MIC39100-1.8BS [MICROCHIP]

Fixed Positive LDO Regulator, 1.8V, 0.63V Dropout, BIPolar, PDSO4, SOT-223, 4 PIN;
MIC39100-1.8BS
型号: MIC39100-1.8BS
厂家: MICROCHIP    MICROCHIP
描述:

Fixed Positive LDO Regulator, 1.8V, 0.63V Dropout, BIPolar, PDSO4, SOT-223, 4 PIN

光电二极管 输出元件 调节器
文件: 总24页 (文件大小:1898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC39100/1/2  
1A, Low Voltage, Low Dropout Regulator  
with Reversed-Battery Protection  
Features  
General Description  
• Fixed and Adjustable Output Voltages to 1.24V  
• 410 mV Typical Dropout at 1A Load  
The MIC39100, MIC39101, and MIC39102 are 1A low  
dropout linear voltage regulators that provide low  
voltage, high current output from an extremely small  
package. The MIC39100/1/2 offers extremely low  
dropout (typically 410 mV at 1A) and low ground  
current (typically 11 mA at 1A).  
- Best Recommended for 3.0V to 2.5V Conver-  
sion  
- Best Recommended for 2.5V to 1.8V Conver-  
sion  
The MIC39100 is a xed output regulator offered in the  
SOT-223 package. The MIC39101 and MIC39102 are  
xed and adjustable regulators, respectively, in a  
thermally enhanced 8-lead SOIC package.  
• 1A Minimum Guaranteed Output Current  
• 1% Initial Accuracy  
• Low Ground Current  
• Current-Limiting and Thermal-Shutdown  
Protection  
The MIC39100/1/2 is ideal for PC add-in cards that  
need to convert from standard 5V to 3.3V, 3.3V to 2.5V,  
or 2.5V to 1.8V. A guaranteed maximum dropout  
voltage of 630 mV over all operating conditions allows  
the MIC39100/1/2 to provide 2.5V from a supply as low  
as 3.13V and 1.8V from a supply as low as 2.43V.  
• Reversed-Battery and Reversed-Leakage  
Protection  
• Fast Transient Response  
• Low Prole SOT-223 Package  
• Power SO-8 Package  
The MIC39100/1/2 is fully protected with overcurrent  
limiting, thermal-shutdown, and reverse-battery  
protection. Fixed voltages of 5.0V, 3.3V, 2.5V, and 1.8V  
are available on MIC39100/1 with adjustable output  
voltages to 1.24V on MIC39102.  
Applications  
• LDO Linear Regulator for PC Add-In Cards  
• High-Efciency Linear Power Supplies  
• SMPS Post Regulator  
• Multimedia and PC Processor Supplies  
• Battery Chargers  
• Low Voltage Microcontrollers and Digital Logic  
Package Types  
MIC39102 (ADJ.)  
SOIC-8 (M)  
MIC39101-XX (FIXED)  
MIC39100-XX (FIXED)  
SOT-223 (S)  
SOIC-8 (M)  
(Top View)  
(Top View)  
(Top View)  
