad Length  
Exposed Pad Length  
Exposed Pad Width  
Terminal Width  
Terminal Length  
N
32  
0.65 BSC  
0.85  
e
A
A1  
A3  
D
0.80  
0.00  
0.90  
0.05  
0.02  
0.203 REF  
6.00 BSC  
6.00 BSC  
4.80  
2.315  
2.085  
2.645  
2.340  
0.695  
1.995  
0.30  
E
D2  
E2  
D3  
E3  
D4  
D5  
E5  
b
4.70  
2.215  
1.985  
2.545  
2.240  
0.595  
1.895  
0.25  
4.90  
2.415  
2.185  
2.745  
2.440  
0.795  
2.095  
0.35  
0.50  
-
L
0.30  
0.40  
Terminal-to-Exposed Pad  
Exposed Pad-to-Exposed Pad  
Pacakge Edgel-to-Exposed Pad  
K1  
K2  
K3  
0.20  
0.20  
0.18  
-
0.26  
-
-
-
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-1196A Sheet 2 of 2  
2017 Microchip Technology Inc.  
DS20005693C-page 31  
MIC28514  
32-Lead Very Thin Plastic Quad Flat, No Lead Package (PHA) - 6x6 mm Body [VQFN]  
Wettable Flanks, Multiple Exposed Pads  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
X2  
E
E
2
Y1  
32  
1
X1  
2
EV  
Y2  
C2  
Y3  
ØV  
Y5  
X3  
SILK SCREEN  
EV  
X5  
X4  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Contact Pitch  
E
0.65 BSC  
Contact Pad Width (X32)  
X1  
0.35  
0.75  
Contact Pad Length (X32)  
Contact Pad Spacing  
Contact Pad Spacing  
Inner Pad Length  
Inner Pad Width  
Inner Pad Length  
Inner Pad Width  
Inner Pad Length  
Inner Pad Length  
Inner Pad Width  
Y1  
C1  
C2  
X2  
Y2  
X3  
Y3  
X4  
X5  
Y5  
V
6.10  
6.10  
4.85  
2.36  
2.13  
2.69  
2.39  
0.74  
2.04  
Thermal Via Diameter (X26)  
Thermal Via Pitch  
0.30  
1.00  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing C04-3196A  
DS20005693C-page 32  
2017 Microchip Technology Inc.  
MIC28514  
APPENDIX A: REVISION HISTORY  
Revision C (May 2017)  
The following is the list of modifications:  
• Updated the Typical Application Circuit.  
• Updated the Functional Block Diagram.  
Revision B (April 2017)  
The following is the list of modifications:  
• Updated the Functional Block Diagram.  
• Updated the Electrical Characteristics(1) section.  
Revision A (February 2017)  
• Original Release of this Document.  
2017 Microchip Technology Inc.  
DS20005693C-page 29  
MIC28514  
NOTES:  
DS20005693C-page 30  
2017 Microchip Technology Inc.  
MIC28514  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
X
XXX  
Examples:  
Media Type  
a) MIC28514T-E/PHA: 75V, 5A Synchronous Buck Regulator,  
Temperature  
Package  
®
Hyper Speed Control with Soft Start,  
-40°C to +125°C,  
Extended Temperature Range,  
32-Lead QFN package  
®
Device:  
MIC28514T: 75V, 5A Hyper Speed Control Synchronous  
DC/DC Buck Regulator with External Soft Start  
Media Type:  
T
E
=
=
5000/Reel  
Temperature:  
Extended Temperature Range  
(-40°C to +125°C)  
Package:  
PHA  
=
32-Lead, 6x6 mm VQFN  
2017 Microchip Technology Inc.  
DS20005693C-page 31  
MIC28514  
NOTES:  
DS20005693C-page 32  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-1725-5  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005693C-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005693C-page 34  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MIC2860-2DYC6

High Efficiency 2 Channel WLED Driver with Single Wire Digital Control
MICREL

MIC2860-2DYC6TX

IC,LASER DIODE/LED DRIVER,TSSOP,6PIN,PLASTIC
MICROCHIP

MIC2860-2DYD6

LED DISPLAY DRIVER, PDSO6
MICROCHIP

MIC2860-2DYD6-TR

LED DISPLAY DRIVER
MICROCHIP

MIC2860-2PYC6

High Efficiency 2 Channel WLED Driver with PWM Control
MICREL

MIC2860-2PYC6-TR

LED DISPLAY DRIVER, PDSO6
MICROCHIP

MIC2860-2PYC6TR

LED DISPLAY DRIVER, PDSO6, GREEN, SC-70, 6 PIN
MICROCHIP

MIC2860-2PYD6

High Efficiency 2 Channel WLED Driver with PWM Control
MICREL

MIC2860-2PYD6TR

IC,LASER DIODE/LED DRIVER,TSOP,6PIN,PLASTIC
MICREL

MIC2860-D

High Efficiency 2 Channel WLED Driver with Single Wire Digital Control
MICREL

MIC2860-D_11

High Efficiency 2 Channel WLED Driver with Single Wire Digital Control
MICREL

MIC2860-P

High Efficiency 2 Channel WLED Driver with PWM Control
MICREL