GND  
TAB  
EN 1  
IN 2  
8 GND  
7 GND  
6 GND  
5 GND  
EN 1  
IN 2  
8 GND  
7 GND  
6 GND  
5 GND  
OUT 3  
ADJ 4  
OUT 3  
FLG 4  
2
3
1
IN GND OUT  
2017 Microchip Technology Inc.  
DS20005834A-page 1  
MIC39100/1/2  
Typical Application Circuits  
2.5V/1A Regulator  
MIC39100  
IN  
VIN  
3.3V  
OUT  
2.5V  
10μF  
TANTALUM  
GND  
2.5V/1A Regulator with Error Flag  
100kŸ  
ERROR FLAG  
OUTPUT  
MIC39101  
VIN  
3.3V  
IN  
OUT  
2.5V  
R1  
ENABLE  
SHUTDOWN  
EN  
FLG  
10μF  
TANTALUM  
GND  
1.5V/1A Adjustable Regulator  
MIC39102  
VIN  
2.5V  
IN  
OUT  
1.5V  
R1  
R2  
ENABLE  
SHUTDOWN  
EN  
ADJ  
10μF  
TANTALUM  
GND  
DS20005834A-page 2  
2017 Microchip Technology Inc.  
MIC39100/1/2  
Functional Block Diagrams  
MIC39100 Fixed Regulator  
IN  
OUT  
O.V. ILIMIT  
18V  
1.240V  
REFERENCE  
THERMAL  
SHUTDOWN  
MIC39100  
GND  
MIC39101 Fixed Regulator  
with Flag and Enable  
OUT  
IN  
O.V. ILIMIT  
18V  
1.180V  
1.240V  
REFERENCE  
FLG  
EN  
THERMAL  
SHUTDOWN  
GND  
MIC39101  
MIC39102 Adjustable Regulator  
OUT  
IN  
O.V. ILIMIT  
18V  
1.240V  
REFERENCE  
ADJ  
EN  
THERMAL  
SHUTDOWN  
GND  
MIC39102  
2017 Microchip Technology Inc.  
DS20005834A-page 3  
MIC39100/1/2  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage (VIN).................................................................................................................................... –20V to +20V  
Enable Voltage (VEN) ................................................................................................................................................+20V  
ESD Rating ............................................................................................................................................................ Note 1  
Maximum Power Dissipation (PD(MAX)).................................................................................................................. Note 2  
Operating Ratings ‡  
Supply Voltage (VIN).................................................................................................................................+2.25V to +16V  
Enable Voltage (VEN) ................................................................................................................................................+16V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
‡ Notice: The device is not guaranteed to function outside its operating ratings.  
Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kin series  
with 100 pF.  
2: PD(MAX) = (TJ(MAX) – TA) ÷ θJA, where θJA depends upon the printed circuit layout (see Application Informa-  
tion).  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: VIN = VOUT + 1V; VEN = 2.25V; TJ = +25°C, bold values indicate –40°C TJ +125°C,  
unless noted. Note 1  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Conditions  
–1  
1
IOUT = 10 mA  
Output Voltage  
VOUT  
%
10 mA IOUT 1A,  
VOUT +1V VIN 8V  
–2  
0.06  
0.2  
40  
2
0.5  
1
IOUT = 10 mA,  
VOUT + 1V VIN 16V  
Line Regulation  
Load Regulation  
%
%
VIN = VOUT + 1V,  
10 mA IOUT 1A  
Output Voltage Temperature  
Coefficient  
VOUT  
T  
/
100  
ppm/°C Note 2  
IOUT = 100 mA, VOUT = –1%  
200  
250  
140  
275  
300  
I
OUT = 500 mA, VOUT = –1%  
Dropout Voltage, Note 3  
Ground Current, Note 4  
VDO  
mV  
500  
550  
630  
IOUT = 750 mA, VOUT = –1%  
410  
I
OUT = 1A, VOUT = –1%  
400  
4
µA  
mA  
A
IOUT = 100 mA, VIN = VOUT + 1V  
I
I
OUT = 500 mA, VIN = VOUT + 1V  
OUT = 750 mA, VIN = VOUT + 1V  
IGND  
6.5  
11  
20  
IOUT = 1A, VIN = VOUT + 1V  
VOUT = 0V, VIN = VOUT + 1V  
Current Limit  
IOUT(LIM)  
1.8  
2.5  
Enable Input  
0.8  
Logic LOW (Off)  
Logic HIGH (On)  
Enable Input Voltage  
VEN  
V
2.25  
DS20005834A-page 4  
2017 Microchip Technology Inc.  
 
 
MIC39100/1/2  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN = VOUT + 1V; VEN = 2.25V; TJ = +25°C, bold values indicate –40°C TJ +125°C,  
unless noted. Note 1  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Conditions  
1
15  
30  
75  
2
VEN = 2.25V  
µA  
Enable Input Current  
IEN  
VEN = 0.8V  
4
Flag Output  
1
2
IFLG(LEAK)  
Output Leakage Voltage  
0.01  
210  
µA  
VOH = 16V  
300  
400  
Output Low Voltage  
VFLG(DO)  
mV  
VIN = 2.250V, IOL = 250 µA, Note 5  
Low Threshold  
High Threshold  
Hysteresis  
93  
1
% of VOUT  
% of VOUT  
VFLG  
99.2  
%
MIC39102 Only  
1.228  
1.215  
1.203  
1.252  
1.265  
1.277  
80  
1.240  
IOUT = 10 mA  
Note 6  
Reference Voltage  
V
Adjust Pin Bias Current  
40  
nA  
120  
Reference Voltage  
Temperature Coefficient  
20  
ppm/°C  
nA/°C  
Adjust Pin Bias Current  
Temperature Coefficient  
0.1  
Note 1: Specification for packaged product only.  
2: Output voltage temperature coefficient is VOUT(WORST CASE) ÷ (TJ(MAX) – TJ(MIN)), where TJ(MAX)  
=
+125°C and TJ(MIN) = –40°C.  
3: VDO = VIN – VOUT when VOUT decreases to 99% of its nominal output voltage with VIN = VOUT + 1V. For  
output voltages below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum  
input voltage being 2.25V. Minimum input operating voltage is 2.25V.  
4: IGND is the quiescent current (IIN = IGND + IOUT).  
5: For a 2.5V device, VIN = 2.250V (device is in dropout).  
6: VREF VOUT (VIN – 1V), 2.25V VIN 16V, 10 mA IL 1A, TJ = TMAX  
.
2017 Microchip Technology Inc.  
DS20005834A-page 5  
 
 
MIC39100/1/2  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Junction Operating Temperature  
Range  
TJ  
–40  
+125  
°C  
Storage Temperature Range  
Lead Temperature  
TS  
–65  
+150  
+260  
°C  
°C  
Soldering, 5s  
Package Thermal Resistances  
Thermal Resistance SOT-223  
Thermal Resistance SOIC-8  
JC  
JC  
15  
20  
°C/W  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
DS20005834A-page 6  
2017 Microchip Technology Inc.  
 
MIC39100/1/2  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
80  
60  
40  
20  
0
80  
60  
40  
V
= 5V  
VIONUT = 3.3V  
V
= 3.3V  
VIONUT = 2.5V  
20  
0
IOUT = 1A  
CIONU=T 0μF  
IOUT = 1A  
CIONU=T 0μF  
C
= 10μF  
C
= 47μF  
10  
100  
1K  
10K 100K 1M  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
10 100 1K 10K 100K 1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2-1:  
Power Supply Rejection  
FIGURE 2-4:  
Power Supply Rejection  
Ratio.  
Ratio.  
80  
500  
450  
400  
V
= 5V  
VIONUT = 3.3V  
2.5V  
3.3V  
60  
40  
20  
0
350  
300  
250  
200  
150  
100  
50  
1.8V  
TA = 25°C  
IOUT = 1A  
CIONU=T 0μF  
C
= 47μF  
0
1E+2 1E+3 1E+4 1E+5 1E+6  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
10 100 1K 10K 100K 1M  
0
250  
500 750 1000 1250  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 2-2:  
Ratio.  
Power Supply Rejection  
FIGURE 2-5:  
Current.  
Dropout Voltage vs. Output  
80  
600  
V
= 3.3V  
ILOAD = 1A  
VIONUT = 2.5V  
550  
500  
60  
40  
20  
0
1.8V  
3.3V  
450  
400  
2.5V  
IOUT = 1A  
CIONU=T 0μF  
350  
300  
C
= 10μF  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
10 100 1K 10K 100K 1M  
1E+2 1E+3 1E+4 1E+5  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 2-3:  
Power Supply Rejection  
FIGURE 2-6:  
Dropout Voltage vs.  
Ratio.  
Temperature.  
2017 Microchip Technology Inc.  
DS20005834A-page 7  
MIC39100/1/2  
2.8  
2.0  
1.8  
1.6  
2.6  
2.4  
ILOAD = 100mA  
ILOAD = 100mA  
1.4  
1.2  
1.0  
0.8  
2.2  
2.0  
1.8  
1.6  
1.4  
ILOAD = 750mA  
ILOAD = 10mA  
0.6  
0.4  
0.2  
0
ILOAD = 1A  
1E+2 1E+3 1E+4  
2.3 2.6 2.9  
0
2
4
6
8
2
3.2  
3.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 2-7:  
Dropout Characteristics  
FIGURE 2-10:  
Ground Current vs. Supply  
(2.5V).  
Voltage (2.5V).  
35  
30  
3.6  
3.4  
ILOAD = 100mA  
25  
3.2  
3.0  
2.8  
2.6  
ILOAD = 1A  
20  
15  
ILOAD = 750mA  
ILOAD = 1A  
10  
5
1E+2 1E+3 1E+4  
2.4  
0
2.8  
3.2  
3.6  
4.0  
4.4  
0
2
4
6
8
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 2-11:  
Voltage (2.5V).  
Ground Current vs. Supply  
FIGURE 2-8:  
(3.3V).  
Dropout Characteristics  
1.4  
1.2  
1.0  
14  
12  
10  
8
1.8V  
ILOAD = 100mA  
2.5V  
3.3V  
0.8  
0.6  
0.4  
0.2  
0
6
ILOAD = 10mA  
4
2
0
0
2
4
6
8
0
200  
400 600  
800 1000  
SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (mA)  
FIGURE 2-12:  
Ground Current vs. Supply  
FIGURE 2-9:  
Ground Current vs. Output  
Voltage (3.3V).  
Current.  
DS20005834A-page 8  
2017 Microchip Technology Inc.  
MIC39100/1/2  
50  
20  
15  
ILOAD = 1A  
40  
30  
1.8V  
3.3V  
2.5V  
ILOAD = 1A  
10  
5
20  
10  
0
0
–40 –20  
0
20 40 60 80 100 120  
0
2
4
6
8
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
FIGURE 2-13:  
Ground Current vs. Supply  
FIGURE 2-16:  
Ground Current vs.  
Voltage (3.3V).  
Temperature.  
3.40  
3.35  
1.0  
0.8  
ILOAD = 10mA  
0.6  
0.4  
3.3V  
2.5V  
3.30  
3.25  
3.20  
0.2  
0
1.8V  
TYPICAL 3.3V DEVICE  
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 2-17:  
Output Voltage vs.  
FIGURE 2-14:  
Ground Current vs.  
Temperature.  
Temperature.  
2.5  
2.0  
1.5  
1.0  
5.0  
4.5  
2.5V  
3.3V  
3.3V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.8V  
2.5V  
1.8V  
1.5  
1.0  
0.5  
0.5  
0
ILOAD = 500mA  
0
–40 –20  
0
20 40 60 80 100 120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 2-18:  
Temperature.  
Short-Circuit vs.  
FIGURE 2-15:  
Temperature.  
Ground Current vs.  
2017 Microchip Technology Inc.  
DS20005834A-page 9  
MIC39100/1/2  
6
VOUT = 2.5V  
COUT = 10μF  
V
IN = 5V  
5
OUTPUT  
VOLTAGE  
(200mV/div)  
FLAG HIGH (OK)  
4
3
2
1A  
FLAG LOW (FAULT)  
1
0
LOAD  
CURRENT  
(500mA/div)  
100mA  
10 100 1K 10K 100K 1M 10M  
RESISTANCE (Ÿ)  
TIME (250μs/div)  
FIGURE 2-19:  
Error Flag Voltage vs.  
FIGURE 2-22:  
Load Transient Response.  
Pull-Up Resistor Value.  
12  
VOUT = 2.5V  
COUT = 47μF  
V
= V  
+ 1V  
VEINN = 2O.4UTV  
10  
8
OUTPUT  
VOLTAGE  
(200mV/div)  
6
4
2
1A  
LOAD  
CURRENT  
(500mA/div)  
10mA  
0
–40 –20  
0 20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TIME (500μs/div)  
FIGURE 2-23:  
Load Transient Response.  
FIGURE 2-20:  
Enable Current vs.  
Temperature.  
250  
200  
150  
100  
VOUT = 2.5V  
COUT = 10μF  
FLAG-LOW  
VOLTAGE  
OUTPUT  
VOLTAGE  
(50mV/div)  
VIN = 2.25V  
R
PULL-UP = 22kŸ  
50  
0
INPUT  
VOLTAGE  
(2V/div)  
–40 –20  
0 20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TIME (25μs/div)  
FIGURE 2-21:  
Flag-Low Voltage vs.  
FIGURE 2-24:  
Line Transient Response.  
Temperature.  
DS20005834A-page 10  
2017 Microchip Technology Inc.  
 
MIC39100/1/2  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin Number  
MIC39100  
Pin Number  
MIC39101  
Pin Number  
MIC39102  
Pin Name  
Description  
1
1
EN  
Enable (Input): CMOS-compatible control input.  
Logic HIGH = enable; logic LOW or OPEN =  
shutdown.  
1
3
2
3
4
2
3
IN  
Supply (Input).  
OUT  
FLG  
Regulator Output.  
Flag (Output): Open-collector error flag output.  
Active LOW = output undervoltage.  
4
ADJ  
Adjustable Input: Feedback input. Connect to  
resistive voltage-divider network.  
2, TAB  
5, 6, 7, 8  
5, 6, 7, 8  
GND  
Ground.  
2017 Microchip Technology Inc.  
DS20005834A-page 11  
 
MIC39100/1/2  
The value of the output capacitor can be increased  
without limit. Higher capacitance values help to  
improve transient response and ripple rejection and  
reduce output noise.  
4.0  
APPLICATION INFORMATION  
The MIC39100/1/2 is a high performance, low dropout  
voltage regulator suitable for moderate to high current  
voltage regulator applications. Its 630 mV dropout  
voltage at full load and over temperature makes it  
especially valuable in battery-powered systems and as  
high efciency noise lters in post-regulator  
applications. Unlike older NPN-pass transistor designs,  
where the minimum dropout voltage is limited by the  
base-to-emitter voltage drop and collector-to-emitter  
saturation voltage, dropout performance of the PNP  
output of these devices is limited only by the low VCE  
saturation voltage.  
4.2  
Input Capacitor  
An input capacitor of 1 µF or greater is recommended  
when the device is more than four inches away from  
the bulk ac supply capacitance or when the supply is a  
battery. Small, surface mount, ceramic chip capacitors  
can be used for bypassing. Larger values will help to  
improve ripple rejection by bypassing the input to the  
regulator, further improving the integrity of the output  
voltage.  
A trade-off for the low dropout voltage is a varying base  
drive requirement that reduces the drive requirement to  
only 2% of the load current.  
4.3  
Error Flag  
The MIC39100/1/2 regulator is fully protected from  
damage due to fault conditions. Linear current limiting  
is provided. Output current during overload conditions  
is constant. Thermal shutdown disables the device  
when the die temperature exceeds the maximum safe  
operating temperature. Transient protection allows  
device (and load) survival even when the input voltage  
spikes above and below nominal. The output structure  
of these regulators allows voltages in excess of the  
desired output voltage to be applied without reverse  
current ow.  
The MIC39101 features an error ag (FLG) that  
monitors the output voltage and signals an error  
condition when this voltage drops 5% below its  
expected value. The error ag is an open-collector  
output that pulls low under fault conditions and may  
sink up to 10 mA. Low output voltage signies a  
number of possible problems, including an overcurrent  
fault (the device is in current-limit) or low input voltage.  
The ag output is inoperative during overtemperature  
conditions. A pull-up resistor from FLG to either VIN or  
VOUT is required for proper operation. For information  
regarding the minimum and maximum values of pull-up  
resistance, refer to Figure 2-19.  
MIC39100-x.x.  
VIN  
VOUT  
COUT  
IN  
OUT  
4.4  
Enable Input  
The MIC39101 and MIC39102 feature an active-HIGH  
enable input (EN) that allows on/off control of the  
regulator. Current drain reduces to zero when the  
device is shutdown, with only microamperes (µA) of  
CIN  
GND  
leakage  
current.  
The  
EN  
input  
has  
FIGURE 4-1:  
Capacitor Requirements.  
TTL/CMOS-comparable thresholds for simple logic  
interfacing. EN can be directly tied to VIN and pulled-up  
to the maximum supply voltage.  
4.1  
Output Capacitor  
The MIC39100/1/2 requires an output capacitor to  
maintain stability and improve transient response.  
Proper capacitor selection is important to ensure  
proper operation. The MIC39100/1/2 output capacitor  
selection is dependent upon the equivalent series  
resistance (ESR) of the output capacitor to maintain  
stability. When the output capacitor is 10 µF or greater,  
the output capacitor should have an ESR less than 2.  
This will improve transient response as well as promote  
stability. Ultra-low ESR capacitors (<100 m), such as  
ceramic-chip capacitors, may promote instability.  
These very low ESR levels may cause an oscillation  
and/or underdamped transient response. A low-ESR  
solid tantalum capacitor works extremely well and  
provides good transient response and stability over  
temperature. Aluminum electrolytics can also be used,  
as long as the ESR of the capacitor is <2.  
4.5  
Transient Response and 3.3V to  
2.5V or 2.5V to 1.8V Conversion  
The MIC39100/1/2 has excellent transient response to  
variations in input voltage and load current. The device  
has been designed to respond quickly to load current  
variations and input voltage variations. Large output  
capacitors are not required to obtain this performance.  
A standard 10 µF output capacitor, preferably tantalum,  
is all that is required. Larger values help to improve  
performance even further.  
By virtue of its low dropout voltage, this device does not  
saturate into dropout as readily as similar NPN-based  
designs. When converting from 3.3V to 2.5V or 2.5V to  
1.8V, the NPN-based regulators are already operating  
in dropout, with typical dropout requirements of 1.2V or  
DS20005834A-page 12  
2017 Microchip Technology Inc.  
MIC39100/1/2  
greater. To convert down to 2.5V or 1.8V without  
operating in dropout, NPN-based regulators require an  
input voltage of 3.7V at the very least.  
EQUATION 4-2:  
R1  
R2  
The MIC39100 regulator will provide excellent  
performance with an input as low as 3.0V or 2.5V  
respectively. This gives the PNP-based regulators a  
distinct advantage over older, NPN-based linear  
regulators.  
VOUT = 1.240V 1 + ------  
4.8  
Power SOIC-8 Thermal  
Characteristics  
4.6  
Minimum Load Current  
The MIC39100/1/2 regulator is specied between nite  
loads. If the output current is too small, leakage  
currents dominate and the output voltage rises. A  
10 mA minimum load current is necessary for proper  
regulation.  
One of the secrets of the MIC39101/2’s performance is  
its power SO-8 package. Lower thermal resistance  
means more output current or higher input voltage for a  
given package size.  
Lower thermal resistance is achieved by joining the  
four ground leads with the die attach paddle to create a  
single-piece electrical and thermal conductor. This  
concept has been used by MOSFET manufacturers for  
years, proving very reliable and cost effective for the  
user.  
4.7  
Adjustable Regulator Design  
The MIC39102 allows programming the output voltage  
anywhere between 1.24V and the 16V maximum  
operating rating of the family. Two resistors are used.  
Resistors can be quite large, up to 1 M, because of  
the very high input impedance and low bias current of  
the sense comparator: The resistor values are  
calculated by Equation 4-1:  
Thermal resistance consists of two main elements, θJC  
(junction-to-case thermal resistance) and θCA  
(case-to-ambient thermal resistance, see Figure 4-3).  
θJC is the resistance from the die to the leads of the  
package. θCA is the resistance from the leads to the  
ambient air and it includes θCS (case-to-sink thermal  
resistance) and θSA (sink-to-ambient thermal  
resistance).  
EQUATION 4-1:  
VOUT  
R1 = R2 ------------- – 1  
1.240  
Where:  
VOUT Desired output voltage.  
Applications with widely varying load currents may  
scale the resistors to draw the minimum load current  
required for proper operation (Figure 4-2).  
TJA  
GROUND PLANE  
HEAT SINK AREA  
TJC  
TCA  
AMBIENT  
MIC39102  
VOUT  
COUT  
VIN  
IN  
OUT  
R1  
R2  
PRINTED CIRCUIT BOARD  
ENABLE  
SHUTDOWN  
EN  
ADJ  
GND  
FIGURE 4-3:  
Thermal Resistance.  
Using the power SOIC-8 reduces the θJC dramatically  
and allows the user to reduce θCA. The total thermal  
resistance,  
θJA  
,
(junction-to-ambient  
thermal  
FIGURE 4-2:  
Resistors.  
Adjustable Regulator with  
resistance) is the limiting factor in calculating the  
maximum power dissipation capability of the device.  
Typically, the power SOIC-8 has a θJC of 20°C/W,  
which is significantly lower than the standard SOIC-8  
(typically 75°C/W). θCA is reduced due to the capability  
of soldering Pins 5 through 8 directly to a ground plane.  
2017 Microchip Technology Inc.  
DS20005834A-page 13  
 
 
 
MIC39100/1/2  
This significantly reduces the case-to-sink thermal  
resistance as well as the sink-to-ambient thermal  
resistance.  
Using Figure 4-4, the minimum amount of required  
copper can be determined based on the required  
power dissipation. Power dissipation in a linear  
regulator is calculated as in Equation 4-4:  
Low dropout linear regulators from Microchip are rated  
to a maximum junction temperature of +125°C. It is  
important not to exceed this maximum junction  
temperature during operation of the device. To prevent  
this maximum junction temperature from being  
exceeded, the appropriate ground plane heat sink must  
be used.  
EQUATION 4-4:  
PD = VIN VOUTIOUT + VIN IGND  
Figure 4-4 shows copper area versus power  
dissipation with each trace corresponding to a different  
temperature rise above ambient.  
Using a 2.5V output device and a 3.3V input at an  
output current of 1A, the power dissipation is calculated  
as in Equation 4-5:  
900  
800  
¨TJA  
=
EQUATION 4-5:  
700  
600  
500  
400  
300  
200  
100  
0
PD = 3.3V – 2.5V1A + 3.3V 11 mA  
= 800 mW + 36 mW = 836 mW  
From Figure 4-4, the minimum amount of copper  
required to operate this application at a T of 75°C is  
160 mm2.  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
FIGURE 4-4:  
SOIC Power Dissipation (T ).  
Copper Area vs. Power  
4.9  
Quick Method  
JA  
Determine the power dissipation requirements for the  
design along with the maximum ambient temperature  
at which the device will be operated. Refer to  
Figure 4-5, which shows safe operating curves for  
three different ambient temperatures: 25°C, 50°C, and  
85°C. From these curves, the minimum amount of  
copper can be determined by knowing the maximum  
power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as  
above, 836 mW, the curve in Figure 4-5 shows that the  
required area of copper is 160 mm2.  
From these curves, the minimum area of copper  
necessary for the part to operate safely can be  
determined. The maximum allowable temperature rise  
must be calculated to determine operation along which  
curve.  
For example, the maximum ambient temperature is  
50°C, the T is determined as in Equation 4-3:  
EQUATION 4-3:  
The θJA of this package is ideally 63°C/W, but it will  
vary depending upon the availability of copper ground  
plane to which it is attached.  
T = 125C – 50C = 75C  
Where:  
T  
TJ(MAX) – TA(MAX)  
TJ(MAX) +125°C  
TA(MAX) Max. ambient operating temperature  
DS20005834A-page 14  
2017 Microchip Technology Inc.  
 
 
 
 
MIC39100/1/2  
900  
800  
700  
600  
500  
TJ = 125°C  
TA  
=
400  
300  
200  
100  
0
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
FIGURE 4-5:  
Copper Area vs. Power  
SOIC Power Dissipation (T ).  
A
2017 Microchip Technology Inc.  
DS20005834A-page 15  
MIC39100/1/2  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-223*  
(MIC39100)  
Example  
XXXXX  
X.XWNNNP  
39100  
2.58103P  
8-Pin SOIC*  
(MIC39101)  
Example  
XXXXX  
-X.XXX  
39101  
-3.3Y  
WNNN  
6987  
8-Pin SOIC*  
(MIC39102)  
Example  
XXX  
XXXXXXX  
MIC  
39102YM  
3112  
WNNN  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
DS20005834A-page 16  
2017 Microchip Technology Inc.  
MIC39100/1/2  
3-Lead SOT-223 Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005834A-page 17  
MIC39100/1/2  
8-Lead SOIC Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005834A-page 18  
2017 Microchip Technology Inc.  
MIC39100/1/2  
APPENDIX A: REVISION HISTORY  
Revision A (August 2017)  
• Converted Micrel document MIC39100/1/2 to  
Microchip data sheet DS20005834A.  
• Minor text changes throughout.  
2017 Microchip Technology Inc.  
DS20005834A-page 19  
MIC39100/1/2  
DS20005834A-page 20  
2017 Microchip Technology Inc.  
MIC39100/1/2  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
–X.  
X
X
XX  
–XX  
a) MIC39100-1.8WS:  
1A, Low Voltage, Low Dropout  
Regulator, 1.8V,  
–40°C to +125°C, 3-Lead  
SOT-223, 78/Tube  
Voltage  
Temperature Package Media Type  
Device:  
Voltage:  
MIC39100/1/2: 1A, Low Voltage, Low Dropout Regulator  
b) MIC39100-3.3WS-TR: 1A, Low Voltage, Low Dropout  
Regulator, 3.3V,  
–40°C to +125°C, 3-Lead  
1.8  
2.5  
3.3  
5.0  
=
=
=
=
1.8V  
2.5V  
3.3V  
5.0V  
SOT-223, 2,500/Reel  
c) MIC39101-2.5YM:  
1A, Low Voltage, Low Dropout  
Regulator, 2.5V,  
<blank>= Adjustable (MIC39102 Only)  
–40°C to +125°C, 8-Lead  
SOIC, 95/Tube  
Temperature:  
Y
W
=
=
–40°C to +125°C  
–40°C to +125°C (with high-melting solder  
exemption)  
d) MIC39101-5.0YM-TR: 1A, Low Voltage, Low Dropout  
Regulator, 5.0V,  
–40°C to +125°C, 8-Lead  
SOIC, 2,500/Reel  
Package:  
M
S
=
=
8-Lead SOIC  
3-Lead SOT-223 (MIC39100 Only)  
e) MIC39102YM:  
1A, Low Voltage, Low Dropout  
Regulator, Adjustable Voltage,  
–40°C to +125°C, 8-Lead  
SOIC, 95/Tube  
Media Type:  
<blank>= 78/Tube (MIC39100)  
<blank>= 95/Tube (MIC39101/2)  
TR  
f) MIC39102YM-TR:  
1A, Low Voltage, Low Dropout  
Regulator, Adjustable Voltage,  
–40°C to +125°C, 8-Lead  
SOIC, 2,500/Reel  
=
2,500/Reel  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
2017 Microchip Technology Inc.  
DS20005834A-page 21  
MIC39100/1/2  
NOTES:  
DS20005834A-page 22  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-2098-9  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005834A-page 23  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005834A-page 24  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY